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Abstract: Timed continuous Petri net (TCPN) systems are piecewise-linear models with input
constraints that can approximate the dynamical behavior of a class of timed discrete-event
systems. This work is devoted to the synthesis of a coordinated control strategy for large TCPN
systems that can be seen as a set of T-disjoint TCPN modules interconnected by places. The
goal of the control scheme is to transfer the system in such a way that each module reaches
a desired marking. The resulting scheme consists of a set of affine local controllers, one per
module, and a coordinator that receives and sends information to the local controllers.

1. INTRODUCTION

Fluid Petri nets are continuous relaxations of (discrete)
Petri nets. These relaxations are models that can be
analyzed by using techniques from both Petri nets and
control theories, overcoming the state explosion problem
that frequently appears in discrete-event systems (DES).
Different approaches to fluid Petri net models can be found
in the literature (for instance, Alla and David [1998], Silva
and Recalde [2002]). In this work, timed continuous Petri
net (TCPN) models under infinite server semantics are
considered. Mahulea, Recalde and Silva [2006] showed
that, frequently, this particular semantics provides a better
approximation to the average behavior of the original
discrete Petri net. The continuous model thus obtained
has three main characteristics: 1) it is piecewise-linear, 2)
the input must be nonnegative and upper bounded by a
piecewise-linear function of the state, and 3) models with
a real meaning may be high-order systems (with tens or
even hundreds of state-variables).

Regarding control in fluid Petri nets, different authors have
proposed control techniques ranging from fuzzy logic con-
trol (Hennequin, Lefebvre and El-Moudni [1999]), feed-
back control synthesis based on linear matrix inequalities
(Kara et al. [2009]), model predictive control (Mahulea
et al. [2008]), gradient-based controllers (Lefebvre et al.
[2007]), etc. In all of those cases a centralized controller is
synthesized, mostly assuming that all the transitions are
controllable, in order to drive the system towards a desired
target marking (a steady state), by means of modifying
(reducing) the transition’s flow (i.e., the speed at which the
transitions fire). This control objective is similar to a clas-
sical set-point control problem in continuous-state systems
(see, for instance, Chen [1984]), and it is not equivalent to
fulfilling safety specifications which is commonly addressed
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by DES’s controllers. Enforcing a desired target marking
in the continuous Petri net is equivalent to reaching an
average marking in the original discrete model (assum-
ing that the continuous model approximates the discrete
one), which may be interesting in several kind of systems.
This idea has been illustrated by Amrah, Zerhouni and
El-Moudni [1997] for deterministically timed models of
manufacturing lines, and by Vázquez and Silva [2009] for
the stock-level control in an automotive assembly line.

In this work, an affine centralized control law for TCPN
systems is firstly derived. Later, a coordinated control
strategy is proposed for a modular view of TCPNs
(a TCPN system is considered as composed of several
T-disjoint TCPNs, named modules, interconnected by
places, named buffers), in order to reduce the complexity
involved in the synthesis. Recently, a distributed control
strategy has been proposed for this problem (Apaydin et
al. [2010]), assuming particular PN subclasses for the
modules. In this work, a coordinated control scheme is
introduced for general subclasses of Petri nets. The re-
sulting scheme consists of a set of local controllers, each
one synthesized for each module, and a coordinator that
receives and sends information to the local controllers.

This work is organized as follows: in Section 2, basic
concepts and definitions on timed continuous Petri nets
are introduced. Later, some results regarding affine control
laws, that constitute the base for the local controllers, are
recalled from the work of Habets and van Schuppen [2004]
in Section 3. The contributions of this work are presented
in Section 4 and 5. Section 4 is devoted to the synthesis
of centralized controllers for TCPNs. In Section 5, those
results are extended in order to proposed a coordinated
control strategy for modular continuous Petri nets. Finally,
some conclusions are given in Section 6.

2. CONTINUOUS PETRI NETS

In the sequel, given a matrix A and a set of indices
I = {i1, ..., in} and J = {j1, ..., jm}, it will be denoted



as A[I, J ] the matrix built with the elements in the rows
indicated by I and the columns indicated by J .

Definition 1. A continuous PN is defined having a struc-
ture N = ⟨P, T,Pre,Post⟩ like in discrete PNs, i.e., P
and T are finite disjoint sets of places and transitions,
respectively, Pre and Post are |P | × |T | sized, natural
valued, pre- and post- incidence matrices. The difference
is in the evolution rule: in continuous PNs, the firing is
not restricted to integer amounts, and so the marking m is
not forced to be integer. Instead, a transition ti is enabled
at m iff for every pj ∈ •ti, m[pi] > 0; and its enabling
degree is enab(ti,m) = minpj∈•ti{m[pj ]/Pre[pj , ti]}. The
firing of ti in a certain amount α ≤ enab(ti,m) leads to a
new marking m′ = m+α ·C[P, ti], where C = Post−Pre
is the token-flow matrix.

Right and left rational annulers of C are called T- and
P-flows, respectively. If there exists y > 0 (x > 0) s.t.
yTC = 0 (Cx = 0), the net is said to be conservative
(consistent). Bases for T- and P-flows are denoted as Bx

and By, respectively. A set of places Σ is a siphon iff
•Σ ⊆ Σ• (i.e., the set of input transitions is included in
the set of output transitions). For reachability, the limit
concept is used, and a marking reached in the limit of an
infinitely long sequence is considered reachable.

Definition 2. A Timed Continuous Petri Net (TCPN)
system is the tuple ⟨N ,λ,m0⟩, consisting of a continuous

PN N , a vector λ ∈ R|T |
>0 and the initial markingm0. Here,

infinite server semantics (or variable speed, see Silva and
Recalde [2002]) is considered. Accordingly, if a transition
ti has an enabling degree enab(ti,m) > 0, then it fires
with a speed, named flow, equal to f(m)[ti] = λ[ti] ·
enab(ti,m) = λ[ti] · minpj∈•ti{m[pj ]/Pre[pj , ti]}, where
λ[ti] is a constant value that denotes the rate of ti.

For the flow to be well defined, we will assume that ∀t ∈
T, |•t| ≥ 1. The “min” in the flow definition leads to the
concept of configurations: a configuration assigns to each
transition one place that for some markings will control
its firing rate (i.e., it is constraining that transition). The
number of configurations is upper bounded by

∏
t∈T |•t|.

The flow through the transitions can be written as f(m) =
ΛΠ(m)m, where Λ is a diagonal matrix whose elements
are those of λ, and Π(m) is the configuration operator
matrix at m, defined by elements as

Π(m)[i, j] =


1

Pre[pj , ti]
, if pj is constraining ti,

0, otherwise

If more than one place is constraining the flow of a
transition, any of them can be used, but only one is taken
(let us adopt the convention of taking the place with the
lowest index).

Control actions may only be a reduction of the flow
through the transitions. That is, transitions (machines for
example) cannot work faster than their nominal speed.
Transitions in which a control action can be applied are
called controllable. The effective flow through a transition
that is being controlled can be represented as: wi(τ) =
λ[ti] · enab(τ) [ti] − u(τ)[ti], where 0 ≤ u(τ)[ti] ≤ λ[ti] ·
enab(τ)[ti]. The control vector u ∈ R|T | is defined s.t. u[i]

represents the control action on ti. If ti is not controllable
then u[i] = 0. The forced flow vector is expressed as
w(m,u) = ΛΠ(m)m − u. The set of all controllable
transitions is denoted by Tc, and the set of uncontrollable
transitions is Tnc = T − Tc.

The behavior of a TCPN forced system is described by the
state equation:

•
m = CΛΠ(m)m−Cu

0 ≤ u ≤ ΛΠ(m)m
(1)

A control action that fulfills the required constraints, i.e.,
0 ≤ u ≤ ΛΠ(m)m, is called suitably bounded (s.b.). If an
input is not s.b. then it cannot be applied.

In this work, it is assumed that all the transitions are
controllable, so Tc = T . In this case, (1) can be seen as
a linear system without state-feedback, i.e.,

•
m = Cw

0 ≤ w ≤ ΛΠ(m)m
(2)

where w represents the control action. The constraint
0 ≤ w ≤ ΛΠ(m)m is equivalent to 0 ≤ u = f(m) −
w ≤ ΛΠ(m)m, i.e., u is s.b..

A marking m, for which ∃u s.b., s.t. ṁ = C(ΛΠ(m)m−
u) = 0 is called equilibrium marking, and u and w(m,u)
are said to be its equilibrium input and flow, respectively.

2.1 Controllability on continuous Petri nets

It is well known that P-flows in PNs induce linear depen-
dencies in the marking of the places (for any reachable
marking m, yTm = yTm0), meaning state invariants.
Therefore, systems with P-flows are not controllable in the
classical sense. In the sequel, this state invariant will be
denoted as Class(m0) = {m ≥ 0|BT

y m = BT
y m0}. Every

reachable marking belongs to Class(m0), but the reverse
is not true for timed models.

Due to the presence of state invariants and input con-
straints, Vázquez et al. [2008] proposed an adaptation
of the classical controllability definition.

Definition 3. The TCPN system ⟨N ,λ,m0⟩ is control-
lable with bounded input (BIC) over S ⊆ Class(m0) if
for any m1,m2 ∈ S there exists an input u that transfers
the system from m1 to m2 in finite or infinite time, and it
is suitably bounded along the marking trajectory.

In case that all the transitions are controllable, the con-
trollability property can be decided by the structure and
initial marking, something that can be checked in polyno-
mial time. Recalling from (Vázquez et al. [2008]),

Theorem 1. The TCPN system ⟨N ,λ,m0⟩ is BIC over
the interior of Class(m0) iffN is consistent. It is BIC over
the complete Class(m0) iff the net is consistent and there
do not exist empty siphons at any marking in Class(m0).

3. AFFINE CONTROL LAWS FOR SIMPLICES

A TCPN can be seen as a particular class of piecewise-
affine hybrid system with additional input constraints.
In this work, the techniques introduced by Habets et
al. [2006], regarding the control synthesis of such hybrid



systems, will be extended for TCPN models. For this
purpose, let us recall a few results through this section.

A polyhedral set is a subset of Rm, described by a finite
number of linear inequalities. A bounded polyhedral set
is called a polytope. Alternatively, a polytope can be
characterized as the convex hull of a finite number of
points: the vertices of the polytope. A face of a polyhedral
set is the intersection of the set with one of its supporting
hyperplanes. If a polyhedral set P has dimension m,
the faces of P of dimension m − 1 are called facets.
A description of several problems encountered during
the synthesis and analysis in polyhedrals and several
algorithms for their resolution, including the computation
of the vertices, are provided by Fukuda [2000]. An m-
dimensional polytope with exactly m+1 vertices is called
a simplex. The number of facets in a simplex is equal to
the number of its vertices, i.e., m+ 1.

Definition 4. An affine system in a polytope X is:

ẋ = Ax+Bu+ a (3)

with the restrictions x ∈ X and u ∈ U , where U is a
polytope of admissible inputs.

An admissible affine control law is an affine function
u : X → U characterized by u(x) = Fx+ g.

3.1 Synthesis of an affine control law

Here, a couple of conditions, regarding the control synthe-
sis for affine systems (3), will be introduced.

Let S denote a closed full-dimensional simplex in Rm with
vertices v1, ...,vm+1. Let F1, ..., Fm+1 denote the facets of
S, and assume that the facets are numbered in such a
way that for i = 1, ..,m + 1, vi is the only vertex not
belonging to facet Fi. For i = 1, ..,m + 1, let ni denote
the outward unit normal vector of facet Fi. Considering
an affine control law u(x) = Fx + g, the evaluation of
this at the vertices of S will be denoted as uj = u(vj),
∀j ∈ {1, ...,m+ 1}.
Due to the linearity of both the system and the control law
inside S, the evaluation of the control law at the vertices
of S must fulfill

[F,g] ·
[
v1 ... vm+1

1 ... 1

]
= [u1, ...,um+1] (4)

Since S is a full-dimensional simplex then the matrix[
v1 ... vm+1

1 ... 1

]
is square and has full rank. Therefore,

there is a bijection between (F,g) and the set of values uj

(with j ∈ {1, ...,m+1}). In the sequel, for the synthesis of
a control law, the values of the input uj at the vertices are
first computed. Once these are obtained, the pair (F,g)
can be computed by using (4).

Consider the following conditions for the values uj :

Condition 1. From Theorem 4.12 in Habets et al. [2006],
a facet Fi is disabled by the control action u(m) = Fx +
g, whose valuation at vertices v1, ...,vm+1 is given by
u1, ...,um+1, iff

∀j ∈ {1, ...,m+ 1}\{i} nT
i (Avj +Buj + a) ≤ 0 (5)

Condition 2. Let xf ∈ S, and (µ1, ..., µm+1) be s.t.∑m+1
j=1 µjvj = xf . According to Theorem 4.19 in Habets

et al. [2006], xf is the unique equilibrium point in S (in
closed loop) iff

i)B

m+1∑
j=1

µjuj = −Axf − a {i.e., ẋf = 0} (6)

ii) span({Avj +Buj |j = 1, ...,m+ 1}) = Rm (7)

According to Theorems 4.18-4.19 in Habets et al. [2006],
conditions (5-7) can be combined in order to compute a
control law that fulfills different requirements. Here, we
are interested in two particular problems:

Problem 1.a) Find an admissible affine control law such
that for every initial state x0 ∈ S, the corresponding
state trajectory x(t,x0) of the closed-loop system satisfies
∀t ≥ 0, x(t,x0) ∈ S, i.e., the system remains inside S.
Problem 1.b) Additionally, it holds limt→∞x(t,x0) = xf .

Solution: Problem 1.a is solved by computing values for
the control law at the vertices uj in such a way that
(5) is fulfilled for all the facets of S. Problem 1.b is
solved if additionally condition 2 is fulfilled (i.e., (6) and
(7)). Notice that (5) and (6) are linear inequalities (only
the values of uj are unknown, while other vectors and
parameters are known) then the computation of values uj

satisfying (5) and (6) can be done in polynomial time.
Once these are computed, it must be checked wether (7)
holds or not, in a negative case, uj should be computed
again (the set of solutions uj that do not fulfill (7) is on a
smaller dimension manifold, so, it is improbable to obtain
such values during the computation). Finally, the control
law, i.e., the pair (F,g), can be obtained by solving (4).

4. CENTRALIZED CONTROL FOR TCPNS

The results previously recalled were derived for simplices.
Through this section, those results will be extended to
polytopes, and later, they will be used for the synthesis of
controllers for TCPNs (polytopes are mostly encountered
during the synthesis of controllers for TCPNs).

A possible solution for the synthesis of affine controllers
in polytopes was proposed by Habets and van Schuppen
[2004], by decomposing the polytope into simplices and
synthesizing a proper affine control law for each of them.
In this section, a different approach will be introduced, by
synthesizing a unique (global) affine control law for the
complete polytope. The resulting control scheme is more
conservative, but it will be demonstrated that such control
law can always be computed for TCPN systems.

4.1 Affine control on polytopes

In polytopes, the matrix

[
v1 ... vm+1

1 ... 1

]
in (4) has, in

general, more columns than rows (i.e., the number of
vertices is larger than the dimension of the polytope plus
1). Therefore, computing the values uj that fulfill the
required conditions may not be sufficient for obtaining
a control law, since the existence of a pair (F,g) that
satisfies (4) for the obtained values uj is not guaranteed.



In this case, it is additionally required that the same linear
dependencies that involve the vertices vj be also effective
for the values uj .

Proposition 2. Consider a polytope of dimension k−1 with
m vertices, and the values for the input at those (uj ,
j ∈ {1, ...,m}). Assume, without loss of generality, that
the first k vertices define a simplex of dimension k−1. For
each vertex vj ̸= v1 there exists a unique column vector
γi s.t. vj − v1 = [v2 − v1,v3 − v1, ...,vk − v1]γj . Then,
there exists a pair (F,g) that fulfills (4) iff:

∀j ∈ {k + 1, ...,m}
uj − u1 = [u2 − u1,u3 − u1, ...,uk − u1]γj

(8)

Proof. By hypothesis, the first k vertices define a simplex
of dimension k− 1, the same dimension of the whole poly-
tope. Therefore, all the vertices belong to the hyperplane
defined by the first k vertices. Then, for each vj ̸= v1 it
must exist a vector γj s.t. vj−v1 = [v2−v1, ...,vk−v1]γj

(see fig. 1(a)). Furthermore, the matrix [v2−v1, ...,vk−v1]
has full column rank, which implies that γj is unique.
Now, (4) is equivalent to ∀j uj = Fvj + g. Since the
first k vertices define a full-dimensional simplex then there
always exists a unique pair (F,g) that fulfills uj = Fvj +
g, ∀j ∈ {1, .., k}. Such pair also fulfills uj = Fvj + g,
∀j ∈ {k + 1, ..,m}, iff uj − u1 = F(vj − v1), ∀j ∈ {k +
1, ..,m}. Substituting (vj − v1) by the expression previ-
ously obtained, it results uj−u1 = F[v2−v1, ...,vk−v1]γj .
Finally, this equation is equivalent to uj − u1 = [u2 −
u1, ...,uk − u1]γj . �

For polytopes, the indices of the vertices in (5) need to
be reconsidered. If Fi is a facet that must be disabled
(condition 1 ) then, denoting as IFi the indices of the
vertices related to Fi, (5) is rewritten as

∀j ∈ IFi nT
i (Avj +Buj + a) ≤ 0 (9)

Similarly, (6) can be rewritten, by describing xf as a linear
combination of linearly independent vertices. Assume,
without loss of generality, that the first k vertices define a
simplex having the same dimension of the polytope. Then,

define (µ1, ..., µk) such that
∑k

j=1 µjvj = xf . Thus, (6) is
transformed into

B
k∑

j=1

µjuj = −Axf − a (10)

In this way, the results recalled in Section 3, regarding the
control problems 1.a and 1.b, are extended to polytopes.

4.2 Affine control laws for TCPN systems

Consider a TCPN system, controllable over the interior
of Class(m0) (thus, according to Theorem 1, the net
is consistent). Define the set intϵ{Class(m0)} = {m ∈
Class(m0)|m ≥ 1 · ϵ}, for an arbitrarily small ϵ > 0. This
subsection is devoted to the following control problem:

Problem 2) Find a s.b. control law for driving the
TCPN system towards the desired marking mf , assuming
mf ,m0 ∈ intϵ{Class(m0)}.
Procedure 1. Synthesis of a s.b. centralized control law for
driving the system towards mf .
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Fig. 1. (a) Fig. for the proof of proposition 2. Vertices
belong to the hyperplane H. Dashed lines represent
vectors (vj-v1). (b) A consistent TCPN system.

===============================
Synthesis of the control law (off-line):

I . Compute the vertices {v1, ...,vm} of intϵ{Class(m0)}
and enumerate them s.t. the first k define a simplex
having the same dimension of the polytope.

II . Compute the vectors ni normal to the corresponding
facets of Class(m0) and pointing outwards this.

III. For the system ṁ = Cw wherew is the control input,
compute some values wj for the input at the vertices
(i.e., with wj instead uj) simultaneously fulfilling:
• wj ≥ 0,
• condition (8),
• condition (9) for all the facets,
• condition (10) with xf = mf .

IV. Compute F and g that fulfill (4).
V . Verify that mf is the unique equilibrium point in

the closed-loop system that belongs to Class(m0), by
using (7) ( the condition (6) is already fulfilled, since
it was transformed into (10)). Otherwise, compute
another values uj and (F,g).

===============================
Application of the control law (on-line):

I . Define η(m) = min(f(m)./(Fm + g)), where ./
denotes the element-wise division operator.

II. Apply the control law:

u(m) = f(m)− η(m) · (Fm+ g) (11)

===============================

Step I of the synthesis procedure corresponds to the
vertex enumeration problem. This is not (in general) a
polynomial-time problem, nevertheless, there exist effi-
cient tools for its resolution (e.g., Fukuda [2000]) for
polytopes of considerable dimension. Vectors ni computed
in step II are also normal to the facets of intϵ{Class(m0)}.
The computation of these as stated in step II has the
advantage that it depends only on the original polytope
Class(m0). All the constraints for the values wj in step
III are linear. Then, step III can be achieved in polyno-
mial time. In particular, consider the quadratic problem:
min

∑
(f(vj)−wj)

T (f(vj)−wj), subject to the constraints
in step III. This will usually lead to a fast control law,



since the values wj thus computed will be close to their
upper bounds f(vj) (i.e., values that allow the maximum
flow). In any case, the scalar function η(m) ensures that
the control action is always s.b.

Proposition 3. It is always possible to compute a control
law (11) by using Procedure 1.

Proof. Let us construct a particular control law. Consider
the polytope intϵ{Class(m0)}. Enumerate its vertices s.t.
the first k define a simplex S, having the same dimension
of the polytope, that includes mf .
First, for the vertices of such simplex (i.e., {v1, ...,vk}),
define the vectors dj = mf−vj . Since the net is consistent
then, for each dj there exists wj s.t. dj = C ·wj and wj ≥
0. These wj define an affine control law (F,g) according
to (4). Notice that, considering the system as ṁ = Cw,
such values wj fulfill with (9), since the field vector at
the vertices {v1, ...,vk} points towards mf (i.e., inside the
simplex, thus the polytope). Furthermore, by linearity of
the model (ṁ = Cw), the field vector at mf is null, so,
the condition (10) holds. Moreover, (7) also holds since
the field vector at the vertices of the simplex constitutes a
basis (by definition, span{d1, ...,dk} = span{v1, ...,vk}).
Given such wj for j ∈ {1, ..., k}, the values of wj for
j ∈ {k + 1, ..., N} are uniquely determined according to
(8). Let us show that these also fulfill (9).
For each vertex vj ∈ {vk+1, ...,vm}, define v′

j as the
intersection of the segment (mf ,vj) with the frontier of
the simplex S. In this way, there must exist γ ≥ 0 s.t.
[v1, ...,vk]γ = v′

j and 1 · γ = 1. According to this, by
linearity, d′

j = mf − v′
j = [d1, ...,dk]γ. Similarly, by

linearity, the value of the input at v′
j , denoted as w′

j , is
s.t. w′

j = [w1, ...,wk]γ ≥ 0 and d′
j = C ·w′

j , i.e., the field
vector at v′

j points towards mf . Finally, since v′
j is in the

segment (mf ,vj) and the field vector at mf is null, then
the field vector at vj is also pointing towards mf and the
input at this fulfills wj ≥ 0. Thus, the input at this vertex
also fulfills (9). Therefore, all the constraints enumerated
in steps I-V in Procedure 1 are fulfilled. �
Proposition 4. Control law (11) drives the system towards
the required marking mf while the control action is s.b.
along the trajectory.

Proof. Consider the state equation of the TCPN system
as in (2). This model is linear, then the current control
problem is similar to the problem 2.b of Section 3 with
xf = mf , but in a polytope instead a simplex, and with
the input constraint 0 ≤ w ≤ f(m) instead u ∈ U .
Therefore, according to the results shown in the previous
subsections, the control law w(m) = Fm + g (equiva-
lently, u = f(m) − (Fm + g)), where (F,g) are obtained
through the steps I-V of the previous procedure, would
drive the system towards mf through a trajectory inside
intϵ{Class(m0)}. Since the closed-loop system is affine,
then convergency to mf means asymptotic stability.
The closed-loop system with such input is equivalent to
the closed-loop system with (11) and η = 1. In such case,
since mf is asymptotically stable, there exists a quadratic
Lyapunov function V(m) = (m−mf )

TP(m−mf ) whose

derivative is negative, i.e., V̇(m) = −(m − mf )
TQ(m −

mf ) < 0, where the matrix Q = −[(CF)TP + P(CF)]
is positive definite (xTQx > 0 ∀x ̸= 0). By using the

same Lyapunov function for the closed-loop system under
(11) (thus η ̸= 1), its derivative can be computed as

V̇(m) = −η(m)(m −mf )
TQ(m −mf ). This is negative

(meaning that the system will be driven towards mf )
whenever η(m) > 0. This holds since f(m) > 0 (because
the close-loop system remains inside int{Class(m0)}) and
Fm+ g ≥ 0 (due to the constraint wj ≥ 0).
Finally, since η(m) · (Fm + g) ≥ 0 (so f(m) ≥ u(m))

and η(m) = min(f(m)./(Fm + g)) implies η(m)(̇Fm +
g) ≤ f(m) (so u(m) ≥ 0), then the input is s.b. �
Example 1. Consider the TCPN system depicted in fig.
1(b), with initial marking m0 = [0.1, 1.8, 0.1, 0.1, 0.8, 0.1,
0.1, 2.8, 0.1]T and timing λ = [1, 1, 1, 1, 1, 1, 1, 1]T . It is de-
sired to drive this system towards mf = [0.3, 0.3, 1.4, 0.2,
0.6, 0.2, 1.4, 1.1, 0.5]T . This TCPN can be seen as a
piecewise-linear system with 16 different modes (configu-
rations), according to the state equation (1). Nevertheless,
by following Procedure 1, a unique affine control was ob-
tained (11), by computing a gain matrix F, of order 9× 8,
and a vector g = 0. This control law was applied to the
system. Fig. 2(a) shows the resulting marking trajectories.
It can be observed that the control law successfully drives
the system towards the desired marking.
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Fig. 2. (a) Evolution of the marking of the controlled
system of fig. 1(b). (b) Modular-coordinated control
scheme.

5. COORDINATED CONTROL

The main drawback of the control law derived in the previ-
ous section is the fact that the number of vertex increases
exponentially w.r.t. the dimension of the polytope, which
is determined by the number of places (state variables). In
order to deal with such complexity, a modular-coordinated
control strategy will be derived through this section.

Definition 5. Given a PN N = ⟨P, T,Pre, Post⟩, a
modular view of this is a set of n PNs, named modules,
denoted as N i = ⟨P i, T i,Prei, Posti,mi

0⟩, where mi
0 =

m0[P
i], Prei = Pre[P i, T i] and Posti = Post[P i, T i],

for each i ∈ {1, ..., n}. These modules are interconnected
by places, called buffers B, so P is the disjoint union of
P 1, ..., Pn and B, and T is the disjoint union of T 1, ..., Tn.
We assume that the following conditions hold:

(1) For every i, j ∈ {1, ..., n}, if i ̸= j then Pre[P i, T j ] =
Post[P i, T j ] = 0.

(2) For each buffer b ∈ B, |b•| ≥ 1.
(3) For every i ∈ {1, ..., n}, the module N i is consistent.
(4) The net model N is consistent.



In the sequel, it will be assumed, without loss of generality,
that the incidence matrix of the modular net model has a
structure like:

C =


C1 0 ... 0
0 C2 ... 0
...

... ...
...

0 0 ... Cn

C1
B C2

B ... Cn
B


where Ci = C[P i, T i] and Ci

B = C[B, T i]. In this way, the
marking is represented asm = [(m1)T , .., (mn)T , (mB)T ]T ,
where (mi)T is the transpose ofmi = m[P i], and similarly
mB = m[B]. Furthermore, Bi

x ≥ 0 represents a basis for
the T-semiflows of Ci. In this section, we are interested in
the following control problem:

Problem 3) Given a TCPN system ⟨N ,λ,m0⟩, where
N is a modular PN , find a coordinated-control scheme
for driving concurrently each module N i of N towards a
desired marking mi

f ∈ Class(mi
0) by means of s.b. control

actions, assuming they are concurrently reachable while
the buffers remain marked.

Fig. 2(b) shows the structure of a coordinated-control
scheme. This consists of a set of local controllers and an
upper-level controller, named coordinator. A local con-
troller is synthesized for each module, receiving infor-
mation from the coordinator and having local informa-
tion: the marking of the corresponding module and the
neighboring buffers. The coordinator receives and sends
minimum information from and to the local controllers,
but it does not apply control actions into the system.
Furthermore, the coordinator can observe the marking of
the buffers. Let us remark that different control techniques
can be considered for the local controllers, nevertheless, in
this work we will focus on piecewise affine control laws.

5.1 The need for coordination

By hypothesis, a modular TCPN system is consistent,
thus controllable over the corresponding int{Class(m0)}.
The same holds for each of the modules N i. Thus, if the
initial marking of the buffers were large enough (i.e., if
mB

0 >> 0), each module could be driven towards its
corresponding desired markingmi

f ∈ Class(mi
0) by means

of a local control law like (11), using only local information
(i.e., mi). In such case, it would be obtained a completely
decentralized control scheme with neither communication
between local controllers nor with the coordinator.

Example 2. Consider the modular TCPN system de-
picted in fig. 3, consisting of three modules intercon-
nected by four buffers. The rates for the transitions
are λ1 = [4, 1, 1, 1] for N 1, λ2 = [1, 1, 1] for N 2 and
λ3 = [1, 1, 1, 1] for N 3. The initial markings are m1

0 =
[9.7, 0.1, 0.1, 0.1]T for N 1, m2

0 = [0.1, 0.1, 4.8]T for N 2

and m3
0 = [4.8, 0.1, 0.1]T for N 3. The initial marking

at the buffers is mB
0 = [0.1, 0.1, 2.5, 4]T . Consider the

control problem of transferring the modules towardsm1
f =

[1, 1, 1, 7], m2
f = [0.5, 3, 1.5] and m3

f = [1.5, 0.5, 3], re-

spectively. For each module, gain matrices Fi and vectors
gi were computed, by using Procedure 1. Later, the re-
sulting control laws (11) were simultaneously applied to
the corresponding modules. Fig. 4(a) shows the obtained
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Buffer b2 is not output private (it supplies tokens to
N 1 and N 2).
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Fig. 4. (a) Marking of Module 1 in closed-loop. (b) Marking
in the buffers.

trajectories for the marking of N 1. It can be observed
that the module got stuck at a marking different than the
desired one. The same has occurred to the other modules,
because the buffers b1 and b2 were emptied, as shown in
fig. 4(b) (N 3 requires marking from b1 while N 1 and N 2

require marking from b2). Thus, although the net system
is live (without control), the applied control scheme stops
the activity in all the modules.

In general, the marking at the buffers is limited (fre-
quently, they are part of a P-component), and so, they
impose constraints to the control actions that are not taken
into account during the synthesis of the local controllers
(e.g., a module N i has the constraint wi ≤ f i(mi,mB),
where mB represents the marking at the buffers, but the
control law obtained with Procedure 1 only fulfills wi ≤
f i(mi)). In the worst case, a set of buffers may empty,
consequently, the local controllers will stop the activity
of the modules that require tokens from them. This does
not mean that the system is actually in a deadlock, on
the contrary, it might be possible to recover the system.
Nevertheless, the local controllers are not synthesized in
order to increase the marking at the buffers. Therefore, it
is important to have a certain coordination between the
local controllers, in order to make the modules to evolve
with a suitable speed so that the buffers do not empty (i.e.,
imposing a fairness relation between modules). This will
be the task of the coordinator.

5.2 Modular-coordinated control

In sequel, it will be assumed that both the initial and the
final markings belong to intϵ{Class(m0)} for a given small



ϵ > 0. Similarly, it will be assumed that the operation of
each local controller and the coordinator are ruled by a
global clock and they always receive and send the required
information without loss or delays.

As shown in the previous subsection, certain coordination
is required in order to make the buffers to remain marked.
This can be achieved by applying a modular control
scheme, like the one shown in fig. 2(b), that drives the
system through a linear (straight) trajectory (due to the
convexity of Class(m0), it is always possible to drive
the system to any reachable marking, through a straight
trajectory). Let us describe this. Compute firstly a proper
final marking for the buffers mB

f > 1ϵ such that mf =

[(m1
f )

T , ..., (mn
f )

T , (mB
f )

T ]T is reachable (such marking

exists by hypothesis). Next, compute for each module
(task for the local controllers) a vector di > 0 s.t.
(mi

f − mi) = Cidi. Furthermore, compute (task for

the coordinator) a vector γ > 0 s.t. (mB
f − mB) =∑

Ci
Bd

i + [C1
BB

1
x, ...,C

n
BB

n
x ]γ. In this way, if each local

controller applies wi = di + Bi
xγ[T

i] then the closed-
loop behavior of each module will be ṁi = Cidi +
CiBi

xγ[T
i] = (mi

f − mi), i.e., each field vector will be

pointing towards the corresponding mi
f , consequently, the

modules will be driven towards their final states describing
linear trajectories. Moreover, the closed-loop behavior of
the marking of the buffers will be ṁB =

∑
Ci

Bd
i +

[C1
BB

1
x, ...,C

n
BB

n
x ]γ = (mB

f − mB), thus, the marking

of the buffers will converge to mB
f describing a linear

trajectory, so, the buffers will remain marked.

This control scheme can be extended by adding an affine
control element to the local control laws. In detail, define
w′i = Fimi + gi, where (Fi,gi) is a proper affine control
law computed (for each module) by using Procedure 1.
Defining a linearizing factor ψ ∈ [0, 1], the following local
control law is proposed for each module: wi = diψ +
w′i(1 − ψ) + Bi

xγ
i. Notice that, if ψ = 1 then the local

controllers will drive their modules toward the correspond-
ing mi

f describing linear trajectories (it is actually the

control scheme described in the previous paragraph). On
the other hand, with ψ = 0 the control laws obtained
are the evaluations of the affine control laws w′i, which
corresponds to the decentralized scheme with local affine
controllers used in example 2. In order to avoid the buffers
to become empty, the linearizing factor must be properly
computed. One possibility is to impose the constraint
ṁB =

∑
Ci

B [d
iψ + w′i(1 − ψ) + Bi

xγ
i] > 1ϵ − mB . In

this way, the field vector of the marking of the buffers is
always pointing towards a positive marking > 1ϵ (given
the definition of γ, previous constraint is equivalent to∑

Ci
B(w

′i − di)(1− ψ) > 1ϵ−mB
f ).

Finally, in order to make the control laws to be s.b. (i.e.,
wi ≤ f i(mi,mB)), a proper global scale factor η will be
applied to the control actions, i.e., each local controller
will apply wi = [diψ+w′i(1−ψ = +Bi

xγ
i]η, where η > 0

is the maximum scalar s.t. wi ≤ f i(mi,mB) for all the
modules. The factor must be the same for all the local
controllers, so the direction of the global field vector is not
modified. Then, η must be computed by the coordinator
by using information from the local controllers, regarding
the maximum control action allowed with respect to each

of the three components di, B
i
x and w′i (codified in three

factors ηid, η
i
xj

and ηiw, respectively). Combining all these
issues, the following control scheme is proposed:

Procedure 2. Synthesis of a coordinated control scheme.
===============================
Synthesis of local control laws (planing step):
===============================

• Coordinator: Compute a suitable desired marking
for the buffers s.t. all of them are marked mB

f > 1ϵ

and mf = [(m1
f )

T , ..., (mn
f )

T , (mB
f )

T ]T is reachable.

Compute a T-semiflow 0 ≤ x ≤ f(mf ).

• Each local controller: Compute an affine control law
(Fi,gi), by using Procedure 1, for driving the module
N i to the corresponding mi

f , with the additional

constraint w(mi
f ) = x[T i].

===============================
Dynamic control (on-line, in discrete time):
===============================
Coordinator:

• Receive from the local controllers the values ηixj
, ηid,

ηiw, C
i
Bd

i and Ci
B · (w′i − di).

I . Compute a vector γ > 0 solution for

(mB
f −mB)−

∑
Ci

Bd
i = [C1

BB
1
x, ...,C

n
BB

n
x ]γ (12)

II . Compute ψ = min α s.t. α ∈ [0, 1] and∑
Ci

B(w
′i − di)(1− α) > 1ϵ−mB

f .

III. Define, for each module, γi = γ[T i] and
ηi = 1/((1− ψ)/ηiw + ψ/ηid +

∑
γi[j]/ηixj

).

IV. Evaluate η = min(η1, ..., ηn).
• Send, to each local controller, the values η, ψ and γi.

———————————————————————–
For each local controller:

• Receive from the coordinator the new values for ψ,
η and γi.

I . Compute a vector di > 0 s.t. (mi
f −mi) = Cidi.

II . Evaluate the affine control action: w′i = Fimi + gi.
III. Apply the control action:

ui = f i(mi,mB)−[
w′i(1− ψ) + diψ +Bi

xγ
i
]
η

(13)

IV. Compute the values:
• ηid = maxα s.t. diα ≤ f i(mi,mB),
• ηiw = maxα s.t. w′iα ≤ f i(mi,mB),
• ηixj

= maxα s.t. xjα ≤ f i(mi,mB), for each

column (T-semiflow) xj of Bi
x.

• Send the values ηixj
, ηid, η

i
w, C

i
B ·di and Ci

B ·(w′i−di)
to the coordinator.

===============================

In the appendix, an algorithm for the computation of mB
f

is provided. The computation of di, achieved by each local
controller at step I at each sampling, and γ achieved by
the coordinator at step I, can be done with an algorithm
provided in the appendix, having a linear complexity.



Similarly, an efficient algorithm for the computation of
values ηixj

, ηiw, η
i
d, η

i
T and ψ is also provided.

Proposition 5. Procedure 2 is well defined (i.e., all the
required information is available and all the conditions for
the computation are satisfied).

Proof. Since the net N is consistent and mf is assumed
reachable, then ∃σ > 0 s.t. (mi

f − mi) = Ciσ[T i], for

each module, and (mB
f − mB) =

∑
Ci

Bσ[T
i]. Consider

a module N i. Since this is consistent, then there always
exists a particular solution di > 0 for (mi

f −mi) = Cidi.

Furthermore, the general solution for σ[T i] is given by
σ[T i] = di + Bi

xγ
i, with γi > 0. Then, given particular

solutions di for each module, there always exists γ s.t.
(mB

f − mB) =
∑

Ci
Bd

i +
∑

Ci
Bγ[T

i], i.e., solution for

(12). Therefore, it is always possible to compute vectors
di and γ according to the control procedure.
On the other hand, notice that ψ = 1 is a trivial solution
for

∑
Ci

B(w
′i−di)(1−ψ) > 1ϵ−mB

f . Moreover, the step
III for the operation of the local controllers implies that
the buffers remain marked (this is proven in detail in the
proof of proposition 6). Thus, f i(mi,mB) > 0 for each
module. Since di > 0 and γ > 0, then scalars ηiw, η

i
d, η

i
xj
,

ηi and η can always be computed and they are positive.
Finally, η is computed in such a way that each local control
action is s.b., so it can be applied. Let us prove this by
showing that η is computed in such a way that wi =
[w′i(1−ψ)+diψ+Bi

xγ
i]η ≤ f i(mi,mB) (wi ≥ 0 already

since w′i > 0, di > 0, Bi
x ≥ 0 and γi > 0). By using

the definitions of ηid, η
i
w and ηixj

, computed by the local

controllers, and ηi computed by the coordinator, it can be
proved that [w′i(1 − ψ) + diψ + Bi

xγ
i]ηi ≤ f i(mi,mB).

Later, since 0 < η ≤ ηi, then wi ≤ f i(mi,mB) for all the
modules. �
Proposition 6. If the coordinated control scheme of proce-
dure 2 is applied, each module will be driven towards the
corresponding mi

f .

Proof. For the sake of simplicity, the analysis is achieved
in continuous-time, but an analogous reasoning can be
used for the discrete-time case. Firstly let us show that
the buffers remain marked. Consider a module N i. By

definition of ψ,
∑

Ci
B(w

′i − di)(1 − ψ) > 1ϵ − mf
B .

Combining this equation with (12), it is obtained mB +∑
Ci

B [w
′i(1 − ψ) + diψ + Bi

xγ
i] > 1ϵ. Substituting (13)

it is obtained mB + (1/η)
∑

Ci
B [f

i(mi,mB) − ui] > 1ϵ.
Furthermore, substituting ṁB =

∑
Ci

B [f
i(mi,mB)− ui]

(given by definition) into the previous equation, it is ob-
tained (1/η)ṁB > 1ϵ − mB . This means that, in case
mB [j] ≤ ϵ for some bj , the field vector of the marking of
bj points towards a marking m[bj ] > ϵ, i.e., ψ is computed
in such a way that the buffers remain marked (the anal-
ysis can also be achieved in discrete-time, obtaining the
analogous expression (1/η)(mB

τ+1 −mB
τ )/∆τ > 1ϵ−mB

τ ,
having the same interpretation).
Now, suppose that ψ = 0. Then, as shown for the central-
ized affine control scheme, there exists a quadratic Lya-
punov function V(mi) = (mi −mi

f )
TP(mi −mi

f ) whose

derivative is negative, i.e., the matrix Q = −[(CF)TP +

P(CF)] is positive definite and so V̇(mi) = −η(mi −
mi

f )
TQ(mi − mi

f ) < 0, ∀mi ̸= mi
f . In general, indepen-

dently of the values received from the coordinator, the
derivative of the same Lyapunov function with ψ ̸= 0 can
be computed as V̇(mi) = −η(1 − ψ)(mi −mi

f )
TQ(mi −

mi
f ) − ηψ(mi − mi

f )
TP(mi − mi

f ). Since P and Q are
definite positive and η > 0, then the derivative of the Lya-
punov function is negative for ψ ∈ [0, 1], and so the module
will asymptotically converge to mi

f (a similar result can be
obtained for the discrete-time case, by using the Lyapunov
function ∆V(mi

τ ) = (mi
τ+1−mi

f )
TP(mi

τ+1−mi
f )−(mi

τ−
mi

f )
TP(mi

τ −mi
f ) and assuming ∆τ << 1). �

0 10 20 30 40 50 60 70
0

2

4

6

8

10

time

M
ar

ki
ng

m[ p
1
1 ]

m[ p1
3
 ]

m[ p1
2
 ]

m[ p1
4
 ]

(a)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

time

M
ar

ki
ng

m[ b
1
 ]

m[ b
2
 ]

m[ b
3
 ]

m[ b
4
 ]

(b)

Fig. 5. (a) Marking of Module 1 of the system of fig. 3 in
closed-loop behavior, under the coordinated control
of Procedure 2. (b) Marking in the buffers.

Example 3. Consider again the TCPN system depicted
in fig. 3 with the same rates and initial marking. The
desired markings for the modules are given by m1

f =

[1, 1, 1, 7], m2
f = [0.5, 3, 1.5] and m3

f = [1.5, 0.5, 3], re-
spectively. Consider a desired marking for the buffers
mB

f = [0.5, 0.5, 0.5, 0.5]T . For each module, gain matrices

Fi and vectors gi were computed according to Procedure
1. Later, the coordinated control strategy of Procedure
2 was applied. Fig. 5(a) shows the trajectories for the
marking of N 1. It can be observed that the module was
successfully driven to the desired marking m1

f . Similarly,

modules N 2 and N 3 were driven towards m2
f and m3

f ,

respectively. Fig. 5(b) shows the marking evolution of the
buffers. Notice that the control makes the buffers remain
marked by converging to mB

f > 1ϵ.

6. CONCLUSIONS

In this work, conditions for an affine centralized control
law for PWA systems in polytopes is derived and applied
to TCPNs. Later, those results are extended in order
to provide a modular-coordinated control strategy. The
resulting scheme consists of a set of affine local controllers
and a coordinator that receives and sends information to
the local controllers. Feasibility and convergency to the
required markings have been proved. Furthermore, the
application of the control scheme is achieved in polynomial
time (the complexity appears during the synthesis of
the local controllers, i.e., off-line, since the computation
of the vertices of a polytope is not polynomial). It is
left for a future research, to investigate the performance
of the proposed control scheme under lost or delayed
information conditions. An interesting future extension
of the presented work would be the control of systems
with uncontrollable transitions. Nevertheless, this is not



a trivial task, since the controllability in such case is much
more complex (Vázquez et al. [2008]).
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Appendix A. ALGORITHMS

The computation of mB
f , achieved during the synthesis

stage in Procedure 2, can be done by setting anymB
f fulfill-

ing two linear constraints (so it can be computed in poly-
nomial time): i) mB

f > 1ϵ, ii) BT
y [B]mB

f = BT
y [B]mB

0 +∑
BT

y [P
i](mi

0−mi
f ). This equality constraint is equivalent

to BT
y mf = BT

y m0, where mf is the global final marking.
In this way, mf ∈ Classϵ(m0). Thus, since the net is
consistent, mf is reachable.

On the other hand, the computation of ηixj
, ηiw, η

i
d, η

i
T and

ψ in Procedure 2 is equivalent to solving: maximum α s.t.
aα ≤ b, with a,b ≥ 0. For computing this, define the set
of indices S = {i|[a]i > 0}. Next, if there exists a solution,
this is given by α = min{[b]i/[a]i|i ∈ S}.
The computation of di and γ in Procedure 2 is equivalent
to the problem of solving x > 0 s.t.Ax = b, assuming that
there exists a solution and ∃a > 0 s.t. Aa = 0. For the
computation of di and γ, the matrices that are represented
by A are fixed. On the contrary, the vectors represented
by b change during the evolution of the system.

Procedure 3. Computation of x > 0 s.t. Ax = b.
===============================
Computation off-line:
===============================

• Compute permutation matrices P1 and P2 so

P1AP2 =

[
A11 A12

A21 A22

]
,

A11 is invertible and has the same rank, ρ, that A.

===============================
Operation on-line:
===============================

I . Define b′ = P−1
1 b and b′

1 as the vector built with the
first ρ elements of b′.

II . Compute xp = P2 · [(A−1
11 b

′
1)

T ,0T ]T .
III. Taking any scalar α > |min(x′./a)| (where the

division of vectors is element-wise), then x = xp +
αa > 0 and it is a solution for Ax = b.

===============================

Proof. Since ∃xp s.t. Axp = b, then ∃x′ = P−1
2 xp s.t.

P1AP2x
′ = b′, where b′ = P1b. On the other hand,

the rows of [A21,A22] are linear combinations of those
of [A11,A12]. Combining these two facts, x′ that fulfills
[A11,A12]x

′ = b′
1 is also a solution for P1AP2x

′ = b′.
Then, x′ = [(A−1

11 b
′
1)

T ,0T ]T is a particular solution of
P1AP2x

′ = b′, and so, xp = P2x
′ is a particular solution

for Axp = b. Finally, given α s.t. αa > |x′| and Aa = 0,
then x = xp + αa is a positive solution for Axp = b. �

Notice that b′ and xp are just evaluations, while for α it
is only required to find the minimum element of a vector,
so the complexity is linear in the number of elements of x.


