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Abstract

In this paper1 we study the Extended Kalman Filter approach to simultaneous localization and mapping (EKF-SLAM), describing its known
properties and limitations, and concentrate on the filter consistency issue. We show that linearization of the inherent nonlinearities of both the
vehicle motion and the sensor models frequently drives the solution of the EKF-SLAM out of consistency, specially in those situations where
uncertainty surpasses a certain threshold. We propose a mapping algorithm, Robocentric Map Joining, which improves consistency of the EKF-
SLAM algorithm by limiting the level of uncertainty in the continuous evolution of the stochastic map: (1) by building a sequence of independent
local maps, and (2) by using a robot centered representation of each local map. Simulations and a large-scale indoor/outdoor experiment validate
the proposed approach.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

During the last decade, the robotics literature has been
populated with scientific work on the problem of simultaneous
localization and mapping (SLAM). Basically, SLAM is the
problem of determining the position and heading of a vehicle
moving through an unknown environment and, concurrently,
learning useful information from the surroundings taking into
account sensor errors. The most popular approach to SLAM
dates back to the seminal work of Smith et al. [1] where the idea
of representing the structure of the navigation area in a discrete-
time state-space framework was originally presented. They
introduced the concept of stochastic map and they developed
a rigorous solution to the SLAM problem using an Extended
Kalman Filter (EKF) perspective [2].

The EKF-SLAM approach is characterized by the existence
of a discrete-time augmented state vector, composed of the
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location of the vehicle and the location of the map elements,
recursively estimated from the available sensor observations
gathered at time k, and a model of the vehicle motion,
between time steps k − 1 and k. Within this framework,
uncertainty is represented by probability density functions
(pdfs) associated to the state vector, the motion model and the
sensor observations. It is assumed that recursive propagation
of the mean and the covariance of those pdfs conveniently
approximates the optimal solution of this estimation problem.
Many successful implementations of this approach have been
reported in indoor [11], outdoor [13], underwater [15] and air-
borne [14] applications.

The time and memory requirements of the basic EKF-
SLAM approach result from the cost of maintaining the full
covariance matrix, which is O(n2) where n is the number of
features in the map. Many recent efforts have concentrated
on reducing the computational complexity of SLAM in
large environments [16,13,10,17]. However, only recently, the
consistency issues of the EKF-SLAM algorithm have attracted
the attention of the research community. Dissanayake et al. [3]
proved three important convergence properties of the EKF-
SLAM: (1) the determinant of any submatrix of the map
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covariance matrix decreases monotonically as observations
are successively made; (2) in the limit as the number of
observations increases, the landmark estimates become fully
correlated; and (3) in the limit, the covariance associated with
any single landmark location estimate reaches a lower bound
determined only by the initial covariance in the vehicle location
estimate at the time of the first sighting of the first landmark.
However, it is important to note that these theoretical results
only refer to the evolution of the covariance matrices computed
by the EKF in the ideal linear case. They overlook the fact that,
given that SLAM is a nonlinear problem, there is no guarantee
that the computed covariances will match the actual estimation
errors, which is the true SLAM consistency issue first pointed
out by Julier and Uhlmann [4] and confirmed experimentally by
Castellanos et al. [5].

The classical EKF-SLAM linearizes both the motion and
sensor models by using a first-order Taylor series expansion
around the best available estimated state-vector, therefore,
both the bias and the level of uncertainty in the estimated
state-vector influence the accuracy of linearization. In the last
few years, some works have been reported which propose
either alternative linearization techniques [6,7] or even non-
parametric approaches [8,9] to avoid those difficulties.

In this paper we show that linearization errors lead to
inconsistent estimates well before the computational problem
arises. The main contribution of the paper is the formulation of
the Robocentric Map Joining approach, whose advantages are
threefold:

• It addresses the SLAM problem by building independent
local maps of limited size, using the technique first proposed
in [10]. This technique was shown to greatly reduce the
computational cost of SLAM. Here we show that, as the
uncertainty inside a local map is bounded, the linearization
errors are also reduced.

• In standard SLAM, the map is built using an absolute
representation, i.e. with respect to an external reference
frame B. After a certain time, the vehicle and the features
currently observed have a growing absolute uncertainty
that propagates to the measurement equations introducing
errors. Here we build each local map using a robot centered
representation [5], i.e. relative to a reference frame R
attached to the vehicle. Except during loop closing, the
features currently observed have an uncertainty in the order
of the sensor error, which is much smaller. This also results
in a reduction of the linearization errors.

• When the robot moves, its new pose is usually predicted
by composing the old pose with the motion measured
by odometry, which is frequently the least precise sensor.
The new uncertainty is then computed by linearizing the
composition around the predicted value. In Robocentric Map
Joining we delay the composition until the map and the
motion have been refined using new observations of the
environment. This results in a better linearization point for
the composition.

The rest of the paper is structured as follows. In
Section 2 we analyze the linearizations which appear in
the classical EKF-SLAM algorithm, both in filter prediction
and filter update steps. Section 3 introduces a rigorous
definition of consistency [2] and discusses the inconsistency
of the EKF-SLAM algorithm in certain noisy situations. The
reformulation of the classical EKF-SLAM, using a robot
centered representation is presented in Section 4. Then, in
Section 5 we propose the Robocentric Map Joining algorithm,
which improves the consistency of the classical EKF-SLAM
algorithm. Finally, Section 6 describes both simulation and
mixed indoor/outdoor real experiments to validate the proposed
algorithm.

2. Linearizations in the classical EKF-SLAM algorithm

In the probabilistic state-space approach to SLAM, the
vehicle R and a set of environment features F = {F1, . . . , Fn}

are represented by a stochastic state vector xB with estimated
mean x̂B and estimated error covariance PB :

x̂B
=

[
x̂B

R

x̂B
F

]
; PB

=

[
PB

R PB
RF

PB
F R PB

F

]
(1)

where x̂B
R is the estimated location of the vehicle with respect

to (wrt) a base reference frame B, x̂B
F is the estimated location

of the features also wrt B, PB
R is the estimated error covariance

of the location of R, PB
F is the estimated error covariance of the

location of the features, and finally, PB
RF represents the cross-

covariance between the different elements of the state vector.
If a reference external to the vehicle is used as base

reference, the vehicle location must be initialized with the
corresponding nonzero uncertainty. A common misconception
is that this nonzero initial level of uncertainty in the vehicle
location may improve map consistency. In contrast, our
experiments will show that this quickly results in optimistic
covariance values due to linearization errors. For this reason,
we use the vehicle location before the first motion (at step
k = 0) as the base reference (B = R0). Thus, the map can
be initialized with zero covariance for the vehicle location:
x̂B

0 = (0, 0, 0)T , PB
0 = 0. Our results show that this improves

the consistency of the EKF-SLAM algorithm.

2.1. The prediction step

When the vehicle moves from position at time step k − 1 to
position at time step k, its location is predicted as follows:

xB
Rk|k−1

= fk(xB
Rk−1

, xRk−1
Rk

)

= xB
Rk−1

⊕ xRk−1
Rk

(2)

where the uncertain displacement xRk−1
Rk

is estimated by
odometry and assumed to be corrupted by zero mean white
Gaussian noise, vk ∼ N (0, Qk). Note that due to the
transformation composition ⊕, a nonlinear prediction model
is formulated. Thus, a first linearization, around the estimated
values x̂B

Rk−1
and x̂Rk−1

Rk
using the appropriate Jacobians
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(see Appendix), is required:

x̂B
k|k−1 =


x̂B

Rk−1
⊕ x̂Rk−1

Rk

x̂B
F1,k−1
...

x̂B
Fm,k−1


PB

k|k−1 ' J1PB
k−1JT

1 + J2QkJT
2 (3)

where:

J1 =


J1⊕

{
x̂B

Rk−1
, x̂Rk−1

Rk

}
0 · · · 0

0 I
...

...
. . .

0 · · · I



J2 =


J2⊕

{
x̂B

Rk−1
, x̂Rk−1

Rk

}
0
...

0


where J1⊕ and J2⊕ are the Jacobians of the transformation
composition (see Appendix).

2.2. The update step

At step k an onboard sensor obtains a partial measurement
zk of the environment features and is related to the state by a
nonlinear function hk :

zk = hk(xB
k , xRk

Ek
) (4)

where xRk
Ek

represents the set of uncertain observations with
respect to Rk , and corrupted by zero mean white Gaussian
noise, wk ∼ N (0, Rk).

A second linearization, this time around the current map
prediction x̂B

k|k−1, yields:

zk ' hk(x̂
B
k|k−1, x̂Rk

Ek
) + Hk(xB

k − x̂B
k|k−1) + Gk(x

Rk
Ek

− x̂Rk
Ek

)

Hk =
∂hk

∂xB
k

∣∣∣∣∣
(x̂B

k|k−1,x̂
Rk
Ek

)

=
[
HRk 0 · · · HFk · · · 0

]

HRk =
∂hk

∂xB
Rk

∣∣∣∣∣
(x̂B

k|k−1,x̂
Rk
Ek

)

; HFk =
∂hk

∂xB
Fk

∣∣∣∣∣
(x̂B

k|k−1,x̂
Rk
Ek

)

Gk =
∂hk

∂xRk
Ek

∣∣∣∣∣
(x̂B

k|k−1,x̂
Rk
Ek

)

. (5)

Measurement zk is used to obtain a new estimation of the
state using the standard EKF update equations:

x̂B
k = x̂B

k|k−1 + Kkνk

PB
k = (I − KkHk)PB

k|k−1

Kk = PB
k|k−1HT

k (HkPB
k|k−1HT

k + GkRkGT
k )−1 (6)
where νk = zk − hk(x̂
B
k|k−1, x̂Rk

Ek
) is called the innovation of the

filter, with covariance matrix Sk = HkPB
k|k−1HT

k + GkRkGT
k .

3. The inconsistency of EKF-SLAM

Let x̂B
k and PB

k be the first two moments of the SLAM
state estimated at time k. The state estimator is called
consistent [2] if its state estimation error xB

k − x̂B
k is unbiased,

i.e. E
[
xB

k − x̂B
k

]
= 0 and the actual Mean Square Error

matches the filter calculated covariances:

E

[(
xB

k − x̂B
k

) (
xB

k − x̂B
k

)T
]

= PB
k . (7)

Whenever ground-truth for the state variables is available, a
statistical test for filter consistency can be carried out on the
Normalized Estimation Error Squared (NEES):

NEES =

(
xB

k − x̂B
k

)T (
PB

k

)−1 (
xB

k − x̂B
k

)
≤ χ2

r,1−α (8)

where χ2
r,1−α is a threshold obtained from the χ2 distribution

with r = dim(xB
k ) degrees of freedom, and α the desired

significance level (usually 0.05).
Unfortunately, for most real-time applications, ground truth

for the state variables is not available. However, a statistical test
for real-time consistency can still be carried out, in this case, on
the Normalized Innovation Squared (NIS):

NIS = νT
k S−1

k νk ≤ χ2
r,1−α (9)

where r = dim(νk).
In practice, one of the most critical factors that jeopardize

the consistency of any SLAM algorithm are the incorrect data
associations between observations and map features. To isolate
the effects of linearization errors on the consistency of the
EKF-based approach to SLAM, we have designed a simulated
experiment with known data association. The vehicle travels
along a rectangular-shaped trajectory of 100×20 m, i.e. a 240 m
loop trajectory, moving 1 m per step. The map of the navigation
environment is composed of 2-D point features, located at
both sides of the vehicle trajectory with a feature density of
0.5 feature/m. The vehicle is equipped with a range-bearing
sensor with a maximum range of 15 m and a 180◦ frontal field-
of-view. Gaussian-distributed synthetic errors were generated
for both the sensor measurements (standard deviation of 5 cm
per m in range and 0.5◦ in orientation) and for the odometry
model of the vehicle (standard deviations of 0.2 m per m in
displacement and 0.5◦ in orientation). We have run a Monte
Carlo simulation with 20 replications.

Fig. 1, top, shows the evolution of angular error and
uncertainty (2σ bounds) in the vehicle location along the
trajectory for a representative replication of the experiment. For
this SLAM simulation, the initial vehicle location is used as
base reference, allowing us to set the initial vehicle uncertainty
to zero. The theoretical uncertainty level was obtained by
simulating the same trajectory linearizing around ground truth
(simulated with noise = 0), so that there are no linearization
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Fig. 1. Angular error and 2σ uncertainty bounds of the vehicle estimated
location for the cases of zero (a) and nonzero (b) initial uncertainty.

errors. We can see that, while the theoretical angular uncertainty
increases until loop closing, the uncertainty computed by the
EKF saturates reaching a maximum level (around 0.5◦ in this
case). This results in the vehicle location estimation failing the
consistency check of Eq. (8) after only 100 m. Additionally, the
average of the 20 replications resulted in biased estimation for
frontal, lateral and angular errors.

From the experimental experience gained from EKF-
SLAM mapping an important conclusion can be derived: The
consistency of the EKF-SLAM algorithm greatly depends on
the level of uncertainty of the state vector, the higher the
uncertainty, especially vehicle angular uncertainty, the worst
the consistency of the estimates.

It is common practice to build a map relative to a fixed
base reference, different from the initial vehicle location. This
normally requires assignment of an initial level of uncertainty
to the vehicle estimated location. As argued in [3], the
vehicle uncertainty should always be above this initial level.
Surprisingly, our simulations shows that when a non-zero initial
uncertainty is used (Fig. 1, bottom), the estimated vehicle
uncertainty rapidly drops below its initial value (1◦) making the
estimation inconsistent after only 50 EKF update steps. This
corroborates the results of [4], but also shows that the problem
arises in practice earlier than they suggested.
4. Robocentric mapping

In this section we formulate the EKF-SLAM problem using
the reference frame attached to the vehicle R as base reference
of the stochastic map. Thus, the environmental information
{R, F1, . . . , Fn} is represented by a stochastic state vector xR

with estimated mean x̂R and estimated error covariance PR :

x̂R
=


x̂R

B

x̂R
F1
...

x̂R
Fn

 ; PR
=

 PR
B · · · PR

B Fn
...

. . .
...

PR
Fn B · · · PR

Fn

 (10)

where the world reference frame B has been included as a
non-observable feature in the stochastic state vector (this has
the purpose of allowing recovery of the equivalent absolute
map if desired). With the purpose of avoiding the inconsistency
problem related to non-zero initial uncertainty described above,
we take the initial vehicle location as base reference B = R0,
and thus at step k = 0 the map is initialized with perfect
knowledge of the world location: x̂R

0 = (0, 0, 0)T and PR
0 = 0.

In robocentric mapping, each filter iteration includes three
steps: prediction, update and composition, which are detailed
next.

4.1. The prediction step

After the vehicle changes its location from step k − 1 to
step k, the complete structure of the stochastic map should be
affected by the process noise associated with the displacement
xRk−1

Rk
as estimated by odometry, and with covariance matrix Qk .

Thus, the estimated location of a given map feature F should be
updated as:

xRk
Fk|k−1

= 	xRk−1
Rk

⊕ xRk−1
Fk−1

(11)

and therefore, its estimated covariance would be computed
from the corresponding linearization around the estimated
values x̂Rk−1

Rk
and x̂Rk−1

Fk−1
. As odometry is the least precise

component in the system, this linearization can introduce
significant errors. Instead, we propose to delay the composition
(11) until the estimated vehicle motion has been improved by
the update step of the EKF algorithm.

Therefore, in the prediction step the vehicle motion x̂Rk−1
Rk

obtained by odometry is simply added, as an independent
feature, to the previously available stochastic map xRk−1

k−1 :

x̂Rk−1
k|k−1 =

x̂Rk−1
k−1

x̂Rk−1
Rk

 ; PRk−1
k|k−1 =

[
PRk−1

k−1 0
0 Qk

]
. (12)

4.2. The update step

Now, linearization of the measurement equation around the
estimated values of both the stochastic state vector and the
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partial measurement zk yields:

zk ' hk(x̂
Rk−1
k|k−1) + Hk(x

Rk−1
k − x̂Rk−1

k|k−1)

Hk =
∂hk

∂xRk−1
k

∣∣∣∣∣
x̂

Rk−1
k|k−1

=
[
0 · · · 0 HFk 0 · · · 0 HRk

]
(13)

where:

HFk =
∂hk

∂xRk−1
Fk

∣∣∣∣∣∣
x̂

Rk−1
k|k−1

; HRk =
∂hk

∂xRk−1
Rk

∣∣∣∣∣∣
x̂

Rk−1
k|k−1

.

Equations which are subsequently used to obtain a new
estimation of the stochastic state vector x̂Rk−1

k|k and its covariance

matrix PRk−1
k|k , using the previously described EKF update

equations. Note that, because the relative displacement of the
vehicle from time k−1 to time k was included as a feature of the
stochastic state vector, it is also refined during the application
of the update equations.

The use of a robot centered representation greatly influences
the internal structure of the measurement equation (13) in
comparison with the measurement equation (5) obtained
by using an absolute representation of the stochastic map.
Precisely, and except for loop closing, the uncertainty of the
filter innovation is greatly reduced down to the level of the
observation uncertainty, thus, improving the accuracy of the
linearization.

4.3. The composition step

As a final step in the robocentric mapping algorithm, the
stochastic state vector of the robocentric map is obtained by
affecting each estimated location by the improved vehicle
motion:

x̂Rk
k =


	 x̂Rk−1

Rk
⊕ x̂Rk−1

R0

	 x̂Rk−1
Rk

⊕ x̂Rk−1
F1

...

	 x̂Rk−1
Rk

⊕ x̂Rk−1
Fn

 (14)

with corresponding covariance matrix:

PRk
k '

[
J2 J1

]
PRk−1

k|k

[
JT

2

JT
1

]

J1 =


J1⊕{	 x̂Rk−1

Rk
, x̂Rk−1

R0
} J	{x̂Rk−1

Rk
}

...

J1⊕{	 x̂Rk−1
Rk

, x̂Rk−1
Fn

} J	{x̂Rk−1
Rk

}



J2 =


J2⊕{	 x̂Rk−1

Rk
, x̂Rk−1

R0
} · · · 0

...
. . .

...

0 · · · J2⊕{	 x̂Rk−1
Rk

, x̂Rk−1
Fn

}

 .

(15)

The computational cost of the update steps in both absolute
and robocentric mapping requires updating the covariance
matrix of the estimation and is thus O(n2), where n is the
number of features in the map. The prediction step in absolute
mapping requires updating the correlations between the vehicle
and the features and is thus O(n), while in robocentric mapping
it only requires stacking, O(1). In contrast, robocentric
mapping includes an additional composition step in which the
full covariance matrix is updated, again with a computational
cost of O(n2).

5. Robocentric map joining

In [10] Tardós et al. proposed a map building technique in
which, instead of building one global map from the beginning
of the exploration task, a sequence of local maps of limited
size is built, and later joined together, to obtain the global map.
Here we show that, not only is map joining computationally
more efficient than building one global map from the beginning,
as is it shown in [10], but it also allows one to attain better
consistency in the stochastic map.

Robocentric map joining is carried out as follows: given two
consecutive robocentric local maps:

MRl
F = (x̂Rl

F , PRl
F ); F = {Rl , Bl , F1, . . . , Fm}

MRl−1
E = (x̂Rl−1

E , PRl−1
E ); E = {Rl−1, Bl−1, E1, . . . , En}.

Because, there exists a link between the two maps Bl ≡ Rl−1 a
full stochastic map can obtained by map joining:

MRl
F+E = (x̂Rl

F+E , PRl
F+E )

which contains the estimations of the features from both maps,
relative to the reference frame Rl of the current robocentric
local map. We proceed as follows:

5.1. Stacking together the local maps

Because the robocentric local maps MRl
F and MRl−1

E are
built using independent information, they are uncorrelated [10].
Thus, we form a stacked state vector:

x̂F+E =

[
x̂Rl
F

x̂Rl−1
E

]
; PF+E =

[
PRl
F 0
0 PRl−1

E

]
(16)

which stores all the available information about the previous
uncorrelated local maps.

5.2. The update step

Data association is carried out to match the features of the
local map MRl

F with those of the local map MRl−1
E . We use

the Joint Compatibility test [12], which obtains the largest set
of pairings which are jointly compatible, a consensus criteria
that reduces the possibility of accepting a spurious pairing.
Let Fi and Ei ji be two matched features, thus, a nonlinear
measurement equation of the form:

zi ji = hi ji (xF+E ) = 	 xRl
Fi

⊕ xRl
Bl

⊕ xRl−1
E ji

= 0 (17)
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constrains their relative location vector, where Bl ≡ Rl−1
as discussed above. Linearization of Eq. (17) around the best
available estimation x̂F+E gives:

zi ji ' hi ji (x̂F+E ) + Hi ji (xF+E − x̂F+E ) (18)

where, the linearization coefficient results from:

Hi ji =
∂hi ji

∂xF+E

∣∣∣∣
x̂F+E

= [HBl 0 . . . 0 HFi 0 . . . 0 HE ji
0 . . . 0] (19)

and,

HBl =
∂hi ji

∂xRl
Bl

∣∣∣∣∣
x̂F+E

; HFi =
∂hi ji

∂xRl
Fi

∣∣∣∣∣
x̂F+E

;

HE ji
=

∂hi ji

∂xRl−1
E ji

∣∣∣∣∣∣
x̂F+E

.

(20)

The update of the stacked state vector by using the EKF
equations, would therefore improve not only the structure of
both local maps but also the link between them. This strategy
increases the accuracy of the map joining technique over the
direct change of reference between local map proposed in [10].
After updating the map, matched features of the local map
MRl−1

E are removed from the stacked state vector and only a
subset E∗

⊂ E of features remains.

5.3. The composition step

Given that the features from the current local map are
expressed relative to reference Rl and features from the
previous local map are expressed relative to reference Rl−1, to
form the full stochastic mapMRl

F+E∗ we only need to transform
the features of the previous map to the reference Rl using their
common link. Thus,

xRl
F+E∗ =

[
xRl
F

xRl
E∗

]
=

[
xRl
F

xRl
Rl−1

⊕ xRl−1
E∗

]
(21)

which directly provides the estimation x̂Rl
F+E∗ of the full

stochastic map. Its covariance matrix PRl
F+E∗ derives from the

linearization of Eq. (21) as:

PRl
F+E∗ =

 PRl
F PRl

FE∗

PRl
E∗F PRl

E∗


'

[
I 0

J1 J2

] [
PRl
F PFE∗

PE∗F PRl−1
E∗

] [
I JT

1

0 JT
2

]
(22)

where the matrices of the Jacobians (see Appendix) are:

J1 =


J1⊕{x̂Rl

Rl−1
, x̂Rl−1

Bl−1
} . . . 0

...
...

J1⊕{x̂Rl
Rl−1

, x̂Rl−1
En

} . . . 0


and

J2 =


J2⊕{x̂Rl

Rl−1
, x̂Rl−1

Bl−1
} . . . 0

...
. . .

...

0 . . . J2⊕{x̂Rl
Rl−1

, x̂Rl−1
En

}

 .

As in absolute map joining [10], the computational cost of
robocentric map joining requires updating the full stochastic
map covariance at each join and thus is O(n2). Note however
that most of the updates take place in a local map of bounded
size (with a O(1) cost), and thus you can expect robocentric
map joining to cut processing time by a large constant factor.

6. Experiments

In this section, we carry out a series of simulated and
indoor/outdoor experiments to validate the proposed algorithm.

6.1. Simulation

In our controlled simulation environment we have compared
the performance of the different algorithms presented in the
previous discussion. Two main categories of experiments have
been conducted, namely, those with an absolute representation,
and those with a robot centered representation.

Fig. 2(a) compares the vehicle heading uncertainty
computed using an absolute map representation by an ideal
error-free EKF (simulated with noise = 0), the standard
EKF and the map joining algorithm proposed in [10]. Note
that all mapping algorithms in error-free simulations should
produce identical correct results. In this case, the heading
uncertainty computed by the standard EKF presents a saturation
effect which makes the algorithm more and more optimistic
as the number of updates increases, and thus it undermines
consistency. The map joining algorithm performs much better
but it is still slightly optimistic in the second-half of the
trajectory.

Similarly, Fig. 2(b) compares the vehicle heading uncer-
tainty, using a robot centered representation, of the ideal error-
free EKF against the robocentric mapping approach reported
in [5] and the new robocentric map joining algorithm. As ob-
served from the figure, both algorithms obtain a non-optimistic
estimation for the vehicle heading uncertainty along the vehi-
cle trajectory, which makes loop closing detection possible. In
this experiment, robocentric map joining behaves slightly pes-
simistically as compared to the basic robocentric approach. It
provides a more efficient solution in terms of computing time.
Finally, we can see that in these robot centered approaches, sat-
uration effects have disappeared.

6.2. Indoor/outdoor mapping experiment

To validate the new robocentric mapping algorithm, we
have conducted an experiment in one of the buildings at our
campus using a robotized wheelchair equipped with a SICK
laser scanner. The vehicle was hand-driven along a mixed
indoor/outdoor path of about 250 m, at a mean speed of
0.45 m/s. The scans were processed to obtain line features
using a robust segmentation algorithm.
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(a) Absolute mapping. (b) Robocentric mapping.

Fig. 2. Vehicle heading uncertainty (1σ ) computed using absolute and robocentric mapping by: the ideal error-free EKF (dashed line), the standard EKF (dotted
line) and the map joining algorithm (solid line).
Fig. 3. Classical EKF-SLAM algorithm with an absolute representation.
Observe that the vehicle location uncertainty (extremely small ellipses) is
incompatible with the real error, especially in the top left part of the figure,
where clearly, multiple hypotheses for the same feature appear.

Fig. 3 shows the map obtained along the commanded
trajectory by the classical EKF-SLAM algorithm using an
absolute representation. The saturation effect in the map
uncertainty makes the result inconsistent as observed in the top-
left part of the figure, where clearly the loop could not be closed
by simple data association strategies. We processed the same
data by dividing the full map into 50 robocentric maps (each for
a trajectory of 5 m with approximate 10 line features) and using
Fig. 4. Robocentric map joining before loop closing. In this case, the vehicle
location uncertainty is consistent with the real error, as observed in the top left
part of the figure (Note that results have been transformed back to the absolute
representation).

robocentic map joining to compute the full stochastic map. As
shown in Fig. 4, this change of representation, from absolute
to robot centered using map joining performs adequately in
this case. Due to the increased accuracy in linearization and
the reduced level of uncertainty of this local representation,
the mapping of the 250 m trajectory was accurately performed,
closing the loop when the vehicle homed.
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Fig. 5. Experimental vehicle heading uncertainty: EKF-SLAM algorithm
(dotted line), map joining algorithm (dash-dot), robocentric (dashed) and
robocentric map joining (solid).

Finally, Fig. 5 depicts the evolution of the vehicle angular
uncertainty along the 250 m trajectory. Again, the EKF-
SLAM estimated uncertainty present the previously discussed
saturation effects driving the solution of the mapping algorithm
out of consistency. The Map Joining algorithm which also
computes the estimated location of features in an absolute
representation present a similar, although clearly improved,
optimistic behavior. As observed in simulation, and now in
a real experiment, the robot centered representation surpasses
those inconsistency problems, at least at the scale of the
reported experiments. Although the Robocentric mapping
algorithm performed consistently, the Robocentric Map Joining
algorithm provided the more efficient solution from the
computational time point-of-view with an accurate estimation
of the uncertainty.

7. Conclusion

In this work we have shown that in the standard extended
Kalman Filter approach to SLAM, linearization errors produce
inconsistency problems that show up long before computational
problems arise. We follow a precise definition of filter
consistency that considers both the accuracy of the estimation
and of its covariances.

We have proposed the Robocentric Map Joining algorithm
which improves consistency of the mapping scheme by: (1)
bounding the uncertainty along the exploration trajectory using
a sequence of local maps, and (2) improving linearization
of the model equations due to the reduced level of
uncertainty provided by the robot centered representation. As
described both in simulation and in real mixed indoor/outdoor
experiments, the combination of local map joining and
robocentric mapping allows one to apply the EKF-based
solution to SLAM at a larger scale.

It is however likely that nonlinearity problems will arise
again as larger environments are tackled. We feel that to
overcome these limitations it is important to investigate the
use of alternative formulations to SLAM, nonlinear and non
Gaussian methods. Making these methods computationally
efficient to be used in real time is the next important challenge
in SLAM.

Appendix. Transformation and Jacobians in 2D

Two basic operations used in stochastic mapping are trans-
formation inversion and composition, which were represented
by [1] using operators 	 and ⊕:

x̂B
A = 	 x̂A

B

x̂A
C = x̂A

B ⊕ x̂B
C .

The Jacobians of these operations are defined as:

J	

{
x̂A

B

}
=

∂
(
	 xA

B

)
∂xA

B

∣∣∣∣∣
(x̂A

B )

J1⊕

{
x̂A

B, x̂B
C

}
=

∂
(
xA

B ⊕ xB
C

)
∂xA

B

∣∣∣∣∣
(x̂A

B ,x̂B
C )

J2⊕

{
x̂A

B, x̂B
C

}
=

∂
(
xA

B ⊕ xB
C

)
∂xB

C

∣∣∣∣∣
(x̂A

B ,x̂B
C )

.

In 2D, the location of a reference B relative to a reference A
(or transformation from A to B) can be expressed using a vector
with three d.o.f.: xA

B = [x1, y1, φ1]
T. The location of A relative

to B is computed using the inversion operation:

xB
A = 	 xA

B =

−x1 cos φ1 − y1 sin φ1
x1 sin φ1 − y1 cos φ1

−φ1

 .

The Jacobian of transformation inversion is:

J	{xA
B} =

−cos φ1 −sin φ1 −x1 sin φ1 − y1 cos φ1
sin φ1 −cos φ1 x1 cos φ1 + y1 sin φ1

0 0 −1

 .

Let xB
C = [x2, y2, φ2]T be a second transformation. The

location of reference C relative to A is obtained by the
composition of transformations xA

B and xB
C :

xA
C = xA

B ⊕ xB
C =

x1 + x2 cos φ1 − y2 sin φ1
y1 + x2 sin φ1 + y2 cos φ1

φ1 + φ2

 .

The Jacobians of transformation composition are:

J1⊕{xA
B, xB

C } =

1 0 −x2 sin φ1 − y2 cos φ1
0 1 x2 cos φ1 − y2 sin φ1
0 0 1


J2⊕{xA

B, xB
C } =

cos φ1 −sin φ1 0
sin φ1 cos φ1 0

0 0 1

 .

A generalization of the ⊕ operator to also represent the
composition of transformations with feature location vectors,
which results in the change of base reference of the feature, can
be found in [10].
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