
5.3. Decentralized control of CF nets

Table 5.1: Markings and firing count vectors of the systems in Fig. 5.2

P m0(mf ) m0
1(mf

1) m0
2(mf

2) T σmin σ1
min σ2

min

p1 0 (0.4) 0 (0.4) 0 (0.4) t1 1.4 0.9 1.4
p2 0 (0.3) 0 (0.3) 0 (0.3) t2 0.55 0.3 0.55
p3 0 (0.3) 0 (0.3) t3 1 0.5 1
p4 0 (0.3) 0 (0.3) t4 0.25 0.25
p5 1 (1.3) 1 (1.3) t5 0.7 0.7
p6 0 (0.5) 0 (0.5) t6 0 0
p7 1 (0.3) 1 (0.3) t7 1.4 1.4
p8 1 (0.4) 1 (0.4) t8 1 0.5 1
p9 0 (0.2) 0 (0.2) t9 0.4 0.23 0.4
p10 0 (0.6) 0 (0.6) 0 (0.6) t10 0.8 0.3 0.8
p11 0 (0.2) 0 (0.2) t11 0.6 0.1
p12 0 (0.1) 0 (0.1) t12 0.7 0.2
p13 0 (0.1) 0 (0.1) t13 0.35 0.1
p14 0 (0.3) 0 (0.3) t14 0.5 0
p15 0 (0.1) 0 (0.1) t15 0.6 0.1
p16 0 (0.1) 0 (0.1) t16 0.25 0
p17 1 (0.1) 1 (0.1)
p18 1 (0.2) 1 (0.2)
p19 1 (0.1) 1 (0.1)
p2 8 2 (2.1)
p3 9 1 (0.8)
p10 1 1 (0.4)

Algorithm 6 is used by the coordinator controller. Non-negative value α1, α2,
..., αK are obtained by solving a simple LPP. Then these values are sent back to
local controllers. It is ensured that by updating the local control law from σi

min to
σi
min + αi · xi, the interface transitions fire in the same amounts in corresponding

neghboring subsystems.
Given a reachable final state mf , LPP (5.2) is feasible. Let σ be a firing count

vector driving S tomf , and denote by σi1 and σi2 the projections of σ, correspond-
ing to CSi1 and CSi2 . By firing σi1 and σi2 in CS i1 and CSi2 , markingsmf

i1 , mf
i2

are reached. Obviously, the transitions in U (i1,i2) fire in the same amounts in σi1

and σi2 , so there exist αi1 and αi2 , satisfying the constraints of LPP (5.2).

Proposition 5.3.18. Let αi be the value obtained by using Algorithm 6 and σi =
σi
min + αi · xi, i = 1, 2, ...,K be the local control laws of CSi. The global control law
σ obtained by merging all the local ones, is the (unique) minimal firing count vector
driving S to mf .

Proof: It is trivial that σ can drive S to mf . If σ is not the minimal one,
some amounts of T-semiflow can be subtracted, obtaining a contradiction with the
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Chapter 5. Decentralized Control of CF nets: ON/OFF Based Methods

Algorithm 6 Coordinator

Input: σi
min, x

i, i = 1, 2, ..,K
Output: αi, i = 1, 2, ..,K

1: Receive σi
min and xi from local controllers

2: Compute αi by solving LPP:

min
K
∑

i=1
αi

s.t. σi1
min[tj ] + αi1 · xi1 [tj ] = σ

i2
min[tj ] + αi2 · xi2 [tj],∀tj ∈ U

(i1,i2)

∀i1, i2 ∈ {1, 2, ...,K}, CS
i1 and CSi2 are neighbors.

αi ≥ 0, i = 1, 2, ...,K

(5.2)

3: Send αi to CSi;

objective function of LPP (5.2).

Notice that the minimal firing count vector is unique, implying that the solution
of LPP (5.2) is also unique.

Algorithm 7 is used by the local controllers. In the first step, the minimal
firing count vector σi

min of each subsystem CSi is computed separately by the local
controller. Then, every subsystem CSi sends σi

min to the coordinator, together
with its corresponding minimal T-semiflow (only once if the net structure does
not change). After αi is received from the coordinator, the controller of CSi can
be implemented independently by considering σi

min + αi · xi. In particular, the
minimum-time ON-OFF controller (presented in Chapter 3) is used.

Algorithm 7 Local Controller i

Input: CN i, mi
0, m

i
f

Output: σi

1: Compute σi
min the drives the system to mi

f ;

2: Compute the minimal T-semiflow xi;
3: Send σi

min and xi to the coordinator;
4: Receive αi from the coordinator;
5: Update σi ← σi

min + αi · xi;
6: Apply the ON-OFF controller;

Since only limited information (the local control laws and the minimal T-semiflows)
are required by the coordinator, very low communication costs are obtained (two
vectors σi ∈ R|T i| and xi ∈ R|T i| for each subsystem Si). When the agreement is
obtained, all the subsystems work independently.
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5.3. Decentralized control of CF nets

5.3.5 A case study

In order to illustrate the developed approach, let us consider the CF net in Fig.5.10.
It is adapted from the model of a simple manufacturing line that makes tables [81].
It consists of three work stations: WS 1 and WS 2 and WS 3. Two types of raw
materials A and B are processed by WS 1 and WS 2 respectively. The obtained
semi-products are deposited in buffers and will be finally assembled in WS 3 to
make the final products. Table 5.2 gives the interpretations of the model. We will
apply to this system the proposed decentralized control method.
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Figure 5.10: The TCPN model of a manufacturing system with three work stations.

The original system is cut into three subsystems CS1 to CS3 corresponding to
work stations WS 1 to WS 3. The buffer places are B(1,3) = {p30, p31}, B

(2,3) =
{p32, p33} and the interface transition are U (1,3) = {t1, t6, t11, t18, t23, }, U

(2,3) =
{t12, t17, t18, t23}. It is assumed that in the initial state both types of materials
have quantities equal to 10, while two machines are available for any processing,
production lines in WS 2 and WS 3 have maximal capabilities equal to 5. The
firing rates are: λ8 = λ10 = 1/2, λ15 = λ16 = 1/3, λ20 = λ22 = 1/4 and for other
transitions, all equal to 1. Under this setting, the maximal throughput of transition
E M2 C (t22, which models the machine that produces the final product) in the
steady state is 0.33 ([87]).

The complemented subsystems are shown in Fig. 5.11, the final states of sub-
systems and their corresponding minimal firing count vectors are shown in Table
5.3.

In this specific example, the minimal T-semiflows of subsystems are unit vectors
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Chapter 5. Decentralized Control of CF nets: ON/OFF Based Methods

Table 5.2: The interpretation of the PN model in Fig.5.10

Labels Interpretation

x Rdy material x is ready
Mx y machine x processing y
Max Mx y the free machine x processing y
Blk blocked
B x the buffer of semi-product x
Max x the maximal allowed capacity of x
Final the final product
x Raw raw material x
x finish the semi-product x finished
S Mx y machine x starts to process y
E Mx y machine x finishes the process of y
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Figure 5.11: The complemented subsystems obtained from the model in Fig.5.10

1. By applying Algorithm 6, the solution is quite straightforward: α1 = α3 = 0
and α2 = 0.33. So the control law of CS2 should be updated to σ2

min + 0.33 · 1,
the control laws of CS1 and CS3 are σ1

min and σ3
min, respectively. By applying the

ON-OFF controller to each subsystem, the final state is reached in 17.66 time units,
which is the minimum-time.

5.4 Conclusions

This chapter focuses on the minimum-time decentralized control of CF continuous
Petri nets. The addressed problem is to drive the system from an initial state to a
desired final one.

We assume that the original system can be divided through a given sets of places.
It should be noticed that the number of interface transitions varies, depending on
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5.4. Conclusions

Table 5.3: Final states and minimal firing count vectors of the system in Fig. 5.11

CS1 (WS 1) CS2(WS 2) CS3(WS 3)

p mf
1 t σ1

min p mf
1 t σ1

min p mf
1 t σ1

min

p1 0.33 t1 8.17 p15 0.33 t12 7.00 p23 0.33 t1 8.17
p2 0.33 t2 7.83 p16 0.33 t13 6.67 p24 1.33 t6 6.50
p3 1.67 t3 7.50 p17 1.00 t14 6.34 p25 0.67 t11 0.00
p4 0.33 t4 7.17 p18 0.67 t15 5.34 p26 0.33 t12 7.33
p5 0.33 t5 6.83 p19 1.00 t16 4.34 p27 1.33 t17 4.33
p6 1.67 t6 6.50 p20 1.00 t17 4.00 p28 0.67 t18 4.00
p7 0.33 t7 2.00 p21 0.33 t18 3.67 p29 0.33 t19 3.67
p8 6.17 t8 1.33 p22 2.00 t23 0.00 p30 2.17 t20 2.33
p9 0.67 t9 1.00 p32 3.00 p31 1.00 t21 2.00
p10 1.33 t10 0.33 p33 0.33 p32 3.00 t22 0.67
p11 0.33 t11 0.00 p2a 3.67 p33 0.33 t23 0.33
p12 0.67 t18 4.00 p2b 1.33 p34 0.33 t24 0.00
p13 1.33 t23 0.33 p35 1.00
p14 0.33 p3a 1.67
p30 2.17 p3b 8.17
p31 1.00 p3c 3.00
p1a 3.67 p3d 2.00
p1b 1.33

how those cutting places are chosen. This may further influence the computational
complexity, because the size of complemented subsystems is larger if we use a cut that
introduces many interface transitions. Two rules are proposed to reduce subsystems,
more specifically, the paths between interface transitions can be reduced to some
places (that are implicit in the global system). In the worst case, the number
of places may not be reduced, but since all intermediate transitions in the paths
are removed, the subsystems are still highly simplified in general, obtaining their
abstractions. A coordinator is introduced to reach the agreement among the control
laws of neighboring subsystems, by solving a simple LPP. The coordinator does not
need to know the detailed structures of subsystems: only limited information (the
minimal firing count vector and minimal T-semiflow) are exchanged, ensuring a
low communication cost. By applying an ON-OFF strategy in each subsystem, the
global final state is reached in minimum-time.

This method has limitations when we consider a general net system. First, gen-
eral reduction rules used for obtaining complemented subsystems, are not available;
second, since we cannot uniquely determine the minimal firing count vector, a glob-
ally admissible control law may not be achieved if an “incorrect” one has been chosen.
In the next chapter, we will propose a method for distributed control of general net
systems based on the distributed MPC framework.
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Chapter 6

Distributed MPC Control of
General nets

In Chapter 5 we have presented a decentralized control method for CF nets. In
this chapter we still focus on the target marking control problem of TCPNs in
distributed setting, but now for general net systems. However, here the methods are
not designed for minimum-time control. We propose a distributed control approach
for general TCPNs, based on Model Predictive Control (MPC), in which an objective
function is considered at each time step. Another important characteristic of the
control method proposed in this chapter (also a main difference from the previous
decentralized controller for CF nets) is that, no high level coordinator is needed and
only few communication occurs among neighboring subsystems. We first propose a
centralized MPC controller, in which asymptotic stability is guaranteed; the state
trajectory is forced to be inside an interior convex subset defined by the current state
(mk) and the final one (mf ). Then, we apply this controller to a distributed setting,
and for this aim we use a particular strategy to maintain the strict positiveness of
the markings of buffer places. We prove that, by using the proposed algorithm, the
desired final states of all subsystems can be reached in finite time (even if at different
time instants).
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6.1 Introduction

The existing distributed control methods for the target marking control problem
of TCPNs are only applicable for limited subclasses of nets: the method proposed
in [4] assumes that the global system as well as subsystems are mono-T-semiflow;
the decentralized controller we present in Section 5 may only be applied for CF
nets. The basic idea of these two approaches is similar: first, local control laws are
computed independently; then, an iterative algorithm or a high level coordinator
is used to achieve an agreement among subsystems by adding some T-semiflows.
In this chapter, a distributed control method, based on Model Predictive Control
(MPC), is presented for the target marking control of general nets. Similarly to the
previous methods, we still assume a (large scale) system modelled by TCPNs that is
decomposed into subsystems by sets of buffer places that facilitate the interactions
among neighbors.

We first propose a centralized MPC controller, assuming the nets to be consis-
tent. A key problem of the MPC based approaches is the stability. One classical
method for achieving the close-loop stability involves in adding terminal constraints
and terminal weight [70]; and another recently proposed scheme is called stability-
constrained MPC, in which a stability constraint, computed at each time step, is
imposed on the first state in the prediction [22]. Closely related to the second ap-
proach, in the proposed method we constrain the states to be inside a closed convex
subset of the reachability space. We prove that by using this constraint asymptotic
stability can be ensured. Let us remark that in the MPC controller proposed in
[64] for TCPNs, the states are constrained to be on the straight line from the initial
state to the final one, which in fact is a particular case of our method. Similarly,
the control strategy proposed here is less constrained than the method proposed in
[5], in which a linear trajectory was first considered.

Distributed control becomes particularly attractive when the system is geograph-
ically or functionally distributed, which is most frequently in the case of large scale
plants. A lot of works related to distributed MPC (DMPC) can be found in the
literature (see, for example, [85, 18, 91, 24]), in which subsystems are controlled in
a local basis. It is usually assumed that the local controller is able to access all the
variables of the corresponding subsystem and limited information of its neighbors.

Different from the method proposed in Chapter 5, the high level central coordi-
nator is no longer needed. The topology of the communication is partially connected :
two local controllers are able to communicate with each other if their corresponding
subsystems are neighbors; thus, communication among local controllers only occurs
in neighborhood, obtaining low communication costs. For instance, the sketch of
a distributed control structure composed of 6 subsystems can be described as in
Fig. 6.1. On the other hand, we should recall that, the method proposed here is
not designed for minimum-time control; instead of that, an objective function (a
quadratic function, which is mostly used in MPC approaches) is considered at each
time step.

Similarly to the previous decentralized method for CF nets, the structure of a
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Figure 6.1: The sketch of a distributed control structure composed of 6 subsystems

subsystem can only be accessed by its corresponding local controller; at the same
time, intersections among subsystems—those buffer places—can be accessed by all
the neighboring subsystems that are connected to them.

One important issue of our control method is related to the buffer places: be-
cause local subsystems work independently, their markings may keep decreasing
and converge to zero (for timed model, it takes infinite time); and subsystems may
“stop” in certain states waiting for more tokens of the buffer places. To overcome
this problem, an alternative optimization problem with a different cost function is
solved in an interleaved way, putting more tokens to the buffer places with their
markings converging to zero because these places may be restricting the evolution
of subsystems to their final states.

6.2 A centralized MPC controller

In this section, we will present a MPC controller for TCPNs where the the states are
forced to be inside a convex set, thus we prove that the convergence to the final state
is guaranteed. The controller is developed based on the discrete time CPN model,
represented in (4.3) with a small enough sampling period Θ satisfying (4.4) [64]. In
the previous methods proposed for general net systems (non-CF nets), we assume
m0 > 0. However, in the method proposed here, we conjecture that if the net is
consistent and there exists no initially empty siphon,m0 is not necessarily an interior
point. However, we will keep this assumption for the simplicity of presentation, and
also for the convenience of comparisons with other methods. We assume that the
final state (mf ) is an interior point and the net is consistent.

The method proposed here is based on the MPC scheme, in which the stability
is one of the main issues. The idea proposed here is that at any time instant k, we
force all the predictive states to be inside a convex subset that is defined by current
state mk and the final state mf , denoted by R(N,mk,mf ), by means of adding
the following constrains to each predictive state:

{

mf [pi] ≥mk+j+1[pi] ≥mk+j[pi], if mf [pi] ≥m0[pi], j = 0, ..., N − 1
mf [pi] ≤mk+j+1[pi] ≤mk+j[pi], if mf [pi] ≤m0[pi], j = 0, ..., N − 1

(6.1)
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Therefore, after each time step, the marking of every place should only move
closer towards its final one or remain in the same marking (given by constraints
(6.1)). The method proposed here is a generalization of the MPC controller intro-
duced in [64], where linear state trajectories are considered. Comparing with the
heuristic minimum-time method proposed in [5], our method is also less constrained
on the trajectory, but it is not designed for the minimum-time control.

The MPC controller is given in Algorithm 8:

Algorithm 8 A centralized MPC controller

Input: 〈N ,m0〉, mf , wf , Z, Q
Output: w0, w1, w2, . . .

1: k ← 0;
2: while mk 6=mf do
3: Solve problem (6.2);
4: Apply wk: mk+1 ←mk +Θ ·C ·wk;
5: k ← k + 1;
6: end while
7: return w0, w1, w2, . . .;

min J(mk, N)

s.t. : mk+j+1 =mk+j +Θ · C ·wk+j, j = 0, ..., N − 1 (6.2a)

G ·

[

wk+j

mk+j

]

≤ 0, j = 0, ..., N − 1 (6.2b)

wk+j ≥ 0, j = 0, ..., N − 1 (6.2c)

mf [pi] ≥mk+j+1[pi] ≥mk+j[pi], if mf [pi] ≥m0[pi], (6.2d)

j = 0, ..., N − 1

mf [pi] ≤mk+j+1[pi] ≤mk+j[pi], if mf [pi] ≤m0[pi], (6.2e)

j = 0, ..., N − 1

where G is a particular matrix deduced from the net structure and (6.2b) gives
the (upper bound) constraint on firing flows to guarantee the non-negativeness of
markings [64].

According to [83], the reachability space of CPN systems is a convex set. The
convex subset of the reachability space R(N ,mk,mf ) corresponding tomk andmf ,
inside which the following system states evolve, is generated by using constraints
(6.2d) and (6.2e).

The cost function J(mk, N) may be a linear or quadratic. For the target marking
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control problem addressed here, J(mk, N) has the quadratic form:

J(mk, N) =(mk+N −mf )
′ ·Z · (mk+N −mf ) (6.3)

+

N−1
∑

j=0

[(mk+j −mf )
′ ·Q · (mk+j −mf )

where weighting matrix Z,Q ∈ R|P | are positive definite.

Example 6.2.1. Let us consider the consistent and conservative CPN (a simple
strongly connected state machine) shown in Fig.6.2(a). Since there exists only one
P-semiflow in the net (the corresponding token conservation law: m[p1] +m[p2] +
m[p3] = 4), the markings of two places are sufficient to represent the whole reach-
ability space, R(N ,m0) (see Fig. 6.2(b)). Let mf =[1 2.5 0.5]T . The subset of
its reachability space, R(N ,mk,mf ), generated by constraints (6.2d) and (6.2e), is
also shown (mk =m0).
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p2p1 t3
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m[p1]

m[p3]

4

2

2 4

mf
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Figure 6.2: (a) A consistent and conservative CPN (a simple state machine); (b) the
reachability space R(N ,m0) and the subset R(N ,m0,mf ), mf =[1 2.5 0.5]T

Proposition 6.2.2. Let 〈N ,λ,m0〉 be a consistent TCPN system with m0 > 0,
and let mf > 0 be a reachable final marking. By applying the MPC controller given
in Algorithm 8, the closed-loop system is asymptotically stable.

Proof: We prove the statement in two steps: 1) we prove that the problem (6.2)
is feasible; 2) we define a quadratic Lyapunov function and prove that it is strictly
decreasing.

1) Since the system is deterministic, i.e., noise free, it is clear that at any time
step k with marking mk, one solution of problem (6.2) could be

{mk+j+1 =mk,wk+j = 0}, j = 0, 1, ..., N − 1
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So problem (6.2) is feasible.
2) Let V (mk) = (mk −mf )

T ·Z · (mk −mf ), where Z is the weight matrix in
(6.2). It is clear that V (mk) ≥ 0, and for any mk 6=mf , V (mk) 6= 0.

Let mk −mf = ∆mk, according to constraints (6.2d) and (6.2e) of problem
(6.2), ∀pi ∈ P , |∆mk[pi]| ≥ |∆mk+1[pi]|. Therefore, V (mk) ≥ V (mk+1).

Now we will show that V (mk) > V (mk+1) untilmk =mf , i.e., until the system
is already in the desired final state. Because the marking of each place can only
move closer to its final value or stay in the same value, it is equivalent to prove
that mk 6= mk+1 until mk = mf . Assume that at time step k, mk 6= mf and
mk = mk+1, i.e., at the first predictive step, the system stays at mk with flow
wk = α · x (where α ≥ 0 and x is a T-semiflow). Then, a solution of problem (6.2),
Υ1, gives a sequence of predictive states as follows:

mk
α·x
−→

mk+1

(=mk)
→mk+2 · · ·mk+N−1 →mk+N

Obviously, instead of staying in mk at the first predictive step (mk+1 = mk), we
may have another solution Υ2 by starting moving to mk+2 at the first predictive
step, and following the same sequence of states as in Υ1, then staying in mk+N at
the last predictive step:

mk → mk+2 →mk+3 · · ·mk+N
α·x
−→mk+N

The values of cost function corresponding to Υ1 and Υ2 are:

J1 = ∆mT
k+N ·Z ·∆mk+N +∆mT

k ·Q ·∆mk (6.4)

+

N−1
∑

j=1

∆mT
k+j ·Q ·∆mk+j

J2 = ∆mT
k+N ·Z ·∆mk+N +∆mT

k ·Q ·∆mk (6.5)

+

N
∑

j=2

∆mT
k+j ·Q ·∆mk+j

Therefore, the following can be obtained:

J2 − J1 = ∆mT
k+N ·Q ·∆mk+N −∆mT

k+1 ·Q ·∆mk+1

= ∆mT
k+N ·Q ·∆mk+N −∆mT

k ·Q ·∆mk

According to the constraints (6.2d) and (6.2e), if mk 6= mf , we must have
mk+N 6=mk and ∀pi ∈ P , |∆mk[pi]| ≥ |∆mk+N [pi]|. Otherwise, the system should
stay inmk at every predictive step, but obviously this cannot be an optimal solution:
since the net is consistent, mk > 0 (inside R(N ,m0,mf )) and all transitions are
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controllable, the state marking can move in any direction [97]; in particular, it is
possible to move towards mf , hence it is possible to decrease the distance to the
desired marking in one step. Therefore, J2−J1 < 0, i.e., Υ2 is a better solution than
Υ1, implying that if mk 6=mf , by applying the MPC controller given in Algorithm
8 the system always starts moving towards mf from the first predictive step. So
V (mk) > V (mk+1) until mk =mf .

Example 6.2.3. Let us still consider the net system shown in Fig 6.2(a) with the
final state mf =[1 2.5 0.5]T . Assume that the firing rates of all the transitions are
equal to 0.1 and the sampling period Θ = 0.1. By applying the MPC controller shown
in Algorithm 8 (with Q = I,Z = 1000 · I, N = 5), the obtained marking trajectory
of places p1 and p3 is illustrated in Fig. 6.3 (in continuous line), and the close-loop
cost is 99793. We also apply to the system the MPC controller proposed in [64] (with
Q = I,Z = 1000 · I,R = 0), in which the state trajectory follows a straight line
from m0 to mf (in dotted line), and the close-loop cost is equal to 114220 that is
larger than by using the method proposed here.

Figure 6.3: Marking trajectory of the net system in Fig. 6.2(a) by applying: the
MPC controller proposed in [64] (dotted line) and the MPC controller shown in
Algorithm 8 (continuous line)

6.3 Application to Distributed MPC control

Let us consider now a (large scale) PN system that is composed of a set of subsystems
denoted by K. Those subsystems Sl = 〈N l,m0

l〉 ∈ K are connected with places
modelling buffers denoted by B. The transitions connecting with buffer places are
said to be interface transitions. Let P l, T l be the sets of places and transitions of
subsystem Sl. The partition of the system is described as follows:

•
⋂

Sl∈K P l = ∅, (
⋃

Sl∈K P l) ∪B = P ;
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•
⋂

Sl∈K T l = ∅,
⋃

Sl∈K T l = T ;

• for any place pi ∈ B, •pi ∩ P
l 6= ∅ ⇒ •pi ⊆ P l and pi

• ∩ P l 6= ∅ ⇒ pi
• ⊆ P l,

i.e., buffer places are input and output private.

In the sequel, the following notations are used:

• B(l,k) = {pi ∈ B|
•pi ⊆ S

l, pi
• ⊆ Sk} is the set of output buffers of Sl and input

buffers of Sk;

• B(·,l) =
⋃

Sk∈K B(k,l) and B(l,·) =
⋃

Sk∈K B(l,k);

• C l ∈ N|P l|×|T l| is the flow matrix of subsystem Sl.

In the distributed setting, each subsystem is controlled independently by the
MPC controller given in Algorithm 8. Therefore the states of each subsystem Sl

will be interior points (inside R(N l,m0
l,mf

l). However, one key issue we need
to consider is that the markings of buffer places may be keeping decreased and
converging to zero if the same control laws are applied (in TCPNs under infinite
server semantics, once a place is marked it takes infinite to empty it). Since we
consider the control in finite time, in the sequel, if mk[pi] ≤ ǫ1 with ǫ1 a small
positive value, we assume that under the actual control law the marking of the
buffer place pi is converging to zero. When some buffer places with their markings
smaller than ǫ1, subsystems may “stop”, because the required flows to move towards
the final states may be constrained by these buffer places. We will design a particular
strategy to put more tokens to these places with their markings converging to zero.

6.3.1 Two subsystems

For clarity, let us first consider the system composed of only two subsystems. Later,
the control method is directly extended to the case of multiple subsystems.

t1

S1
S2

t2

t3

t4

t5

t6

p1

p2

p3

B

Figure 6.4: A distributed CPN composed of two subsystems
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Fig. 6.4 shows the interface transitions and buffer places of a CPN that is
composed of two subsystems S1 and S2, we have B(1,2) = B(1,·) = {p1}, B

(2,1) =
B(2,·) = {p2, p3}.

Let us denote by m0
1 and m0

2 the initial states (markings) of subsystems S1

and S2, while the desired final states are denoted by mf
1 and mf

2. The initial
and final states of the global system, including the buffer places, are m0 and mf .
Instead of a global central controller, each subsystem will have its own local MPC
controller. A local controller has only information about the structure and state of
its corresponding subsystem, as well as the connected buffers places. The problem
we address here is to drive the subsystems S1 and S2 to their desired final states.
We use the following assumptions:

(A1) The global system is consistent (therefore, each subsystem is also consistent).

(A2) The initial state of the global system m0 > 0 (including the buffer places);
mf > 0 is a given reachable final state of the global system, andmf

1,mf
2 > 0

are the corresponding final states of subsystems (observe that we do not require
liveness or deadlock-freeness).

(A3) In the untimed (autonomous) model, subsets of buffer places never define a
siphon that can be emptied.

Notice that although in assumption (A2) we assume a given final state of the
global system, we are only focusing on driving subsystems to their corresponding
final states. Regarding the buffer places, we simply ensure that they are always in
legal (non-negative) states.

Assumption (A3) can be checked in the following way. Let us define PreΣ and
PostΣ as |P | × |T | sized matrices for a given net system 〈N ,m0〉 such that:

• PreΣ[p, t] = |t
•| if Pre[p, t] > 0, PreΣ[p, t] = 0 otherwise

• PostΣ[p, t] = 1 if Post[p, t] > 0, PostΣ[p, t] = 0 otherwise.

Equations {yT ·CΣ ≤ 0, y ≥ 0} where CΣ = PostΣ −PreΣ define a generator
of siphons (Σ is a siphon iff ∃y ≥ 0 such that Σ = ‖y‖, yT ·CΣ ≤ 0) [28, 87]. Hence,
the following system:

• m =m0 +C · σ, m,σ ≥ 0, {state equation}
• yT ·CΣ ≤ 0,y ≥ 0, {siphon generator}
• yT ·m = 0, {empty siphon at m}

(6.6)

has no solution iff the continuous net system has no emptied siphon. We only need
to solve problem (6.6) off-line considering the part of system composed of the buffer
places and interface transitions, denoted by S′: because every firing sequence that
can fire in the original system S can also fire in S′ and, normally S′ has much smaller
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size than the whole system. Nevertheless, in some particular cases, it may be not
necessary to solve problem (6.6). For example, given a EQ net, we can easily check
its consistency and conservativeness, then by applying the rank theorems we can
verify the liveness the boundedness in polynomial time. If the net system is live and
bounded, then we can directly conclude that there exists no emptied siphon.

It is clearly that the buffer places may constrain the flows of the interface tran-
sitions. Thus, the following additional constraint to problem (6.2) should be added
for each subsystem Sl:

wl
k[t] ≤ λ[t] ·

mk[pi]

Pre[pi, t]
, ∀t ∈ pi

•, pi ∈ B
(·,l) (6.7)

where wl
k[t] is the flow of transition t and mk[pi] is the marking of buffer place pi

at time step k. Then, for each subsystem Sl, the modified problem that should be
solved at every time step k is:

min J(ml
k, N) (6.8a)

s.t. : ml
k+j+1 =m

l
k+j +Θ ·C l ·wl

k+j, j = 0, ..., N − 1 (6.8b)

Gl ·

[

wl
k+j

ml
k+j

]

≤ 0, j = 0, ..., N − 1 (6.8c)

wl
k+j ≥ 0, j = 0, ..., N − 1 (6.8d)

mf
l[pi] ≥m

l
k+j+1[pi] ≥m

l
k+j[pi], if mf

l[pi] ≥m0
l[pi], (6.8e)

j = 0, ..., N − 1

mf
l[pi] ≤m

l
k+j+1[pi] ≤m

l
k+j[pi], if mf

l[pi] ≤m0
l[pi], (6.8f)

j = 0, ..., N − 1

wl
k[t] ≤ λ[t] ·

mk[pi]

Prel[pi, t]
,∀t ∈ pi

•, pi ∈ B
(·,l) (6.8g)

If all the (input) buffer places of subsystem Sl are marked, according to Proposi-
tion 6.2.2, problem (6.8) is also feasible, because we can always fire a small wl

k ≥ 0
such that constraint (6.8g) is not active. Moreover, if at every time step k all of
its input buffer places are marked, using the same reasoning as in Proposition 6.2.2,
we will have ml

k 6= ml
k+1, so V (ml

k) > V (ml
k+1); therefore, the subsystem keeps

evolving until the final state is reached.

Nevertheless, if the markings of some of the input buffer places of a subsystem Sl

are converging to zero (with their markings smaller than ǫ1), S
l may “stop” in certain

state before reaching mf
l. In this case, Sl has to wait on the current state until

its neighboring subsystem puts more tokens into these buffer places. At the same
time, some T-semiflows might be fired in Sl, putting more tokens into its output
buffer places; since these output buffer places of Sl are inputs buffer places of its
neighboring subsystem, consequently this will help the evolution of its neighboring
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subsystem to the final state. Therefore, when Sl “stops” evolving we will use another
cost function, denoted by H(ml

k):

H(ml
k) =

∑

∀tj∈•pi,pi∈B(l,·),mk[pi]≤ǫ1

−wl
k[tj ] (6.9)

wheremk[pi] is the marking of buffer place pi at time step k. By minimizing H(ml
k),

we try to put more tokens into its output buffer places pi,mk[pi] ≤ ǫ1 (if there exist)
and it is equivalent to maximizing their input transition flows; but meanwhile, it
may also try to empty its input buffer places. Therefore, in order to keep certain
amounts of tokens inside a marked input buffer place pi, the following constrains are
added:

Θ ·
∑

tj∈pi•

wl
k[tj ] · Pre[pi, tj ] ≤ α ·mk[pi], ∀pi ∈ B

(·,l) (6.10)

where 0 ≤ α < 1. It mean that by one step, the marking of a marked buffer place
pi can be maximally decreased to (1 − α) ·mk[pi]. When cost function H(ml

k) is
applied, we fix the time horizon N = 1, then problem (6.8) is modified to (6.11):

min H(ml
k) (6.11a)

s.t. : ml
k+1 =m

l
k +Θ ·C l ·wl

k (6.11b)

Gl ·

[

wl
k

ml
k

]

≤ 0 (6.11c)

wl
k ≥ 0 (6.11d)

mf
l[pi] ≥m

l
k+1[pi] ≥m

l
k[pi], if mf

l[pi] ≥m0
l[pi] (6.11e)

mf
l[pi] ≤m

l
k+1[pi] ≤m

l
k[pi], if mf

l[pi] ≤m0
l[pi] (6.11f)

wl
k[t] ≤ λ[t] ·

ml
k[pi]

Prel[pi, t]
,∀t ∈ pi

•, pi ∈ B
(·,l) (6.11g)

Θ ·
∑

tj∈pi•

wl
k[tj ] · Pre[pi, tj] ≤ α ·mk[pi],∀pi ∈ B

(·,l) (6.11h)

The procedure of the distributed MPC controller consists of solving problem
(6.8) and/or problem (6.11) in each subsystem Sl at any time step: if the final state
mf

l has already been reached, problem (6.11) is solved, trying to put more tokens
to its output buffers with their markings converging to zero (remember that Sl stays
in mf

l because of constraints (6.11e) and (6.11f)); otherwise, problem (6.8) is first
solved and, if subsystem Sl is able to evolve towards its final state (still inside the
convex R(N l,ml

0,m
l
f )), the first predictive control law is applied; if by solving (6.8)

the system stops in mk, then problem (6.11) is solved. Because one subsystem may
reach the final state faster than the other, each subsystem should communicate to
its neighbors when its final state has been reached. This procedure repeats until the
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final states of both subsystems have been reached. The local controller of subsystem
Sl is given in Algorithm 9.

Algorithm 9 Distributed MPC control: algorithm for subsystem Sl

Input: Sl, Z, Q, mf
l, α

Output: wl
0, w

l
1, w

l
2, . . .

1: k ← 0;
2: while ∃Si,mi

k 6=mf
i, i = 1, 2 do

3: if ml
k =mf

l then
4: Solve problem (6.11)
5: else
6: Solve problem (6.8)
7: if ml

k =ml
k+1 then

8: Solve problem (6.11)
9: end if

10: end if
11: Apply wl

k: m
l
k+1 ←ml

k +Θ ·C l ·wl
k

12: Update the states of buffers
13: k ← k + 1
14: end while
15: return wl

0, w
l
1, w

l
2, . . .

Remark 6.3.1. As we have already mentioned, in TCPNs under infinite server se-
mantics it will take infinite time to empty a marked place, therefore the initially
marked buffer places cannot totally get emptied in finite time and thus the sub-
system will not be totally stopped. Hence, in the implementation of Algorithm 9
we approximate condition “ml

k = ml
k+1” (implying that Sl stops in ml

k) by using

“(ml
k −m

l
k+1)

T · (ml
k −m

l
k+1) ≤ ǫ2”, where ǫ2 is a small positive value.

Proposition 6.3.2. Let S = 〈N ,λ,m0〉 be TCPN system composed of two sub-
systems S l = 〈N l,λl,m0

l〉, l = 1, 2. If assumptions (A1) to (A3) are satisfied, by
applying Algorithm 9, each subsystem Sl converges to its corresponding final state
mf

l in finite time.

Proof: If all the buffer places are marked, according to Proposition 6.2.2 we
can find a solution of problem (6.8) such that the obtained state of the next step
ml

k+1 6= ml
k, then V (ml

k+1) < V (ml
k), i.e., subsystem Sl evolves towards mf

l.

If a subsystem “stops” in a state ml
k 6= ml

f , it is because some buffer places pi
are converging to zero (mk[pi] ≤ ǫ1). We will prove that by using the proposed
algorithm, these buffer places can get marked, and the subsystem will keep evolving
towards the final state.

Without loss of generality, assume that subsystem S1 has stopped in a state
before reaching mf

1, then problem (6.11) should be solved in S1. Consider now
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subsystem S2, there are two cases: (i) S2 is able to keep evolving towards mf
2 by

solving problem (6.8); (ii) S2 also stops in a state before reaching mf
2. In case (i)

the final state of S2 will be reached in finite time, then problem (6.11) should be
solved; in case (ii), problem (6.11) should also be solved according to the algorithm.
Therefore, we need to prove that by solving (6.11) in both subsystems, these buffer
places with their marking converging to zero, will get marked.

Assume that by applying Algorithm 9 the system has “stopped” at mk, then
problem (6.11) should be solved in both subsystems. According to assumption
(A3), there exists no empty siphon composed of buffer places. If we consider each
subsystem independently, its states are forced to be inside the closed interior convex
subset R(N l,ml

0,m
l
f ), so both subsystems have positive markings. Therefore, there

exists no empty siphon in the (global) system. On the other hand, since the net is
consistent, the system is possible to move in any direction [97]. In particular, because
mf > 0 is reachable from mk, there must exist a global flow such that at the next
step some buffer places pi, mk[pi] ≤ ǫ get marked.

Now let us consider the subsystems. Clearly, a place can only get tokens by
means of firing its input transitions. Therefore, by solving problem (6.11) in which
we try to maximize the input transition flows of buffer places pi with mk[pi] ≤ ǫ,
some of these places will get marked. Hence, once both subsystems solve problem
(6.11) and the obtained control laws are applied, at least one of these buffer place
will be marked. At the same time, because of constrains (6.11h) (with 0 ≤ α < 1),
for any already marked buffer place pj , its marking can be maximally decreased to
(1 − α) ·mk[pj] > 0. By repeating this process, more buffer places with markings
converging to zero will be marked (until all of them are marked, if necessary); for
any already marked buffer places pj, its marking can be maximally decreased to
(1 − α)n ·mk[pj], where n is the (bounded) number of buffer places. By choosing
an appropriated α and a small enough positive number ǫ1 < (1 − α)n ·mk[pj ], it
means that all the buffer places are marked. After that, both subsystems can keep
evolving towards the final state by solving problem (6.8).

6.3.2 Multiple subsystems

Algorithm 9 can be directly applied to the distributed control of a system composed
of multiple subsystems and the convergence to the final states could be proved using
a similar argument as in Proposition 6.3.2. Let us point out that, one subsystem
may have multiple neighbors, hence have multiple sets of buffer places and interface
transitions; and those related constraints (in problem (6.8) and (6.11)) should be
applied to all of them.

On the other hand, let us address the ending condition of Algorithm 9 (step
2). As we have already mentioned, one subsystem may reach its final state faster
than the others. However, the algorithm (executed in each subsystem) finishes
only if all the subsystems have reached their final states. The reason is very clear:
one subsystem that has already been in its final state may still need to put more
tokens to its output buffer places (by firing some T-semiflows), which are required
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Figure 6.5: A simple TCPN example composed of 3 subsystems

by its neighboring subsytems. Therefore, when a subsystem has reached its final
state, it should propagate this information to all the other subsystems, through the
connections among neighbors.

6.3.3 A simple example

Let us consider the consistent and conservative net system shown in Fig. 6.5, which
can be seen as composed of three subsystems. The input and output buffer places
of S1 are B(·,1) = {p11} and B

(1,·) = {p12}, respectively; the input and output buffer
places of S2 are B(·,2) = {p7, p12} and B

(2,·) = {p8, p11}, respectively; meanwhile, the
input and output buffer places of S3 are B(·,3) = {p8} and B

(3,·) = {p7}, respectively.

The initial state m0 is shown in Fig. 6.5, and we assume that the desired final
state (including the buffer places) is mf = [0.2 0.4 0.1 0.2 0.4 0.2 0.1 0.5 0.1 0.4
0.4 0.3]T , the firing rate of transition t4 is 1; while for all the other transitions the
firing rate is equal to 0.5. The sampling period Θ = 0.1. Clearly, the net system
is not CF (e.g., conflicts appear in p1), therefore, the decentralized control method
proposed in Chapter 5 is not applicable; at the same time, we can easily verify that
not all subsystems are mono-T-semiflow, e.g. the net in S1 is not conservative, so
the control method proposed in [4] may not be applicable either. It can be checked
that there exists no siphon composed of buffer places and the net is consistent. By
applying the distributed MPC controller proposed in this chapter, the state evolution
of each subsystem and buffers are shown in Fig. 6.6 (obtained by using time horizon
N = 5, α = 0.5, ǫ1 = 0.01 and ǫ2 = 10−6).

All the subsystems reach their final states asymptotically, but, not at the same
time instant. It can be observed that subsystem S3 reaches its final state faster
(after 17 time steps); then subsystem S2 reaches its final state (after 19 time steps);
subsystem S1 reaches its final state slowest (after 46 time steps). However, the
markings of buffers places have not reached the values specified inmf . For instance,
mf [p7] = 0.1 and mf [p8] = 0.5, but by using the distributed MPC controller the
marking of place p7 reaches 0.5 and the marking of place p8 reaches 0.1. Finally,
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(a) state evolution of S1 (b) state evolution of S2

(c) state evolution of S3 (d) state evolution of buffers

Figure 6.6: The state evolution of the net system in Fig. 6.5 controlled by DMPC

let us point out that the states of each subsystem Sl are constrained to be inside
the subset of reachability space R(N l,m0

l,mf
l). Hence, if a place pi has its initial

marking m0[pi] = mf [pi], then the marking of pi will remain constant during the
whole trajectory, for example place p3 of subsystem S2.

6.4 Conclusions

In this chapter we present a distributed method for the target marking control
problem of general TCPNs. Similarly to previous methods, we also assume that
subsystems are connected by sets of (buffers) places. Each subsystem is controlled
by a local controller, which is able to access all the local variables as well as the buffer
places connected to the corresponding subsystem. We first propose a centralized
MPC controller, in which the state of system is forced to be inside an interior convex
subset of the reachability space and asymptotic stability is guaranteed. Then, this
MPC controller is applied in a distributed setting. We present a distributed control
algorithm, in which two optimization problems should be solved in an interleaved
way: one is similar to that in the centralized MPC, and another one is used to
“recover” from situations where the markings of some buffer places are converging
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to zero (consequently, subsystems may stop evolving towards the final state). We
prove that by using this algorithm, the final (positive) states of subsystems can be
reached in finite time. Meanwhile, for the buffer places, we ensure that they are
always in legal (non-negative) states.

In the proposed control method, we do not need a coordinator as in the approach
presented in Chapter 5. However, once a subsystem has reached its final state, it
must transmit this information to all the other subsystems because the algorithm
stops only if all the subsystems reach their final states. Although this information
should be propagated to all the subsystems (through the connections among neigh-
bors), the amount of data transmitted is small, therefore the communication cost is
still low.

Finally, let us point out that, if one is interested in minimum-time decentralized
control and the net is CF, the method proposed in Chapter 5 (a reduction technique
is employed) can be applied. If the net is not CF, this method is no longer applica-
ble, but we can use the distributed MPC proposed in this chapter for general nets.
However, it is not designed for minimum-time control.
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Chapter 7

Minimum-time Flow Control of
CF nets

This chapter discusses the (optimal) flow control problem of TCPNs. Instead of
driving the system to a given desired final marking (as we have discussed in chapters
4, 5 and 6, from both the centralized and decentralized point of view), here we try
to reach an optimal flow in minimum-time. In other words, we generalize from
reaching a final state to reaching a “final region” (with the objective of minimum-
time evolution). In particular, we assume CF net systems and we are interested
in driving the system as fast as possible to a steady state (belonging to a convex
region) where the maximal flow is obtained. The main difference from the target
marking control problem, also the main challenge, is that we may not be able to
uniquely determine a desired final state, therefore the control methods proposed in
the previous chapters are not applicable directly. We propose a heuristic algorithm,
in which at each time step we first compute an estimated “best” firing count vector
that drives the system to the convex region where the maximal flow is obtained;
then an ON/OFF strategy is applied. Later, we show that some additional firings
can further decrease the time spent to reach the maximal flow.
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7.1 Motivations

Optimal flow control problems are widely studied using different system models such
as Petri nets, queueing networks, etc., (see, for example, [55, 78, 109]). In [55] a
control design for CPN was proposed, trying to obtain the flow minimising the cost
function composed by production cost, stocking cost, ordering cost and break-up
cost. Contribution [78] studied the optimal flow control policies for a stochastic fluid-
flow network; it aims to minimize the total expected discounted cost defined by the
reward for admission of fluid into the buffer and the cost incurred for holding fluid in
the buffer. The work in [109] proposed two flow control algorithms for networks with
multiple paths between each source/destination pair, both are distributed algorithms
over the network to maximize aggregate source utility, which can be described as a
function of transmission rates. In this work, we focus on the optimal flow control of
CF net systems, addressing the problem of reaching an optimal flow from a given
initial state, while minimizing the time spent on the trajectory.

The optimal steady-state control problem of CPNs has been addressed in [65],
trying to maximize a profit function depending on the marking in the steady-state
(mss), the (controlled) flow in the steady state (wss, C ·wss = 0), and the initial
marking (m0). Here, we assume that the profit function is aiming to maximize the
flow (under certain constrains on control inputs) of steady state for a given m0.
Since only one minimal T-semiflow exists in strongly connected and consistent CF
nets [93], it is equivalent to maximize the flow of any transition tj, by means of the
following LPP [65]:

ψj = maxwss[tj ]
s.t. mss =m0 +C · σ

C ·wss = 0

wss[t] = λ[t] ·
mss[pi]
Pre[pi,t]

− v[pi, t],

∀pi ∈
•t,v[pi, t] ≥ 0

wss,σ,mss ≥ 0

(7.1)

where v[pi, t] are slack variables.
Usually the solution of LPP (7.1) is not unique (different mss may exist for a

given wss). Let us denote by ψj = wss[tj ] the optimal flow of transition tj obtained
by solving (7.1), andM the set of markings with the maximal flow, i.e.,

M = {m|m =m0 +C · σ,σ ≥ 0 and ∃0 ≤ u ≤ f ,
w = f − u,C ·w = 0,w[tj ] = ψj}

(7.2)

where f is the (uncontrolled) flow vector at marking m. Any state in M is an
equilibrium point corresponding to the maximal flow that can be maintained by
applying an appropriate control u. Because all the constrains of (7.2) are linear,
M is a convex subset included in the reachability space. It arises an interesting
problem: which state m ∈ M can be reached in minimum-time (by applying appro-
priate control methods)? or equivalently, how the maximal flow can be obtained in
minimum-time? Here we call this problem Minimum-time Flow Control problem.
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7.2 Difficulties of Minimum-time Flow Control

We already know that for CF nets, given a final state and the corresponding minimal
firing count vector, a minimum-time control strategy is the ON/OFF (proposed in
Section 4.2). However, in the Minimum-time Flow Control problem, we do not know
which firing count vector (thus the marking) is the one that minimizes the time spent
on the trajectory. In particular, the time spent is not monotonic with respect to the
corresponding firing count vectors.

Let us consider the MG (a subclass of CF nets) in Fig.7.1 and assume that
sampling period Θ = 0.01. By solving LPP (7.1), we obtain that the maximal flow
of any transition (because in MGs 1 is the unique T-semiflow) is ψ = 1. Two of
the possible steady-states (in the same region) corresponding to the maximal flow
are: m1 = [100 170 20 94 6 190 10 10 4]T and m11 = [100 2 188 94 6 190 10 10
4]T , m1,m11 ∈ M, with corresponding minimal firing count vectors σ1 = [0 30 6
0 10 0 0]T and σ11 = [0 198 6 0 10 0 0]T , respectively. Obviously, σ1 ≤ σ11. Let
us consider 9 intermediate points on the straight line from m1 to m11, obtained by
mi = (1−α)·m1+α·m11, i = 2, 3, ..., 10, α = 0.1, 0.2, ..., 0.9. Intermediate markings
m2 to m10 belong toM, hence they are also steady-states with the maximal flow,
and the corresponding minimal firing count vectors satisfy σ1 ≤ σ2 ≤ ... ≤ σ10 ≤
σ11. By applying the ON/OFF controller, the numbers of time steps for reaching
m1 to m11 starting from m0 = [100 200 0 100 0 200 0 0 10]T are shown in Fig.7.2.

Figure 7.1: A simple MG with the maximal flow ψ = 1, firing rate vector λ = [1 0.5
0.25 1/6 0.05 0.1 0.1]T
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For reaching m1 by applying the ON/OFF controller, the required number of
time steps is 827. For m2, it is decreased to 507 (remember that σ1 ≤ σ2). The
required number of time steps is further decreased to 379 for m3 to m9. But it
starts to increase fromm10. For reachingm11, 919 time steps are required. We can
easily observe that a smaller σ does not provide less time to obtain the maximal
flow. Furthermore, the non-monotonicity with respect to the firing count vector has
been exhibited in this example.
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Chapter 7. Minimum-time Flow Control of CF nets

Figure 7.2: The time steps required to reach different steady-states with the max-
imal flow by applying the ON/OFF controller to the MG shown in Fig.7.1: non-
monotonicity appears with respect to the corresponding firing count vectors
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The difference between σ1 and σ2, for example, is that in σ2 transition t2 fires
more than in σ1. Therefore, p3 receives more tokens and t5 may fire faster (its flow
is increased). In the cases of σ1 to σ9, transition t5 is the one that fires “slowest”,
i.e., the one that requires more time steps to fire the given firing amount. Therefore
by increasing the flow of t5, the overall number of time steps is decreased. On the
other hand, if t2 fires too much, as in σ10 and σ11, t2 becomes the one that requires
more time steps, so the overall time steps starts to increase.

7.3 A heuristic algorithm for CF nets

In a (strongly connected and consistent) CF net there exists a unique minimal T-
semiflow x and its support contains all the transitions [93]. Therfore, if ψj is the
maximal flow of transition tj (the optimal solution of LPP (7.1)), then the maximal
flow of every transition can be deduced (because ψ is a steady-state flow, C ·ψ = 0
and ψ = α · x, α > 0). Moreover, the minimal required marking of a place pi to
ensure the maximal flow can be easily determined by the firing rate of its unique
output transition and weight on the arc:

Definition 7.3.1. Let 〈N ,λ,m0〉 be a CF system, x be the minimal T-semiflow and
ψj be the optimal flow of transition tj. Then, µ is said to be the minimal required
marking for the optimal flow 1, if:

µ[pi] = (ψj/λ[t]) · (x[t]/x[tj ]) · Pre[pi, t],∀pi ∈ P, {t} = pi
• (7.3)

1It is a marking vector that may not be reachable.
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An immediate consequence of Definition 7.3.1 is the following: given m ≥ µ,
the uncontrolled flow of any transition tj corresponding to m satisfies f [tj ] ≥ ψj .
Therefore, if all the transitions are controllable, there exists 0 ≤ u ≤ f , such that the
controlled flow w[tj] = ψj . In other words, for any reachable marking m, m ∈ M
iffm ≥ µ. Thus, the Minimum-time Flow Control problem of CF nets is equivalent
to reaching a marking m ≥ µ in minimum-time. Moreover, a firing count vector σ
that leads to a steady statemss with the maximal flow is a solution of the following
equations:

mss =m0 +C · σ
mss ≥ µ
σ ≥ 0

(7.4)

As we have discussed in Chatper 4, the ON/OFF controller is a minimum-time
controller of CF nets assuming a given firing count vector. However, the firing count
vector satisfying (7.4) is not unique in general. Therefore, we need to compute the
best one, i.e., the one that leads to the maximal flow in minimum-time by applying
the ON/OFF controller.

According to the ON/OFF strategy, every transition fires as fast as possible,
until each one completes its required amount given by the corresponding firing count
vector. Therefore, the overall time is determined by the “slowest” transition, i.e.,
the one that costs most time steps to fire its given amount. Since the firing speed is
variable in TCPN under infinite server semantics, depending on the state evolution,
we will consider an estimation of the number of time steps (something similar to the
concept we have used in the B-ON/OFF controller (see Section 4.4.2)).

Let us assume that the current marking at time step k is mk and let σk be
a firing count vector that should be fired to reach a state in M. Then Sk[tj] =

⌈
σk[tj ]

λj ·enab(mk,tj)·Θ
⌉ can be viewed as an estimation of the number of time steps that

transition tj needs to fire (it is an estimation because it is assumed a constant speed
for tj). Given transitions ta and tb, if Sk[ta] > Sk[tb], then it would be said that
ta is “slower” than tb. Notice that Sk does not give neither a lower nor an upper
bound because mk changes dynamically.

In the heuristics we propose, at each time step k we minimize the number of time
steps of the slowest transition, i.e., to minimize the infinity norm of Sk, ||Sk||∞ =
max{|Sk[tj ]|}, tj ∈ T . The minimization of ||Sk||∞ can be done by solving the
following LPP, in which a new variable d is introduced:

min d
s.t. mss =mk +C · σk

mss ≥ µ
d ≥ σk[t]/(λ[t] · enab(mk, t) ·Θ),∀t ∈ T
σk ≥ 0

(7.5)

where mk is a the current marking at time step k.
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The control progress is given in Algorithm 10, which is a close-loop control and
at each time step we recompute the “best” firing count vector σk according to the
current state. Then, σk is fired by applying the ON/OFF strategy, obtaining a
heuristics for the Minimum-time Flow Control. Since the stability of applying the
ON/OFF controller to CF nets has been proved, the convergence of Algorithm 10
can be easily obtained.

Algorithm 10 An algorithm of Minimum-time Flow Control problem for CF nets

Input: 〈N ,λ,m0〉, tj, Θ
Output: sequence of controlled flows: w0, w1, ..., wk

1: compute ψj by solving LPP (7.1);
2: compute µ that satisfies (7.3);
3: k ← 0;
4: while not (mk ≥ µ) do
5: compute σk by solving LPP (7.5);
6: compute the controlled flow wk corresponding to the ON/OFF strategy;
7: update state: mk+1 ←mk +Θ ·C ·wk;
8: k ← k + 1;
9: end while

10: compute the steady state controlled flow wk, such that: C ·wk = 0,wk[tj ] = ψj ;

11: Return w0, w1, ..., wk;

Algorithm 10 can be further improved, considering the persistency property of
CF nets: the (additional) firing of one transition does not disable the firing of the
others [93]; however, it may increase the flow of the other transitions (as in the net
system in Fig.7.1, additional firings of t2 increased the flow of t5). Based on this
observation and because our problem is to drive the system to a marking m ∈ M,
i.e., m ≥ µ, for any transition t, if at time step k all of its input place pi ∈

•t satisfy
mk[pi] > µ[pi], we can fire t without increasing the time to reach M. So, in the
improved algorithm we distinguish the following two cases:

(1) for any transition t with σk[t] = 0, we consider the markings of the input
places of t: if for any pi ∈

•t, mk[pi] > µ[pi], then t is fired as fast as possible;
else, t is blocked;

(2) for any transition t with σk[t] > 0 the ON/OFF strategy is applied.

The strategy of case (1) can only decrease the time for reaching a marking in
M, but not increase. This is because we would fire t only if all of its input places
already have more-than-enough markings to obtain the maximal flow; at the same
time this firing will not “slow down”, but may “speed up”, the firing of others. This
improved process is given in Algorithm 11.

Proposition 7.3.2. Let 〈N ,λ,m0〉 be a CF net system. By applying Algorithm 11,
the system converges to a steady-state m ∈ M that maximizes the flow.
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Algorithm 11 Improved algorithm of Minimum-time Flow Control problem for CF
nets
Input: 〈N ,λ,m0〉, tj, Θ
Output: sequence of controlled flows: w0, w1, ..., wk

1: compute ψj by solving LPP (7.1);
2: compute µ that satisfies (7.3);
3: k ← 0;
4: compute σk by solving LPP (7.5);
5: while not (mk ≥ µ) do
6: for all t ∈ T do
7: if σk[t] > 0 then
8: compute the controlled flow wk[t] corresponding to the ON/OFF strat-

egy;
9: else if mk[pi] > µ[pi] for any pi ∈

•t then
10: wk[t]← λ[t] · enab(mk, t);
11: else
12: wk[t]← 0;
13: end if
14: end for
15: update state: mk+1 ←mk +Θ ·C ·wk;
16: k ← k + 1;
17: end while
18: compute the steady state controlled flow wk, such that: C ·wk = 0,wk[tj ] = ψj ;

19: Return w0, w1, ..., wk;

Proof: SinceN is a CF net, the additional firings (for a transition t with σk[t] = 0)
do not disable the firing of σk that drives the system to a state m ∈ M. On the
other hand, for any place pi with m[pi] ≤ µ[pi], we do not decrease its marking,
therefore the algorithm will converge to a marking m′ ≥ µ belonging toM.

Algorithm 11 is still a heuristics for minimum-time. One clear reason is that we
try to look for the “best” firing count vector (in terms of spending less time on firing
it) based on an approximation of the time steps that is obtained from the current
state and flow; nevertheless, the risk of choosing a very “bad” one is somehow
reduced because after each time step we recompute it based on the actual state.
Another possible reasons is that only local information is considered. By means of
some firings, the time spent for reaching a marking inM may be decreased. But, in
the case concerning a transition t with σk[t] = 0, it is allowed to fire t again only if
its input places have tokens more than those in µ. However, this strategy may not
be the optimal in some situations, even for MGs (a simple subclass of CF nets, see
the net in Fig. 7.5 for a example).
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Chapter 7. Minimum-time Flow Control of CF nets

7.4 Examples

Let us consider the CF net system in Fig.7.3, assuming Θ = 0.01. The unique
minimal T-semiflow of the net is x = [1 1 1 1 1 2 2 1 1 1]T .

Figure 7.3: A CF net system with the maximal flow ψ9 = 1 , firing rate vector λ =
[0.25 1/6 0.05 0.25 1/6 0.1 0.5 0.05 1/30 1/30]T
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Assume that we want to maximize the flow of transition t9, by solving LPP (7.1)
with tj = t9, it is obtained ψj = 1. From (7.3), the corresponding minimal required
marking is µ = [4 6 4 20 40 4 6 4 4 40 40 30 30]T . However, the solution of LPP (7.4)
is not unique. For instance, σ1 = [34 28 0 6 0 0 100 30 0 0]T and σ11 = [6 0 0 34 28
0 100 30 0 0]T are both solutions of LPP (7.4), reaching maximal-flow steady states
m1 = [166 6 4 128 40 194 6 100 4 40 40 30 30]T and m11 = [194 6 4 100 40 166 6
128 4 40 40 30 30]T . Similarly to the example of the MG in Fig.7.1, we also consider
9 more intermediate points on the straight line from m1 to m11 and the maximal
flow can be obtained from all of them. The time steps required for reaching mi,
i = 1, 2, ..., 11, by using the ON/OFF controller, the results of applying Algorithm
10 and Algorithm 11, are illustrated in Fig.7.4.

As shown in Fig. 7.4, by applying Algorithm 10 we can obtain the maximal
flow in 1895 time steps, which is the same as using the ON/OFF controller to
drive the system to m6. However, we should remember that we do not know a
priori that driving the system to m6 will cost less time than to other markings mi,
i = 1, 2, ..., 11, i 6= 6. By applying Algorithm 11, the time to reach the maximal flow
is further reduced to 1641 time steps.

Although Algorithm 11 can highly reduce the time spent for reaching a marking
inM, the minimum-time is not guaranteed in general, even for MGs. Let us consider
a MG shown in Fig.7.5, assuming that the firing rate vector λ = [1 1 1 1 1/3 1 1]T

and Θ = 0.01. The maximal flow is ψ = 1 (obtained by solving LPP (7.1)) and
the corresponding minimal required marking is µ = [1 1 1 3 3 1 1 1]T . By using
Algorithm 10, we can reach the maximal flow in 138 time steps. By Algorithm 11, we
can reduce the number of time steps to 102, reaching steady-state m = [5.64 2.941
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Figure 7.4: Comparison of time steps for reaching the maximal of the CF system in
Fig.7.3
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(b) time steps required to reach the maximal
flow by applying the proposed algorithms

2.609 3 3 1 3.587 7.323]T and the corresponding firing count vector σ = [9.09 3.55
1.609 3 0 0.2 6.413]T . Nevertheless, it is still not the minimum-time for reaching the
maximal flow: by firing σ′ = [8.942 3.437 1.598 3 0 0.2 6.34]T using the ON/OFF
strategy, we reach another maximal flow steady-state m′ = [5.605 2.84 2.598 3 3 1
3.66 7.398]T in only 100 time steps.

7.5 Conclusions

In this chapter we discuss Minimum-time (Optimal) Flow Control problems for CF
net systems. The main difference from the target marking control problem (at the
same time the main difficulty of solving it) is that, in general we cannot uniquely
determine a steady state with the given optimal flow (in our case the maximal flow),
and actually, they belong to a convex region. Then, two issues arise: which steady
state with maximal flow can be reached fastest? and which control method should
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Figure 7.5: A MG example where Algorithm 11 does not give the minimum-time to
the maximal flow

t1

p2 p3

p4

p5 p6

p7

p8

t2 t3

t4

t5

t6

t7

0.1

p1

1 4

1.22.8

10 10

be applied? We have already known that the ON/OFF controller is a minimum-time
controller assuming a given firing count vector, and here we first focus on how to
choose the “best” one. We propose a heuristic algorithm for CF nets, in which we
compute and update at each time step the “best” firing count vector according to
an estimation of the number of time steps for firing. We also show that by means
of some additional firings (because of the persistency of CF nets, the firing of one
transition will reduce the enabling degrees of other transitions, but may increase their
flows), the time to reach the maximal flow can be further reduced. Concerning the
computational complexity, in each time step we solve a LPP, therefore, in polynomial
time.
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Chapter 8

Simulations and Comparisons

The control methods proposed in this thesis have been implemented and integrated
to SimHPN, a Matlab toolbox for hybrid PNs [48]. In this chapter we carry out
several case studies using the SimHPN toolbox for control laws computation and
for simulations. In the first three case studies we focus on the centralized control
methods and the last one illustrates the distributed control.
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8.1 Implementation: SimHPN

The control methods proposed in this thesis are implemented and integrated into
a Matlab embedded toolbox for hybrid Petri nets, called SimHPN. It provides a
collection of tools for simulation, analysis and synthesis of dynamical systems that
are modelled by continuous, discrete and hybrid PNs. Different firing server seman-
tics are supported for both continuous and discrete transitions, as infinite server
semantics and product server semantics. Moreover, deterministic delays with single
server semantics are also available for discrete transitions. Besides of simulation
options, SimHPN also offers some useful tools such as computing the structural
elements (P/T-semiflows), performance bounds, optimal steady-state control; the
optimal observability and diagnosis of continuous models. Both the data related
to the model description, i.e., the net structures, markings, timing parameters etc.,
and the output results can be exported to the Matlab workspace and then used for
further analysis.

Figure 8.1: The main Graphical User Interface of SimHPN

The main GUI (Graphical User Interface) of the toolbox is shown in Fig. 8.1.
The model description, i.e., Pre, Post, λ andm0, can be imported from other PN
editors such as Pmeditor or TimeNet [53], or from a .mat file; alternatively, users
can also directly input the parameters through the edit boxes.
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Figure 8.2: The pop-up window corresponding to the MPC-ON/OFF controller

Regarding the control of TCPNs, we can choose the menu “continuous” from the
Menu Bar, then in the pop-up sub-menus, users can select an appropriate controller,
both centralized or distributed are available. For the target marking control, the
desired final state mf and other parameters (if exist) can be input through edit
boxes. For instance, by selecting the MPC-ON/OFF controller from the centralized
method, a window as in Fig. 8.2 appears. In the case that distributed control is
selected, users need to provide the number of subsystems. Then, a window shown
in Fig. 8.3 appears, in which the definition of subsystems should be inputted: for
each subsystem, its buffer places and interface transitions should be given. In the
corresponding edit box, the first line should be a row vector composed of the index
of buffer places, and the second line should be a row vector composed of the index
of interface transitions. For example, Fig. 8.3 gives the input parameters related
to the example of three subsystems shown in Fig. 6.5. Users can also choose the
minimum-time flow control for CF nets, in which we automatically compute the
maximal flow of the system and give a heuristic minimum-time control for reaching
the flow.

The toolbox is available at http://webdiis.unizar.es/GISED/?q=tool/simhpn,
and more technical details can be found in [48].

In the sequel, we consider several examples from flexible manufacturing systems
and Automatic Guided Vehicle Systems (AGVS). We simulate the centralized control
methods and compare the results (time steps and CPU time) by using the first 3
examples. Apart from the methods proposed in this thesis, another heuristics for
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Figure 8.3: The pop-up window corresponding to the distributed control

minimum-time control, the approaching minimal-time controller proposed in [5], is
also included in the comparison. In the last example, decentralized control methods
are considered. The simulations are performed by using Matlab 8.0 on a PC with
Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz, 3.24GB of RAM.

8.2 Case study 1: centralized control of a manufactur-

ing cell

Let us consider the manufacturing cell shown in Fig. 8.4. It consists of three
machines M1, M2, M2 and two robots R1, R2. Two semi-products A and B are
processed by M1 and M2, respectively, then they are assembled in M3 to get the
final product. Robot R1 moves the raw materials from the input buffer to M1 or
moves the semi-product B from M2 to M3; robot R2 moves the materials from the
input buffer to M2 or moves the semi-product A from M1 to to M3. The logical
layout and production process are given in Fig. 8.4(a) and Fig. 8.4(b).
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Figure 8.4: (a) Logical layout of a manufacturing cell (b) Its production process

The PN model of the described manufacturing cell is presented in Fig. 8.5.
When machine M1 is available (p14 is marked) and robot R1 is idle (p18 is marked),
a part of raw material for semi-product A can be loaded to machine M1, changing
to loading state (p1). When the loading process finishes (t2 fires), M1 changes to
working state (p2) and robot R1 is freed (p18 is marked). Transition t3 models the
working process of machine M1, and when it finishes, the semi-product A is stored in
p3. If the slots for semi-product A in machine M3 (p12) is available and robot R2 is
idle, the semi-product A can be loaded from machine M1 to machine M3 then waits
in p9. The behavior of M2 for processing semi-product B is modelled in a similar
way, but the robots are used in a different order. Finally, if both semi-products A
(in p9) and B (in p10) are available, they are assembled (rendez-vous) to the final
product. The meaning of the places and transitions of the PN model is in Table 8.1.

We assume that each robot can only handle one piece of raw materials or semi-
products and machine M1, M2 can accept maximally two pieces at the same time;
machine M3 has 4 free slots for each type of semi-products and can assemble 2 pairs
of semi-products at the same time; and it is assumed that we initially have 5 pieces
of raw materials. According to this setting, the initial state m0 of the system is
described in Fig. 8.5. Let us point out that, in this system there exist deadlocks;
however, the system can be driven to any reachable final state by using appropriate
control methods.

Considering the system as timed, we assume that every transition tj has an av-
erage delay time, denoted by δ[tj ]. In particular, the loading time of raw materials
to machine M1 and M2 are all equal to 0.1 time units, i.e., δ[t1] = δ[t2] = δ[t6] =
δ[t7] = 0.1; the loading operations of semi-products from machines M1 to M3 and
M2 to M3 take 0.4 time units, i.e., δ[t4] = δ[t5] = δ[t9] = δ[t10] = 0.4; the pro-
cessing of machine M1 requires 0.5 time units, and for M2, it is 0.8 time units, i.e.,
δ[t3] = 0.5, δ[t8] = 0.8; it takes 0.4 time units to combine the two semi-products,
and 2 time units to process them in machine M3, i.e., δ[t11] = 0.4, δ[t12] = 2. In
the corresponding TCPN model under infinite server semantics, time delays are ap-
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Figure 8.5: The PN model of a manufacturing cell, where robots R1 and R2 are
shared resources: R1 is used to move raw materials into M1, and to move semi-
products from M2 to M3; R2 is used to move raw materials into M2, and to move
semi-products from M1 to M3.

proximated by their mean values (λ[tj] = 1/δ[tj], tj ∈ T ), obtaining a deterministic
approximation of the discrete case [80].

Let us consider a target marking control problem of this system. In order to
have a positive initial marking, we assume that all the empty places in Fig. 8.5
have initial marking equal to 0.1. For a manufacturing system, normally we want
to maximize the throughput (flow) of the system. In particular, we can verify that
this system has a unique minimal T-semiflow equal to 1; therefore, it is equivalent
to maximize the flow of any transition tj ∈ T . By solving the same LPP as in (7.1)
(a simple optimal steady-state control problem [65]), the maximal flow is ψ = 0.775.

With ψ = 0.775, we can compute a final marking state mf with the minimal
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Table 8.1: The interpretation of the PN model in Fig. 8.5

Place Interpretation Transition Interpretation

p1 M1 is loading t1 R1 starts to load M1
p2 M1 is working t2 R1 loading finishes
p3 semi-product A is ready t3 M1 finishes processing
p4 M3 is loading A t4 R2 starts to load A to M3
p5 M2 is loading t5 R2 loading A finishes
p6 M2 is working t6 R2 starts to load M2
p7 semi-product B is ready t7 R2 loading finishes
p8 M3 is loading B t8 M2 finishes processing
p9 A is waiting for assembling t9 R1 starts to load B to M3
p10 B is waiting for assembling t10 R1 loading B finishes
p11 M3 is working t11 combine A and B
p12 available slots for A t12 assembling finishes
p13 available slots for B
p14 M1 is available
p15 input raw materials
p16 R2 is idle
p17 M2 is available
p18 R1 is idle

Work In Process (WIP) cost, by solving the a similar LPP problem:

min l ·mf

s.t. mf =m0 +C · σ
C ·wf = 0

wf [t] = λ[t] ·
mf [pi]

Pre[pi,t]
− v[pi, t], ∀t ∈ T, pi ∈

•t

v[pi, t] ≥ 0
wf [tj ] = ψ, ∀tj ∈ T
wf ,σ,mf ≥ 0

(8.1)

where l is the cost vector due to immobilization to maintain the production flow, e.g.,
due to the levels in stores. In this example, let us assume that we try to minimize the
storage, i.e., the number of tokens, in the buffer places, i.e., l[p3] = l[p7] = l[p9] =
l[p10] = 1 and for other places pi, let l[pi] = 0. By solving LPP (8.1), we obtain
an optimal final state mf = [0.0775 0.3875 0.31 0.31 0.0775 0.62 0.31 0.31 0.31 0.31
1.55 2.13 2.13 1.315 0.0775 0.8125 1.083 0.8125 0.55]T , such that the maximal flow
and minimal WIP cost are achieved.

We also consider a variant of the net system in Fig. 8.5, shown in Fig. 8.6. The
difference is that now the robots R1, R2 are used in a different manner: R1 is shared
by machine M1 and M2 to move raw materials into machines; while R2 is shared by
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machine M1 and M2 to move semi-products into M3. The same initial marking and
firing rates are used as before and by solving the same LPPs, we obtain the maximal
flow at a final marking with the minimal WIP cost: mf = [0.0775 0.3875 0.31 0.31
0.0775 0.62 0.31 0.31 0.31 0.31 1.55 2.13 2.13 1.315 0.0775 0.58 1.083 1.045 0.55]T .
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Figure 8.6: A variant of the PN model in Fig. 8.5: Robots R1, R2 are used in a
different manner. Now R1 is used to move raw materials to M1 and M2, and R2 is
used to move semi-products from M1 or M2 to M3.

The system is not CF (also the following other examples), so the standard
ON/OFF controller is not applicable. Table A.5 (corresponding to the net system in
Fig. 8.5) and Table A.6 (corresponding to the variant net system in Fig. 8.6) in the
Appendix give the number of time steps required for reachingmf by using different
control methods, and the corresponding CPU time for computing the control laws.

For the original system in Fig. 8.5, the B-ON/OFF controller gives the smallest
number of time steps (209), obtained by using d = 2. The ON/OFF+ controller
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8.3. Case study 2: centralized control of an assembly line

requires the largest number of time steps (457), although its computational cost
(275ms) is only about half of the B-ON/OFF controller. The result of the approach-
ing minimum-time controller is not very good, it requires 311 time steps to reach
the final state and the required CPU time to compute the control law is 200 times as
large as that of the B-ON/OFF controller. The number of time steps of the MPC-
ON/OFF controller (around 220) is not far from the best, however its computational
cost is high, for example, when N = 5 it is more than 200 times higher than that of
the B-ON/OFF controller.

For the variant system in Fig. 8.6, the B-ON/OFF controller still gives the
smallest number of time steps (223). The same number is also obtained by using the
ON/OFF+ controller, while its computational cost is also the lowest (108ms, about
one fourth of that of the B-ON/OFF controller). The approaching minimum-time
controller requires the largest number of time steps (316) and very high computa-
tional cost (55,608ms). The MPC-ON/OFF controller also gives quite small number
of time steps (228) but requires much more CPU time (even with N = 1 it is about
40 times larger than that of the ON/OFF+ controller.)

8.3 Case study 2: centralized control of an assembly

line

The second example (adapted from [111]) is a more complex assembly line with five
machines, three different parts A, B and C are assembled for one final product. The
input of part A is first processed in machine M1 then machine M3; the input of part
B is processed by machine M2 then machine M1; the semi-products from part A
and B are first processed in machine M4; finally the obtained products are assembly
in machine M5 with the one from part C that is sequentially processed by machine
M3, M1 and M4. The production process of the system is shown in Fig. 8.7.

inA M1 M3

inB M2 M1

inC M3 M1

M4

M4

M5 out

Figure 8.7: The production process of an assembly system

The PN model of the system is presented in Fig. 8.8. Machines are modelled
by resource places labelled with name M1 to M5; each machine has buffers to store
the semi-products, for instance, after the input of part A has been processed by
M1, the obtained products are stored in buffer place B1A(p3), and the maximal
sizes of the buffers are limited by, for example, place MaxB1A(p23). The customer
orders for the final products are also modelled and a “push” strategy is applied,
i.e., the assembling process keeps working until the buffers are full. This strategy
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can decrease the customer waiting time, accepting a high work in process. The
interpretations of the places and transitions in the PN model are explained in Table
8.2.
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Figure 8.8: The PN model of an assembly system with five machines

Table 8.2: The interpretation of the PN model in Fig. 8.8

Place Interpretation Transition Interpretation

inX input of part X t1, t8, t12 M1 starts working
My machine y t2, t9, t13 M1 finises
MyX machine y is working on

part X
t6 M2 starts working

M5F machine 5 is working on
the final product

t7 M2 finishes

ByX buffer of part X in My t3, t10 M3 starts working
B5F buffer of the final product

in M5
t4, t11 M3 finishes

MaxByX maximal size of buffer ByX t5, t14 M4 starts working
MaxB5F maximal size of buffer B5F t15, t16 M4 finishes
Cus customers t17 M5 starts working
Wait waiting orders t18 M3 finishes

t19 final product delivers
t20 customer order arrives

⋆ X = A, B, C and y = 1, 2, 3, 4.
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8.3. Case study 2: centralized control of an assembly line

We assume that the input of each part initially has 10 pieces; each machine
can handle 2 pieces at the same time; buffer sizes are limited to 5; and initially
8 customers are considered. The corresponding initial marking m0 is shown in
Fig. 8.8, in which the empty places are assumed to have initial markings equal to
0.1. Similarly to the first example, we also assume that every transition has an
average delay time, denoted by δ: the stating time delays of all machines are equal
to 0.02 time units, i.e., δ[t1] = δ[t3] = δ[t5] = δ[t6] = δ[t8] = δ[t10] = δ[t12] =
δ[t14] = δ[t17] = 0.02; the working process of machine M1 takes 0.2 time units,
i.e., δ[t2] = δ[t9] = δ[t13] = 0.2; for machines M3 and M4, 0.4 time units, i.e.,
δ[t4] = δ[t11] = δ[t15] = δ[t16] = 0.4; machines M2, M5 work slower, it takes 0.8
time units, i.e., δ[t7] = δ[t18] = 0.8; the delay time of customer orders is 0.8; and
the final products are delivered with delay of 0.1 time units, i.e., δ[t19] = 0.1.

We consider reaching a final state with the flow of transition t19 (modelling the
delivering of final products) maximized, and now we will also consider the work in
process (WIP) cost in the profit function. We assume a fixed residence cost, equal
to 50, for per piece of (semi-) products in the buffers; for machines M1, M4, the
operation cost is 150; for machines M2, M5, the cost is 100; and for machine M3,
the cost is 120. For per piece of final products, we assume an income of 1000. Then
the following LPP can be written:

max J = 1000 ·wf [t19]− l ·mf

s.t. mf =m0 +C · σ
C ·wf = 0

wf [t] = λ[t] ·
mf [pi]

Pre[pi,t]
− v[pi, t],

∀pi ∈
•t,v[pi, t] ≥ 0

wf ,σ,mf ≥ 0

(8.2)

where J is the profit function and l[3] = l[5] = l[10] = l[12] = l[15] = l[17] = l[7] =
l[19] = l[22] = 50, l[2] = l[11] = l[16] = l[6] = l[18] = 150, l[4] = l[14] = 120,
l[9] = l[21] = 100, for other places pi, l[i] = 0.

By solving LPP (8.2), a desired final state is mf = [5.78 0.5122 0.05122 1.024
0.05122 1.024 0.05122 4.756 2.049 0.05122 0.5122 0.05122 5.78 1.024 0.05122 0.5122
0.05122 1.024 0.05122 4.124 2.049 0.2561 4.637 4.124 3.1 4.637 4.124 4.637 4.124 4.844
7.844 0.2561 0.7634 0.05122 0.1512 0.1512 0.05122]T , with maximal flow wf [t19] =
2.561. Table A.7 shows the simulation results by using different control methods.

In this case, the B-ON/OFF controller again gives the smallest number of time
steps (131), which is much smaller than that of the ON/OFF+ controller (249)
and that of the approaching minimum-time controller (300). By using the MPC-
ON/OFF controller with N = 5, the same number of time steps as that of the
B-ON/OFF controller can be obtained, but its computational cost (284,859ms) is
about 600 times larger than that of the B-ON/OFF.
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8.4 Case study 3: centralized control of a manufactur-
ing system

In the third example (taken from [60]), we consider a flexible manufacturing system
with four types of machines M1 to M4, and three type of robots R1 to R3. Three
type of products P1 to P3 can be produced in this system. Fig. 8.9 represents its
production process. The PN model of this system is shown in Fig.8.10, and the final
products are finished in transition t14, t20, t6 respectively.

P1 : I1
R2

M2 O1
R2

P2 : I2
R3

M4 M3
R2

O2
R1

P3 : I3

M3 M4
R2

M1 M2
R2

O3

R1

R1

R3

R3

Figure 8.9: The production process of a flexible manufacturing system
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Figure 8.10: The PN model of a flexible manufacturing system

Assume that the initial statem0(p1) = 5,m0(p5) = 10,m0(p14) = 7,m0(p20) =
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8.5. Discussions of case study 1–3

m0(p21) = m0(p22) = 3, m0(p23) = m0(p24) = m0(p25) = m0(p26) = 1 and the
initial marking of the rest of places is equal to 0.1, the firing rate of transitions is
defined as λ =[1/3 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2 1/2 1/4 1/2 1/2 1 1/2 1/2 1/2
1/2 1/2 1/4]T and sampling period be Θ = 0.03. Let us assume that the objective
function of the system is defined as: 3 ·wf [t6] + 5 ·wf [t14] + 4 ·wf [t20], where wf

is the flow in a steady state. Then following LPP can be written:

max J = 3 ·wf [t6] + 5 ·wf [t14] + 4 ·wf [t20]
s.t. mf =m0 +C · σ

C ·wf = 0

wf [t] = λ[t] ·
mf [pi]

Pre[pi,t]
− v[pi, t],

∀pi ∈
•t,v[pi, t] ≥ 0

wf ,σ,mf ≥ 0

(8.3)

By solving LPP (8.3), a desired final state (maximizing the profit function) can
be computed: mf = [3.4; 1.3; 0.4; 0.2; 7.6; 0.4; 0.4; 0.4; 0.4; 0.4; 0.4; 0.4; 0.4; 3.1;
0.8; 0.4; 0.4; 0.4; 2.4; 2; 0.8; 0.4; 0.7; 0.4; 0.4; 0.4] and the maximal profit is J = 3.
The simulation results by using different control methods are shown in Table A.8.

In this example, the approaching minimum-time controller gives the smallest
number of time steps (279), which is about 10% smaller than that of the other
control methods. However, the CPU time required for computing the control law
(60,691ms) is about 200 times as large as that of the ON/OFF+ controller and 50
times as large as that of the B-ON/OFF controller.

8.5 Discussions of case study 1–3

In Table 8.3, we summarize the smallest numbers of time steps that obtained by
using different control methods, and the corresponding parameters, according to the
simulation results shown in Table A.5–A.8. From the simulation results, we can
make some initial conclusions (that are consistent with those in Section 4.4.5):

Regarding the numbers of time steps:

• The B-ON/OFF controller gives the smallest number of time steps in most
of the cases (except for case study 3). Usually smaller numbers of time steps
are obtained by using smaller values of d, as shown in Table A.5 and Table
A.7. A small value of d implies that the “slower” transitions in a conflict
will keep blocked until their flows get very “balanced” with the “faster” ones;
then the proportional firing strategy (used in the ON/OFF+ controller) is
applied to fire the “slower” transitions, and this strategy is more suitable
when conflicting transitions have very similar flows, therefore a smaller value
of d may give better results. If d is very large, the B-ON/OFF controller is
not sensitive to the difference of flows among conflicting transitions, and it
is similar to apply the ON/OFF+ directly. However, in the case that the
B-ON/OFF controller cannot improve the result of the ON/OFF+ controller
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Table 8.3: The smallest numbers of time steps of using different control methods
among different parameters (if exist), derived from Table A.5–A.8. For the MPC-
ON/OFF controller, the weight matrix Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Cases Control methods Time steps CPU time Parameters
appro. min-time 311 88,505

Case 1 ON/OFF+ 457 275
B-ON/OFF 209 426 d = 2
MPC-ON/OFF 219 102,622 N = 5, r = 1000, q =1

(or 100, 1000)
appro. min-time 316 55,608

Case 1 ON/OFF+ 223 108
(variant) B-ON/OFF 223 419 d = 20 (or 15, 10, 5, 2)

MPC-ON/OFF 228 5,018 N = 1, r=1000, q=1
MPC-ON/OFF 228 99,749 N = 5, r = 1000, q =1

(or 100, 1000)
appro. min-time 300 138,826

Case 2 ON/OFF+ 249 213
B-ON/OFF 131 475 d = 10 (or 5, 2, 1)
MPC-ON/OFF 131 284,859 N = 5, r=1000, q=100
appro. min-time 279 60,691

Case 3 ON/OFF+ 301 271
B-ON/OFF 301 1,157 d = 20 (or 15, 10, 5, 2, 1)
MPC-ON/OFF 310 443,439 N = 5, r = 1000, q =1

(or 100, 1000)

(when conflicting transitions have similar flows), the numbers of time steps are
not sensitive to the values of d, as shown in Table A.6 and Table A.8.

• The ON/OFF+ controller usually gives quite small numbers of time steps
(as shown in Table A.6 and Table A.8), except when the flows of conflicting
transitions are very different. For example, in the original system in case study
1 (Fig. 8.5, Table A.5), the flows of t4 and t9 are much smaller than the ones
of t1 and t6; those four transitions are in a coupled conflict, therefore if we fire
them proportionally by using the ON/OFF+ strategy the result is not good,
costing 457 time steps, more than the double of the B-ON/OFF controller, to
reach mf . On the other hand, we can see that in the variant system in cast
study 1 (Fig. 8.6, Table A.6), it gives the smallest number of time steps (as the
B-ON/OFF controller) and its computational cost is the lowest. It is because
the fact that in the variant system, transitions t4, t9 and transitions t1, t6 are
now in different sets of coupled conflict.

• Most probably, the approaching minimum-time controller may not work very
well when there exist some places with very small initial markings (as in case
study 1 and 2, Table A.5–A.7). The reason may be what we have mentioned
before: in this approach the flow between two adjacent states is determined
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by the one with the smaller flow, so if some states have very small flows (for
example the initial state), it may take long time to reach the final state.

• The numbers of time steps obtained by using the MPC-ON/OFF controller
are not far from the best among other control methods, even the best (as the
B-ON/OFF controller) in case 2 (shown in Table A.7). Usually, its required
numbers of time steps can be decreased but using a larger time horizon N ,
but the improvement is not very significant (less than 0.5% in case 1, 3% in
case 3 and 10% in case 2, but the computational costs increase more than
20 times). However, we can also observe that even with a small N , we may
already obtain a reasonable number of time steps (as in case 1, Table A.5 and
Table A.6). On the other hands, in these examples the number of time steps
is not very sensitive to the weights on the matrix R and Q.

Regarding the computational costs:

• The ON/OFF+ controller is the computationally cheapest one in all these
three case studies.

• The B-ON/OFF controller costs slightly higher CPU time than the ON/OFF+
controller (less than 5 times higher), because an estimation of number of time
steps should be computed at each time step. But, it is still very efficient.

• We can see that in those three cases, the approaching minimum-time controller
costs more than hundred times the CPU time than that of the ON/OFF+ and
B-ON/OFF controller, because it needs to solve a non-linear problem whenever
an intermediate state is inserted on the trajectory to reduce the time.

• In these examples, the computational cost of MPC-ON/OFF controller is not
higher than the approaching minimum-time controller when a small N is used;
but it always costs more CPU time than the ON/OFF+ and B-ON/OFF
controller. On the other hand, the computational cost grows fast with respect
to N . From our simulation, the required CPU time for computing the control
law increases more than 20 times, when N increases from 1 to 5. (We should
also notice that, the increasing speed of the computational costs with respect
to N may also depend on the size and structure of the considered net systems.)

8.6 Case study 4: distributed control of an AGV Sys-
tem

In this case study we consider a model of Automatic Guided Vehicle Systems(AGVS).
The system describes a manufacturing factory floor that consists of four workstations:
WS 1 to 4 and three AGVS areas: AGVS 1 to 3. Each workstation handles some
parts of the system that are first stored in the buffers, then moved from one work-
station to another through the AGVS areas. The system can be naturally viewed
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as 7 subsystems connected by those buffers, each workstation or AGVS area as a
subsystem. The PN model of the system is presented in Fig. 8.11, in which the
buffers are modelled as places. The input and output buffer places of each sub-
system are: for subsystem S1, B(·,1) = {p1}, B

(1,·) = {p9, p10}; for subsystem S2,
B(·,2) = {p9, p10}, B

(2,·) = {p16, p24}; for subsystem S3, B(·,3) = {p16}, B
(3,·) = {p30};

for subsystem S4, B(·,4) = {p24}, B
(4,·) = {p27}; for subsystem S5, B(·,5) = {p30, p27},

B(5,·) = {p33, p36}; for subsystem S6, B(·,6) = {p33, p36}, B
(6,·) = {p45}; for subsys-

tem S7, B(·,7) = {p45}, B
(7,·) = {p1}.
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Figure 8.11: The PN model of an AGVS composed by 7 subsystems

We assume that in the initial state there are certain raw materials or parts in
the input buffer places of each workstation, in particular, m0[p1] = 10; m0[p16] = 8;
m0[p24] = 5; m0[p33] =m0[p36] = 5. In each workstation there exist some (shared)
machines, modelled by places, which have the initial markings as the following:
m0[p6] = 4; m0[p21] = 3; m0[p28] = m0[p29] = 2; m0[p42] = m0[p43] = 3.
There also exist limitations for the parts that can be accepted by the worksta-
tions: m0[p7] = m0[p8] = 8; m0[p22] = m0[p23] = 6; m0[p44] = 8. We as-
sume that in each AGVS area, there maximally have 3 available vehicles, i.e.,
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m0[p15] = m0[p37] = m0[p48] = 3. For the other places in model, we assume
their initial markings equal to 0.1 ensuring positiveness of the initial state required
by the control method. Similarly to the previous examples, we assume final states
of subsystems given in Table 8.4 such that the maximal flow may be obtained. The
final states of buffer places are: mf [p1] = 4.23; mf [p9] = 0.14; mf [p10] = 0.27;
mf [p16] = 4.80; mf [p24] = 3.60; mf [p27] = 0.14; mf [p30] = 0.14; mf [p33] = 1.57;
mf [p36] = 3.00; mf [p45] = 0.41. We assume that the average delay times of transi-
tions are set to the values shown in Table 8.5 and the sampling period Θ = 0.05.

Table 8.4: The final states of subsystems

S1 S2 S3 S4 S5 S6 S7

p2 0.68 p11 0.40 p17 0.54 p25 0.68 p31 0.40 p38 1.08 p46 1.22
p3 0.54 p12 0.14 p18 0.81 p26 0.54 p32 0.14 p39 0.54 p47 0.40
p4 1.36 p13 0.81 p19 0.68 p28 1.42 p34 0.40 p40 1.08 p48 1.57
p5 2.17 p14 0.27 p20 0.81 p29 1.56 p35 0.14 p41 0.54
p6 2.17 p21 1.98 p37 2.32 p42 1.57
p7 6.98 p22 4.85 p43 2.02
p8 4.68 p23 4.71 p44 5.15

Table 8.5: The average delay times of transitions

S1 S2 S3 S4 S5 S6 S7

t1 0.4 t7 0.1 t13 0.3 t18 0.4 t21 0.1 t27 0.4 t32 0.1
t2 0.5 t8 0.3 t14 0.4 t19 0.5 t22 0.3 t28 0.8 t33 0.3
t3 0.4 t9 0.1 t15 0.5 t20 0.4 t23 0.1 t29 0.4 t34 0.1
t4 0.8 t10 0.1 t16 0.5 t24 0.1 t30 0.8
t5 0.5 t11 0.3 t17 0.6 t25 0.3 t31 0.4
t6 0.8 t12 0.1 t26 0.1

The problem we handle here is to drive all the subsystems to their final states
by using distributed control methods. Clearly, the net is not CF, so the approach
proposed in Chapter 5 is not applicable; on the other hand, subsystems are not
mono-T-semiflow (for example, subsystem S1 has two minimal T-semiflows), so we
cannot apply the method proposed in [4] either. Hence, here we will apply the
distributed MPC controller presented in Chapter 6. In Fig. 8.12 and Fig. 8.13, for
each subsystem Sl we show the quadratic distance of states ml

k (at any time step
k) to the final state mf

l, defined as (ml
k −mf

l)T · (ml
k −mf

l), l = 1 to 7, by
using the centralized MPC controller given in Algorithm 8 and the distributed MPC
controller given in Algorithm 9. Since subsystems may not reach their final states
at the same time, Fig. 8.13(d) shows the different time instants of reaching the final
states by using the centralized and distributed MPC. The results are obtained by
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using N = 3, Q = I, Z = 1000 · I. For other parameters in distributed MPC, we
use α = 0.5, ǫ1 = 0.1, ǫ2 = 10−6.

(a) S1 (b) S2

(c) S3 (d) S4

Figure 8.12: The quadratic distance of ml
k to the final state mf

l, l = 1, 2, 3, 4

It can be observed that all the subsystems reach their final states in finite time
by using both the centralized and distributed methods. From Fig. 8.13(d) we can
see that, the last subsystem that reaches its final state is S7, requiring 38 time steps
by using the centralized MPC and 51 time steps by using the distributed MPC.
However, let us notice that not all the subsystems reach their final states slower by
using the distributed MPC. For instance, the distributed MPC controller requires 9
time steps for subsystem S4 to reach mf

4, smaller than the 14 time steps of using
the centralized MPC. On the other hand, Fig. 8.15(a) shows that by using the
distributed MPC, the CPU time consumed for computing the control laws (the sum
of the CPU time consumed in all the subsystems) is much smaller than by using the
centralized MPC, and the reason is clear: the computational complexity of MPC
based approaches may grow very quickly on the size of net systems. We should point
out that, in both centralized and distributed MPC approaches, from each time step
k the state evolutions of subsystems are constrained to be inside the subset convex
R(N ,mk,mf ) (generated by constrains (6.2d) and (6.2e)) of the reachability space.
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8.6. Case study 4: distributed control of an AGV System

(a) S5 (b) S6

(c) S7 (d) Time instants

Figure 8.13: (a)-(c) the quadratic distance of ml
k to the final state mf

l, l = 5, 6, 7;
(d) the time instants of subsystems reaching to mf

l, l = 1 to 7

Therefore we can see that the states converge to the final ones monotonically.

However, in the distributed method the markings of buffers are not controlled as
in the centralized method, thus have more “freedom”. Therefore we may not be able
to conclude which one is better in general, just considering the time spent on the
trajectories. Fig. 8.14 shows the state evolutions of buffer places (we take p1, p16
and p45 as examples). We can observe that the markings of buffer places may reach
different values: by using the centralized MPC the final markings specified inmf are
reached; but by using the distributed MPC, the markings of buffer places may reach
some different (non-negative) values since here we only consider the convergence to
the final states of subsystems. By using the distributed MPC the marking trajectory
of buffer places, e.g., p45 in Fig. 8.14(b), is no longer monotone. For instance,
after 31 time steps, the marking of p45 oscillates around the value of 0.1. This is
because subsystem S6 reaches its final state at 30 time steps (see Fig. 8.13(d)), then
optimization problem (6.11) should be solved in S6 and it tries to put more tokens
to its (unique) output buffer place p45 when its markingmk[p45] ≤ ǫ1 = 0.1 (see cost
function (6.9) and Remark 6.3.1); at the same time, subsystem S7 needs to consume
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tokens from its input buffer place p45 for evolving towards its final state.

(a) The state evolution of p1 and p16 (b) The state evolution of p45

Figure 8.14: The state evolution of some buffer places

(a) (b)

Figure 8.15: (a) The CPU time of using centralized and distributed MPC. (b) The
time steps of using the distributed MPC with different ǫ1

By using the distributed MPC controller given in Algorithm 9, each subsystem
Sl tries to put more tokens to its output buffer places pi ∈ B(l,·) (by solving the
optimization problem (6.11)) only if it is not able to evolve towards its final state
(or its final state has already been reached), and mk[pi] ≤ ǫ1 where ǫ1 is assumed
to be very small positive value to approximate mk[pi] = 0 (in cost function (6.9)).
One may think that when problem (6.11) is solved, if we could use a larger value
for ǫ1, i.e., if we could also try to put tokens into those output buffer places of Sl

that are not “nearly emptied”, to make its neighboring subsystems evolve faster.
However, in this case the convergence to final states may not be guaranteed when
two neighboring subystems are both solving problem (6.11) and there exist multiple
input/output buffers between them. In this particular example, subsystems can
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converge to their final states faster if a larger value for ǫ1 is used, shown in Fig.
8.15(b). Notice that when ǫ1 ≥ 1, its number of time steps required to reach final
states (39 time steps) is almost the same as using the centralized MPC (38 time
steps).

8.7 Conclusions

In this chapter, we carry out several case studies to illustrate the control methods
proposed in this thesis for the target marking control problem of TCPNs under
infinite server semantics.

In the first three case studies, we focus on the centralized ON/OFF based control
methods, aiming at driving the system to the final state and minimizing the time
spent on state evolution. It is shown that an advantage of the ON/OFF based
controllers is the low computational complexity: in all the case studies (simulations
results shown in Table A.1–A.8), the ON/OFF+ and B-ON/OFF controllers have
lower computational costs than the approaching minimum-time controller proposed
in [5]; while for the MPC-ON/OFF controller with a small time horizon N , its
computational cost may be also not higher (as for the systems in case studies 1–3).
At the same time, reasonable numbers of time steps for reaching the final state can
be obtained. The standard ON/OFF controller is the most suitable choice for a CF
net system, ensuring low computational complexity and minimum-time. For non-CF
nets, some characteristics of the system may be helpful in choosing an appropriate
method. In particular, if the flows (depending on markings) of conflicting transitions
are very different, the B-ON/OFF controller may obtain a smaller number of time
steps than the ON/OFF+ controller. The approaching minimum-time controller [5]
may not be a good choice if there are some places with very small markings (because
in this approach, between each pair of adjacent states of the trajectory the firing
speed is constant and determined by the one with a smaller flow); in those cases the
ON/OFF based methods usually can achieve better results. It may be interesting to
point out that in “slow” practical systems like logistics or manufacturing systems,
the operational time may be much larger than the computational time for the control
laws (considering the very low computational complexity of ON/OFF based methods;
including the MPC-ON/OFF controller with small time horizon); therefore, at each
operation instant we could compute the control laws by using several of the methods,
and then choose the best one to apply.

In the last case study, we apply the distributed MPC controller proposed in
Chapter 6. The other decentralized control methods proposed in Chapter 5 and con-
tribution [4] are not applicable to this example, because the net or some subnets are
not CF or mono-T-semiflow. We show that by using the distributed MPC controller
given by Algorithm 9, all the subsystems reach their final state in finite time (but
not minimum-time in general), while all the buffer places shared by subsystems are
always in legal non-negative states.
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Chapter 9

Conclusions and Future works

Many man-made systems, such as manufacturing, logistics, telecommunication or
traffic systems, can be “naturally” viewed as Discrete Event Dynamic Systems
(DEDS). Nevertheless, large populations or heavy traffic frequently appear and they
may suffer from the classical state explosion problem. In order to overcome this
problem, fluidization can be applied, obtaining the fluid relaxation of the original
discrete model. Continuous Petri nets (CPNs) are a fluid approximation of discrete
Petri nets (PNs), a well known formalism for DEDS. It is obtained by removing the
integrality constraints on the firings of transitions, thus on the markings (states).
One key benefit of using CPNs is that, most frequently, it leads to a substantial
reduction in the computational costs. For instance, several techniques based on in-
teger programming in the discrete model may be solved using linear programming
in the fluid case. Among other interesting issues, many works can be found in the
literature considering the modelling, analysis, observability and control of CPNs.

In this thesis we have focused on the control of timed continuous Petri nets
(TCPNs), in which time interpretations are associated to transitions. Depending on
how the flow of transitions is defined, there exist different server semantics and we
assume the infinite server semantics (variable speed) because it has been observed
to usually obtain better approximations of discrete PNs in general, and always under
some particular conditions (net subclasses).

Regarding the control problem, the first question is what to control? We assume
that control actions are applied to slow down the firing of transitions [89], i.e., to
reduce the flow. We have considered two interesting control problems in this thesis:

• The first problem is called target marking control, where the objective is to
drive the system (as fast as possible) from an initial statem0 to a desired final
statemf . It is similar to the set-point control problem in a general continuous-
state system. By considering the CPNs as a relaxation of discrete models, the
continuous state can be viewed as an approximation of the average state in
the original discrete system.

• The second problem is called optimal flow control, in which the objective is
to drive the system to an optimal flow (obtained in a “convex final region”),
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without a priori knowledge of a specific final state. Usually, these final states
with the optimal flow are not unique and they belong to a convex region. In
this work, we are interested in reaching as fast as possible the maximal flow,
what is frequently desirable in practical systems.

In both control problems, we address the minimum-time evolution, a problem
that is close to the minimization of the makespan in manufacturing (time difference
between the start and finish of a sequence of jobs or tasks). In many existing
control methods, the computational costs may grow very quickly (for example, the
approaching minimum-time controller [5], because computationally expensive BPPs
should be solved), even exponentially (for example, the affine control [102], because
the number of vertices increases exponentially on the number of places), with respect
to the size of the net system. In this work we use an ON/OFF strategy, which is
shown to be very efficient. We consider both centralized and decentralized settings
for the target marking control problem.

Regarding the centralized methods we have developed several (heuristic) minimum-
time controllers based on the ON/OFF strategy, which is frequently used in minimum-
time problems:

• ON/OFF controller: This controller is specially suitable for Choice-Free
(CF) nets. A interesting property of CF nets is that they are structurally
persistent, i.e., for any initial state (m0), the enabling degree of a transition
will not be decreased by firing other ones; furthermore, the reaching of one
(final) state does not depend on the firing orders (speeds) of transitions, and
it is only relevant to the required firing count vector. We have shown that the
desired final state can be reached in minimum-time by using a simple ON/OFF
strategy: fire every transition as fast as possible (ON) until an upper bound,
given by the minimal firing count vector, is reached; then simply block it
(OFF).

• ON/OFF+ controller: In the case that the net is not CF, we may not
be able to apply the ON/OFF controller, because its “greedy” strategy of
firing conflicting transitions may bring some “blocked” situations, even for live
and bounded net systems. The ON/OFF+ controller overcomes this problem
by forcing proportional firings of conflicting transitions according to a given
firing count vector; while for the persistent transitions, the standard ON/OFF
strategy is applied.

• B-ON/OFF controller: The ON/OFF+ controller requires very low com-
putation costs, but it may have a drawback in some cases where the flows of
conflicting transitions are very different: if conflicting transitions fire propor-
tionally, then obviously, the overall time spent for firing a given firing count
vector to reach mf is determined by the “slower” ones. In the B-ON/OFF
controller, this problem is handled by adding a “balancing process”, i.e., we
first fire the “faster” transitions and block the “slower” transitions for a period
of time, until they get balanced (if they can). After that, we simply apply the
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ON/OFF+ controller. In this way, the time spent for reaching the final state
may be decreased, comparing with that of the ON/OFF+ controller.

• MPC-ON/OFF controller: Model Predictive Control (MPC) has been
widely applied in industry for process control. Usually it is used for opti-
mizing trajectory by solving certain optimization problems at each time step.
In this work, we have tried to combine the MPC scheme with the ON/OFF
strategy, obtaining a heuristics for approaching minimum-time target marking
control. In particular, conflicts are solved by using the MPC approach; while
the ON/OFF strategy is applied to persistent transitions.

All the proposed ON/OFF-based controllers ensure the convergence. For CF
nets, the standard ON/OFF controller gives a minimum-time evolution; while other
controllers are heuristics for minimum-time target marking control of general net
systems and, we have seen in examples that reasonably small numbers of time
steps for reaching the final state can be obtained. A main advantage of using the
ON/OFF strategy is its low computational complexity. In ON/OFF, ON/OFF+
and B-ON/OFF controllers, only simple linear programming problems need to be
solved at each time step. The MPC-ON/OFF controller may be computationally
more expensive (a QPP problem is involved at each time step) and the computa-
tional cost grows fast with respect to the time horizon N . For example, for the net
system in Fig. 4.11 (simulation results shown in Table A.1–A.4) the required CPU
time increases about 50 times when N increases from 1 to 10. Nevertheless, even
if a smaller number of time steps may be obtained by using a larger N , from our
simulations, in some cases the improvement is not very significant; and even a worse
result may be obtained using a larger N (e.g., in the case of setting s.1) for the net
system in Fig. 4.11); so using a small N may be a reasonable choice.

Decentralized control methods become interesting for large scale and usually
physically distributed systems, for which centralized control may be difficult to im-
plement. The existing work related to the decentralized control of TCPNs is still
very limited, in this thesis we have proposed two approaches:

• Decentralized minimum-time control of CF nets: We assume that large
scale systems are cut into subsystems through sets of buffer places (intersec-
tions). The idea is that we first compute the local control laws (minimal firing
count vectors) separately in all subsystems, then we reach an agreement among
them to get globally admissible control laws. In order to ensure that identical
behaviors (firing sequences) of the original system are obtained in subsystems,
we have employed several reduction rules to build abstractions of the miss-
ing parts of disconnected subsystems; for reaching the agreement among local
control laws, a high level coordinator is introduced. When globally admissi-
ble control laws are obtained, the ON/OFF controller can be implemented
independently in any subsystem, obtaining a minimum-time evolution.

• Distributed MPC control of general nets: For general net systems, the
decentralized control method proposed for CF nets may not be applicable and
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one reason is that we may not be able to achieve an agreement among local
control laws. We have proposed a distributed control method for general nets
based on the MPC approach. First, we present a centralized MPC controller, in
which the state evolution is constrained to be inside an interior convex subset
of the reachability space and thus, the convergence to the final state can be
guaranteed. This approach is less constrained than the methods proposed in [5]
and [64], in which linear trajectories were considered. Later, we have proposed
a distributed MPC control algorithm. Similarly to the previous method for
CF nets, we assume that subsystems are connected by sets of buffer places.
A key issue in the distributed setting concerns the strict positiveness of the
markings of buffer places: an alternative optimization problem is considered
to recover from the situations where the markings of some buffer places are
converging to zero.

In the decentralized control method for CF nets, we construct the complemented
subsystems by using several reduction rules and the identical behaviros of the original
system are preserved. Let us point out that those obtained complemented subsys-
tems may also be useful in other contexts, for example, throughput approximations
in a distributed way (similar works have been done for discrete models, for example
in [20] for marked graphs, and later in [75] for weighted T-systems). The distributed
MPC control method proposed here is not designed for the minimum-time control,
but it can be applied for general nets and ensures that all the subsystems converge
to their final states. As a by-product, the MPC controller applied in each subsystem
can also be used independently in centralized setting.

The (minimum-time) optimal flow control problem has been considered here
for CF nets. Usually, we may obtain the optimal flow (in our case, the maximal
flow) of the system in a set of steady states, belonging to a convex subset in the
reachability space. Since we cannot uniquely determine a desired final state, even
for MG (a subclass of CF nets) the minimum-time flow control becomes difficult. In
this work, we have proposed a heuristic algorithm for CF nets, in which we compute
the “best” firing count vector bringing the system to the maximal flow, according to
an estimation of the number of time steps based on the current state and flow; and
an ON/OFF firing strategy is applied. We also show that because of the persistency
of CF nets, we can further reduce the time spent to reach the maximal flow by means
of some additional firings.

Despite the many results that can be found in the literature about the control
of TCPNs, and some new methods proposed in this thesis, there still remain many
widely open issues that deserve more investigations. Among many others:

1) In the proposed methods, the ON/OFF strategy is applied to achieve minimum-
time evolution. It could be also important to consider the minimum-time con-
trol that will satisfy additional conditions. For example, control laws that
require minimal control energy could be interesting.
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2) More extensive comparisons of the available control methods are necessary,
providing more concrete criteria of selecting suitable methods in different sit-
uations. For this aim, certain benchmarks with systems of different net struc-
tures, markings and firing rates are desirable.

3) Furthermore, comparisons should be performed also using the discrete models.
A control method that works well for the fluid model may not be a good choice
when the control laws are interpreted and applied to control the underlying
discrete one.

4) Most of the existing results, including this work, assume that all the transitions
are controllable. A clear extension is to further consider partially controllable
systems.
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[27] M. Dub, G. Pipan, and Z. Hanzálek. Stock optimization of a kanban-based
assembly line. In Proc. of the 12th Int. Conf. on Flexible Automation and
Intelligent Manufacturing, 2002.

[28] J. Ezpeleta, J. M. Couvreur, and M. Silva. A New Technique for Finding
a Generating Family of Siphons, Traps and ST-Components. Application to
Coloured Petri Nets. pages 126–147.
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Chapter A. Simulation Results

Table A.1: Simulation results of the net system in Fig. 4.11. Setting s.1): Θ = 0.01,
m0 = [1 2 0.4 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.7 0.2 0.2 0.5 0.3 4.7 0.4]T ,
σ = [0.4 0 0.2 0.5 0.3 0.1 0]T . For the MPC-ON/OFF controller, the weight matrix
Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 101 847
ON/OFF+ 94 41
B-ON/OFF 91 130 d = 1
B-ON/OFF 91 136 d = 2
B-ON/OFF 94 141 d = 5
B-ON/OFF 94 139 d = 10
B-ON/OFF 94 138 d = 15
B-ON/OFF 94 142 d = 20
MPC-ON/OFF 91 1,159 N = 1, r=1000, q=1000
MPC-ON/OFF 91 877 N = 1, r=1000, q=100
MPC-ON/OFF 91 955 N = 1, r=1000, q=1
MPC-ON/OFF 95 5,546 N = 3, r=1000, q=1000
MPC-ON/OFF 95 5,619 N = 3, r=1000, q=100
MPC-ON/OFF 97 7,678 N = 3, r=1000, q=1
MPC-ON/OFF 94 11,188 N = 5, r=1000, q=1000
MPC-ON/OFF 95 11,369 N = 5, r=1000, q=100
MPC-ON/OFF 91 11,811 N = 5, r=1000, q=1
MPC-ON/OFF 93 54,311 N = 10, r=1000, q=1000
MPC-ON/OFF 94 53,818 N = 10, r=1000, q=10
MPC-ON/OFF 94 50,784 N = 10, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the B-ON/OFF (d = 1 or 2) or the MPC-ON/OFF controller (with N =
1 or 5). For the B-ON/OFF controller, smaller numbers of time steps are obtained
using smaller values of d (a small value of d implies that the “slower” transitions in a
conflict will keep blocked until their flows get very “balanced” with the “faster” ones;
then the proportional firing strategy (used in the ON/OFF+ controller) is applied
to fire the “slower” transitions, and this strategy is more suitable when conflicting
transitions have very similar flows); if d is very large, the B-ON/OFF controller is
not sensitive to the difference of flows among conflicting transitions, and it is similar
to applying the ON/OFF+ controller directly. For the MPC-ON/OFF controller,
the numbers of time steps are not sensitive to N , or the weights on matrix R and
Q.
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Table A.2: Simulation results of the net system in Fig. 4.11. Setting s.2): Θ = 0.01,
m0 = [1 2 0.001 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.301 0.2 0.2 0.5 0.3 4.7 0.4]T ,
σ = [0.4 0 0.2 0.5 0.3 0.1 0]T . For the MPC-ON/OFF controller, the weight matrix
Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 176 465
ON/OFF+ 954 410
B-ON/OFF 132 197 d = 1
B-ON/OFF 132 192 d = 2
B-ON/OFF 196 287 d = 5
B-ON/OFF 258 393 d = 10
B-ON/OFF 290 437 d = 15
B-ON/OFF 335 504 d = 20
MPC-ON/OFF 165 1,942 N = 1, r=1000, q=1000
MPC-ON/OFF 158 1,687 N = 1, r=1000, q=100
MPC-ON/OFF 149 2,697 N = 1, r=1000, q=1
MPC-ON/OFF 165 8,005 N = 3, r=1000, q=1000
MPC-ON/OFF 164 8,048 N = 3, r=1000, q=100
MPC-ON/OFF 163 7,448 N = 3, r=1000, q=1
MPC-ON/OFF 162 14,638 N = 5, r=1000, q=1000
MPC-ON/OFF 162 14,593 N = 5, r=1000, q=100
MPC-ON/OFF 145 16,240 N = 5, r=1000, q=1
MPC-ON/OFF 159 80,193 N = 10, r=1000, q=1000
MPC-ON/OFF 159 80,417 N = 10, r=1000, q=10
MPC-ON/OFF 159 86,426 N = 10, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the B-ON/OFF controller (d = 1 or 2). For the B-ON/OFF controller,
smaller numbers of time steps are obtained using smaller values of d (a small value
of d implies that the “slower” transitions in a conflict will keep blocked until their
flows get very “balanced” with the “faster” ones; then the proportional firing strategy
(used in the ON/OFF+ controller) is applied to fire the “slower” transitions, and this
strategy is more suitable when conflicting transitions have very similar flows); if d is
very large, the B-ON/OFF controller is not sensitive to the difference of flows among
conflicting transitions, and it is similar to applying the ON/OFF+ controller directly.
For the MPC-ON/OFF controller, smaller numbers of time steps are obtained by
using larger weights on matrix R and smaller weights on matrix Q; the numbers of
time steps are slightly reduced by using larger N .
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Chapter A. Simulation Results

Table A.3: Simulation results of the net system in Fig. 4.11. Setting s.3): Θ = 0.1,
m0 = [1 2 0.4 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.7 0.2 0.2 0.5 0.3 3 2.1]T ,
σ = [2.1 1.7 1.9 2.2 2 1.8 0]T . For the MPC-ON/OFF controller, the weight matrix
Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 94 352
ON/OFF+ 76 34
B-ON/OFF 78 121 d = 1
B-ON/OFF 78 120 d = 2
B-ON/OFF 78 121 d = 5
B-ON/OFF 76 114 d = 10
B-ON/OFF 76 114 d = 15
B-ON/OFF 76 115 d = 20
MPC-ON/OFF 94 958 N = 1, r=1000, q=1000
MPC-ON/OFF 94 1,010 N = 1, r=1000, q=100
MPC-ON/OFF 94 1,067 N = 1, r=1000, q=1
MPC-ON/OFF 93 9,800 N = 3, r=1000, q=1000
MPC-ON/OFF 92 5,178 N = 3, r=1000, q=100
MPC-ON/OFF 93 7,394 N = 3, r=1000, q=1
MPC-ON/OFF 90 13,958 N = 5, r=1000, q=1000
MPC-ON/OFF 84 14,726 N = 5, r=1000, q=100
MPC-ON/OFF 84 15,482 N = 5, r=1000, q=1
MPC-ON/OFF 75 52,803 N = 10, r=1000, q=1000
MPC-ON/OFF 78 57,987 N = 10, r=1000, q=10
MPC-ON/OFF 76 56,352 N = 10, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the MPC-ON/OFF controller (with N = 10). The B-ON/OFF con-
troller does not improve the result of the ON/OFF+ controller (which is already
close to the best), and the numbers of time steps are not sensitive to the values of
d. For the MPC-ON/OFF controller, the numbers of time steps can be reduced by
using larger N ; the numbers of time steps are not sensitive to the weights on matrix
R and Q.
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Table A.4: Simulation results of the net system in Fig. 4.11. Setting s.4): Θ = 0.02,
m0 = [1 2 1.4 1.5 1.1 1.1 1.1 5 1.1]T , mf =[0.6 1.8 1.7 1.2 1.2 1.5 1.3 3 3.1]T ,
σ = [2.1 1.7 1.9 2.2 2 1.8 0]T . For the MPC-ON/OFF controller, the weight matrix
Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 122 2,546
ON/OFF+ 126 55
B-ON/OFF 128 200 d = 1
B-ON/OFF 128 195 d = 2
B-ON/OFF 128 195 d = 5
B-ON/OFF 126 191 d = 10
B-ON/OFF 126 192 d = 15
B-ON/OFF 126 195 d = 20
MPC-ON/OFF 133 1,458 N = 1, r=1000, q=1000
MPC-ON/OFF 133 1,441 N = 1, r=1000, q=100
MPC-ON/OFF 115 1,283 N = 1, r=1000, q=1
MPC-ON/OFF 131 5,855 N = 3, r=1000, q=1000
MPC-ON/OFF 131 6,943 N = 3, r=1000, q=100
MPC-ON/OFF 131 6,386 N = 3, r=1000, q=1
MPC-ON/OFF 128 13,580 N = 5, r=1000, q=1000
MPC-ON/OFF 130 13,539 N = 5, r=1000, q=100
MPC-ON/OFF 130 16,016 N = 5, r=1000, q=1
MPC-ON/OFF 126 92,728 N = 10, r=1000, q=1000
MPC-ON/OFF 126 90,033 N = 10, r=1000, q=10
MPC-ON/OFF 125 90,781 N = 10, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the approaching minimum-time controller. The B-ON/OFF controller
does not improve the result of the ON/OFF+ controller (which is already close to
the best), and the numbers of time steps are not sensitive to the values of d. For
the MPC-ON/OFF controller, the numbers of time steps can be reduced by using
larger N ; the numbers of time steps are not sensitive to the weights on matrix R
and Q.
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Chapter A. Simulation Results

Table A.5: Simulation results of the net system in Fig. 8.5. m0 = [0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 4 4 2 5 1 2 1 2]T , mf = [0.0775 0.3875 0.31 0.31 0.0775
0.62 0.31 0.31 0.31 0.31 1.55 2.13 2.13 1.315 0.0775 0.8125 1.083 0.8125 0.55]T , λ =
[10 10 2 2.5 2.5 10 10 1.25 2.5 2.5 2.5 0.5]T , σ = [2.345 2.368 2.08 1.87 1.66 2.578
2.6 2.08 1.87 1.66 1.45 0]T , Θ = 0.01. For the MPC-ON/OFF controller, the weight
matrix Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 311 88,505
ON/OFF+ 457 275
B-ON/OFF 217 443 d = 1
B-ON/OFF 209 426 d = 2
B-ON/OFF 210 431 d = 5
B-ON/OFF 216 448 d = 10
B-ON/OFF 234 491 d = 15
B-ON/OFF 280 596 d = 20
MPC-ON/OFF 220 4,815 N = 1, r=1000, q=1000
MPC-ON/OFF 221 4,994 N = 1, r=1000, q=100
MPC-ON/OFF 221 5,023 N = 1, r=1000, q=1
MPC-ON/OFF 220 29,115 N = 3, r=1000, q=1000
MPC-ON/OFF 220 28,947 N = 3, r=1000, q=100
MPC-ON/OFF 220 30,017 N = 3, r=1000, q=1
MPC-ON/OFF 219 92,156 N = 5, r=1000, q=1000
MPC-ON/OFF 219 94,743 N = 5, r=1000, q=100
MPC-ON/OFF 219 102,622 N = 5, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the B-ON/OFF controller (with d = 2). For the B-ON/OFF controller,
smaller numbers of time steps are obtained with smaller values of d (a small value of d
implies that the “slower” transitions in a conflict will keep blocked until their flows
get very “balanced” with the “faster” ones; then the proportional firing strategy
(used in the ON/OFF+ controller) is applied to fire the “slower” transitions, and
this strategy is more suitable when conflicting transitions have very similar flows);
if d is very large, the B-ON/OFF controller is not sensitive to the difference of flows
among conflicting transitions, and it is similar to applying the ON/OFF+ controller
directly), but an exception happened when d = 1. For the MPC-ON/OFF controller,
the numbers of time steps are not sensitive to time horizon N , or the weights on
matrix R and Q.
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Table A.6: Simulation results of the net system in Fig. 8.6. m0 = [0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 4 4 2 5 1 2 1 2]T , mf = [0.0775 0.3875 0.31 0.31 0.0775 0.62
0.31 0.31 0.31 0.31 1.55 2.13 2.13 1.315 0.0775 0.58 1.083 1.045 0.55]T , λ = [10 10
2 2.5 2.5 10 10 1.25 2.5 2.5 2.5 0.5]T , σ = [2.345 2.368 2.08 1.87 1.66 2.578 2.6 2.08
1.87 1.66 1.45 0]T , Θ = 0.01. For the MPC-ON/OFF controller, the weight matrix
Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 316 55,608
ON/OFF+ 223 108
B-ON/OFF 224 427 d = 1
B-ON/OFF 223 420 d = 2
B-ON/OFF 223 421 d = 5
B-ON/OFF 223 421 d = 10
B-ON/OFF 223 421 d = 15
B-ON/OFF 223 419 d = 20
MPC-ON/OFF 229 4,967 N = 1, r=1000, q=1000
MPC-ON/OFF 229 4,846 N = 1, r=1000, q=100
MPC-ON/OFF 228 5,018 N = 1, r=1000, q=1
MPC-ON/OFF 230 31,281 N = 3, r=1000, q=1000
MPC-ON/OFF 229 30,536 N = 3, r=1000, q=100
MPC-ON/OFF 229 31,914 N = 3, r=1000, q=1
MPC-ON/OFF 228 96,231 N = 5, r=1000, q=1000
MPC-ON/OFF 228 97,993 N = 5, r=1000, q=100
MPC-ON/OFF 228 99,749 N = 5, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the ON/OFF+ controller or the B-ON/OFF controller. The B-ON/OFF
controller does not improve the result of the ON/OFF+ controller (which is already
the best), and the numbers of time steps are not sensitive to the values of d. For
the MPC-ON/OFF controller, the numbers of time steps are not sensitive to time
horizon N , or the weights on matrix R and Q.
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Chapter A. Simulation Results

Table A.7: Simulation results of the net system in Fig. 8.8. m0 = [10 0.1 0.1 0.1 0.1
0.1 0.1 10 0.1 0.1 0.1 0.1 10 0.1 0.1 0.1 0.1 0.1 0.1 5 0.1 0.1 5 5 5 5 5 5 5 5 8 0.1 2 2
2 2 2]T , mf = [5.78 0.5122 0.05122 1.024 0.05122 1.024 0.05122 4.756 2.049 0.05122
0.5122 0.05122 5.78 1.024 0.05122 0.5122 0.05122 1.024 0.05122 4.124 2.049 0.2561
4.637 4.124 3.1 4.637 4.124 4.637 4.124 4.844 7.844 0.2561 0.7634 0.05122 0.1512
0.1512 0.05122]T , λ = [50 5 50 2.5 50 50 1.25 50 5 50 2.5 50 5;50 2.5 2.5 50 1.25 10
1.25 ]T , σ = [4.22 3.807 3.856 2.932 2.98 5.244 3.295 3.344 2.932 4.22 3.295 3.344
2.932 2.98 2.056 2.056 2.105 0.1561 0 0.1561]T , Θ = 0.01. For the MPC-ON/OFF
controller, the weight matrix Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 300 138,826
ON/OFF+ 249 213
B-ON/OFF 131 470 d = 1
B-ON/OFF 131 471 d = 2
B-ON/OFF 131 472 d = 5
B-ON/OFF 131 475 d = 10
B-ON/OFF 150 550 d = 15
B-ON/OFF 249 892 d = 20
MPC-ON/OFF 146 10,117 N = 1, r=1000, q=1000
MPC-ON/OFF 150 10,377 N = 1, r=1000, q=100
MPC-ON/OFF 149 10,852 N = 1, r=1000, q=1
MPC-ON/OFF 134 86,935 N = 3, r=1000, q=1000
MPC-ON/OFF 133 84,778 N = 3, r=1000, q=100
MPC-ON/OFF 134 83,968 N = 3, r=1000, q=1
MPC-ON/OFF 132 284,205 N = 5, r=1000, q=1000
MPC-ON/OFF 131 284,859 N = 5, r=1000, q=100
MPC-ON/OFF 132 276,821 N = 5, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the B-ON/OFF (d ≤ 10) or the MPC-ON/OFF controller (with N = 5).
For the B-ON/OFF controller, smaller numbers of time steps are obtained with
smaller values of d, when d ≤ 10 the best result is obtained. For the MPC-ON/OFF
controller, the numbers of time steps can be reduced by using larger N ; the numbers
of time steps are not sensitive to the weights on matrix R and Q.
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Table A.8: Simulation results of the net system in Fig. 8.10. m0 = [5 0.1 0.1 0.1
10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 7 0.1 0.1 0.1 0.1 0.1 3 3 3 1 1 1 1]T , mf = [3.4
1.3 0.4 0.2 7.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 3.1 0.8 0.4 0.4 0.4 2.4 2 0.8 0.4 0.7 0.4
0.4 0.4]T , λ = [0.3333 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.25 0.5 0.5 1 0.5 0.5 0.5 0.5
0.5 0.25]T , σ = [2.4 1.2 0.9 0.6 0.3 0 0.9 0.6 0.3 0 1.6 0.4 0.1 0 3.9 1.6 1.3 1 0.7
0]T , Θ = 0.03. For the MPC-ON/OFF controller, the weight matrix Q = q · I |P |,
R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 279 60,691
ON/OFF+ 301 271
B-ON/OFF 301 1,151 d = 1
B-ON/OFF 301 1,144 d = 2
B-ON/OFF 301 1,151 d = 5
B-ON/OFF 301 1,147 d = 10
B-ON/OFF 301 1,149 d = 15
B-ON/OFF 301 1,157 d = 20
MPC-ON/OFF 320 17,873 N = 1, r=1000, q=1000
MPC-ON/OFF 320 19,783 N = 1, r=1000, q=100
MPC-ON/OFF 320 21,440 N = 1, r=1000, q=1
MPC-ON/OFF 317 126,208 N = 3, r=1000, q=1000
MPC-ON/OFF 315 129,551 N = 3, r=1000, q=100
MPC-ON/OFF 316 137,814 N = 3, r=1000, q=1
MPC-ON/OFF 310 431,671 N = 5, r=1000, q=1000
MPC-ON/OFF 310 425,928 N = 5, r=1000, q=100
MPC-ON/OFF 310 443,439 N = 5, r=1000, q=1

Remark. The smallest number of time steps to reach the final state is obtained
by applying the approaching minimum-time controller. The B-ON/OFF controller
does not improve the result of the ON/OFF+ controller (which is already close to
the best), and the numbers of time steps are not sensitive to the values of d. For
the MPC-ON/OFF controller, the numbers of time steps can be reduced by using
larger N ; the numbers of time steps are not sensitive to the weights on matrix R
and Q.
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Appendix B

More discussions of the
MPC-ON/OFF controller

From the simulation results shown in Appendix. A we can observe that although the
number of time steps obtained by using the MPC-ON/OFF controller is not very far
from the best in general, but it requires more CPU time for computing the control
laws. On the other hand, it seems difficult to know how to choose an appropriate
parameters (horizon time, weight matrix) for reducing the time. One basic reason
is that in this MPC based approach, we consider a cost function of the trajectory,
which is difficult to be used for obtaining the minimum-time evolution. However,
this method may be interesting when we consider both the time of evolution and
the cost of state trajectory.

According to the cost function in (4.14), we can define the cost of a state mk on
the trajectory as:

ck = (mk −mf )
′ ·Q · (mk −mf )−w

′
k ·R ·wk

Then, the average cost of the trajectory can be computed by:

cost =

(

s
∑

k=1

ck

)

/s (B.1)

where s is the number of time steps required to reachmf , i.e., the sequence of states
on the trajectory is m0,m1,m2, . . . ,ms(=mf ). Let us consider the example that
is shown in Fig. 4.11 and we assume that in the MPC-ON/OFF method, the weight
matrices are Q = R = 1000 · I, the simulation results are shown in Table B.1 - B.4.
It can be observed that, in all the cases, the MPC-ON/OFF controller has very low
trajectory cost, meanwhile the obtained numbers of time steps are not bad.
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Table B.1: Simulation results of the net system in Fig. 4.11. Setting s.1): Θ = 0.01,
m0 = [1 2 0.4 0.5 0.1 0.1 0.1 5 0.1]T ,mf = [0.6 1.8 0.7 0.2 0.2 0.5 0.3 4.7 0.4]T , σ =
[0.4 0 0.2 0.5 0.3 0.1 0]T .

Control methods Time steps CPU time (ms) Trajectory costs c Parameters
ON/OFF+ 94 41 137
B-ON/OFF 91 130 75 d = 1
B-ON/OFF 91 136 77 d = 2
B-ON/OFF 94 141 137 d = 5
B-ON/OFF 94 139 137 d = 10
B-ON/OFF 94 138 137 d = 15
B-ON/OFF 94 142 137 d = 20
MPC-ON/OFF 91 1,159 7 N = 1
MPC-ON/OFF 95 5,546 6 N = 3
MPC-ON/OFF 94 11,188 6 N = 5

Table B.2: Simulation results of the net system in Fig. 4.11. Setting s.2): Θ = 0.01,
m0 = [1 2 0.001 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.301 0.2 0.2 0.5 0.3 4.7 0.4]T ,
σ = [0.4 0 0.2 0.5 0.3 0.1 0]T .

Control methods Time steps CPU time (ms) Trajectory cost Parameters
ON/OFF+ 954 410 617
B-ON/OFF 132 197 115 d = 1
B-ON/OFF 132 192 115 d = 2
B-ON/OFF 196 287 140 d = 5
B-ON/OFF 258 393 217 d = 10
B-ON/OFF 290 437 251 d = 15
B-ON/OFF 335 504 297 d = 20
MPC-ON/OFF 165 1,942 35 N = 1
MPC-ON/OFF 165 8,005 35 N = 3
MPC-ON/OFF 162 14,638 35 N = 5
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Table B.3: Simulation results of the net system in Fig. 4.11. Setting s.3): Θ = 0.1,
m0 = [1 2 0.4 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.7 0.2 0.2 0.5 0.3 3 2.1]T , σ =
[2.1 1.7 1.9 2.2 2 1.8 0]T .

Control methods Time steps CPU time (ms) Trajectory cost Parameters
ON/OFF+ 76 34 2,288
B-ON/OFF 78 121 1,856 d = 1
B-ON/OFF 78 120 1,856 d = 2
B-ON/OFF 78 121 1,856 d = 5
B-ON/OFF 76 114 2,288 d = 10
B-ON/OFF 76 114 2,288 d = 15
B-ON/OFF 76 115 2,288 d = 20
MPC-ON/OFF 94 958 2,248 N = 1
MPC-ON/OFF 93 9,800 1,750 N = 3
MPC-ON/OFF 90 13,958 1,453 N = 5

Table B.4: Simulation results of the net system in Fig. 4.11. Setting s.4): Θ = 0.02,
m0 = [1 2 1.4 1.5 1.1 1.1 1.1 5 1.1]T , mf =[0.6 1.8 1.7 1.2 1.2 1.5 1.3 3 3.1]T , σ =
[2.1 1.7 1.9 2.2 2 1.8 0]T .

Control methods Time steps CPU time (ms) Trajectory cost Parameters
ON/OFF+ 126 55 1,397
B-ON/OFF 128 200 1,051 d = 1
B-ON/OFF 128 195 1,051 d = 2
B-ON/OFF 128 195 1,051 d = 5
B-ON/OFF 126 191 1,397 d = 10
B-ON/OFF 126 192 1,397 d = 15
B-ON/OFF 126 195 1,397 d = 20
MPC-ON/OFF 133 1,458 189 N = 1
MPC-ON/OFF 131 5,855 142 N = 3
MPC-ON/OFF 128 13,580 98 N = 5
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