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Abstract: The extraction of reliable features is a key issue for autonomous
underwater vehicle navigation. Imaging sonars can produce acoustic images of
the surroundings of the vehicle. Despite of the noise, the phantom echoes and
reflections, we believe that they are a good source for features since they can work
in turbid water, where other sensors like vision fail. Moreover, they can cover wide
areas, increasing the number of features visible within a scan. This work presents
an algorithm to extract linear features from underwater structured environments
including as major contributions a sonar sensor model, an adapted implementation
of the Hough transform and a novel procedure to estimate feature uncertainty.
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1. INTRODUCTION

Vehicle localization, map building and more re-
cently, the simultaneous localization and mapping
(SLAM) are fundamental problems to achieve true
autonomous vehicles (Durrant-Whyte and Bai-
ley, 2006), (Bailey and Durrant-Whyte, 2006).
One of the key issues on those techniques is to de-
velop reliable systems to extract features from the
environment in order to build maps or navigate
thorough existing ones. Working in underwater
environments is specially challenging because of
the reduced sensorial possibilities. Acoustic de-
vices are the most common choice while the use
of cameras and laser sensors is limited to ap-
plications where the vehicle navigates very near
to the seafloor. One of the issues on working on
this kind of environments is the difficulty on find-
ing reliable features. There are approaches using
clusters of acoustic data as features (Leonard et
al., 2001), (Tena et al., 2001), or merging vi-
sual and acoustic information in order to improve
the reliability (Williams and Mahon, 2004), while

other strategies simply introduce artificial beacons
to deal with complex environments (Newman and
Leonard, 2003). Most of the previous work us-
ing mechanically scanned imaging sonars (MSIS)
have focused on the use of point features assum-
ing the robot remains static or moves sufficiently
slow. In this work we propose an algorithm to
take advantage of structured elements typically
present in common underwater scenarios (drilling
platforms, harbours, channels, dams,...) in order
to extract line features (cross sections of planar
structures present in the environment). Moreover,
our algorithm removes the “static” assumption.
This paper briefly introduces MSISs, a novel sonar
model which improves the sensor measurements
characterization, an algorithm for line feature ex-
traction from imaging sonar scans based on a
modified version of the Hough transform and a
methodology for feature uncertainty estimation.
Finally, the results and conclusions are presented.



Fig. 1. (a) Schematic representation of the environment where the sonar data were gathered. (b)
Raw data represented in polar coordinates. Each row corresponds to a single beam at a given
orientation and each column to a bin in a particular position along the beam. (c) The same data
represented in cartesian coordinates. Notice the distortion produced by the movement of the vehicle.
(d) Undistorted image after integration with vehicle displacement.

2. WORKING WITH ACOUSTIC
UNDERWATER IMAGES

MSISs perform scans in a 2D plane by rotating a
fan-shaped sonar beam through a series of small
angle steps. For each emitted beam, a set of bins
(distance vs. echo-amplitude values) are obtained
(Fig. 1b). Accumulating this information along a
complete 360◦ sector produces an acoustic image
of the surroundings (Fig. 1c). The beam typically
has a large vertical beamwidth which makes possi-
ble the detection of obstacles at different heights.
In the other hand, a narrow horizontal beamwidth
increments the resolution of the device and im-
proves the sharpness of the acoustic images.

2.1 Beam segmentation

Objects present in the environment appear as
high echo-amplitude returns in acoustic images.
Thus, only part of the information stored in each
beam is useful for feature extraction. Therefore,
a segmentation process can be done in order
to obtain the more significant information. This
process consists in two steps. First, only those
bins with an intensity value over a threshold are
selected and stored. This procedure separates the
acoustic imprint left by an object in the image,
from the noisy background data (Fig. 2b). The
resulting imprint is used to estimate the feature
uncertainty as explained in Section 4. The second
step is to select among the thresholded data
those bins which are local maxima and satisfy
a “minimum distance between them” criterion
(Fig. 2c). These local high intensity bins are
the ones that most likely correspond to objects
present in the scene. Thus, they are specially
well suited as input to the feature extraction
algorithm (Section 3) while, at the same time, the
computational efficiency is improved since a small
number of bins are involved.

Fig. 2. (a) Raw sensor data. (b) Segmented data.
(c) Selection of local maxima bins.

2.2 Undistorting the acoustic images

Commonly, MSISs have a slow scanning rate (f.i.
a Tritech Miniking sonar head needs about 6 sec-
onds to complete a 360◦ scan). For this reason, the
vehicle movement along a complete scan usually
induces important distortions in the acoustic im-
age (Fig. 1c). Extracting features from this kind
of images produces inaccuracies and yields poor
results. Therefore, the first step of the procedure
consists on merging the raw sensor data together
with the information from the vehicle’s navigation
system (Ribas et al., 2006). Incorporating the
displacements and rotations of the sensor into the
positional information of each sonar measurement
leads to an undistorted acoustic image such the
one represented in Fig. 1d.

2.3 Dealing with a stream of beams

In order to deal with the stream of measurements
produced by the continuous arrival of beams, we
set a data buffer storing the beams contained
within the most recent 180◦ scan sector. When-
ever new beams corresponding to an unexplored
zone arrive, old beams that fall outside the scan
sector are discarded. The choice of a 180◦ sector is
not arbitrary since this is the maximum zone that
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Fig. 3. Model of the sonar sensor for line features.
Where B is the base reference frame and S is
a reference frame attached to a beam.

a single line can cover within a sonar scan. Since
calculations searching features are performed with
every new beam (Section 3), the buffer should con-
tain the bins which are local maxima (Fig. 2c) for
the line detection process, the segmented beams
(Fig. 2b) for uncertainty estimation and all its as-
sociated positions in the world coordinate system
to deal with the movement-induced distortions.

3. DETECTION OF LINE FEATURES

As said before, walls and other planar structures
produce line-shaped features in acoustic images.
The Hough transform (Illingworth and Kittler,
1988) is a feature extraction technique which is
specially well suited for this kind of situations.
This algorithm accumulates the information from
the sensor data into a voting table which is a
parameterized representation of all the possible
feature locations. Those features that receive a
great number of votes are the ones with a relevant
set of compatible sensor measurements and thus
the ones that most likely correspond to a real
object in the environment. In our application,
line features are described by two parameters,
ρB and θB (distance and orientation with respect
to a base frame B). Hence, the resulting Hough
space (HS) is a two-dimensional space where the
voting process and the search for maxima can
be done efficiently. The base reference frame B
can be set arbitrarily. However, our choice for B
is the position of the sensor head when the last
beam arrives. So, any detected line feature will
be represented directly in the sensor coordinate
frame. It is worth noting that B is not a fix
coordinate frame. As the parametrization in the
HS is performed in polar coordinates, setting

the reference in a fix position would produce
a resolution loss with the increment of range.
Hence, we need to resituate B near to the sensor
as the vehicle moves. Unfortunately, this makes
necessary to recalculate the HS with each change
in the position of B. Another key issue is the
quantization of the HS. In our case, we have
observed that selecting the quantization equal to
the angular and lineal resolutions of our sensor
(typically, 1.8◦ and 0.1 m) works fine.

The feature extraction procedure works as follows:
First, with each beam arrival the Hough space is
initialized, and the buffered bins are referenced
to B so they can be used to vote in such space.
Then, the votes corresponding to each bin are
assigned to the candidate lines by means of a sonar
model. Finally, a search for winning candidates is
performed.

3.1 Sonar Modeling

Each bin represents the strength of the echo in-
tensity return in a particular place within the
insonified area. Due to the uncertainty produced
by the horizontal beamwidth, a measurement can-
not be assigned to a single point in the space. A
common approach (Leonard and Durrant-Whyte,
1992),(Tardós et al., 2002), is to represent a bin as
an arc whose aperture represents the beamwidth
uncertainty. Moreover, as a high intensity return
is typically produced when the acoustic wave hits
perpendicularly a surface, we can infer that all
the surfaces tangent to the arc can explain the
high intensity return. While this simple model is
well suited for air sonar ranging systems, it is
not able to explain the acoustic images gathered
with a MSIS. A careful analysis of such images
reveals that their object detection capability is
not limited to the arc-tangent surfaces. Even those
beams which meet a surface with a considerable
incidence angle (for the Miniking, β = 60◦) pro-
duce a discernible high intensity profile. For this
reason, we have adopted an extended model to
describe the imaging sonar. Each bin represents a
zone described by an arc which corresponds to the
horizontal beamwidth α (in our sensor, α = 3◦).
Given a resolution and the incidence angle β, for
each point belonging the arc, its tangent surface
as well as the intersecting planes with an inci-
dence angle smaller than ±β/2 are visible for the
beam’s bin (Fig. 3). Hence, the acoustic intensity
represented by the bin should correspond to one
of those candidate planes.

3.2 Voting

The next step is to determine the candidate lines
that will receive the votes for each buffered bin. As



Fig. 4. Two examples of the voting process. The scan sector stored in the buffer is represented together
with its corresponding generated voting space. The red triangular shapes mark the newest beam.
The shaded zone represents where the candidates have received all the possible votes (a) Part of the
target line is still outside the sector scan. Hence, it can receive more votes in the future. (b) The
new beams can not add new votes to the target line. The line inside the shaded zone of the voting
space have been fully observed and hence, it can be detected.

previously introduced in Section 3.1, the measure-
ment is modeled as an arc in order to represent
the uncertainty that appears due to the horizontal
beamwith α (Fig. 3). Hence, θSj

will take values
within an aperture of ±α/2 around the real angle
of the transducer head. Then, for each θSj value, a
set of k candidate lines will be determined. As said
before, not only the lines tangent to the arc are
candidates, but also the ones inside the maximum
incidence angle limits of ±β/2. So, for each θSj

value we can define θB
k as:

θSj −
β

2
≤ θB

k ≤ θSj +
β

2
. (1)

Finally, the ρB
k value that corresponds to each

value of θB
k is calculated as:

ρB
k = xSj

cos(θB
k ) + ySj

sin(θB
k ) + ρSjcos(θSj

k ) .(2)

In Fig. 4 it is shown how the set of voters looks
like when assigned to the Hough space. Note that
each selected cell of the Hough space only receives
one single vote.

3.3 Line extraction

The algorithm looks for winning candidates each
time a new beam arrives and a new voting space is
generated. We have to ensure that the algorithm
detects the line when it has received all the possi-
ble votes (or what is the same, the line is totally
inside the 180◦ scan sector and the newest sonar
beam cannot provide more information). It is pos-
sible to determine the zone in the voting space
where the candidates have received all the avail-
able votes (see Fig. 4). Basically, we can say that
all the candidates beyond the boundary described
by all the votes that an upcoming beam could

Fig. 5. Uncertainty estimation. The parameters of
the winning line are represented as a small
red dot in the segmented data. The line trace
is represented in cyan. In the detail, all the
neighboring compatible lines are represented
in black. The red ellipse groups those lines
and represents the feature uncertainty. The
output line feature is represented in the scan
sector.

generate, accomplish this condition. Performing
the detection in this way, we can ensure that our
algorithm detects the lines as soon as they are
completely visible. After a line detection, all the
bins involved in the election of the candidate are
removed from the buffer so they do not interfere
with the detection of further features.

4. UNCERTAINTY ESTIMATION

When a line has been detected among the candi-
dates in the HS the next step is to estimate its
uncertainty. As the winning line has obtained a
considerable number of votes, it must correspond
to a high intensity zone of the buffered beams (see



Fig. 6. Testing the algorithm with synthetic data. (a) Raw sensor data generated from ρ and θ given a
normally distributed uncertainty. Some correlation affects the two variables to increase the difficulty
of the test. (b) The voting space clearly identifies the line. (c) Points generated with the test
distribution to produce the synthetic data. The blue ellipse represents the real multivariate normal
distribution for a 95% confidence level while the red one is the output of our algorithm. (d) The
same estimated uncertainty as obtained by the algorithm. (e) The estimated line feature fits almost
perfectly the synthetic one.

Fig. 2b). This zone (an arc) represents the imprint
of the object (a line) in the polar representation
of the acoustic image and its thickness is related
to the line uncertainty. The points belonging to
the arc are the polar representation of the sonar
measurements corresponding to the uncertain line
in Cartesian coordinates. If both, the scanner
and the HS are represented in the same frame,
the point with the minimum ρ (the maximum of
the arc) would have the same rho-theta used to
represent the line in the HS. If not, a coordinate
system transformation can be used to relate both
of them. It is worth noting that although HS
is used to represent lines, it is actually a polar
representation of the space and hence it can also
represent points. Lines are in fact represented us-
ing their point with smallest distance to the origin.
Therefore, it is possible to represent the buffered
beams, for which we know its world coordinates,
into the HS (referenced to B) were the detected
line is represented (Fig. 5). The points belonging
to the detected line describe an arc in the HS,
and it is possible to compute their number of
compatible measurements. Moreover, each realiza-
tion of an stochastic line in Cartesian coordinates,
accomplishes the following properties: (1) there
exists a corresponding arc in the HS falling within
the uncertain (thick) arc, (2) it has a number of
compatible measurements similar to the already
detected line, and (3) it is represented by a rho-
theta point belonging to the neighbourhood of the
already detected line. Therefore, it is possible to
look for the points (representing line realizations)
in the neighbourhood of the detected line satis-
fying the 3 properties. The region described by
those points has an elliptical shape in HS and it is
possible to estimate its parameters (red ellipse in
Fig. 5). This ellipse can then be compared with the

ellipse described by a 2-dimensional multivariate
normal distribution for a given confidence level.
The mean of this normal distribution is taken
as the output line feature, while the probability
distribution itself is a representation of the feature
uncertainty.

5. RESULTS & CONCLUSIONS

In order to validate the algorithm, several exper-
iments with both real and synthetic data were
carried out. Using synthetic data presents some
advantages. First, it is possible to compare the-
oretical Gaussian lines (Fig. 6) with real ones
(Figs. 7 and 8) and hence, evaluate how well
real measurements are represented by a normally
distributed (ρ, θ) variables. On the other hand, as
we generate the set of synthetic data given partic-
ular values for the probability distribution, we can
validate the output of our algorithm. In Fig. 6 the
results for a synthetic experiment are presented.
We generated a set of sonar measurements by
injecting Gaussian noise at the ρ and θ values,
but also by adding some correlation to the vari-
ables (Fig. 6a). The detection of the line feature
is trivial as there are no noisy measurements or
phantoms that can disturb the process (Fig. 6b).
The uncertainty estimation is also very good as
the zone representing que candidate lines (black
shape in Fig. 6d) is elliptic, which reflects the
Gaussianity of the original data. In Fig. 6c the es-
timated uncertainty (red ellipse) is compared with
the probability distribution used to generate the
data (blue ellipse). In general, if we can assume
that for a particular segmentation threshold we
could assure the existence of a real feature within



the imprint given a certain confidence level, we
would be capable to estimate its uncertainty.

Results from real datasets obtained with a Tritech
Miniking imaging sonar mounted in the ICTINEUAUV

are presented in Figs. 7 and 8. A Sontek Argonaut
DVL sensor incorporating a magnetic compass
was used to estimate the vehicle movement and to
undistort the images. The first image was taken in
the channels of a nautical club and, as it can be
observed, the aspect of the real features matches
the synthetic ones (Fig. 7). The second experiment
was performed in the water tank of the Underwa-
ter Robotics Research Center at the University
of Girona. As this environment is very confined
and the material of its walls is highly reflective,
the obtained data is much more noisy and some
phantoms are present. However, the obtained re-
sults were still good (Fig. 8), demonstrating the
robustness of the proposal.

Fig. 7. Results obtained for a scan taken in a
channel.
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