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ABSTRACT considers software as made sgrvicesprovided bycomponents

Open-world software is a new paradigm that stresses the concept oft!sewhere deployed that interplay without authorities. The software
software service as a pillar for building applications. Services are 2CNIEVes its goals by selecting and adapting services which evolve
unceasingly deployed elsewhere in the open-world and are used"dependently. Then, this software evolves itself in unforeseen
on demand Consequently, the performance of these open-world Manners that d.epend on thlrd-partles., which means that the per-
applications relies on the performance of definitely unknown third- formance for this software strongly relies on that of the services it
parties. Another consequence is that performance prediction meth-trusts. Therefore, the methods in the software performance field

ods can no longer assume that service times for software activitiespr(’p()lseo'I so far t% predtic_:t ‘non open—softvg:are”_gan r;]ow hargly be
are well-known all over the time. More feasible solutions defend COMPletely reused in this new context. Consider they make as-

that they should be inferred from the environment, for example SUMPtions which now could not take place, for example, to assume
monitoring current services executions. So, there is a need for neruratlons of software activities as well-known performance input

performance prediction methods, and it is likely that they have to Parameters. g , g " |

be applied not only when developing, but also during software ex- Kramer an Mag_ee in [7, 8] proposed an arc itecture fqr se f
ecution, so to learn from the environment and to adapt to it. In this managed. sy_stems, €., thos_e which are capable of self-configyration
paper, we build on a three layer architecture, taken from literature, fself-;nonltmmg and shelf-tunlng. When a se_lf-ma_maﬁedl SVSteff‘? suf-
to present an architectural approach for performance prediction in ers from dynamic changes during operation, it should configure

open-world software. Once the approach is presented, the paperfo-!tself to satisfy the specification or it may be capable of report-

cuses on the intricacies of its more challeging component, i.e., the N9 that it cannot. Kramer and Magee defend that an architectural

generator of strategies to meet performance goals by selecting theapproach for th_'s kind of sy_ster_ns prlngs severa_l benefits; among
best available set of services others, generality to be applied in different domains, abstraction in

the composition, scalability or potential for an integrated software
approach.
General Terms Being self-management an inherent characteristic in open-world
Design, Performance software, it is argued that challenges in the former are also present
in the latter. Hence, we are convinced that open-world can take ad-
vantage of the Kramer and Magee three-layer reference architecture

Keywords (KM-3L). At this respect, we want to study if KM-3L fits the open-
UML-MARTE, software components, self-managed systems, open-world and if it can bring those previously enumerated benefits to
world software, Petri nets this context. In particular, we will focus this work on how to exploit
KM-3L for the open-world software to incorporate a performance-
1. INTRODUCTION aware property. In fact, we quest for a reference architecture that

allows systems to configure themselves, during execution, for satis-

The open-worlo_l SOﬁW"’."e paradigm [2] encompasses and abs“.adﬁ/ing some performance goal, as long as functionality is preserved.
concepts underlying a wide-range of approaches and technologleS'1n this regard, the contributions of the paper are:
among them, grid computing, publish-subscribe middleware or ser- ' '
vice oriented architectures. In open-world, an accepted approach o First, we discuss how open-world software could be adapted
to KM-3L. In particular, we stress the implications for KM-
3L to carry out performance-aware reconfigurations in this
context. We will accomplish it in Section 3.

*This work has been supported by the project DP12006-15390 of
the Spanish Ministry of Science and Technology.

e Once the architectural implications for performance has been
presented, we will address an explanation about the most
challenging component in this architecture. This is the com-
ponent in charge of generating tegategieshat know how
to carry out performance-aware reconfigurations. Section 4
describes algorithms for this component.

e The last contribution is an example, developed in Section 5,
WOSP/SIPEW 1QJanuary 28-30, 2010, San Jose, California, USA. that demonstrates the feasibility of the proposed module and
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Figure 1: 3-layer architecture adapted to open-world

shows how the strategies it develops may improve the systemwe just remark that the duration of the activities has been the crite-
performance. ria taken into account for placing a function in a given layer. Hence,
immediate activities appear in lower levels, so for the system to
The paper will end up in Section 6 with a brief conclusion, a quickly react to changes in the environment. However, long term
discussion of the closest related work and ideas about future work. activities are accomplished by the upper layer that may involve de-
Next section summarizes this Kramer and Magee’s vision of a ref- [iberation.
erence architecture for self-managed systems (KM-3L).

3. 3-LAYER ARCHITECTURE FOR OPEN-
2. A3-LAYER ARCHITECTURE WORLD SOEFTWARE

The KM-3L proposal was inspired by the architectures devel- | this section, we describe how to adapt KM-3L to the open-
_oped for robotics systems, in particular following Gat's descriptio_n world software context, and at the same time how to manage the
in [4]. Indeed, as commented by Kramer and Magee, both robotics performance-aware property. Then, for each layer we have te iden
and self-managed systems are kinds of autonomic systems. Fokify \hat responsibilities it has to take so the system eventually can
them, the idea is not to propose an implementation architecture bUtaccompIish this property. Hence, we are pursuing an architecture
to identify what a self-managed system needs to carry out its mis- g, performance-aware open-world software.

sion, of course without human intervention. In the following we  concerning the architecture, we keep the point in the previous

describe KM-3L by referencing for each layer its goals. section, therefore we want it to be a reference, then we aim at iden-
tifying these responsibilities and their purpose in the overall of this
Component control. comprehesive goal.

This layer is made of those components that make up the self-
managed system. It senses and reports the costizxisto its up- 3.1 Component Control

per layer. As previously discussed, this layer is in contact with the execu-
tion environment and has to quickly react to changes produced in
Change management. it. In the open-world software this means that this layer manages

This layer has a set of plans strategiesto achieve the system  the components making up the current configuration. Therefore, it
goal ormission When the lower layer reports here the current con- is responsible for establishing the current bindings and unbindings
text status it can mean for this layer to produce a new configura- when a component has to be called.
tion. For this purpose, it executes the strategies to change the un- Concerning performance, we identify for this layer different re-
derlying component architecture into one that fits with the current sponsibilities. They are the minimum set an open-world software
context or environment. This may imply either to introduce new may need to actually develop activities leading to manage perfor-
components or to change the interconnections or the componentmance aware reconfigurations. Firstly, it will be in charge of track-
parameters. When the environmstatusreported is not supported  ing the performance of the services involved in the current con-
by any of the existing strategies, then this layer asks the upper onefiguration. Secondly, it has to discover new components offering
for a new strategy to manage the situation. services equivalent in functionality to those required by the work-

flow. Finally, it has to be aware about which ones of the current
providers are no longer available.

Goal management. For an open-world software to carry out these responsibilities it
This layer manages the system mission and has to produce stratewould be of interest to constructaonitormodule that takes charge
gies that satisfy the mission taking into account the current envi- of all them. This monitor should be incorporated to the target open-

ronment. The strategies are produced when the mission changes aworld software as a module. For the first task, it will control the
well as when the change management layer requests. time elapsed in the calls to the services and for the second and third

Once summarized the layers which compose this architecture, it will use the normal means in open-world (i.e., through service



discovering). <standby, t.>to<active, t¢2>. When the new configu-
From a practical point of view, this layer also needs a represen- ration will be reported, the lower lever takes the responsibil-

tation of theworkflowto be executed and of the set of components ity to perform the correspondingnbind andbind .

that conform the currergonfiguration In this work, we will con-

sider that such workflow has the form of a UML activity diagram - A

while the current configuration will be represented by a UML com- 'ation for the reportestatus(e.qg., the selected providers are not.

ponent diagram (indeed an instance of the one in the Change Man-2vailable or the performance goal cannot be satisfied). Then this

agement level). Whatever other standard representation could bd@Yer Will request theGoal Managementor a new performance

valid such as BPEL for the first or Darwin component model for 2Ware strategy. L
the latter. Finally, we remark that the operations in this layereate,

This layer reports the currestatusto the upper one each time ~ déléte, setmode  and the strategy execution) are supposed to
the execution of a service ends (to inform about the monitored P& immediate regarding the system execution time. This is impor-
time), but also when it cannot execute the current service in the Nt Since this level will not overload the system.
workflow (e.g., the target <_:omponent may be_unreachable). The 3.3 Goal Management
upper layer can respond with a new configuration.

Sometimes the current strategy cannot produce a new configu-

From our point of view, themissionof the system will be not
3.2 Change Management only to carry out the workflow functionality, but also to do it meet-
The missionof an open-world software is obviously carried out N9 @performance goal For us this layer has to produce perfor-
through its own execution, here abstracted by the workflow. The Mance aware reconfiguration strategies, then we deviseeegy
workflow execution may need successive self-reconfiguratiorts, tha 9&neratormodule. Irrespective of this module, the system could
may attend different criteria, for example the cost of the services or C'€ate strategies to meet other goals of interest in the scope of the
the performance. For each criteria of interest, this level can asso-°Pen-world software. _
ciate at least oneeconfiguration strategylt would also be desire- The strategies are provided on tiaange Managemerayer
able that a given strategy could gather more than one criteria, for @&mand and they could be afforded under two assumptions:
example the previous two. In any case, for this paper purposes the ¢ There could exist a library of strategies and tenerator
interest is that this layer has defined and can manage a performance will decide the appropriate one, for the current request, out

aware reconfiguration strategy. of this set.
For an open-world software to execute strategies, we identify the
need of areconfiguration controllemodule. The inputs for this e Thegeneratorcould actually create the strategy on demand.

module would be of course the set of strategies, but alsastétes hi K . | h d choi hendh
provided by the monitor and a UML component diagram (CD). The " this work we just explore the second choice, thengéaer-

output will account for the computed new system configuration. 20T inputs should be: theerformance goalthe workflow with
The CD describes for each component its mode, later explained.a specification of certain performance properties, and the current

The status is the subset of currently active components in the cD. configuration that will be provided with thehange Management
Let us briefly discuss how this layer could manage the compo- "€duest. The output is the target strategy that meets the defined
nentsmode Themodecan be a tuplesstate, MST> . The first performance goalfor the sake of simplicity we will consider only

field to be chosen fronfunavailable,standby,active} system response time. The performance specification will use the

and the second to represent the mean service time for the module MARTE [12] profile.

Following the proposal in [7], the mode could be managed through

ports using aetmode operation. 4. GENERATION OF STRATEGIES
Moreover, this layer shouldreate the new components and In this section, we offer a high-level view of the reconfiguration
delete those no longer useful, remember that the achiradi strategy generatomodule, which is placed in th&oal Manage-

andunbind is responsibility of the lower level. Therefore, when  mentlayer. The previous section described the module goal and its
the monitor reports the status, this layer has to manage differentinterfaces. Algorithms 1, 2 and 3 synthesize the module function-
situations: ality, i.e., they report to th€hange Managemeisdyer the strategy

they obtain. Besides, a warning complements the strategy when it

e A component is no longer availableThe reconfiguration
does not meet the performance goal.

controller (ReCtrl) sets the mode tmavailable and if the
component is in use then the ReCtrl executes the strategy to

find a proper substitute and eventually will report a configu- Information managed in the algorithms.
ration change. We assume that the system workflow needs to Bakxternal

servicess, k € [1..K]. Inthe CD in Fig. 3,K = 3, thought that
the same service could be requested in different calls.

A given services, may be provided by several components; let
Ly, be the number of components that provige We denote asy;,
wherek € [1..K] andl € [1..L;], thel*™ component servingj.
For example, in Fig. 3, servicg is served by two components;,
cs2. Then,Cy = U/, et is the set of all components that offer
Sk, andC = Ule C}, is the set of all components that provide the
e A service is currently not providing the required Qolhe services specified in the system workflow.

reconfiguration controller executes the strategy and decides Moreover, we assume that there exists a Time Table (TT), like

about a service change. If the change is necessary, then it setfTable 1, describing for each component its workjizases Let

the mode of the degraded component freactive, ¢;> Ji be the number of working phases of componant then each

to <standby, #)> and the mode of the one selected from phaseph;, wherej € [1..Jy], is characterized by a pair of real

e A provider is available for a given servicd he statushere
reported has to include provider's and service’s name and
the service MSTt . As long as this provider has a CD en-
try, the reconfiguration controller updates it with the new ser-
vice as<standby,t> . Otherwise, it performs areate
for the provider (as a component) and sets service mode as
<standby,t>



values(S}', SJF'), whereS}! is the mean service time arfi/}" will be given in Section 5.
is the mean sojourn time afy; in ph;. This timing information
would come from the providers or from our experience monitoring Algorithm 1 Strategy generation

the environment. _ _ Require: From Goal Management Layer: System Workflow
A reconfiguration strategy is represented as a directed grapgh (AD), Performance Goal (PerfGoal)

(N, E), see example in Fig. 5. A node € N is interpreted as From Change Management Layer: Components with their tim-
a system configuration, but it is also important to know for each ing specification (CD,TT)

component thehasewe guess it is working out. An edgec £ Ensure: A New Strategy (and a possible warning meaning that the
is interpreted either as a change of system configuration, i.e., the  partGoal is not achieved)

componenty;, that offers service, will replace the component {Initialization}

cri, (I # l2) that provides the same service, or as a change ina 1. gty — (N, E): N = 0 {nodes}, E = () {edges}

component phase. For example, in Fig. 5, the egde fNwde, {Create Initial Nodé

to Node, represents a change of system configuratign \yill re-

. 2. Ny « CreateNode(AD,CD,TT,null,null)

placecz1), while the edge fromiVodeo to Nodei models a change 3: setNodes = ()
of phase in componenRt (from ph to phs). 4: Nodes = Nodes U Ny

An edge is labeled aésy, cond), wheres;, is the service and 5: while Nodes # () do
cond is a ratio representing our minimwonfidence levelor the 6: Node, — ExtractOneNode{ odes)
change to be produced, consider that being stochastic our analyses,7: AlreadyCreated— CheckNodelV, Node.)
then there exist a probability that the strategy fails its prediction. 8 if not AlreadyCreatedhen

o ) 9: N «— N U Nodes

Description of the algorithms. {CreateNode, adjacent nodds

Algorithm 1 summarizes the strategy generation, it starts creat- 10: forall k € [1..K] do
ing the strategy initial node (line 2) and from this node produces 11: Node; — CreateNode(AD,CD,TT,Kode.)
its adjacent ones (line 11) and the edges that join them (line 16). 12: AlreadyCreated— CheckNodelV, Node;)
While there are nodes whose outgoing edges have not been createq3: if not AlreadyCreatedhen
yet, it keeps creating nodes and edges. Finally, it creates a set of14: Nodes «— Nodes U Node;
“way back” edges (line 21). Such edges represent either changes; 5: end if
of configuration or component-phases due to timeouts instead of a {Create edge fronV ode, to Node;}
conditionas it happened to forward edges. The rational behind a 1g6: Edge « CreateEdge{odes,Node; k,TT)
“way back” is to bring back the system to a configuration that after 17- E — EU Edge
some time would be working better than the current one. 18: end for

Algorithm 2 solves the calls in Algorithm 1 (lines 2,11), i.e. how 19: endif
to create a node in the strate@haseLists a list of pairs(ck:, ph;) 20: end while

that for eactey; € C assumes its phagé; = (SF, SJF). When 21: E = E U CreateWayBackEdges(G,TT)

Algorithm 2 creates the initial nod&haseList(line 3) is created 22: return <G, AnalyseStrategy(G,PerfGoal,CD,TT)>
assuming that eachy; is in its phase with minimum mean ser-

vice time. However, for the rest of the nodes (line BhaseList
is constructed witlExtractListOfPhasethat will implement an al-
gorithm choosing appropriate phases. In Section 5 we will exem- 5, EXAMPLE

plify our proposal for such algorithm. FunctichllPossibleCon- We exemplify the algorithm of the strategy generation, described
figs (line 9_) creates all possm_)le system conflgqratlons according i, section 4, with an example of a system under development (SUD)
to PhaseList Each configuration will parameterize the workflow 5t executes three operations, in a sequential manner. All such op-
GSPN that will be evaluated to get the configuration response time graions consist in service calls to providers in the open-world en-
(lines 11..13). In particular, the mean service tlrﬂé'éof the com- vironment. The UML system specification is shown in Figures 2
ponentsey; belonging to the_conflguratlon, in their current phas_e and 3. The activity diagram (Figure 2), annotated with the MARTE
ph;, are used to parameterize the GSPN. As an example, duringpofile [12], represents the system workflow. The type of workload

the creation of the initial nod&odeo in Fig. 5, four candidate GaworkloadEventis open and requests arrive to the SUD with
configurations are generated (see Table 2) and evaluated using the,, exponential inter-arrival time, with a mean &0 time units

workflow GSPN in Fig. 4. Finally, the node created by the Algo- ;o ). The requests are processed, one at a time, by acquiring
rlt_hr_n 2 (line 15) corr_esponds to the system configuration with the (GaAcqStepand releasingGaRelStepthe resource,. Each ac-
minimum response time. ) ) ) ) tivity step (PaStep models an external service call to a provider
Algorithm 3 solves the call in Algorithm 1 (line 16), i.e. hovy 0 inthe open-world. In particular, textOpDemandgged-value is
create a forwarded edge, not a “way back". Observe that, if ser- 5 harameter that is set to the current provider of servicand the

vice si; of a givenNode cannot be replaced by adyode, with a extOpCountagged-value indicates the number of requests made
newphaseor component, no edge is created (line 1). Funckan for each service call.

tractListOfPhasesin Algorithm 2, detected thl_s situation ate- The component diagram (Figure 3) represents the currently avail-
ateNodeeturned null. WhemVode, has an adjacent nod€ode:, able providers of the services required by the system. In partic-
then a direct edge from the source nadlede; to the target node |4 component's names are given according to the name of the
Node, is created together with its labeling information, i.e., the gqrvice they provide. There exists only one provider of ser-
servicesy and the conditiorond (line 5). In particularcond is a vice s1, while two providers are available for each servigeand

real value computed by the functi@etConfLevelline 10), which s5. Table 1 (TT) shows the working phases, in time units, of the
needs the response time evaluated using the workflow GSPN forproviders. In particular, for each provider;, the estimated mean
Nodes and Node; (lines 6-9). A simple example @etConfLevel service timessfl and mean sojourn tim(ﬁJfl of the offered ser-




Algorithm 2 CreateNode

Require: AD,CD,TT,service (k), current node (node)
Ensure: A node confpest)

<<GaWorkloadEvent>>
{pattern =(open =(interArrivalTime=(exp(500,tu))))}

1 _setP_h_aseLlst £ {szi:tor of vectors} call S1 <<GaAchtep>> ***** <<PaStep>>
2: if (k__nu”./\ nOde‘_nUIDt.her_‘ {acqRes = CO, {extOpDemands=$S1provider;
3: PhaselList— ExtractlnitialListOfPhases(CD,TT) resUnits=1} extOpCount=1}
4: else
5:  PhaseList— ExtractListOfPhases(CD,TT,node,k)
6: end if <<PaStep>> g p
: . ) ) . tOpD =$S2provider;
7: setCandidateConfigs # {set of configurations} {ZXXIO‘LC%'S,?I‘:;} sszprovider
8: setRTs =({) {set of configuration response times} Call S3 |-
9: CandidateConfigs- AllPossibleConfigs(PhaseList) T <<GaRelStep>> <<PaStep>>
10: for all confe CandidateConfigdo {reIRaesez v {extOpDemands=§S3provider;
11:  GSPNeonr < CreateGSPN(conf) resUnits=1} extopCount=1}

12:  rteont <+ EvaluateGSPNcont)
13:  RTs— RTsU (conf, rtcont)
14: end for Figure 2: UML activity diagram
15: confpest < FindBestConfig(RTs)

{The node is a configuration with the min response time:
(confpest, rt) € RTs | V(conf, rteont) € RTs : rt < rteonr } s1 S92 C21
16: return confpest System
Cc11 —O)—  under —<
Algorithm 3 CreateEdge development Cc22
Require: source (Vodes), target (Vode,), service (k), TT
Ensure: The edge betweeNodes a Node, (edge) /}\ S3
1. if Node; ==null then
2:  return null
3: end if
4: setcond = 0.0 {confidence level (float)} C31 C32
5: setedge= (Nodes, Nodet, k, cond)

{Computation ofNode, response time}
© GSPNvode, < CreateGSPNY{ odes) . ) .
 Myode, — Evaluate(GSPNoa., ) Figure 3: UML component diagram

{ComputationN ode: response time}
8: GSPNvode, «— CreateGSPNYode;)
9: rtyode, < Evaluate(GSPNoge, )

~N O

mated (mean) service times from each provider, K¢, = 5tu,

21 _ 22 31 32 _
{Computation of the confidence level} 51 = 10tu, 51" = 35tu, Sy = 20tu and Sy~ = 30tu. There
10: cond— SetConfLevellVodes, rtnode. , Noder, rtnode,, TT) are four possible system configurations: for each one, we instanti-
11 retumn edge o edes Teen ate the parametric GSPN, in Figure 4, by setting the rate parameters

>\Slpro'uide'r> ASQpro'uide'r and)\SBprcvider to the inverse of the con-
sidered service timeSF' (k = 1,2, 3) of each current provider of
] . servicessi, sz andss, respectively. Once instantiated, the GSPNs
vice, are given. are solved and the system (mean) response times are computed (see
. Table 2).

5.1 Strategy Generation In the strategy graph (Fig. 5), the initial nof&de, corresponds

The Time Table and the UML specification, properly annotated to the configuration that revealed the minimum system (mean) re-
with MARTE, provide the input for the Algorithm 1 described in  sponse time. Observe that, in this simple example, active providers
Section 4. A parametric GSPN model is then created from the ac- in the initial configuration correspond to those ones having the min-
tivity diagram (Figure 2) that will be used to estimate the mean imum service times. However, this property does not always hold
response time of the system under different configurations, usingin a general case where several providers contend for shared re-
the multisolve facility of GreatSPN [6]. The GSPN model is  sources.
shown in Figure 4 and it is characterized by three rate parameters In the next main step of the Algorithm 1 (line 11), the nodes

representing the execution mean rates of the servicesgalds and adjacent to the initial one are created, considering that the active
s3. providers inNodeo can degrade their performance. Eventually,
Observe that the call to servieg, in the activity diagram, in- there will be three configuration nodes adjacent to the initial node,

cludes3 requestséxtOpCountagged-value) this is modeled by the  one for each external service requested by the SUD (Figure 5). Let
free-choice subnet, where the weights assigned to the conflictingus consider the creation of the first two nodésde; and Node-
transitionsStart_CallS2andEnd_CallS2are equal, respectively, to  adjacent toNodey: the algorithm will iterates over the created
3/4 and1/4. nodes to produce their adjacents, until all the possible system con-
The first main step of the algorithm (Algorithm 1 - line 2), con-  figurations are examined.
sists of creating the initial node of the reconfiguration strategy graph  Node; is added considering that the active provider of service
(Algorithm 2). This is accomplished by assuming that each provider s; in Nodeg (i.€.,c11) changes itphasefrom ph; to phs, i.e.,c11
works under the best mode. We consider, then, the minimum esti- is answering to service requests with a mean service timé1af,
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Figure 5: Partial reconfiguration strategy graph

| Provider working phases (in time units, i.e. tu) |

pha pha phs
Cl11| (5,3000) (20,6000)
C21 | (10,6000) (70, 2000) (250,2000)
C22 | (35,6000) (140,4000)
C31 | (20,2000) (70,2000)
C32| (30)

In formatph; = (S}', SJ})

Table 1: Time Table of open-world providers (TT)

Mean response time estimation
(in time units, i.e., tu)

Cllph; C21ph; C31ph; | 605
C1lph, C22ph; C31phy | 177.6
Cliph: C21ph; C32ph; | 725
Cllph; C22ph; C32ph; | 193.8

Table 2: System components candidates

instead of5tu. Sinceci, is the unique provider of,, the Node:

is characterized by the same active provider&Vaglc, as well as
the same provider mean service times but the ong Qfwhich is
equal to20tu. The GSPN model in Figure 4 is used to compute the
system mean response time of the configuraianle; .

Node, is created assuming that the active provider-ah Nodeg
(i.e., c21) changes itphaseby increasing the mean service time
from 10t to 70tw. Then, four candidate configurations were pos-
sible: two of them still include.; as active provider of2 with de-
graded performance. They correspond to the first and the third con-
figuration in Table 2 with the provides; in phasephs. In the other

two configurations, the active provider of is c22 (i.e, the second

and the fourth configuration in Table 2). The GSPN model in Fig-
ure 4 is then used to select the best configuration among the can-
didates, that is the one with the minimum system (mean) response
time. Then, theNode, actually corresponds to the configuration
with the minimum system (mean) response time, 1.€7,6tu.

Once a new adjacent node is created, the algorithm generates
the corresponding forward edge (Algorithm 1- line 16). An edge
from Node, to Node, includes information about the servieg
and the goodness of the prediction (confidence-level) forr¢ghe
configuration controlletto decide whether it is worth to change the
configuration fromNodes to Node:. Observe that, since we are
dealing with the open-world environment, every decision about the
providers is based on predictions. We propose an ad-hoc heuristic
that works under the open workload assumption and considers the
performance goal (i.e., obtain the best system mean response time)
as well as the available timing specifications (i.e., provider working
phases).

Let us consider an edge froMode; to Node, where the source
and the target nodes have different active components, su¢h&s
and Nodes in Figure 5. The computation of the corresponding
minimum confidence level is related to two quantities:

e The performance improvement when the system reconfigures
properly, that is the provider has changed its phase and the
strategy realizes it (e.g., the provider; has changed from
ph1 to phe and the system moves frofodeo to Nodes).

This is estimated as:

PeTfimprove - rts\clephji,l - Ttﬁ

wh(are7ﬂts|ckl,_phj+1 is the system mean response time with
the same active providers as Modes, but changing the
working phase of providety; from ph; to phj41, andrt,

is the system mean response timeé\inde;.

e The performance loss when the system reconfigures due to
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Figure 4: Parametric GSPN

a wrong prediction, that is the provider has occasionally had
a slow execution, but it has not really changed its current

follow the strategy modeled by the reconfiguration graph in Fig-
ure 5 (case 1), and the system undergoes reconfigurations accord-
ing to the strategy graph (case 2). We obtained the following results
for the system mean response ti@4tu (case 1) and36tu (case

2). This means that partially applying our performance aware re-
configuration (eight nodes in Fig. 5) we have improved the system
response time in 11%.

6. CONCLUSION AND RELATED WORK

During this paper elaboration, we have learnt that there exist a
lot of challenges for the performance prediction of the open-world
software to become a reality. However, we believe that this pa-
per has proposed a clear reference architecture, which means an
attempt to comprehensively accomplish most of such challenges.
From this architecture, we have explored how to generate strate-
gies, that can reconfigure a system while its performance goal has
to be achieved. Ougenerationtechnique tried to show up where
the problems are and it demonstrates a possible solution using Petri
nets. However other generation approaches could be feasible and
would be desirable, we validated our solution through an example.
The future work has to address all these open challenges to get a
real comprehensive proposal. Besides performance, otheemprop
ties such as dependability will be considered by our approach. As a
technical detail, in this work we have not considered network trans-
mission delays, however they can be easily incorporated through
the UML deployment diagram.

Related work.

We believe that the idea of introducing a reference architecture
coming from self-managed systems in the open-world software is
original. Therefore, our solution to introduce and manage per-
formance aspects in such architecture is also new. Probably, the
closest work to ours is the one in [5], the authors also evaluate
performance in open-world assuming components that can evolve
independently and unpredictably. However, they use queueing net-
works and further comparisons are difficult since they address other

phase, however the system moves to the target node. This iSchallenges in the open-world instead of the strategy generation prob-

estimated as:
Per fioss = rty — rts,
wherert is the system mean response timé\indes.
Then, the minimum confidence level is given by the formula:

Perfimpro'ue
Perfimprove + Perfloss

conf level

@)

lem.

Although not focussed on the open-world paradigm, Menascé [15,
10, 11] evaluates service-based software. These works usedroke
to negotiate and manage QoS parameters that are well-known and
reliable. Our approach, that at this respect was inspired in [1, 9],
is completely different since it tracks open-services to predict cur-
rent QoS. This means that the quality of our predictions have to
be of inferior quality, but consider that being open our environ-

When the source and target nodes of an edge have the same activent, we have to deal with untrusted third-parties. Also in [14] is

components, such dsodey and N ode1, the minimum confidence
level is computed ason f_level = %

Finally, theway-backedges are created (Algorithm 1 - line 21)
to allow the system to move back to a previously considered con-
figuration after a (mean) sojourn time period in the source node.
So there will be an edge fromVodes to Node,, labeled with a
mean sojourn time period as a timeout, if there exists a provider
in Node, with its final phaseph s, and in Node; with its initial
phaseph,. In Figure 5, way-back egdes are dashed and, for read-
ability, only five of them are shown. The choice of the ideal mean
sojourn time period that allows the system to achieve the perfor-
mance goal (i.e., minimum response time) is a future work issue.

addressed the problem of guaranteeing the QoS of untrusted third-
party services. They propose a framework to choose services offe
ing best QoS, in this work the workload is balanced among several
providers to support some kind of fault tolerance.

The work of Garlan in [3] also proposes an architecture for per-
formance evaluation but restricted to self-healing systems, besides
they do not use of formal methods. Oreizy et al. in [13] propose
an architecture to manage the adaptation for evolvable systems, but
this work does not deal with performance evaluation.
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