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ABSTRACT
Open-world software is a new paradigm that stresses the concept of
software service as a pillar for building applications. Services are
unceasingly deployed elsewhere in the open-world and are used
on demand. Consequently, the performance of these open-world
applications relies on the performance of definitely unknown third-
parties. Another consequence is that performance prediction meth-
ods can no longer assume that service times for software activities
are well-known all over the time. More feasible solutions defend
that they should be inferred from the environment, for example
monitoring current services executions. So, there is a need for new
performance prediction methods, and it is likely that they have to
be applied not only when developing, but also during software ex-
ecution, so to learn from the environment and to adapt to it. In this
paper, we build on a three layer architecture, taken from literature,
to present an architectural approach for performance prediction in
open-world software. Once the approach is presented, the paper fo-
cuses on the intricacies of its more challeging component, i.e., the
generator of strategies to meet performance goals by selecting the
best available set of services.

General Terms
Design, Performance

Keywords
UML-MARTE, software components, self-managed systems, open-
world software, Petri nets

1. INTRODUCTION
The open-world software paradigm [2] encompasses and abstracts

concepts underlying a wide-range of approaches and technologies;
among them, grid computing, publish-subscribe middleware or ser-
vice oriented architectures. In open-world, an accepted approach
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considers software as made ofservicesprovided bycomponents
elsewhere deployed that interplay without authorities. The software
achieves its goals by selecting and adapting services which evolve
independently. Then, this software evolves itself in unforeseen
manners that depend on third-parties, which means that the per-
formance for this software strongly relies on that of the services it
trusts. Therefore, the methods in the software performance field
proposed so far to predict “non open-software” can now hardly be
completely reused in this new context. Consider they make as-
sumptions which now could not take place, for example, to assume
durations of software activities as well-known performance input
parameters.

Kramer and Magee in [7, 8] proposed an architecture for self-
managed systems, i.e., those which are capable of self-configuration,
self-monitoring and self-tuning. When a self-managed system suf-
fers from dynamic changes during operation, it should configure
itself to satisfy the specification or it may be capable of report-
ing that it cannot. Kramer and Magee defend that an architectural
approach for this kind of systems brings several benefits; among
others, generality to be applied in different domains, abstraction in
the composition, scalability or potential for an integrated software
approach.

Being self-management an inherent characteristic in open-world
software, it is argued that challenges in the former are also present
in the latter. Hence, we are convinced that open-world can take ad-
vantage of the Kramer and Magee three-layer reference architecture
(KM-3L). At this respect, we want to study if KM-3L fits the open-
world and if it can bring those previously enumerated benefits to
this context. In particular, we will focus this work on how to exploit
KM-3L for the open-world software to incorporate a performance-
aware property. In fact, we quest for a reference architecture that
allows systems to configure themselves, during execution, for satis-
fying some performance goal, as long as functionality is preserved.
In this regard, the contributions of the paper are:

• First, we discuss how open-world software could be adapted
to KM-3L. In particular, we stress the implications for KM-
3L to carry out performance-aware reconfigurations in this
context. We will accomplish it in Section 3.

• Once the architectural implications for performance has been
presented, we will address an explanation about the most
challenging component in this architecture. This is the com-
ponent in charge of generating thestrategiesthat know how
to carry out performance-aware reconfigurations. Section 4
describes algorithms for this component.

• The last contribution is an example, developed in Section 5,
that demonstrates the feasibility of the proposed module and
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Figure 1: 3-layer architecture adapted to open-world

shows how the strategies it develops may improve the system
performance.

The paper will end up in Section 6 with a brief conclusion, a
discussion of the closest related work and ideas about future work.
Next section summarizes this Kramer and Magee’s vision of a ref-
erence architecture for self-managed systems (KM-3L).

2. A 3-LAYER ARCHITECTURE
The KM-3L proposal was inspired by the architectures devel-

oped for robotics systems, in particular following Gat’s description
in [4]. Indeed, as commented by Kramer and Magee, both robotics
and self-managed systems are kinds of autonomic systems. For
them, the idea is not to propose an implementation architecture but
to identify what a self-managed system needs to carry out its mis-
sion, of course without human intervention. In the following we
describe KM-3L by referencing for each layer its goals.

Component control.
This layer is made of those components that make up the self-

managed system. It senses and reports the contextstatusto its up-
per layer.

Change management.
This layer has a set of plans orstrategiesto achieve the system

goal ormission. When the lower layer reports here the current con-
text status, it can mean for this layer to produce a new configura-
tion. For this purpose, it executes the strategies to change the un-
derlying component architecture into one that fits with the current
context or environment. This may imply either to introduce new
components or to change the interconnections or the component
parameters. When the environmentstatusreported is not supported
by any of the existing strategies, then this layer asks the upper one
for a new strategy to manage the situation.

Goal management.
This layer manages the system mission and has to produce strate-

gies that satisfy the mission taking into account the current envi-
ronment. The strategies are produced when the mission changes as
well as when the change management layer requests.

Once summarized the layers which compose this architecture,

we just remark that the duration of the activities has been the crite-
ria taken into account for placing a function in a given layer. Hence,
immediate activities appear in lower levels, so for the system to
quickly react to changes in the environment. However, long term
activities are accomplished by the upper layer that may involve de-
liberation.

3. 3-LAYER ARCHITECTURE FOR OPEN-
WORLD SOFTWARE

In this section, we describe how to adapt KM-3L to the open-
world software context, and at the same time how to manage the
performance-aware property. Then, for each layer we have to iden-
tify what responsibilities it has to take so the system eventually can
accomplish this property. Hence, we are pursuing an architecture
for performance-aware open-world software.

Concerning the architecture, we keep the point in the previous
section, therefore we want it to be a reference, then we aim at iden-
tifying these responsibilities and their purpose in the overall of this
comprehesive goal.

3.1 Component Control
As previously discussed, this layer is in contact with the execu-

tion environment and has to quickly react to changes produced in
it. In the open-world software this means that this layer manages
the components making up the current configuration. Therefore, it
is responsible for establishing the current bindings and unbindings
when a component has to be called.

Concerning performance, we identify for this layer different re-
sponsibilities. They are the minimum set an open-world software
may need to actually develop activities leading to manage perfor-
mance aware reconfigurations. Firstly, it will be in charge of track-
ing the performance of the services involved in the current con-
figuration. Secondly, it has to discover new components offering
services equivalent in functionality to those required by the work-
flow. Finally, it has to be aware about which ones of the current
providers are no longer available.

For an open-world software to carry out these responsibilities it
would be of interest to construct amonitormodule that takes charge
of all them. This monitor should be incorporated to the target open-
world software as a module. For the first task, it will control the
time elapsed in the calls to the services and for the second and third
it will use the normal means in open-world (i.e., through service



discovering).
From a practical point of view, this layer also needs a represen-

tation of theworkflowto be executed and of the set of components
that conform the currentconfiguration. In this work, we will con-
sider that such workflow has the form of a UML activity diagram
while the current configuration will be represented by a UML com-
ponent diagram (indeed an instance of the one in the Change Man-
agement level). Whatever other standard representation could be
valid such as BPEL for the first or Darwin component model for
the latter.

This layer reports the currentstatusto the upper one each time
the execution of a service ends (to inform about the monitored
time), but also when it cannot execute the current service in the
workflow (e.g., the target component may be unreachable). The
upper layer can respond with a new configuration.

3.2 Change Management
Themissionof an open-world software is obviously carried out

through its own execution, here abstracted by the workflow. The
workflow execution may need successive self-reconfigurations, that
may attend different criteria, for example the cost of the services or
the performance. For each criteria of interest, this level can asso-
ciate at least onereconfiguration strategy. It would also be desire-
able that a given strategy could gather more than one criteria, for
example the previous two. In any case, for this paper purposes the
interest is that this layer has defined and can manage a performance
aware reconfiguration strategy.

For an open-world software to execute strategies, we identify the
need of areconfiguration controllermodule. The inputs for this
module would be of course the set of strategies, but also, thestatus
provided by the monitor and a UML component diagram (CD). The
output will account for the computed new system configuration.
The CD describes for each component its mode, later explained.
The status is the subset of currently active components in the CD.

Let us briefly discuss how this layer could manage the compo-
nentsmode. Themodecan be a tuple<state,MST> . The first
field to be chosen from{unavailable,standby,active}
and the second to represent the mean service time for the module.
Following the proposal in [7], the mode could be managed through
ports using asetmode operation.

Moreover, this layer shouldcreate the new components and
delete those no longer useful, remember that the actualbind
andunbind is responsibility of the lower level. Therefore, when
the monitor reports the status, this layer has to manage different
situations:

• A component is no longer available. The reconfiguration
controller (ReCtrl) sets the mode tounavailable, and if the
component is in use then the ReCtrl executes the strategy to
find a proper substitute and eventually will report a configu-
ration change.

• A provider is available for a given service. Thestatushere
reported has to include provider’s and service’s name and
the service MSTt . As long as this provider has a CD en-
try, the reconfiguration controller updates it with the new ser-
vice as<standby,t> . Otherwise, it performs acreate
for the provider (as a component) and sets service mode as
<standby,t> .

• A service is currently not providing the required QoS. The
reconfiguration controller executes the strategy and decides
about a service change. If the change is necessary, then it sets
the mode of the degraded component from<active, t1>
to <standby, t′1> and the mode of the one selected from

<standby, t2> to <active, t2>. When the new configu-
ration will be reported, the lower lever takes the responsibil-
ity to perform the correspondingunbind andbind .

Sometimes the current strategy cannot produce a new configu-
ration for the reportedstatus(e.g., the selected providers are not
available or the performance goal cannot be satisfied). Then this
layer will request theGoal Managementfor a new performance
aware strategy.

Finally, we remark that the operations in this layer (create,
delete, setmode and the strategy execution) are supposed to
be immediate regarding the system execution time. This is impor-
tant since this level will not overload the system.

3.3 Goal Management
From our point of view, themissionof the system will be not

only to carry out the workflow functionality, but also to do it meet-
ing a performance goal. For us this layer has to produce perfor-
mance aware reconfiguration strategies, then we devise astrategy
generatormodule. Irrespective of this module, the system could
create strategies to meet other goals of interest in the scope of the
open-world software.

The strategies are provided on theChange Managementlayer
demand and they could be afforded under two assumptions:

• There could exist a library of strategies and thegenerator
will decide the appropriate one, for the current request, out
of this set.

• Thegeneratorcould actually create the strategy on demand.

In this work we just explore the second choice, then thegener-
ator inputs should be: theperformance goal, the workflow with
a specification of certain performance properties, and the current
configuration that will be provided with theChange Management
request. The output is the target strategy that meets the defined
performance goal, for the sake of simplicity we will consider only
system response time. The performance specification will use the
MARTE [12] profile.

4. GENERATION OF STRATEGIES
In this section, we offer a high-level view of the reconfiguration

strategy generatormodule, which is placed in theGoal Manage-
mentlayer. The previous section described the module goal and its
interfaces. Algorithms 1, 2 and 3 synthesize the module function-
ality, i.e., they report to theChange Managementlayer the strategy
they obtain. Besides, a warning complements the strategy when it
does not meet the performance goal.

Information managed in the algorithms.
We assume that the system workflow needs to callK external

services,sk, k ∈ [1..K]. In the CD in Fig. 3,K = 3, thought that
the same service could be requested in different calls.

A given servicesk may be provided by several components; let
Lk be the number of components that providesk. We denote asckl,
wherek ∈ [1..K] andl ∈ [1..Lk], the lth component servingsk.
For example, in Fig. 3, services3 is served by two componentsc31,
c32. Then,Ck =

SLk

l=1
ckl is the set of all components that offer

sk, andC =
SK

k=1
Ck is the set of all components that provide the

services specified in the system workflow.
Moreover, we assume that there exists a Time Table (TT), like

Table 1, describing for each component its workingphases. Let
Jkl be the number of working phases of componentckl; then each
phasephj , wherej ∈ [1..Jkl], is characterized by a pair of real



values(Skl
j , SJkl

j ), whereSkl
j is the mean service time andSJkl

j

is the mean sojourn time ofckl in phj . This timing information
would come from the providers or from our experience monitoring
the environment.

A reconfiguration strategy is represented as a directed graphG =
(N, E), see example in Fig. 5. A noden ∈ N is interpreted as
a system configuration, but it is also important to know for each
component thephasewe guess it is working out. An edgee ∈ E
is interpreted either as a change of system configuration, i.e., the
componentckl1 that offers servicesk will replace the component
ckl2 (l1 6= l2) that provides the same service, or as a change in a
component phase. For example, in Fig. 5, the egde fromNode0

to Node2 represents a change of system configuration (c22 will re-
placec21), while the edge fromNode0 to Node1 models a change
of phase in componentc11 (from ph1 to ph2).

An edge is labeled as〈sk, cond〉, wheresk is the service and
cond is a ratio representing our minimunconfidence levelfor the
change to be produced, consider that being stochastic our analyses,
then there exist a probability that the strategy fails its prediction.

Description of the algorithms.
Algorithm 1 summarizes the strategy generation, it starts creat-

ing the strategy initial node (line 2) and from this node produces
its adjacent ones (line 11) and the edges that join them (line 16).
While there are nodes whose outgoing edges have not been created
yet, it keeps creating nodes and edges. Finally, it creates a set of
“way back” edges (line 21). Such edges represent either changes
of configuration or component-phases due to timeouts instead of a
conditionas it happened to forward edges. The rational behind a
“way back” is to bring back the system to a configuration that after
some time would be working better than the current one.

Algorithm 2 solves the calls in Algorithm 1 (lines 2,11), i.e. how
to create a node in the strategy.PhaseListis a list of pairs〈ckl, phj〉
that for eachckl ∈ C assumes its phasephj ≡ (Skl

j , SJkl
j ). When

Algorithm 2 creates the initial node,PhaseList(line 3) is created
assuming that eachckl is in its phase with minimum mean ser-
vice time. However, for the rest of the nodes (line 5),PhaseList
is constructed withExtractListOfPhasesthat will implement an al-
gorithm choosing appropriate phases. In Section 5 we will exem-
plify our proposal for such algorithm. FunctionAllPossibleCon-
figs (line 9) creates all possible system configurations according
to PhaseList. Each configuration will parameterize the workflow
GSPN that will be evaluated to get the configuration response time
(lines 11..13). In particular, the mean service timesSkl

j of the com-
ponentsckl belonging to the configuration, in their current phase
phj , are used to parameterize the GSPN. As an example, during
the creation of the initial nodeNode0 in Fig. 5, four candidate
configurations are generated (see Table 2) and evaluated using the
workflow GSPN in Fig. 4. Finally, the node created by the Algo-
rithm 2 (line 15) corresponds to the system configuration with the
minimum response time.

Algorithm 3 solves the call in Algorithm 1 (line 16), i.e. how to
create a forwarded edge, not a “way back". Observe that, if ser-
vicesk of a givenNodes cannot be replaced by anyNodet with a
newphaseor component, no edge is created (line 1). FunctionEx-
tractListOfPhases, in Algorithm 2, detected this situation andCre-
ateNodereturned null. WhenNodes has an adjacent nodeNodet,
then a direct edge from the source nodeNodes to the target node
Nodet is created together with its labeling information, i.e., the
servicesk and the conditioncond (line 5). In particular,cond is a
real value computed by the functionSetConfLevel(line 10), which
needs the response time evaluated using the workflow GSPN for
Nodes andNodet (lines 6-9). A simple example ofSetConfLevel

will be given in Section 5.

Algorithm 1 Strategy generation
Require: From Goal Management Layer: System Workflow

(AD), Performance Goal (PerfGoal)
From Change Management Layer: Components with their tim-
ing specification (CD,TT)

Ensure: A New Strategy (and a possible warning meaning that the
PerfGoal is not achieved)
{ Initialization}

1: setG = 〈N, E〉: N = ∅ {nodes},E = ∅ {edges}
{ Create Initial Node}

2: N0← CreateNode(AD,CD,TT,null,null)
3: setNodes = ∅
4: Nodes = Nodes ∪N0

5: while Nodes 6= ∅ do
6: Nodes ← ExtractOneNode(Nodes)
7: AlreadyCreated← CheckNode(N, Nodes)
8: if not AlreadyCreatedthen
9: N ← N ∪ Nodes

{ CreateNodes adjacent nodes}
10: for all k ∈ [1..K] do
11: Nodet ← CreateNode(AD,CD,TT,k,Nodes)
12: AlreadyCreated← CheckNode(N, Nodet)
13: if not AlreadyCreatedthen
14: Nodes← Nodes ∪Nodet

15: end if
{ Create edge fromNodes to Nodet}

16: Edge← CreateEdge(Nodes,Nodet,k,TT)
17: E ← E ∪ Edge
18: end for
19: end if
20: end while
21: E = E ∪ CreateWayBackEdges(G,TT)
22: return <G, AnalyseStrategy(G,PerfGoal,CD,TT)>

5. EXAMPLE
We exemplify the algorithm of the strategy generation, described

in Section 4, with an example of a system under development (SUD)
that executes three operations, in a sequential manner. All such op-
erations consist in service calls to providers in the open-world en-
vironment. The UML system specification is shown in Figures 2
and 3. The activity diagram (Figure 2), annotated with the MARTE
profile [12], represents the system workflow. The type of workload
(GaWorkloadEvent) is open and requests arrive to the SUD with
an exponential inter-arrival time, with a mean of500 time units
(i.e., “tu”). The requests are processed, one at a time, by acquiring
(GaAcqStep) and releasing (GaRelStep) the resourcec0. Each ac-
tivity step (PaStep) models an external service callsk to a provider
in the open-world. In particular, theextOpDemandstagged-value is
a parameter that is set to the current provider of servicesk and the
extOpCounttagged-value indicates the number of requests made
for each service call.

The component diagram (Figure 3) represents the currently avail-
able providers of the services required by the system. In partic-
ular, component’s names are given according to the name of the
service they provide. There exists only one providerc11 of ser-
vice s1, while two providers are available for each services2 and
s3. Table 1 (TT) shows the working phases, in time units, of the
providers. In particular, for each providerckl, the estimated mean
service timesSkl

j and mean sojourn timesSJkl
j of the offered ser-



Algorithm 2 CreateNode
Require: AD,CD,TT,service (k), current node (node)
Ensure: A node (confbest)
1: setPhaseList =∅ {vector of vectors}
2: if (k==null ∧ node==null)then
3: PhaseList← ExtractInitialListOfPhases(CD,TT)
4: else
5: PhaseList← ExtractListOfPhases(CD,TT,node,k)
6: end if
7: setCandidateConfigs =∅ {set of configurations}
8: setRTs =∅ {set of configuration response times}
9: CandidateConfigs← AllPossibleConfigs(PhaseList)

10: for all conf∈ CandidateConfigsdo
11: GSPNconf ← CreateGSPN(conf)
12: rtconf ← Evaluate(GSPNconf )
13: RTs← RTs∪ 〈conf, rtconf〉
14: end for
15: confbest ← FindBestConfig(RTs)

{The node is a configuration with the min response time:
〈confbest, rt〉 ∈ RTs | ∀〈conf, rtconf〉 ∈ RTs : rt ≤ rtconf }

16: return confbest

Algorithm 3 CreateEdge

Require: source (Nodes), target (Nodet), service (k), TT
Ensure: The edge betweenNodes aNodet (edge)
1: if Nodet == null then
2: return null
3: end if
4: setcond = 0.0 {confidence level (float)}
5: setedge= 〈Nodes, Nodet, k, cond〉

{Computation ofNodes response time}
6: GSPNNodes ← CreateGSPN(Nodes)
7: rtNodes ← Evaluate(GSPNNodes )

{ComputationNodet response time}
8: GSPNNodet ← CreateGSPN(Nodet)
9: rtNodet ← Evaluate(GSPNNodet )

{Computation of the confidence level}
10: cond← SetConfLevel(Nodes, rtNodes , Nodet, rtNodet ,TT)
11: return edge

vice, are given.

5.1 Strategy Generation
The Time Table and the UML specification, properly annotated

with MARTE, provide the input for the Algorithm 1 described in
Section 4. A parametric GSPN model is then created from the ac-
tivity diagram (Figure 2) that will be used to estimate the mean
response time of the system under different configurations, using
the multisolve facility of GreatSPN [6]. The GSPN model is
shown in Figure 4 and it is characterized by three rate parameters
representing the execution mean rates of the service callss1, s2 and
s3.

Observe that the call to services2, in the activity diagram, in-
cludes3 requests (extOpCounttagged-value) this is modeled by the
free-choice subnet, where the weights assigned to the conflicting
transitionsStart_CallS2andEnd_CallS2are equal, respectively, to
3/4 and1/4.

The first main step of the algorithm (Algorithm 1 - line 2), con-
sists of creating the initial node of the reconfiguration strategy graph
(Algorithm 2). This is accomplished by assuming that each provider
works under the best mode. We consider, then, the minimum esti-

Call S1

Call S2

Call S3

<<GaWorkloadEvent>>
{pattern =(open =(interArrivalTime=(exp(500,tu))))}

<<GaAcqStep>>
{acqRes = C0,
 resUnits=1}

<<PaStep>>
{extOpDemands=$S1provider;
  extOpCount=1}

<<PaStep>>
{extOpDemands=$S2provider;
  extOpCount=3}

<<GaRelStep>>
{relRes = C0,
 resUnits=1}

<<PaStep>>
{extOpDemands=$S3provider;
  extOpCount=1}

Figure 2: UML activity diagram

System 
under

development
C11

C31

S1 C21

C22

C32

S2

S3

Figure 3: UML component diagram

mated (mean) service times from each provider, i.e.,S11
1 = 5tu,

S21
1 = 10tu, S22

1 = 35tu, S31
1 = 20tu andS32

1 = 30tu. There
are four possible system configurations: for each one, we instanti-
ate the parametric GSPN, in Figure 4, by setting the rate parameters
λS1provider, λS2provider andλS3provider to the inverse of the con-
sidered service timesSkl

1 (k = 1, 2, 3) of each current provider of
servicess1, s2 ands3, respectively. Once instantiated, the GSPNs
are solved and the system (mean) response times are computed (see
Table 2).

In the strategy graph (Fig. 5), the initial nodeNode0 corresponds
to the configuration that revealed the minimum system (mean) re-
sponse time. Observe that, in this simple example, active providers
in the initial configuration correspond to those ones having the min-
imum service times. However, this property does not always hold
in a general case where several providers contend for shared re-
sources.

In the next main step of the Algorithm 1 (line 11), the nodes
adjacent to the initial one are created, considering that the active
providers inNode0 can degrade their performance. Eventually,
there will be three configuration nodes adjacent to the initial node,
one for each external service requested by the SUD (Figure 5). Let
us consider the creation of the first two nodesNode1 andNode2

adjacent toNode0: the algorithm will iterates over the created
nodes to produce their adjacents, until all the possible system con-
figurations are examined.

Node1 is added considering that the active provider of service
s1 in Node0 (i.e.,c11) changes itsphasefrom ph1 to ph2, i.e.,c11

is answering to service requests with a mean service time of20tu,
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Provider working phases (in time units, i.e.,tu)
ph1 ph2 ph3

C11 (5,3000) (20,6000)
C21 (10,6000) (70, 2000) (250,2000)
C22 (35,6000) (140,4000)
C31 (20,2000) (70,2000)
C32 (30,∞)

In formatphj = (Skl
j , SJkl

j )

Table 1: Time Table of open-world providers (TT)

Mean response time estimation
(in time units, i.e., tu)

C11:ph1 C21:ph1 C31:ph1 60.5
C11:ph1 C22:ph1 C31:ph1 177.6
C11:ph1 C21:ph1 C32:ph1 72.5
C11:ph1 C22:ph1 C32:ph1 193.8

Table 2: System components candidates

instead of5tu. Sincec11 is the unique provider ofs1, theNode1

is characterized by the same active providers asNode0 as well as
the same provider mean service times but the one ofc11, which is
equal to20tu. The GSPN model in Figure 4 is used to compute the
system mean response time of the configurationNode1.

Node2 is created assuming that the active provider ofs2 in Node0

(i.e., c21) changes itsphaseby increasing the mean service time
from 10tu to 70tu. Then, four candidate configurations were pos-
sible: two of them still includec21 as active provider ofs2 with de-
graded performance. They correspond to the first and the third con-
figuration in Table 2 with the providerc21 in phaseph2. In the other

two configurations, the active provider ofs2 is c22 (i.e, the second
and the fourth configuration in Table 2). The GSPN model in Fig-
ure 4 is then used to select the best configuration among the can-
didates, that is the one with the minimum system (mean) response
time. Then, theNode2 actually corresponds to the configuration
with the minimum system (mean) response time, i.e.,177.6tu.

Once a new adjacent node is created, the algorithm generates
the corresponding forward edge (Algorithm 1- line 16). An edge
from Nodes to Nodet includes information about the servicesk

and the goodness of the prediction (confidence-level) for there-
configuration controllerto decide whether it is worth to change the
configuration fromNodes to Nodet. Observe that, since we are
dealing with the open-world environment, every decision about the
providers is based on predictions. We propose an ad-hoc heuristic
that works under the open workload assumption and considers the
performance goal (i.e., obtain the best system mean response time)
as well as the available timing specifications (i.e., provider working
phases).

Let us consider an edge fromNodes to Nodet where the source
and the target nodes have different active components, such asNode0

and Node2 in Figure 5. The computation of the corresponding
minimum confidence level is related to two quantities:

• The performance improvement when the system reconfigures
properly, that is the provider has changed its phase and the
strategy realizes it (e.g., the providerc21 has changed from
ph1 to ph2 and the system moves fromNode0 to Node2).
This is estimated as:

Perfimprove = rts|ckl←phj+1
− rtt,

whererts|ckl←phj+1
is the system mean response time with

the same active providers as inNodes, but changing the
working phase of providerckl from phj to phj+1, andrtt

is the system mean response time inNodet.

• The performance loss when the system reconfigures due to



GSPN = (N ; f�S1provider; �S2provider; �S3providerg)
RequestArrival

�S1provider

�S2provider
�S3provider

� = 1=500tu
S1OpDemand

AcqRes,Start_CallS1

Res_C0

End_CallS1

Start_CallS2End_CallS2

Start_CallS3

RelRes,End_CallS3

S2OpDemand

S3OpDemand

w = 3=4w = 1=4

Call S1

Call S2

Call S3

Figure 4: Parametric GSPN

a wrong prediction, that is the provider has occasionally had
a slow execution, but it has not really changed its current
phase, however the system moves to the target node. This is
estimated as:

Perfloss = rtt − rts,

whererts is the system mean response time inNodes.

Then, the minimum confidence level is given by the formula:

conf_level =
Perfimprove

Perfimprove + Perfloss

. (1)

When the source and target nodes of an edge have the same active
components, such asNode0 andNode1, the minimum confidence
level is computed asconf_level = rts

rtt
.

Finally, theway-backedges are created (Algorithm 1 - line 21)
to allow the system to move back to a previously considered con-
figuration after a (mean) sojourn time period in the source node.
So there will be an edge fromNodes to Nodet, labeled with a
mean sojourn time period as a timeout, if there exists a providerckl

in Nodes with its final phasephJkl
and inNodet with its initial

phaseph1. In Figure 5, way-back egdes are dashed and, for read-
ability, only five of them are shown. The choice of the ideal mean
sojourn time period that allows the system to achieve the perfor-
mance goal (i.e., minimum response time) is a future work issue.
In the example, we set such period equal to the mean inter-arrival
time of a service request to the SUD (i.e.,500tu).

In order to validate our proposal, we carried out the analysis of
the system, considering several assumptions: the system does not

follow the strategy modeled by the reconfiguration graph in Fig-
ure 5 (case 1), and the system undergoes reconfigurations accord-
ing to the strategy graph (case 2). We obtained the following results
for the system mean response time:494tu (case 1) and436tu (case
2). This means that partially applying our performance aware re-
configuration (eight nodes in Fig. 5) we have improved the system
response time in 11%.

6. CONCLUSION AND RELATED WORK
During this paper elaboration, we have learnt that there exist a

lot of challenges for the performance prediction of the open-world
software to become a reality. However, we believe that this pa-
per has proposed a clear reference architecture, which means an
attempt to comprehensively accomplish most of such challenges.
From this architecture, we have explored how to generate strate-
gies, that can reconfigure a system while its performance goal has
to be achieved. Ourgenerationtechnique tried to show up where
the problems are and it demonstrates a possible solution using Petri
nets. However other generation approaches could be feasible and
would be desirable, we validated our solution through an example.
The future work has to address all these open challenges to get a
real comprehensive proposal. Besides performance, other proper-
ties such as dependability will be considered by our approach. As a
technical detail, in this work we have not considered network trans-
mission delays, however they can be easily incorporated through
the UML deployment diagram.

Related work.
We believe that the idea of introducing a reference architecture

coming from self-managed systems in the open-world software is
original. Therefore, our solution to introduce and manage per-
formance aspects in such architecture is also new. Probably, the
closest work to ours is the one in [5], the authors also evaluate
performance in open-world assuming components that can evolve
independently and unpredictably. However, they use queueing net-
works and further comparisons are difficult since they address other
challenges in the open-world instead of the strategy generation prob-
lem.

Although not focussed on the open-world paradigm, Menascé [15,
10, 11] evaluates service-based software. These works use brokers
to negotiate and manage QoS parameters that are well-known and
reliable. Our approach, that at this respect was inspired in [1, 9],
is completely different since it tracks open-services to predict cur-
rent QoS. This means that the quality of our predictions have to
be of inferior quality, but consider that being open our environ-
ment, we have to deal with untrusted third-parties. Also in [14] is
addressed the problem of guaranteeing the QoS of untrusted third-
party services. They propose a framework to choose services offer-
ing best QoS, in this work the workload is balanced among several
providers to support some kind of fault tolerance.

The work of Garlan in [3] also proposes an architecture for per-
formance evaluation but restricted to self-healing systems, besides
they do not use of formal methods. Oreizy et al. in [13] propose
an architecture to manage the adaptation for evolvable systems, but
this work does not deal with performance evaluation.
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