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Section 1

Overview

Petri nets (PNs)[Mur89, DHP+93] is a mathematical formalism for the descrip-

tion of discrete-event systems, that has been successfully used for modeling,

analysis and synthesis purposes of such systems. A key feature of a PN is that

its structure can capture graphically fundamental primitives in concurrency the-

ory such as parallelism, synchronization, mutual exclusion, etc. The state of a

PN system is given by a vector of non-negative integers representing the marking

of its places.

As any other formalism for discrete event systems, PNs suffer from the state

explosion problem which produces an exponential growth of the size of the state

space with respect to the initial marking. One way to avoid the state explosion

is to relax the integrality constraint in the firing of transitions and deal with

transitions that are fired in real amounts. A transition whose firing amount is

allowed to be any real number between zero and its enabling degree is said to

be a continuous transitions. The firing of a continuous transition can produce

a real, not integer, number of tokens in its input and output places. If all

transitions of a net are continuous, then the net is said to be continuous. If a

non-empty proper subset of transitions is continuous, then the net is said to be

hybrid [DA10].

Different time interpretations can be considered for the firing of continu-

ous transitions. The most popular ones are infinite and finite server semantics

which represent a first order approximation of the firing frequency of discrete

transitions. For a broad class of Petri nets, infinite server semantics offers a bet-

ter approximation of the steady-state throughput than finite server semantics

[MRS09]. Moreover, finite server semantics can be exactly mimicked by infinite

server semantics in discrete transitions simply by adding a self-loop place. A

third firing semantics, called product semantics, is also frequently used when

dealing with biochemical and population dynamics systems.
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1. Overview

SimHPN is a MATLAB embedded software that provides support for in-

finite server and product semantics in both, discrete and continuous, types of

transition. A description of a preliminary version of this software can be found

in [JM10, JMV11, JMV12]. This is the first MATLAB package that enables the

analysis and simulation of hybrid nets with these two firing semantics. There

already exists a toolbox dealing with discrete Petri nets [MMP03], and one for

the so-called first order hybrid Petri nets [SGS08] which provides support for

continuous transitions under finite server semantics. The main features of the

SimHPN toolbox are:

1. simulation of hybrid Petri nets under different server semantics;

2. computation of steady state throughput bounds;

3. computation of minimal P-T semiflows ;

4. optimal sensor placement;

5. optimal control algorithm;

6. import models from different graphical Petri net editors.

Figure 1.1 shows the Graphical user Interface of SimHPN automatically

opened in MATLAB once

>> SimHPN

command is executed at the command prompt.
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1. Overview

Figure 1.1: Sketch of the main window of SimHPN
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Section 2

Installation Guide

The SimHPN toolbox has been developed in the GISED re-

search group (Group of Discrete Event Systems Engineering, URL:

http://webdiis.unizar.es/GISED/), University of Zaragoza, Spain. It

offers a collection of tools devoted to simulation, analysis and synthesis of

dynamical systems modeled by hybrid Petri nets. Its embedding in the MAT-

LAB environment provides the considerable advantage of creating powerful

algebraic, statistical and graphical instruments exploiting the high quality

routines available in MATLAB.

SimHPN is a commercial software product for scientific purposes. Its demo

version can be freely downloaded from:

URL: http://webdiis.unizar.es/GISED/?q=tool/simhpn

If you want to have access to the full version, please contact us at:

simhpn@unizar.es

SimHPN runs on the MATLAB environment and the full version works, in

principle, in any operating system that supports MATLAB R2008 or superior.

Anyway, the demo version that can be downloaded from the previous link has

been compiled on a particular version of MATLAB. If you experience problems

in running it please contact us by email.

To install the toolbox, unzip the contents of the archive SimHPN P.zip

under a folder of your choice. This operation will create the directory SimHPN

in the folder you chose. Launch the MATLAB, change the working directory to

the folder SimHPN and type

>> SimHPN

at the MATLAB prompt. The SimHPN GUI will become operational.
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Section 3

Petri nets overview

Hybrid Petri nets [DA10, BMG00] represent a powerful modeling formalism that

allows the integration of both continuous and discrete dynamics in a single net

model. This section defines the class of hybrid nets supported by SimHPN .

In the following, the reader is assumed to be familiar with Petri nets (PNs) (see

[Mur89, DHP+93] for a gentle introduction).

3.1 Untimed Hybrid Petri net systems

Definition 3.1. A Hybrid Petri Net (HPN) system is a pair 〈N ,m0〉, where:

N = 〈P, T,Pre,Post〉 is a net structure, with set of places P , set of transitions

T , pre and post incidence matrices Pre,Post ∈ R
|P |×|T |
≥0 , and m0 ∈ R

|P |
≥0 is

the initial marking.

The token load of the place pi at marking m is denoted by mi and the preset

and postset of a node X ∈ P ∪ T are denoted by •X and X•, respectively. For

a given incidence matrix, e.g., Pre, Pre(pi, tj) denotes the element of Pre in

row i and column j.

In a HPN, the set of transitions T is partitioned in two sets T = T c ∪ T d,

where T c contains the set of continuous transitions and T d the set of discrete

transitions. In contrast to other works, the set of places P is not explicitly

partitioned, i.e., the marking of a place is a natural or real number depending

on the firings of its input and output transitions. Nevertheless, in order to make

net models easier to understand, those places whose marking can be a real non-

integer number will be depicted as double circles (see p11 in Fig. 3.1), and the

rest of places will be depicted as simple circles (such places will have integer

markings, see p15 in Fig. 3.1). Continuous transitions are graphically depicted as

two bars (see t14 in Fig. 3.1), while discrete transitions are represented as empty

bars (see t15 in Fig. 3.1), .
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Figure 3.1: HPN model of 2 intersections connected by a link.

Two enabled transitions ti and tj are in conflict when they cannot occur at

the same time. For this, it is necessary that •ti ∩ •tj 6= ∅, and in that case it is

said that ti and tj are in structural conflict relation. Right and left non negative

annullers of the token flow matrix C are called T- and P-semiflows, respectively.

A semiflow v is minimal when its support, ‖v‖ = {i | v(i) 6= 0}, is not a proper

superset of the support of any other semiflow, and the greatest common divisor

of its elements is one. If there exists y > 0 such that y ·C = 0, the net is said

to be conservative, and if there exists x > 0 satisfying C ·x = 0, the net is said

to be consistent. As it will be seen, the basic tasks that SimHPN can perform

on untimed hybrid Petri nets are related to the computation of minimal T- and

P-semiflows.

The enabling degree of a continuous transition tj ∈ T is:

enab(tj,m) =















min
pi∈•tj

⌊

mi

Pre(pi, tj)

⌋

if tj ∈ T d

min
pi∈•tj

mi

Pre(pi, tj)
if tj ∈ T c

(3.1)

Transition tj ∈ T is enabled at m iff enab(tj ,m) > 0. An enabled tran-

sition tj ∈ T can fire in any amount α such that 0 ≤ α ≤ enab(tj,m) and

α ∈ N if tj ∈ T d and α ∈ R if tj ∈ T c. Such a firing leads to a new marking

m′ = m+ α ·C(·, tj), where C = Post − Pre is the token-flow matrix and

C(·, tj) is its j column. If m is reachable from m0 through a finite sequence

σ, the state (or fundamental) equation, m = m0 + C · σ is satisfied, where

σ ∈ R
|T |
≥0 is the firing count vector. According to this firing rule the class of nets

defined in Def 3.1 is equivalent to the class of nets defined in [DA10, BMG00].

8



3. Petri nets overview 3.2. Timed Hybrid Petri net systems

3.2 Timed Hybrid Petri net systems

Different time interpretations can be associated to the firing of transitions. Once

an interpretation is chosen, the state equation can be used to show the depen-

dency of the marking on time, i.e., m(τ) = m0 + C · σ(τ). The term σ(τ) is

the firing count vector at time τ . Depending on the chosen time interpretation,

the firing count vector σj(τ) of a transition tj ∈ T c is differentiable with respect

to time, and its derivative fj(τ) = σ̇j(τ) represents the continuous flow of tj .

As for the timing of discrete transitions, several definitions exist for the flow

of continuous transitions. SimHPN accounts for infinite server and product

server semantics in both continuous and discrete transitions, and additionally,

discrete transitions are also allow to have deterministic delays.

Definition 3.2. A Timed Hybrid Petri Net (THPN) system is a tuple

〈N ,m0, T ype,λ〉 where 〈N ,m0〉 is a HPN, Type : T → {id, pd, dd, ic, pc} es-

tablishes the time semantics of transitions and λ : T → R≥0 associates a real

parameter to each transition related to its semantics.

Any of the following semantics is allowed for a discrete transition ti ∈ T d:

• Infinite server semantics (Type(ti) = id): Under infinite server semantics,

the time delay of a transition ti, at a given marking m, is an exponentially

distributed random variable with parameter λi · enab(ti,m), where the

integer enabling enab(ti,m) represents the number of active servers of ti
at marking m.

• Product server semantics (Type(ti) = pd): Under product server se-

mantics, the time delay of a transition ti at m is an exponentially dis-

tributed random variable with parameter λi ·
∏

pj∈•ti

⌊

m(pj)

Pre(pj , ti)

⌋

, where

∏

pj∈•ti

⌊

m(pj)

Pre(pj , ti)

⌋

is the number of active servers.

• Deterministic delay (Type(ti) = dd): A transition ti with deterministic

delay is scheduled to fire 1/λi time units after it became enabled.

Conflict resolution: When several discrete exponential transitions, under

either infinite or product server semantics, are in conflict, a racing policy is

adopted, i.e., the one with smaller time delay will fire first.

If a discrete transition with deterministic delay is not in conflict with other

transitions, it is fired as scheduled, if it is in conflict then it is fired only if

its schedule firing time is less than the firing time of the conflicting transition.

The transition to fire, in the case of several conflicting deterministic transitions

with same scheduled firing instance, is chosen probabilistically assigning the

9



3.2. Timed Hybrid Petri net systems 3. Petri nets overview

same probability to each conflicting transition. Furthermore after the firing of

a deterministic transition, the timers of all the transitions in the same conflict

are discarded.

For a continuous transition ti ∈ T c the following semantics are allowed:

• Infinite server semantics (Type(ti) = ic): Under infinite server the flow

of a transition ti is:

fi = λi · enab(ti,m) = λi · min
pj∈•ti

{

mj

Pre(pj , ti)

}

(3.2)

Such an expression for the flow is obtained from a first order approxima-

tion of the discrete case [SR02] and corresponds to the variable speed of

([AD98])

• Product server semantics (Type(ti) = pc): In a similar way to discrete

transitions, the continuous flow under product server semantics is given

by:

fi = λi ·
∏

pj ∈ •ti

{

mj

Pre(pj , ti)

}

The described supported semantics cover the modeling of a large variety of

actions usually associated to transitions. For instance, infinite server semantics,

which are more general than finite server semantics, are well suited for modeling

actions in manufacturing, transportation and logistic systems [DA10]; product

server semantics are specially useful to modeling population dynamics [SR00]

and biochemical reactions [HGD08]; and deterministic delays allow one to rep-

resent pure delays and clocks that appear, for instance, when modeling traffic

lights in automotive traffic systems [VSBS10].
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Section 4

Using SimHPN

4.1 Short description of the GUI

The SimHPN simulator supports infinite server and product server semantics

for both discrete and continuous transitions. Moreover, deterministic delays

with single server semantics are also supported for discrete transitions. Both

the data related to the model description, i.e., net structure, initial marking and

timing parameter, and the output results, i.e., time trajectories, are MATLAB

variables. At the end of the simulation, the user can export the data to the

MATLAB workspace where can be used for further analysis.

The SimHPN toolbox (http://webdiis.unizar.es/GISED/?q=tool/simhpn)

provides a Graphical User Interface (GUI) that enables the user to easily per-

form simulations and carry out analysis methods. This GUI consists of a

MATLAB figure window, exhibiting a Menu bar and three control panels:

(i) Drawing Area,

(ii) Options panel, and

(iii) Model Management panel.

Fig. 4.1 presents a hard-copy screenshot of the main window opened by

SimHPN toolbox, where all the component parts of the GUI are visible.

The Menu bar (placed horizontally, on the top of the window in Fig. 4.1)

displays a set of six drop-down menus at the top of the window, where the user

can select different features available in the SimHPN toolbox. These menus

are: Model, Options, Simulation, Discrete, Continuous and Hybrid.

The Model menu contains the pop-up menus:

• Import from Pmeditor,

11
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4.1. Short description of the GUI 4. Using SimHPN

Figure 4.1: Sketch of the main window of SimHPN

• Import from TimeNet and

• Import from .mat file

• Save to .mat file

that implement several importing options for the matrices, Pre, Post, m0,

etc, that describe the net system. Such matrices can be introduced manually or

through two Petri nets editors: PMEditeur and TimeNet [ZK95]. Moreover, the

matrices can be automatically loaded from a .mat file (MATLAB file format)

or loaded from variables defined in the workspace, this is done just by writing

the name of the variable to be used in the corresponding edit boxes.

If the model is imported from a .mat file, the following variables should be

defined in the .mat file:

• Pre - is a |P |× |T | matrix containing the weight of the arcs from places

to transitions;

• Post - is a |P |× |T | containing the weight of the arcs from transitions to

places;

• M0 - is a column vector of dimension |P | containing the initial marking;

• Lambda - is a column vector of dimension |T | containing the firing rates

of transitions:

12



4. Using SimHPN 4.1. Short description of the GUI

• Trans Type - is a column vector of dimension |T | containing the type of

transitions. Each element can have one of the following values:

– ′c′ - for continuous transition;

– ′d′ - for stochastic discrete transitions;

– ′q′ - for deterministic discrete transitions.

The last option (i.e., Save to .mat file) saves to a .mat file the matrices

already defined in the edit boxes of SimHPN .

The Options menu contains only the pop-up menu

• Show Figure Toolbar

that allows to show the characteristic toolbar of the MATAB figure object that

permits, for example, the use of zoom tool on the displayed graphic in the

Drawing Area.

The Simulation menu contains the pop-up menus:

• Markings to plot,

• Flows to plot, and

• Save results to workspace.

The pop-up menus Markings to plot, Flows to plot allow the user to select

the components of marking vector and flow vector that will be plotted after

simulation in the Drawing area. The pop-up menu Save results to workspace

permits to export, after simulation, the marking and flow evolution to variables

in the MATLAB workspace.

The following the menus call procedure for analysis and synthesis of PN

model if it is assumed discrete Petri net (Discrete menu), fully continuous Petri

net (Continuous menu) and Hybrid Petri net (Hybrid menu).

The Continuous menu contains the pop-up menus:

• Control

• Optimal

• Diagnosis

The Control submenu contains the pop-up menus Control law and Save

results to workspace that permit the designing of a control law to reach a desired

final marking if the net is continuous under infinite server semantics.

The Optimal submenu contains the pop-up menus Optimal Observability

and Optimal Control. Such pop-up menus perform calls to the algorithms for

13



4.1. Short description of the GUI 4. Using SimHPN

computing optimal steady state and optimal sensor placement for continuous

Petri nets with infinite server semantics.

The Diagnosis submenu calls the algorithms that perform fault diagnosis

for untimed continuous Petri nets [MSCS12]. Once the user selects this option,

a window as in Fig. 4.2 is opened and the user should introduce the input

parameters:

1. The number of observable transitions. Without loss of generality, it is

assumed that the first transitions are observable and the rest are unob-

servable.

2. The firing sequence of observable transitions.

3. The firing amount of each transition of the firing sequence.

4. Number of fault classes.

Figure 4.2: Sketch of the uicontrols for the diagnosis.

After this, an uicontrol will be used to introduce the transitions belong-

ing to each fault class. All the results are shown at the MATLAB command

prompt. See Section 5.4 for examples and more details on the parameters for

fault detection.

The Drawing area (located in the left and central side of the window in Fig.

4.1), is a MATLAB axes object where the trajectories of the simulation results

are plotted. The components of markings and flows that will be represented are

selected from the menu.

The Options panel (placed, as a horizontal bar, on the right part of the

window Fig. 4.1) presents a number of options related to the model. From top

to bottom: (a) two radio buttons to select the firing semantics for continuous and

14



4. Using SimHPN 4.2. Script simulation

discrete exponential transitions; (b) three radio buttons allowing to select the

variables to be plotted in the Drawing Area, the simulator allows one to plot the

evolution of the marking of the places, the evolution of the flow of the transitions

and the evolution of the marking of one place vs. the marking of other place;

(c) three edit boxes to fix the maximum absolute and relative errors allowed by

the simulated trajectory and the sampling time used in simulations (see next

subsection for more details on the selection of the sampling time); (d) a Simulate

button to start a new simulation; (e) a Compute Bounds button that computes

performance bounds for continuous nets under infinite server semantics; (f) a P

T semiflows button to compute the minimal P- and T-semiflows of the net, the

results are displayed on the MATLAB command window and can be used for

future analysis tasks; and (g) a Close button to close the SimHPN toolbox.

The Model Management Panel panel is composed of different edit boxes

(placed in the bottom left corner of the window in Fig. 4.1), where the SimHPN

toolbox displays the current values of the matrices describing the net system

and permits to select the simulation time and the number of simulations to

be performed (this last parameter is ignored if the net contains no stochastic

transitions). The required matrices for a system in order to be simulated are:

Pre and Postmatrices, initial markingm0, the parameter λ of each transition,

and the type of each transition. This last parameter is equal to ’c’ for continuous

transitions, to ’d’ for stochastic discrete transitions and to ’q’ for deterministic

discrete transitions. Notice that if the type of a transition is ’q’ then single

server semantics is adopted for its firing and therefore the selection of firing

semantics in the Options panel will be ignored for this transition.

4.2 Script simulation

SimHPN permits the simulation of a hybrid Petri net from the MATLAB

prompt, without open the GUI. This is useful if one wants to implement a

script and simulate a hybrid Petri net for some particular input parameters.

This can be done in two different ways depending on the type of the input

model.

Continuous Petri net. If the net has only continuous transitions, the

following command can be used for its simulation:

[m,f,t] = SimHPN_Simul(Pre, Post, m0, tf, lambda, seman, erel, eabs);

where,

• Pre - is a |P |× |T | matrix containing the weight of the arcs from places

to transitions;

15



4.2. Script simulation 4. Using SimHPN

• Post - is a |P |× |T | containing the weight of the arcs from transitions to

places;

• m0 - is a column vector of dimension |P | containing the initial marking;

• tf - is the final time for simulation;

• lambda - is a column vector of dimension |T | containing the firing rates

of transitions:

• seman = 1 - if transitions are with infinite server semantics and seman =

2 - if product firing semantics is considered for transitions;

• erel - relative error;

• eabs - absolute error.

The returned parameters are:

• m - a matrix of dimension |t| × |P | is the matrix defining the marking

evolutions;

• f - a matrix of dimension |t|×|T | is the matrix defining the flow evolutions;

• t - a row vector containing the time instants for which the markings and

the flows are defined.

Hybrid Petri net. If the net is not purely continuous, function

SimHPN SimHyb should be used. This function is defined as follows:

[m,f,t] = SimHPN_SimHyb(Pre,Post,lambda,type,m0,nsim,tsim,seman,mode,delta)

The input parameters are:

• Pre - is a |P |× |T | matrix containing the weight of the arcs from places

to transitions;

• Post - is a |P |× |T | containing the weight of the arcs from transitions to

places;

• lambda - is a column vector of dimension |T | containing the firing rates

of transitions:

• type - is a column vector of dimension |T | containing the type of transi-

tions. Each element can have one of the following values:

– ′c′ - for continuous transition;

– ′d′ - for stochastic discrete transitions;

16



4. Using SimHPN 4.2. Script simulation

– ′q′ - for deterministic discrete transitions.

• m0 - is a column vector of dimension |P | containing the initial marking;

• nsim - number of simulations especially useful for stochastic transitions;

• tsim - simulation time

• seman = 1 - if continuous transitions are with infinite server semantics

and seman = 2 is product firing semantics is considered for continuous

transitions;

• mode = 1 - if constant hybrid sampling step will be used; mode = 2 - if

variable hybrid sampling step will be used;

• delta - sampling timed used in the case of mode = 1.

After a simulation, the returned parameters are:

• m - a matrix of dimension |t| × |P | is the matrix defining the marking

evolutions;

• f - a matrix of dimension |t|×|T | is the matrix defining the flow evolutions;

• t - a row vector containing the time instants for which the markings and

the flows are defined.
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Section 5

Examples of utilization

This section presents some systems that are analyzed and simulated using

SimHPN .

5.1 An assembly line

The Petri net system in Fig. 5.1 represents an assembly line with kanban strategy

(see [ZRS01]). The system has two stages that are connected by transition

t14. The first stage is composed of three lines (starting from p2, p3 and p4
respectively) and three machines (p23, p24 and p25). Places p26, p27 and p28
are buffers at the end of the lines. The second stage has two lines that require

the same machine/resource p18. The number of kanban cards is given by the

marking of places p2, p3 and p4 for the first stage, and by the marking of p32
for the second stage. The system demand is given by the marking of p1. We

will make use of this net system to illustrate some of the features of SimHPN .

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15 t16

t17 t18

t19

t20

t21

p1p2

p3
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p5
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p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23 p24

p25

p26

p27

p28

p29

p30

p31

p32

Figure 5.1: An assembly line with kanban strategy.
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5.1. An assembly line 5. Examples of utilization

Given that all transitions represent actions that can potentially have high

working loads, all transitions are considered continuous. Moreover, infinite

server semantics will be adopted for all of them. Let the initial marking be

m0(p1) = m0(p18) = m0(p23) = m0(p24) = m0(p25) = m0(p29) = m0(p32) =

1, m0(p26) = m0(p27) = m0(p28) = 3 and the marking of the rest of places

be equal to zero. Let us assume that the firing rates of the transitions are

λ(t2) = λ(t3) = λ(t4) = λ(t8) = λ(t9) = λ(t10) = λ(t14) = λ(t15) = λ(t17) =

λ(t19) = λ(t20) = 10, λ(t1) = λ(t5) = λ(t6) = λ(t7) = λ(t11) = λ(t12) =

λ(t13) = λ(t16) = λ(t18) = λ(t21) = 1.

Computation of minimal P-T semiflows: SimHPN implements the

algorithm proposed in [Sil85] to compute the minimal P-semiflows of a Petri

net. The same algorithm applied on the transpose of the incidence matrix yields

the minimal T-semiflows of the net. Notice that P and T-semiflows just depend

on the structure of the net and not on the continuous or discrete nature of the

transitions. The result of applying the algorithm on the net in Fig. 5.1 is the

set of 12 minimal P-semiflows that cover every place, i.e., it is conservative, and

the set that contains the only minimal T-semiflow which is a vector of ones, i.e.,

it is consistent.

Throughput bounds: When all transitions are continuous and work under

infinite server semantics, the following programming problem can be used to

compute an upper bound for the throughput, i.e., flow, of a transition ([JRS05]):

max{φj | µss = m0 +C · σ,

φss
j = λj · min

pi∈•tj

{

µss
i

Pre(pi,tj)

}

, ∀tj ∈ T,

C · φss = 0,

µss,σ ≥ 0}.

(5.1)

This non-linear programming problem is difficult to solve due to the minimum

operator. When a transition tj has a single input place, the equation reduces to

(5.2). And when tj has more than an input place, it can be relaxed (linearized)

as (5.3).

φss
j = λj ·

µss
i

Pre(pi, tj)
, if pi =

•tj (5.2)

φss
j ≤ λj ·

µss
i

Pre(pi, tj)
, ∀pi ∈

•tj , otherwise (5.3)

This way we have a single linear programming problem, that can be solved

in polynomial time. Unfortunately, this LPP provides in general a non-tight

bound, i.e., the solution may be non-reachable for any distribution of the tokens

verifying the P-semiflow load conditions, y ·m0. One way to improve this bound
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is to force the equality for at least one place per synchronization (a transition

with more than one input place). The problem is that there is no way to know in

advance which of the input places should restrict the flow. In order to overcome

this problem, a branch & bound algorithm can be used to compute a reachable

steady state marking.

SimHPN implements such a branch & bound algorithm to compute upper

throughput bounds of continuous nets under infinite server semantics. For the

system in Fig. 5.1 with the mentionedm0 and λ the obtained throughput bound

for t1 is 0.3030. Given that the only T-semiflow of the net is a vector of ones,

this value applies as an upper bound for the rest of transitions of the net.

Optimal Sensor Placement:

Assuming that each place p can be measured at a different cost c(p) > 0

the optimal sensor placement problem of continuous nets under infinite server

semantics is to decide the set of places Po ⊆ P to be measured such that the

net system is observable at minimum cost. This problem can be seen as a Set

Covering Problem which is NP-hard in the strong sense [GJ79]. For a set of

places Po, let KPo
be the set of observable places. It will be said that Po is

covering KPo
. The problem is to determine a set Poi with minimum cost such

that the covered elements contain all the places of the net.

Considering that n is the number of places, the brute force approach to

solve this problem is to try all subsets of places of size n, n − 1, · · · , 1. From

those subsets ensuring the observability of the continuous Petri net system,

the one with minimum cost is taken. In order to reduce the number of the

subsets, some graph-based properties can be used. The idea is to group the set

of places in equivalence classes such that only one place per class can belong to

the optimal solution. These equivalence classes are called threads and are the

places belonging to the maximally connected subnets finishing in an attribution

place (place with more than one input transitions) or in a join (transition with

more than one input place). Initially, all places of the net belong only to one

thread. The following algorithm can be used to reduce the number of elements

from threads.

These reductions preserve the optimality of the solution and the covering

problem can be started using the resulted threads. It is necessary to generate

all combinations taking at most one place from each thread and then check the

observability of the system. If the system is observable, the solution is kept if

has a cost lower than the candidate solution. A good choice is starting with

the first places of each thread and going backward since the following property

is true: if the system is not observable for the current set of measured places,

it is not necessary to advance in the threads because the system will not be

observable.

The algorithm is still exponential but the structural properties presented can
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reduce drastically the number of observability checks. For the continuous nets

considered in this section, measuring all input places in join transitions the net

system is observable. This is also the solution of the optimal sensor placement

problem for any cost associated to transitions.

Optimal Steady-State: The only action that can be performed on a con-

tinuous Petri nets is to slow down the flow of its transitions. If a transition can

be controlled (its flow reduced or even stopped), we will say that is a controllable

transition. The forced flow of a controllable transition tj becomes fj−uj, where

fj is the flow of the unforced system, i.e. without control, and uj is the control

action 0 ≤ uj ≤ fj .

In production control is frequent the case that the profit function depends

on production (benefits in selling), working process and amortization of invest-

ments. Under linear hypothesis for fixed machines, i.e., λ defined, the profit

function may have the following form:

wT · f − zT ·m− qT ·m0 (5.4)

where f is the throughput vector, m the average marking, w a gain vec-

tor w.r.t. flows, zT is the cost vector due to immobilization to maintain the

production flow and qT represents depreciations or amortization of the initial

investments.

The algorithm used to compute the optimal steady state flow (and marking)

is very much alike the one used to compute the performance bounds, with the

difference that the linear programming problem that needs to be solved is:







































max{wT · f − zT ·m− qT ·m0 | C · f = 0,

m = m0 +C · σ,

fj = λj ·
(

mi

Pre(pi,tj)

)

− v(pi, tj),

∀pi ∈ •tj , v(pi, tj) ≥ 0

f ,m,σ ≥ 0

(5.5)

where v(pi, tj) are slack variables. These slack variables give the control

action for each transition. For more details on this topic, see ([MRRS08]).

5.2 A traffic system

Here, a hybrid PN model, that represents a traffic system consisting of two (one-

way streets) intersections connected by a (one-way street) link, is introduced

and simulated. The proposed example is shown in fig. 3.1 (studied in [VSBS10]

for control purposes). In this, the dynamic of the vehicles is represented by

continuous nodes, while the traffic lights are modeled as discrete.
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Figure 5.2: Queue lengths at intersection 2 obtained with delays for {t25, t
2

7, t
2

9} as a)

{20, 20, 0.1} and b) {14, 26, 29}.

Let us firstly explain the model of one intersection. Places {p11, p
1
2} represent

the queues of vehicles before crossing the intersection 1. Cars arrive through

{t11, t
1
3}, being transitions of type ic constrained by self-loops {p13, p

1
4} that rep-

resent the number of servers (street lanes). Vehicles depart through t12 or t14
(type ic) when the traffic light enabled them, i.e., when there is a token in

p15 or p17, respectively. The traffic light for this intersection is represented by

nodes {p15, p
1
6, p

1
7, p

1
8, t

1
5, t

1
6, t

1
7, t

1
8}, which describe the sequence of the traffic light

stages. In this, the transitions are of type dd. A token in p15 means a green

signal for the queue p11, but red for p12.

Similarly, a token in p17 represents a green signal for the queue p12 but red

for p11. Places p16 and p18 represent intermediate stages when the traffic light is

amber for one queue but red for the other, so no car can cross the intersection.

Similarly, nodes with the superscript 2, i.e., {p2x, t
2
x}), represent the nodes of the

second intersection and its traffic light. In this, the place p29 and the transition

t29 (type dd) have been added in order to simulate the offset, i.e., the relative

time between the cycles of both traffic lights, which is given by the delay of t29.

The output flow of intersection 1 feeds the second one through a link, which

imposes a constant delay (given by the delay of t11). A detailed explanation of

the link model can be found in [VSBS10]. Let us just mention here that, due to

the traffic light, vehicles departing intersection 1 describe a bursting signal (like

platoons or batches of cars) that arrives to the second intersection through t21.

Let us consider the following delays: for {t15, t
1
6, t

1
7, t

1
8} the delays are

(20, 5, 20, 4) seconds (in the same order). For {t11, t
1
2, t

1
3, t

1
4} are (1, 1/3, 1/3, 1/5)

seconds, for {t21, t
2
2, t

2
3, t

2
4} are (1/3, 1/5, 1, 1/3) seconds, and for the link

{t9, t10, t11, t12} are (1/10, 1/3, 30, 1/3) seconds (the link delay is θ11 = 30 sec-

onds). The initial marking is as described in fig. 3.1.

The goal in this example is to obtain, through simulations, suitable switch-

ing delays for the second traffic light, in order to reduce the queue lengths at
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Raf−1*/RKIP/ERK−PP

RKIP−P/RP

MEK−PP/ERK

Figure 5.3: Petri net modeling the ERK signaling pathway regulated by RKIP.

intersection 2. The parameters to optimize are the green periods (amber periods

are fixed and equal to θ26 = 5 and θ28 = 4), i.e., the delays of t25, t
2
7 , and the

offset represented by the delay of t29. Fig. 5.2 shows the evolution of the queues

for the first 400 seconds, for two cases: a) with green periods 20 seconds and no

offset, and b) with green periods 14 for the queue p21 and 26 for the queue p22 and

with an offset of 29 seconds. Note that the second combination of parameters

provide shorter queues. For this, the effect of the offset is very important. This

example shows that simulations based on hybrid PN models can provide infor-

mation about the optimal parameters for traffic lights (duration of stages and

offset), in order to improve the performance in neighboring traffic intersections.

5.3 A biochemical system

This section presents and simulates a biochemical system modeled by contin-

uous Petri nets. In most chemical models, the different amounts of chemical

substances are expressed in terms of concentrations rather than as whole num-

bers of molecules. This implies that the state of the system is given by a vector

of real numbers, where each component represents the concentration of a com-

pound. On the other hand, the dynamics of most reactions is driven by the mass

action law, what roughly implies that the speed of a reaction is proportional to

the product of the concentrations of the reactants. These facts make contin-

uous Petri nets under product semantics an appealing modeling formalism for

biochemical systems.
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Figure 5.4: Time evolution of Raf-1*, RKIP and their complex Raf-1*/RKIP.

The net system in Fig. 5.3 models a signaling pathway described and studied

in [CSK+03]. More precisely, the net is a graphical representation of the Ex-

tracellular signal Regulated Kinase (ERK) signaling pathway regulated by Raf

Kinase Inhibitor Protein (RKIP). The marking of each place represents the con-

centration of the compound associated to it, and the transitions represent the

different chemical reactions that take place (see [CSK+03] for a more detailed

description of the pathway). Notice that, although the net has conflicts, the as-

sumed product semantics fully determines the flows of all continuous transitions,

and therefore it is not necessary to impose a conflict resolution policy.

Since the state of the system is expressed as concentration levels, every tran-

sition is considered continuous and product server semantics is adopted. The

parameter λ estimated in [CSK+03] is λ = [0.53, 0.0072, 0.625, 0.00245, 0.0315,

0.8, 0.0075, 0.071, 0.92, 0.00122, 0.87]. As initial concentrations of the com-

pounds we take the following values: m0 = [2, 2.5, 0, 0, 0, 0, 2.5, 0, 2.5, 3, 0].

Figures 5.4 and 5.5 show the time evolution of some of the compounds in the

system along 40 time units. In particular, Fig. 5.4 shows the dynamics of Raf-

1*, RKIP and their complex Raf-1*/RKIP, and Fig. 5.5 shows the activity of

MEK-PP which phosphorylates and activates ERK. As discussed in [CSK+03],

intensive simulations can be used to perform sensitivity analysis with respect to

the variation of initial conditions.

5.4 Fault Diagnosis with continuous Petri nets

The following examples illustrating the fault diagnosis procedure using untimed

continuous Petri nets have been considered in [MSCS12].
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Figure 5.5: Activity of MEK-PP which phosphorylates and activates ERK.

5.4.1 Example 1

Let us consider the Petri net in Figure 5.6 with:

To = {t1, t2, t3}, Tu = {ε4, ε5, ε6, ε7, ε8} and T 1
f = {ε5}.

The matrices Pre, Post and m0 can be imported in SimHPN toolbox using

diagnosis1.mat file from the Models folder. Places and transitions follow the

numeration in Figure 5.6. The following input parameters should be used:

• Number of observable transitions: 3

• Sequence of observed transitions: [1 2 3]

• Sequence of observed firing quantity of transitions: [0.7 0.5 0.5]

• Number of fault classes: 1

• Transitions in fault class 1: 5

In such a case we have only one fault class containing transition ε5.

Note that, in the matrices Pre and Post the observable transitions have

to occupy the first columns. We are considering the following observation:

t1(0.7)t2(0.5)t3(0.5). The following results are shown at the MATLAB com-

mand prompt:

Number of observable transitions: 3

First 3 transitions are observable and the rest not

Fault class Tf^{1}={\epsilon_5}
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Figure 5.6: The Petri net system considered in Examples 5, 8, 10 and 12 of [MSCS12].

Observed sequence: t1(0.7)t2(0.5)t3(0.5)

=========================================

==========press a key to continue========

=========================================

Enabling bound of t4 is 2

Enabling bound of t5 is 2

Enabling bound of t6 is 2

Enabling bound of t7 is 2

Enabling bound of t8 is 2

***********************************************************

For empty word:

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [0 1 0 0 0 0 1 0 0 0 0 0]’

e_2 = [0 0 1 0 1 0 1 0 0 1 0 0]’

Computing the diagnosis states

Diagnosis state for Tf^{1}: N

***********************************************************

Observed sequence: t1(0.70)
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***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [0 0.3 0.7 0 0.7 0 1 0 0 0.7 0 0]’

e_2 = [0 0 1 0 1 0 1 0 0 1 0 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [0 0 0.3 0 0.3 0 1.7 0 0 1 0 0.7]’

e_2 = [0 0.3 0 0 0 0 1.7 0 0 0.7 0 0.7]’

e_3 = [0 0.3 0 0 0 0.7 1 0 0 0.7 0 0]’

e_4 = [0 0 0.3 0 0.3 0.7 1 0 0 1 0 0]’

Computation time: 0.01 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: N

***********************************************************

Observed sequence: t1(0.70) t2(0.50)

***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [0 0.3 0 0 0 0 1.7 0 0 0.7 0 0.7]’

e_2 = [0 0 0.3 0 0.3 0 1.7 0 0 1 0 0.7]’

e_3 = [0 0 0.3 0 0.3 0.7 1 0 0 1 0 0]’

e_4 = [0 0.3 0 0 0 0.7 1 0 0 0.7 0 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [0 0.3 0.5 0 0.5 0 1.2 0 0.5 0.7 0.5 0.7]’

e_2 = [0.5 0.3 0 0 0 0 1.2 0 0 0.7 0 0.7]’

e_3 = [0 0.3 0.5 0.5 0 0 1.2 0 0.5 0.7 0 0.7]’

e_4 = [0 0.8 0 0 0 0 1.2 0.5 0 0.7 0 0.7]’

e_5 = [0 0 0.8 0 0.8 0 1.2 0.5 0 1.5 0 0.7]’

e_6 = [0 0 0.8 0.5 0.3 0 1.2 0 0.5 1 0 0.7]’

e_7 = [0.5 0 0.3 0 0.3 0 1.2 0 0 1 0 0.7]’

e_8 = [0 0 0.8 0 0.8 0 1.2 0 0.5 1 0.5 0.7]’

e_9 = [0 0 0.8 0 0.8 0.7 0.5 0.5 0 1.5 0 0]’

e_10 = [0 0 0.8 0.5 0.3 0.7 0.5 0 0.5 1 0 0]’

e_11 = [0.5 0 0.3 0 0.3 0.7 0.5 0 0 1 0 0]’

e_12 = [0 0 0.8 0 0.8 0.7 0.5 0 0.5 1 0.5 0]’

e_13 = [0 0.8 0 0 0 0.7 0.5 0.5 0 0.7 0 0]’

e_14 = [0 0.3 0.5 0.5 0 0.7 0.5 0 0.5 0.7 0 0]’

e_15 = [0.5 0.3 0 0 0 0.7 0.5 0 0 0.7 0 0]’
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e_16 = [0 0.3 0.5 0 0.5 0.7 0.5 0 0.5 0.7 0.5 0]’

Computation time: 0.01 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: U

***********************************************************

Observed sequence: t1(0.70) t2(0.50) t3(0.50)

***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [0 0.3 0.5 0.5 0 0 1.2 0 0.5 0.7 0 0.7]’

e_2 = [0 0 0.8 0.5 0.3 0 1.2 0 0.5 1 0 0.7]’

e_3 = [0 0 0.8 0.5 0.3 0.7 0.5 0 0.5 1 0 0]’

e_4 = [0 0.3 0.5 0.5 0 0.7 0.5 0 0.5 0.7 0 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [0 0 0.8 0 0.3 0 1.2 0 0.5 1 0 0.7]’

e_2 = [0 0.3 0.5 0 0 0 1.2 0 0.5 0.7 0 0.7]’

e_3 = [0 0.3 0.5 0 0 0.7 0.5 0 0.5 0.7 0 0]’

e_4 = [0 0 0.8 0 0.3 0.7 0.5 0 0.5 1 0 0]’

Computation time: 0.00 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: F

5.4.2 Example 2: (a manufacturing system)

Let us consider the Petri net in Fig. 5.7 where transitions t1 to t12 correspond to

observable events, transitions ε13 to ε24 correspond to unobservable but regular

events while ε25 and ε26 are unobservable and faulty transitions. In particular

we assume T 1
f = {ε25} and T 2

f = {ε26}.

The matrices Pre, Post and m0 are defined in the MATLAB file

Diagnosis 2.mat and can be imported in SimHPN toolbox using the menu

File → Import from .mat file. Places and transitions follow the numeration

in Fig. 5.7. The following parameters will be considered:

• Number of observable transitions: 12

• Sequence of observed transitions: [1 1 2 12 3 12 3 6 7 8 4 5 9 10 11]

• Sequence of observed firing quantity of transitions:

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

• Number of fault classes: 1

29



5.4. Fault Diagnosis with continuous Petri nets 5. Examples of utilization

t2 t3 

t4 

t5 

t6 

t7 

t8 

t9 

t10 

t11 

t1 

ε13 ε14 

ε15 ε16 

ε17 ε18 

ε19 

ε20 

ε21 

ε22 

ε23 

ε24 

ε25 

ε26 

p1 

p2 

p3 
p4 

p5 p6 

p7 p8 

p9 

p10 

p11 

p12 

p13 

p15 

p16 

p17 p27 

p37 

p18 

p19 p32 

p20 

p21 

p22 

p23 

p24 p25 

p26 

p34 

p28 

p35 

p33 

p38 

p36 

p29 

p30 

p31 

R1 

M1 M2 

M3 

AGV1 AGV2 

M5 

M4 

R4 

B 

R3 

R2 

C2 

C1 

C3 

8 

9 

8 

19 

 

8 

t12 

P14 20 

Figure 5.7: Petri net model of the manufacturing system considered in Subsec-

tion VII.A.
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Figure 5.8: The Petri net considered in Subsection VII.B.

• Transitions in fault class 1: [25 26]

This net system has two fault classes. The first one contains transition

ε25 and the second one contains transition ε26. The cardinality of the

set of observable transitions is 12 and the considered observation is w =

t1(1)t1(1)t2(1)t12(1)t3(1)t12(1)t3(1)t6(1)t7(1)t8(1)t4(1)t5(1)t9(1)t10(1)t11(1).

The fault state after each observation is shown at the MATLAB command

prompt.

5.4.3 Example 3: (unobservable acyclic subnet)

Let us consider the Petri net in Figure 5.8 where transitions t1 to t6 correspond

to observable events, transitions ε7 and ε8 correspond to unobservable but regu-

lar events while ε9 and ε10 are unobservable and faulty transitions. In particular

we assume T 1
f = {ε9} and T 2

f = {ε10}.

The matrices Pre, Post and m0 can be imported from Diagnosis 3.mat

file. Places and transitions follow the numeration in Fig. 5.7 and the following

parameters are used:

• Number of observable transitions: 6

• Sequence of observed transitions: [1 2 5 4 1 3]

• Sequence of observed firing quantity of transitions: [0.1 0.1 0.3 0.1 0.1 0.1]
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• Number of fault classes: 2

• Transitions in fault class 1: [9]

• Transitions in fault class 2: [10]

Such net has two fault classes. The first one contains transition ε9
and the second one contains transition ε10. The cardinality of the set

of observable transitions is 6 and the considered observation is w =

t1(0.1)t2(0.1)t5(0.3)t4(0.1)t1(0.1)t3(0.1). The following results are obtained at

the MATLAB prompt:

Number of observable transitions: 6

First 6 transitions are observable and the rest not

Fault class Tf^{1}={\epsilon_9}

Fault class Tf^{2}={\epsilon_10}

Observed sequence: t1(0.1)t2(0.1)t5(0.3)t4(0.1)t1(0.1)t3(0.1)

=========================================

==========press a key to continue========

=========================================

Enabling bound of t7 is 2.000000e+00

Enabling bound of t8 is 2.000000e+00

Enabling bound of t9 is 2

Enabling bound of t10 is 2.000000e+00

***********************************************************

For empty word:

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [2 2 0 0 0 0 0 0 0 0 0 0]’

Computing the diagnosis states

Diagnosis state for Tf^{1}: N

Diagnosis state for Tf^{2}: N

***********************************************************

Observed sequence: t1(0.10)

***********************************************************

Vertices of the set of consistent markings after cutting
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e_1 = [2 2 0 0 0 0 0 0 0 0 0 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [1.6 2 0 0 0 0 0.2 0 0.1 0 0.1 0]’

e_2 = [1.6 2 0.1 0 0 0 0.1 0 0.1 0 0 0]’

e_3 = [1.6 2 0.1 0.1 0 0 0 0 0 0 0 0]’

e_4 = [1.6 2 0 0.1 0 0 0.1 0 0 0 0.1 0]’

Computation time: 0.01 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: U

Diagnosis state for Tf^{2}: N

***********************************************************

Observed sequence: t1(0.10) t2(0.10)

***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [1.6 2 0.1 0 0 0 0.1 0 0.1 0 0 0]’

e_2 = [1.6 2 0 0 0 0 0.2 0 0.1 0 0.1 0]’

e_3 = [1.6 2 0 0.1 0 0 0.1 0 0 0 0.1 0]’

e_4 = [1.6 2 0.1 0.1 0 0 0 0 0 0 0 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [1.6 1.6 0 0.1 0 0.1 0.2 0 0 0.1 0.1 0]’

e_2 = [1.6 1.6 0.1 0.1 0 0.1 0.1 0 0 0.1 0 0]’

e_3 = [1.6 1.6 0.1 0 0 0.1 0.2 0 0.1 0.1 0 0]’

e_4 = [1.6 1.6 0 0 0 0.1 0.3 0 0.1 0.1 0.1 0]’

e_5 = [1.6 1.6 0.1 0 0.1 0.1 0.1 0 0.1 0 0 0]’

e_6 = [1.6 1.6 0 0 0.1 0.1 0.2 0 0.1 0 0.1 0]’

e_7 = [1.6 1.6 0.1 0 0 0.2 0.1 0 0.1 0 0 0.1]’

e_8 = [1.6 1.6 0 0 0 0.2 0.2 0 0.1 0 0.1 0.1]’

e_9 = [1.6 1.6 0.1 0.1 0.1 0.1 0 0 0 0 0 0]’

e_10 = [1.6 1.6 0 0.1 0.1 0.1 0.1 0 0 0 0.1 0]’

e_11 = [1.6 1.6 0.1 0.1 0 0.2 0 0 0 0 0 0.1]’

e_12 = [1.6 1.6 0 0.1 0 0.2 0.1 0 0 0 0.1 0.1]’

Computation time: 0.01 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: U

Diagnosis state for Tf^{2}: U

***********************************************************
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Observed sequence: t1(0.10) t2(0.10) t5(0.30)

***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [1.6 1.6 0 0 0 0.1 0.3 0 0.1 0.1 0.1 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [1.9 1.9 0 0 0 0.1 0 0 0.1 0.1 0.1 0]’

Computation time: 0.00 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: F

Diagnosis state for Tf^{2}: N

***********************************************************

Observed sequence: t1(0.10) t2(0.10) t5(0.30) t4(0.10)

***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [1.9 1.9 0 0 0 0.1 0 0 0.1 0.1 0.1 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [1.9 1.9 0 0 0 0 0 0.1 0.1 0.1 0.1 0]’

Computation time: 0.00 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: F

Diagnosis state for Tf^{2}: N

***********************************************************

Observed sequence: t1(0.10) t2(0.10) t5(0.30) t4(0.10) t1(0.10)

***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [1.9 1.9 0 0 0 0 0 0.1 0.1 0.1 0.1 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [1.5 1.9 0 0 0 0 0.2 0.1 0.2 0.1 0.2 0]’

e_2 = [1.5 1.9 0.1 0 0 0 0.1 0.1 0.2 0.1 0.1 0]’

e_3 = [1.5 1.9 0.1 0.1 0 0 0 0.1 0.1 0.1 0.1 0]’

e_4 = [1.5 1.9 0 0.1 0 0 0.1 0.1 0.1 0.1 0.2 0]’

Computation time: 0.00 seconds

Computing the diagnosis states
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Diagnosis state for Tf^{1}: F

Diagnosis state for Tf^{2}: N

***********************************************************

Observed sequence: t1(0.10) t2(0.10) t5(0.30) t4(0.10) t1(0.10) t3(0.10)

***********************************************************

Vertices of the set of consistent markings after cutting

e_1 = [1.5 1.9 0.1 0 0 0 0.1 0.1 0.2 0.1 0.1 0]’

e_2 = [1.5 1.9 0.1 0.1 0 0 0 0.1 0.1 0.1 0.1 0]’

***********************************************************

Vertices of the set of consistent markings (vertices of \bar Y(m_0,w))

e_1 = [1.5 1.9 0 0 0 0 0.1 0.2 0.2 0.1 0.1 0]’

e_2 = [1.5 1.9 0 0.1 0 0 0 0.2 0.1 0.1 0.1 0]’

Computation time: 0.00 seconds

Computing the diagnosis states

Diagnosis state for Tf^{1}: F

Diagnosis state for Tf^{2}: N
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[JMV12] Jorge Júlvez, Cristian Mahulea, and Carlos-Renato Vázquez.

Simhpn: A matlab toolbox for simulation, analysis and design with

hybrid petri nets. Nonlinear Analysis: Hybrid Systems, 6(2):806 –

817, 2012.
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[ZRS01] A. Zimmermann, D. Rodŕıguez, and M. Silva. A Two Phase Opti-

misation Method for Petri Net Models of Manufacturing Systems.

Journal of Intelligent Manufacturing, 12(5):421–432, October 2001.

39


	Overview
	Installation Guide
	Petri nets overview
	Untimed Hybrid Petri net systems
	Timed Hybrid Petri net systems

	Using SimHPN
	Short description of the GUI
	Script simulation

	Examples of utilization
	An assembly line
	A traffic system
	A biochemical system
	Fault Diagnosis with continuous Petri nets
	Example 1
	Example 2: (a manufacturing system)
	Example 3: (unobservable acyclic subnet)


	Bibliography

