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Resumen

Muchos sistemas artificales, como los sistemas de manufactura, de loǵıstica, de
telecomunicaciones o de tráfico, pueden ser vistos “de manera natural” como Sis-
temas Dinámicos de Eventos Discretos (DEDS). Desafortunadamente, cuando tienen
grandes poblaciones, estos sistemas pueden sufrir del clásico problema de la explosión
de estados. Con la intención de evitar este problema, se pueden aplicar técnicas de
fluidificación, obteniendo una relajación fluida del modelo original discreto. Las re-
des de Petri continuas (CPNs) son una aproximación fluida de las redes de Petri
discretas, un conocido formalismo para los DEDS. Una ventaja clave del empleo de
las CPNs es que, a menudo, llevan a una substancial reduccin del coste computa-
cional.

Esta tesis se centra en el control de Redes de Petri continuas temporizadas
(TCPNs), donde las transiciones tienen una interpretación temporal asociada. Se
asume que los sistemas siguen una semántica de servidores infinitos (velocidad vari-
able) y que las acciones de control aplicables son la disminución de la velocidad del
disparo de las transiciones. Se consideran dos interesantes problemas de control en
esta tesis: 1)control del marcado objetivo, donde el objetivo es conducir el sistema
(tan rápido como sea posible) desde un estado inicial a un estado final deseado, y es
similar al problema de control set-point para cualquier sistema de estado continuo;
2)control del flujo óptimo, donde el objetivo es conducir el sistema a un flujo óptimo
sin conocimiento a priori del estado final. En particular, estamos interesados en
alcanzar el flujo máximo tan rápido como sea posible, lo cual suele ser deseable en
la mayoŕıa de sistemas prcticos.

El problema de control del marcado objetivo se considera desde las perspecti-
vas centralizada y descentralizada. Proponemos varios controladores centralizados
en tiempo mı́nimo, y todos ellos están basados en una estrategia ON/OFF. Para
algunas subclases, como las redes Choice-Free (CF), se garantiza la evolución en
tiempo mı́nimo; mientras que para redes generales, los controladores propuestos
son heuŕısticos. Respecto del problema de control descentralizado, proponemos en
primer lugar un controlador descentralizado en tiempo mı́nimo para redes CF. Para
redes generales, proponemos una aproximación distribuida del método Model Predic-
tive Control (MPC); sin embargo en este método no se considera evolución en tiempo
mı́nimo. El problema de control de flujo óptimo (en nuestro caso, flujo máximo) en
tiempo mı́nimo se considera para redes CF. Proponemos un algoritmo heuŕıstico en
el que calculamos los “mejores” firing count vectors que llevan al sistema al flujo
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máximo, y aplicamos una estrategia de disparo ON/OFF. También demostramos
que, debido a que las redes CF son persistentes, podemos reducir el tiempo que
tarda en alcanzar el flujo máximo con algunos disparos adicionales. Los métodos de
control propuestos se han implementado e integrado en una herramienta para Redes
de Petri h́ıbridas basada en Matlab, llamada SimHPN.



Abstract

Many man-made systems, such as manufacturing, logistics, telecommunication or
traffic systems, can be “naturally” viewed as Discrete Event Dynamic Systems
(DEDS). Nevertheless, in the case of large populations they may suffer from the
classical state explosion problem. In order to overcome this problem, fluidization
can be applied, obtaining the fluid relaxation of the original discrete model. Contin-
uous Petri nets (CPNs) are a fluid approximation of discrete Petri nets (PNs), a well
known formalism for DEDS. One key benefit of using CPNs is that, most frequently,
it leads to a substantial reduction in the computational costs.

In this thesis we focus on the control of timed continuous Petri nets (TCPNs),
in which time interpretations are associated to transitions. We assume that net
systems are under infinite server semantics (variable speed) and control actions are
applied to slow down the firing of transitions. We consider two interesting control
problems in this thesis: 1) target marking control, where the objective is to drive
the system (as fast as possible) from an initial state to a desired final state, and it
is similar to the set-point control problem in a general continuous-state system; 2)
optimal flow control, in which the objective is to drive the system to an optimal flow,
without a priori knowledge of a specific final state. In particular, we are interested
in reaching as fast as possible the maximal flow, what is frequently desirable in
practical systems.

The target marking control problem is considered in both centralized and decen-
tralized settings. We propose several minimum-time centralized controllers and all
of them are based on an ON/OFF strategy. For some subclasses like Choice-Free
(CF) nets, minimum-time evolution is guaranteed; for general nets, the proposed
controllers are heuristics. Regarding the decentralized control, we first propose a
minimum-time decentralized controller for CF nets. Then, for general nets, we
propose a distributed Model Predictive Control (MPC) approach; however, in this
method, minimum-time evolution is not considered. The minimum-time optimal
flow (in our case, the maximal flow) control problem is considered for CF nets. We
propose a heuristic algorithm, in which we compute the “best” firing count vectors
bringing the system to the maximal flow and an ON/OFF firing strategy is applied.
We also show that because of the persistency of CF nets, we can further reduce the
time spent to reach the maximal flow by means of some additional firings. The pro-
posed control methods are implemented and integrated into a Matlab based toolbox
for hybrid PN systems, called, SimHPN.
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Chapter 1

Introduction

Petri nets (PNs) are a well known modelling paradigm initially introduced by C. A.
Petri [76] as a fully non-deterministic (untimed) conceptual framework to logically
model and analyze concurrency and synchronization in Discrete Event Dynamic
Systems (DEDS). They have been widely applied in the industry for the analysis
of manufacturing, traffic, or software systems, for example [61, 62, 71]. Some main
features of PNs can be described as the following: (1) PNs are a graphical formalism
that is able to depict, visually and straightforwardly, concurrency, conflict, synchro-
nization, etc.; (2) PNs provide very compact representations of a system, enjoying
a bipartite structure: places (as queues in queueing networks) are “containers” and
transitions (as stations in queueing networks) are “activities”; (3) Different to other
formalisms like automata or Markov chains, in which a symbolic unstructured global
state is considered, in PNs the state is represented in a distributed and numerical
way, in particular, as a vector of non-negative integers; (4) The locality of places
(states) and transitions (the changes of states) facilitates both the top-down and
bottom-up modelling methodologies. For instance, it is possible to refine a place or
transition for a more detailed model; or fuse several places or transitions into one.

Nevertheless, similarly to other modelling formalisms, PNs also suffer from the
state explosion problem, inherent to a large part of DEDS. In particular, the size
of the state space may grow exponentially on the number of places and on the ini-
tial states. Therefore, the traditional state enumeration based methods may easily
become intractable because of the high computational complexity. To overcome it,
a classical relaxation technique called fluidization can be used. Continuous PNs
(CPNs) are fluid approximations of classical discrete PNs, obtained by removing the
integrality constraints. The firing count vectors and consequently the markings are
no longer restricted to be in the naturals, but relaxed into non-negative real num-
bers. The idea of the fluidization of Petri nets was proposed first in 1987 in the field
of manufacturing systems by David and Alla (see [25] for a comprehensive view), at
the net level. Developed in paralell and very similarly, the fluidization at the level of
the state equation was proposed at the same meeting (the 8th European Workshop
on Application and Theory of PNs, Zaragoza) by Silva and Colom (see [90]), focus-
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Chapter 1. Introduction

ing on the use of linear programming techniques to analyze the net systems. An
important advantage of this relaxation is that more efficient algorithms are available
for their analysis, at the price of losing some modelling or analysis capabilities, e.g.
mutual exclusion, with respect to the discrete view (see [87] for a recent and broad
survey). The discrete net system may also be partially fluidized. For instance, First
Order Hybrid PNs were proposed and they can be used for optimization and control
purposes [9, 26]. In [95, 39] stochastic PNs were extended to Fluid Stochastic PNs
by introducing places with continuous tokens and arcs with fluid flow, in which the
discrete and continuous portions may affect each other, so as to handle stochastic
fluid flow systems. Moreover, fluidization is not a new technique, for example, it has
also been extensively explored in queueing networks (see, for example, [72, 2, 16]).

Initially introduced as a fully non-deterministic model, the autonomous (un-
timed) PNs can be used to analyze logical properties of the system such as bound-
edness, liveness, etc. By introducing time to the model, we obtain timed PNs that
are widely applied in performance evaluation and optimization. In the literature,
time is associated mainly to transitions, which is also assumed in this thesis (other
methods consist in associating time to the places or to the arcs, even to the tokens).
Similarly, continuous PNs can also be autonomous or timed. Depending on how the
flow of transitions is defined for timed continuous PNs (TCPNs), different server se-
mantics appear. The finite server semantics (or constant speed) and infinite server
semantics (or variable firing speed) [89, 25] are the most used ones. In this thesis, we
focus on the infinite server semantics, since it has been proved that TCPNs under
infinite server semantics approximate better the underlying discrete systems for a
broad subclass of nets, under some general conditions [66]. The main topic of this
thesis is the control of TCPNs, in both centralized and decentralized settings.

In Chapter 2 we recall the main definitions, concepts (such as reachability, bound-
edness, liveness, implicit places etc.) of continuous PNs, both for the autonomous
(untimed) and timed models. We also introduce the main techniques for comput-
ing performance bounds and parametric optimizations using TCPNs. Usually, for
populated systems continuous PNs can provide quite good fluid approximations to
the underlying discrete systems (the reason can be partially understood by using
the Functional Central Limit (Donsker’s) theorem). However, in more general sense
the approximation may not always be very accurate, mainly because of the Join
transitions (those transitions with multiple input places) and the softened enabling
conditions (a transition is enabled if all of its input places are marked, without
considering the weights of arcs). In this chapter, some results related to the approx-
imation by using continuous PNs are described. Moreover, we briefly recall several
techniques for improving the approximation (such as introducing white noise [101],
modifying the server semantics [59]). Other important issues of TCPNs such as
observability and fault diagnosis are not discussed in this chapter, but can be found
in, for example, [47, 67, 87, 68].

Among other classical control problems (for instance, supervisory control, in
which the goal is to design a maximally permissive control to avoid certain forbid-
den states), we focus on two problems: target marking (state) control problem and
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optimal flow control problem. The objective is to reach, in minimum-time, a desired
target (final) state or an optimal flow (obtained in a convex region). The first prob-
lem is similar to the classical set-point control problem of general continuous-state
systems and, the marking of continuous PNs can be viewed as the average marking of
the underlying discrete PNs. The final marking, denoted by mf , is usually selected
in an early design stage according to some optimality indices, e.g., maximizing the
flow in steady states [89]. Since we may not be able to uniquely determine a final
state with a given optimal flow, the second problem is usually more complicated,
especially when minimum-time evolution is addressed.

Chapter 3 introduces the basic concepts of the control of TCPNs and some
fundamental issues, as controllability, are recalled. The target marking control of
TCPNs, mainly under infinite server semantics, has been discussed in many works
(see, for example [36, 64, 84, 45, 51, 102]). In Chapter 3 we summarize some existing
control methods, mainly for fully controllable systems. In this work we also assume
that all the transitions are controllable. Let us point out that, here we focus on the
design of controllers based on the continuous models, and we assume that fluidization
has been properly done, i.e., the main desirable properties of the original discrete
system are preserved in the continuous model. The obtained continuous control laws
may be applied back to control the underlying discrete systems, this topic has been
discussed in for example, [98]. Fig. 1.1 shows the big picture of the research field
and we are interested in the shaded part:

Discrete PNs
Continuous

PNs

Continuous

Controller

Fluidization

Analysis

Control Interpretation

Synthesis

Figure 1.1: The sketch of the research field

Although many works can be found in the literature about the target marking
control problem of TCPNs, most of them only focus on the convergence to the final
state. From the computational point of view, complexity may grow very quickly
(even exponentially) on the size of the net system (for example, the affine control
[102], MPC control [64]); meanwhile, very limited works have taken into account
some interesting optimality criteria, as minimum-time evolution, in the control syn-
thesis. In Chapter 4, we propose several control methods based on the ON/OFF (or
Bang-Bang) strategy, with the objective of driving the system to the final state in
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Chapter 1. Introduction

minimum-time. We first propose an ON/OFF controller for Choice-Free (CF) net
systems (Section 4.2) and we prove that it ensures a minimum-time time evolution.
The idea is rather simple: let all the transitions fire as fast as possible until their
upper bounds, given by the minimal firing count vector (that can be computed in
polynomial time), are reached; then simply block them. Nevertheless, this standard
ON/OFF strategy cannot be applied to general net systems because convergence
to the final state is not guaranteed; some illustrative examples are given in Section
4.3. Several extensions (ON/OFF+, B-ON/OFF and MPC-ON/OFF) are proposed
in Section 4.4, adding more adequate strategies to solve the conflicts that appear
in general net systems; all the extended methods are heuristics for the minimum-
time control. A main advantage of the proposed methods is the low computational
complexity; meanwhile, reasonable time spent for reaching the final state can be
obtained.

The distributed physical deployment of a large scale system often makes it im-
possible to implement a centralized controller, considering the high communication
costs, time delays, etc. In the context of target marking control problem of TCPNs,
few contributions have considered the decentralized setting. For example, [4] consid-
ered continuous models composed by several subsystems that communicate through
buffers (modelled by places). This method assumes that all the subsystems and
the global one should be mono-T-semiflow. In Chapter 5 we propose a decentral-
ized control method for CF nets. We assume a large scale system modelled by
TCPNs that can be cut through a set of buffer places, obtaining disconnected sub-
systems. However, these disconnected subsystems may exhibit different behaviors
(firing sequences) to the original system. To overcome this problem, we propose sev-
eral reduction rules to obtain abstractions of the missing parts of subsystems. The
abstractions are used to construct the complemented subsystems that preserve the
behaviors of the original system. Then, local control laws are computed separately
in subsystems. Finally, we present a simple algorithm to coordinate the local control
laws that may be not globally admissible. Because the considered nets are CF, we
can implement the ON/OFF controller independently and drive each subsystem to
its final state in minimum-time.

For a general net system, the previous decentralized control methods may be
no longer applicable: the method proposed in Chapter 5 is only for CF nets; the
approach proposed in [4] requires (sub-)systems to be mono-T-semiflow. In Chapter
6 we propose an approach based on Distributed Model Predictive Control (DMPC).
We first present a centralized MPC controller, in which the stability—a key issue in
MPC based approaches—is ensured by forcing the state evolution inside an interior
convex subnet of the reachability space. Recall that in another (centralized) MPC
control approach for TCPNs proposed in [64], the states are constrained to be on a
straight line trajectory from the initial state to the final one; however, for our method
this is not mandatory. Later, we apply the proposed MPC controller to a distributed
setting. Similarly to the previous methods, we assume a (large scale) TCPN that
is cut into subsystems through sets of buffer places. Then we focus on driving all
the subsystems to their final states and keeping all the buffer places in legal non-
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negative states. In the proposed distributed MPC algorithm, each local controller
can access informations (states and structures) of its local subsystem and the buffers
connecting to it; no global coordinator is required, and communications among local
controllers only occur inside neighborhoods, in which the data transmitted is very
low. However, minimum-time evolution is not considered in this method.

In Chapter 7 we are interested in reaching the maximal flow of TCPNs in
minimum-time. As we have already mentioned, the main challenge of this prob-
lem is the fact that we usually cannot uniquely determine a final state with the
maximal flow and obviously, the time varies significantly on which one is chosen.
Even for Marked Graphs (MG, a subclass of CF nets), the problem becomes compli-
cated when minimum-time evolution is considered, in particular, non-monotonicity
appears with respect to the firing count vectors that drive the system to the maximal
flow. We propose a heuristic algorithm for CF nets. The idea is to compute the
“best” firing counter vector (in terms of the time spent on the trajectory) driving
the system to the maximal flow, according to an estimation of the number of time
steps based on the current state and flow at each time step; then an ON/OFF firing
strategy is applied. Moreover, because of the persistency of CF nets, we can further
reduce the time by employing some additional firings.

The main contributions of this thesis can be briefly listed as the follows:

• A simple and efficient minimum-time controller for the target marking control
problem of CF net systems (Chapter 4, the primary results are published in
[104]).

• Several heuristic minimum-time control methods for the target marking control
problem of general net systems (Chapter 4, the primary results are published
in [106]).

• A decentralized minimum-time controller for the target marking control prob-
lem of CF net systems (Chapter 5, the primary results are published in [105,
103]).

• A distributed MPC approach for the target marking control problem of general
net systems (Chapter 6, the primary results are in [107] )

• Heuristic methods for the minimum-time (maximal) flow control problem of
CF nets (Chapter 7, the primary results are published in [108])

• The proposed control methods are implemented and integrated into a Matlab
based toolbox for hybrid PN systems, called, SimHPN [48].

The organization of the thesis is as follows: In Chapter 2 we briefly recall the
basic concepts and important technical results of continuous PNs; in Chapter 3
more details about the control of continuous PNs, which is the main topic of the
thesis, are introduced. In Chapter 4 we propose centralized control methods for the
target marking control problem, with the objective of minimizing the time spent
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Chapter 1. Introduction

on the trajectory. Some proposed methods are heuristics and all of them are based
on the ON/OFF strategy. Chapter 5 and 6 study decentralized control methods
for the target marking control problem: in Chapter 5 we propose a decentralized
minimum-time controller for CF net systems; in Chapter 6, we propose a distributed
MPC approach for general net systems. Chapter 7 focuses on the (minimum-time)
optimal flow control problem, and heuristic algorithms are proposed for CF nets.
In Chapter 8 we carry out several case studies to illustrate the proposed (target
marking) control methods: the first three examples focus on the centralized control
methods and the last one considers the distributed control. Some final remarks are
in Chapter 9.
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Chapter 2

Continuous Petri nets: Basic
Concepts and Notations

In this chapter, we introduce some basic definitions, concepts and techniques about
continuous Petri nets, both for the autonomous (untimed fully non-deterministic)
model and the timed model. Without time interpretation, the autonomous model
can be used to analyze some properties like boundedness, deadlock-freeness, liveness,
etc. Notice that, as a “coarse” model, some important properties of the original dis-
crete model may be lost after fluidization. Therefore, during the presentation of
the technical results related to continuous Petri nets, we will compare with those
related to the discrete ones, trying to clarify the “bridges” and “gaps” between them.
Timed models are often used in performance evaluation of, for example, manufactur-
ing systems. Among mostly used firing server semantics, we focus on infinite server
semantics (variable firing speed), since it usually provides better approximations to
discrete systems under some general conditions. Finally, we present a case study to
illustrate the concepts and techniques that have been introduced in this chapter.
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Chapter 2. Continuous Petri nets: Basic Concepts and Notations

2.1 (Discrete) Petri nets and the state explosion prob-
lem

Petri nets are a modelling paradigm with several “related” formalisms. In the se-
quel, we consider Place/Transition (P/T) nets, which is most usually found in the
literature. PNs enjoy a bipartite structure, which is also considered in other DEDS
formalisms as queueing networks or Forrester Diagrams (see [87] for a broad review).
They can directly represent a production/consume logic that frequently appears in
practical systems as manufacturing systems, logistics, transportation systems. In
this section we introduce the basic definitions of discrete PNs, and illustrate its
principal limitation—the state explosion problem.

Definition 2.1.1. A Petri net (PN) system is a pair 〈N ,M 0〉, in which N =
〈P, T,Pre,Post〉 is a net structure, where:

• P and T are the disjoint, finite sets of places and transitions respectively.

• Pre,Post ∈ N|P|×|T| are the pre and post incidence matrices.

• M0 ∈ N|P| is the initial marking (state).

Let pi, i = 1, . . . , |P | and tj, j = 1, . . . , |T| denote the places and transitions.
Pre[pi, tj ] = w1 and Post[pi, tj ] = w2 indicate the connections between places and
transitions: if w1 > 0 there is a arc from pi to tj with w1 as the weight; if w2 > 0
there is a arc from tj to p2 with w2 as the weight. For any v ∈ P ∪ T, the sets of
its input and output nodes are denoted as •v and v•, respectively. These definitions
can be naturally extended to sets of nodes. Each place can contain a non-negative
real number of tokens, its marking. The distribution of tokens in places is denoted
by M and the marking of place pi is represented as M [pi]. In (discrete) PNs one
transition tj is enabled at marking M if each of its input place pi ∈

•tj fulfills
M [pi] ≥ Pre[pi, tj]. The enabling degree of transition tj at marking M is defined
as:

enab(tj ,M) = min
pi∈•tj

{⌊

M [pi]

Pre[pi, tj ]

⌋}

(2.1)

It gives the maximal amount that transition tj can fire at M . Transition tj is
called k-enabled under marking M , if enab(tj ,M) = k. The firing of transition tj
with an amount α ∈ N (denoted by tj(α)) leads the system to a new state M ′ =

M 0+α·C [P, tj], the evolution being denoted byM
tj(α)
→ M ′, whereC = Post−Pre

is the token flow matrix (incidence matrix if N is self-loop free) and C[P, tj ] and
C[pi, T ] are its j

th column and ith row. A markingM that can be reached fromM0

by firing a sequence σ = t1(α1)t2(α2)..., satisfies the following state (fundamental)
equation:

M =M0 +C · σ, M ∈ N|P|,σ ∈ N|T| (2.2)

where σ is called the firing count vector corresponding to firing sequence σ, such
that σ[tj ] is the accumulative amount that tj fires in σ.

8



2.2. Autonomous (untimed) continuous Petri nets

Similar to other modelling formalisms, PNs also suffer from the state explosion
problem of DEDS which makes intractable the computational complexity of the tra-
ditional state enumeration based methods. In particular, the size of the reachability
set of a PN may increase exponentially with respect to the initial state.

Example 2.1.2. Let consider a discrete net system given in Fig.2.1 [93, 46]. Table
2.1 shows that the size of the reachability set grows exponentially when the initial
state is scaled.

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6
2

2
2

4

3

Figure 2.1: A simple PN that models an assembly system, initial state M0 =[1 0 2
3 1 0 0]T

Table 2.1: The size of the reachability set of the net system in Fig.2.1

Initial state Size of the reachability set

M0 54
2 ·M0 1,685
3 ·M0 10,354
4 ·M0 37,722
5 ·M0 103,914

. . . . . .
10 ·M0 2,598,345

2.2 Autonomous (untimed) continuous Petri nets

One classical technique used to overcome the state explosion problem is fluidization.
Fluid models are obtained by removing the integrality constraint from the system.
In particular, in the fluid PN models, the firing of transitions and consequently the

9



Chapter 2. Continuous Petri nets: Basic Concepts and Notations

markings, are no longer restricted to the natural and they can be non-negative real
numbers. The main advantage of using the fluid relaxation is that the computational
issue in the original discrete model is considerably reduced, usually in a dynamical
way.

2.2.1 Basic concepts

Definition 2.2.1. A continuous Petri net (CPN) system is a pair 〈N ,m0〉 where
N = 〈P, T,Pre,Post〉 is the same net structure as defined for the discrete PN. The
difference is that in CPNs the firing of transitions and the markings (states) are no
longer restricted to be in the naturals, but relaxed to be non-negative real numbers,

so, m0 ∈ R|P|
≥0. In CPN systems, the markings are denoted bym, distinguishing with

M for the markings in discrete models.

In CPN systems, a transition t is enabled at m if for every p ∈ •t,m[p] > 0, i.e.,
every input place should be marked. Notice that, in contrast with discrete systems,
it is not necessary to consider the weights of arcs to decide whether a transition is
enabled or not. However, the weights of arcs are important to compute the enabling
degree of a transition tj at a certain marking m, which is defined as:

enab(tj ,m) = min
pi∈•tj

{

m[pi]

Pre[pi, tj]

}

An enabled transition tj can fire in any real amount α, with 0 < α ≤ enab(tj,m),
leading to a new state m′ = m + α · C[P, tj ] . Similar to to discrete systems, a
reachable marking from m0 through a finite sequence σ is included in the state
(fundamental) equation:

m =m0 +C · σ, m,σ ≥ 0 (2.3)

2.2.2 Petri nets subclasses

The subclasses of discrete PNs that depend only on the structure of net are also
applicable to the continuous PNs; in particular, we consider the following subclasses:

• Marked-Graph(MG) [74]: ordinary net and ∀p ∈ P, |p•| = |•p| = 1.

• Weighted T-system (WTS) [92]: ∀p ∈ P, |p•| = |•p| = 1.

• Choice-Free (CF) [93]: ∀p ∈ P, |p•| = 1.

• Join-Free (JF): ∀t ∈ T, |•t| ≤ 1.

• Equal conflict (EQ) [94]: iff •t ∩ •t′ 6= ∅ ⇒ Pre[P, t] = Pre[P, t′].

• Mono-T-semiflow (MTS) [19]: conservative and has a unique minimal T-semiflow
whose support contains all the transitions.

10



2.2. Autonomous (untimed) continuous Petri nets

2.2.3 Basic structural concepts

The support of a vector, v ≥ 0, is ‖v‖ = {vi|vi > 0}, the set of positive elements
of v. Right (C · x = 0) and left (y · C = 0) natural annullers of the token flow
matrix are called T- and P-semiflows , respectively. A semiflow is minimal when
its support is not a proper superset of the support of any other semiflow, and the
greatest common divisor of its elements is one. As in discrete nets, when ∃y > 0,
s.t. yT ·C = 0, the net is said to be conservative, and when ∃x > 0 s.t. C · x = 0,
the net is said to be consistent.

Given a P-semiflow y (a vector), there exist two related notions that should be
differentiated:

• conservation laws: a set of equations yT ·m0 = yT ·m, which hold for an
arbitrary initial marking m0 and every reachable marking m = m0 + C · σ,
m,σ ≥ 0.

• conservative component : the P-subnet generated by the support of y. It is a
part of the net that conserves its weighted token content.

On the other hand, T-semiflows identify potentially cyclic behaviors in the sys-
tem, i.e., if ∃x 
 0 s.t. C · x = 0, and x is fireable from m then, by the state
equation,m

σ
→m with σ being a firing sequence and the corresponding firing count

vector is equal to x.

Example 2.2.2. For example, the PN system in Fig. 2.2(a) has a P-semiflow y = [1
1 1]T , therefore ‖y‖ = {p1, p2, p3}. By the state equation, it holds yT ·m0 = y

T ·m,
i.e., for any marking m reachable from a given m0, m[p1] + m[p2] + m[p3] =
m0[p1]+m0[p2]+m0[p3], which are the conservation laws. For example, considering
the initial marking m0 = [2 0 0]T it holds m[p1] +m[p2] +m[p3] = 2. The P-
subnet generated by ‖y‖ contains all the places of the net, i.e., the whole net is a
conservative component. The PN system has also a T-semiflow, x =[1 1 1]T , thus
‖x‖ = {t1, t2, t3}. Therefore, if every transition fires once, the system returns to the
initial marking.

Two interesting structural concepts are siphons and traps. A set of places Σ is a
siphon if •Σ ⊆ Σ•. The dual concept of of siphon, called trap, is a set of places Θ such
that Θ• ⊆ •Θ. An important property is that an empty siphon will remain empty
forever; and analogously, in discrete net systems, a marked trap cannot get emptied.
Nevertheless, in continuous systems, a trap may be emptied in the limit [83]. For
example, p1 in Fig. 2.2(b) is a trap. But, if we consider the net as continuous, p1
can be emptied with an infinite firing sequence, see Ex. 2.2.5.

For the PN in Fig. 2.2(a), Σ = {p1, p2} is a siphon since: •Σ = {t1, t3} ⊆
{t1, t2, t3} = Σ•. Considering the PN in Fig. 2.2(b), S = {p1} is a trap and also a
siphon, since S• = {t1, t2} =

•S.
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t1

p2

p1

t3

p3

2

t2

(a)

p1

p2

t1 t2

2 2

(b)

p1

p2

t1 t2

32
2

2 2 3

(c)

p1

p2

t1 t2

2

3

(d)

Figure 2.2: Some simple PN systems

2.2.4 Reachability and lim-reachability

The reachability space (reachability set) of a given system 〈N ,m0〉, denoted by
RS(N ,m0), is the set of all markings that are reachable by a finite firing sequence:

Definition 2.2.3. RS(N ,m0) = {m| a finite fireable sequence σ = ta1(α1) . . . tak(αk)

exists such that m0
ta1 (α1)
→ m1

ta2(α2)
→ m2 . . .

tak (αk)
→ mk = m where tai ∈ T and

αi ∈ R+}.

An interesting property of the RS of CPNs, different from the discrete RS is that
this set is convex [83].

Property 2.2.4. Let 〈N ,m0〉 be a continuous PN system. The set RS(N ,m0) is
convex, i.e., if two markings m1 and m2 are reachable, then for any α ∈ [0, 1],
m′ = α ·m1 + (1− α) ·m2 is also a reachable marking.

12



2.2. Autonomous (untimed) continuous Petri nets

Example 2.2.5. Let us consider the system in Fig. 2.2(b). At the initial marking
m0 = [2 0]T , transition t1 is enabled, and its enabling degree is 1. It can fire any real
amount α s.t. 0 < α ≤ 1. For example, if it fires the maximal possible amount, α =
1, the system reaches the marking m1 = [1 1]T , from which both transitions (t1 and
t2) are enabled. From marking m1, if t1 fires an amount equal to enab(t1,m1) =

1
2 ,

the system reaches m2 = [12
3
2 ]

T . Firing successively transition t1 an amount equal
to its enabling degree, the marking of p1 decreases to the half in each firing; but p1
is never emptied by a finite firing sequence. However, place p1 can be emptied if we
consider an infinitely long firing sequence and the marking will approach m = [0
2]T , which is said to be reachable in the limit. Notice that p1 is a trap and it gets
emptied in a CPN system, but only with an infinite firing sequence.

The markings that are reachable with infinite long firing sequences are said to
be lim-reachable, denoted by lim-RS(N ,m0):

Definition 2.2.6. [83] Let 〈N ,m0〉 be a continuous system. A marking m ∈ (R+∪
{0})|P | is lim-reachable, if a sequence of reachable markings {mi}i≥1 exists such
that

m0
σ1→m1

σ2→m2 · · ·mi−1
σi→mi · · ·

and lim
i→∞

mi =m. The lim-reachable space is the set of lim-reachable markings, and

will be denoted by lim-RS(N ,m0).

For any continuous system 〈N ,m0〉, the differences between RS(N ,m0) and
lim-RS(N ,m0) are just in the border points of the reachability spaces. Therefore, it
holds that RS(N ,m0) ⊆ lim-RS(N ,m0) and that the closure of RS(N ,m0), i.e., all
the points in RS(N ,m0) plus the limit points of RS(N ,m0), is equal to the closure
of lim-RS(N ,m0) [49]. Moreover, lim-RS(N ,m0) is also convex.

Assuming an initial marking of non-negative integers of a continuous system
〈N ,m0〉, ifm is a marking that is reached by firing transitions in discrete amounts,
i.e., as if the system was discrete, then m is also reachable by the system as contin-
uous just by applying the same firing sequence. Thus RSD(N ,M 0) ⊆ RS(N ,m0)
whereM 0 =m0 and RSD(N ,M 0) is the discrete reachability space, i.e., the set of
markings reachable in the corresponding discrete system.

Under some common conditions, we can characterize the set lim-RS(N ,m0) by
using some linear inequality systems, which can be easily checked, in polynomial
time:

Proposition 2.2.7. [49, 83] Let 〈N ,m0〉 be a consistent CPN system, such that
each transition can fire at least once (there does not exist an empty siphon at m0).
Then, the following statements are equivalent:

• m is lim-reachable.

• ∃σ ≥ 0, such that m =m0 +C · σ.

• By ·m = By ·m0,m ≥ 0, where By is a basis of P-flows.
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Chapter 2. Continuous Petri nets: Basic Concepts and Notations

2.2.5 Boundedness

A PN system is bounded when every place is bounded, i.e., its token content is less
than some bounds at every reachable marking. Moreover, it is structurally bounded
if it is bounded for any initial marking.

By definition, if N is structurally bounded then 〈N ,m0〉 is bounded, either as a
discrete or as a continuous system. Moreover, under general conditions, the opposite
is also true for CPNs: if every transition is fireable, i.e. there exists no empty siphon
at m0 (a very reasonable condition for real systems), then structural boundedness
and boundedness are equivalent.

Property 2.2.8. [83] Given a CPN system such that every siphon is initially
marked, the following statements are equivalent:

• N is structurally bounded

• 〈N ,m0〉 is bounded

The structural bound of a place p, SB(p), in system 〈N ,m0〉 can be computed
in polynomial time [90] by solving the following LPP:

max m[p]
s.t. m =m0 +C · σ

m,σ ≥ 0
(2.4)

2.2.6 Liveness and deadlock-freeness

Similar to discrete PN systems, liveness and deadlock-freeness of CPNs can be de-
fined as follows:

Definition 2.2.9. Let 〈N ,m0〉 be a continuous PN system:

• 〈N ,m0〉 deadlocks if a markingm ∈ RS(N ,m0) exists such that enab(t,m) =
0 for every transition t ∈ T ;

• 〈N ,m0〉 is live if for every transition t and for any marking m ∈ RS(N ,m0)
a successor m′ exists such that enab(t,m′) > 0;

• N is structurally live if ∃ m0 such that 〈N ,m0〉 is live.

If we consider lim-RS(N ,m0), those concepts are naturally extended to lim-
deadlock, lim-live, and structurally lim-live.

We should notice that some properties may be lost when a discrete model is
fluidized, in particular, due to the relaxation of the enabling conditions. Thus, the
non-fluidizability of discrete net systems with respect to deadlock-freeness (also with
respect to liveness) may appear, e.g., the new reachable markings might make the
system live or might deadlock it. For example, the system in Fig. 2.2(c) deadlocks as
discrete after the firing of transition t1. However, it never gets completely deadlocked
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2.2. Autonomous (untimed) continuous Petri nets

as continuous by a finite firing sequence; the continuous system would only deadlock
in the limit. On the other hand, the system in Fig. 2.2(d) is live as discrete but
gets blocked as continuous if transition t2 fires in an amount of 0.5 (the deadlock
marking md = [0 1.5]T is reached).

An interesting results related to the lim-reachability in continuous nets is that
it gives a sufficient condition for liveness of the corresponding discrete one [83]:

Property 2.2.10. Let 〈N ,m0〉 be a bounded and lim-live continuous system. Then,
N is structurally live and structurally bounded as discrete net.

Many techniques have been developed for checking of liveness and deadlock-
freeness, since usually they are of those basic requirements in a properly designed
system. For instance, rank theorems were initially developed for discrete models
[82], and later, these results were extended to continuous models for the checking
of lim-liveness and boundedness [83], in polynomial time. Rank theorems establish
necessary or sufficient conditions for liveness based on consistency, conservativeness
and the existence of an upper bound on the rank of the token flow matrix. For
continuous EQ systems (and for some other classes of net systems), rank theorems
provide a full characterization of lim-liveness and boundedness [83]. Moreover,
if the net is not EQ, there exist some transformation rules, namely equalization
and release, to convert non EQ systems into EQ ones [83]; but in this case, only
sufficient conditions are available. Another typical method used to investigate the
deadlock-freeness is to check the deadlock-trap property (DTP) (it holds if every
siphon contains an initially marked trap), however it is computationally much more
expensive [42].

2.2.7 Implicit places and structurally implicit places

The role of places in PN systems is to constrain the fireability of transitions. An
implicit place is never the unique to constrain the firing of a transition, thus it could
be removed.

Definition 2.2.11. Given a PN system 〈N ,m0〉, the implicit and structurally im-
plicit places can be defined as:

• A place p is implicit if it is never the unique place that prevents the firing of
a transition.

• A place p is structurally implicit if there exists an initial marking m0 from
which it is implicit.

A characterization of the structurally implicit places is given in [90]:

Property 2.2.12. Let N = 〈P ∪ {p}, T,Pre,Post〉. Place p is structurally im-
plicit iff one of the following statements is satisfied (the second is the dual of the
first one):
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Chapter 2. Continuous Petri nets: Basic Concepts and Notations

1. ∃y ≥ 0, such that C[p, T ] ≥ y ·C[P, T ] and y[p] = 0

2. ∄x ≥ 0, such that C[P, T ] · x ≥ 0 and C[p, T ] · x < 0

Let us remark that, as a necessary condition for a place p to be structurally
implicit, it must not be the only input place of its output transitions (∀t ∈ p•,
|•t| ≥ 2). The initial marking from which a structurally implicit place p becomes
implicit can be efficiently computed from the initial marking of the rest of the places.

Property 2.2.13. [90] Let N = 〈P ∪ {p}, T,Pre,Post〉. Place p is implicit if
m0[p] is greater than or equal to the optimal value of the following linear program-
ming problem (LPP):

min y ·m0[P ] + µ
s.t. y ·C[P, T ] ≤ C[p, T ]

y · Pre[P, p•] + µ · 1 ≥ Pre[p, p•]
y ≥ 0

(2.5)

Although implicit places deal only with the redundant information, they are
interesting from different points of view: to improve the analysis of the PN (for
example, the technique of removing spurious solutions [90, 87]), or to interpret its
physical meaning.

In the field of manufacturing systems, an implicit place may represent a kind of
resource (robot, machine, or buffer, etc.) that its marking is not constraining the
system. Consequently, increasing the number of these resources would not improve
the system’s throughput.

2.3 Timed continuous Petri nets

2.3.1 Conceptual framework and server semantics

By introducing time to the model, timed PNs are obtained. They are widely used
for performance evaluation. A simple and interesting way to introduce time to
CPNs is to assume that time is associated to transitions, which is addressed in
this thesis. In timed CPNs (TCPNs), the fundamental equation explicitly depends
on time: m(τ) = m0 + C · σ(τ), which, through time differentiation, becomes
ṁ(τ) = C · σ̇(τ). The derivative of the firing sequence f(τ) = σ̇(τ) is called the
(firing) flow, and leads to the following equation for the dynamics of TCPN systems:

ṁ(τ) = C · f(τ). (2.6)

Depending on how the flow f is defined, different firing semantics can be obtained,
being the most used ones the finite server (or constant speed) semantics and infinite
server (or variable speed) semantics.

Let us assume that a constant firing rate λ[tj ] (or denoted by λj) is assigned to
each transition tj . For finite server semantics, if the markings of the input places of
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2.3. Timed continuous Petri nets

tj are strictly greater than zero (strongly enabled), its flow will be constant, equal
to λ[tj ], i.e., all servers work at the maximal speed. Otherwise (weakly enabled),
the flow of tj will be the minimum between its maximal firing speed and the total
input flow to the empty places (hence, λ[tj] represents the product of the number
of servers in the transition and their speed). This corresponds to the constant speed
of [1], where the flow of a transition tj is:

f [tj] =











λ[tj], if ∀pi ∈
•tj,mi > 0

min

{

min
pi∈•tj |mi=0

{

∑

tq∈•pi

f [tq ]·Post[tq,pi]
Pre[pi,tj ]

}

,λ[tj ]

}

, otherwise
(2.7)

The dynamical system under finite servers semantics corresponds to a piecewise
constant system; a switch occurs when the set of empty places changes and the new
flow values must ensure that the marking of all places remains positive.

In this thesis we focus on the infinite server semantics. The flow of transition tj
is given by:

f [tj ] = λ[tj ] · enab(tj,m) = λ[tj ] · min
pi∈•tj

{

m[pi]

Pre[pi, tj ]

}

, (2.8)

In TCPNs under infinite server semantics, the flow through a transition tj is the
product of its firing rate and its enabling degree. Due to the existence of minimum
operator, the dynamical system corresponds to a piecewise linear system and it
induces several strongly related concepts:

a) the set of arcs (p, t), one per transition t ∈ T , in which p ∈ P is the place
defining the enabling degree of t at marking m, is known as configuration at
m;

b) the sub-state space in which the configuration is the same is known as region;

c) at each region the dynamics is driven by a single linear system which is also
known as operation mode.

More formally:

Definition 2.3.1. A configuration of a net N is a set of (p, t) arcs, one per transi-
tion, covering the set T of transitions. Associated to a given configuration Ck is the
following |T | × |P | configuration matrix:

Πk[t, p] =

{ 1
Pre[p,t] , if (p, t) ∈ Ck
0, otherwise

(2.9)

Definition 2.3.2. A region of a net system 〈N ,m0〉 is a subset of the reacha-
bility space, denoted by Ri(N ,m0) ⊆ RS(N ,m0), such that for any two states
ma,mb ∈ Ri(N ,m0), the corresponding configuration matrices are the the same,
i.e., Π(ma) = Π(mb).
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Let us notice that regions are disjoint except on the borders and the reachability
set RS(N ,m0) of a TCPN system can be partitioned according to the configurations
and inside each obtained convex region Ri(N ,m0) the system dynamic is linear.
According to (2.6), (2.8) and (2.9), the dynamic system evolution inside a region
Rk, called operation mode k as well, can be written as:

ṁ(τ) = C · f(τ) = C ·Λ ·Π(m) ·m(τ), (2.10)

where Λ = diag(λ) is a diagonal |T | × |T | matrix containing the firing rates of
transitions and Π(m) = Πk is the configuration matrix associated to Rk (if m is
on the border of two regions R1 and R2, any operation mode with CΛΠ1 or CΛΠ2

can be used since the same behavior is obtained). The number of modes (regions,
configurations) is upper bounded by

∏

t∈|T | |
•t| but some of them may be redundant

and can be removed [67].

It has been proved that TCPNs, under infinite server semantics, have the capabil-
ity to simulate Turing machines [79], thus they have an important expressive power;
nevertheless, certain properties are undecidable (for example, marking coverability,
submarking reachability or the existence of a steady-state).

There also exist other server semantics. For instance, in population systems
(predator/prey, biochemistry, . . .), the transition firing flows are usually described
by products of markings (population semantics), and even more specific non-linear
functions (see, for example, [88, 35]). In fact, the products can be obtained from
infinite server semantics while considering discoloration of colored PN models [88].
From a different perspective, an extension of the infinite server semantics is defined
in [37] where lower and upper bounds are given for the firing rates. The idea is that
using interval firing speeds the variability of the stochastic behavior of the underlying
discrete model can be taken into account in performance evaluation tasks.

Among other semantics, the finite server semantics and infinite server seman-
tics are mainly used, for example, in manufacturing or logistic systems. In [25], the
authors observed that most frequently the infinite server semantics approximates
better the marking of the discrete net system. Moreover, for mono-T-semiflow re-
ducible net systems [50] under some general conditions it is proved that infinite
server semantics approximates better the flow in steady state [66]. The result holds
depending on a structural property defined from the steady-state marking, a con-
dition that is quite common in the case of production systems. In the sequel, we
assume TCPNs under infinite server semantics.

2.3.2 Timed models versus untimed models

Assume that the steady-state exists, and let fss be the flow vector of the timed
system in the steady state, f ss = limτ→∞ f(τ), from (2.6) ṁ = C · fss = 0 is
obtained (independently of the firing semantics, the flow in the steady state is a T-
semiflow of the net). Deadlock-freeness and liveness definitions of untimed systems
can be easily extended to timed systems as follows:
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Definition 2.3.3. Let 〈N ,λ,m0〉 be a timed continuous PN system and fss be the
vector of flows of the transitions in the steady state.

• 〈N ,λ,m0〉 is timed-deadlock-free if f ss 6= 0;

• 〈N ,λ,m0〉 is timed-live if f ss > 0;

• 〈N ,λ〉 is structurally timed-live if ∃ m0 such that 〈N ,λ,m0〉 is timed-live.

The relationships among liveness of timed systems under infinite server semantics
and untimed systems are depicted in Fig. 2.3. When we associate time to the
system, we just give a particular trajectory of the untimed system. Thus, there
exists a one way bridge between the (structurally) lim-liveness and (structurally)
timed-liveness: the lim-liveness (lim-deadlock-free) in an untimed system implies
timed-liveness (timed-deadlock-free) of the system if it is considered as timed, but the
reverse is not true. On the other hand, if the untimed system is non-live, particular
numerical timings of the continuous model can eventually transform it into live. For
example, the system Fig. 2.2(a) deadlocks as untimed but is timed-live with λ =[1
1 2]T (in particular f ss = [1 1 1]T ). The results hold even for deadlock-free marking
non-monotonic systems (i.e., systems that being deadlock-free, run into a deadlock if
the initial marking is increased). More results related to the time-dependent liveness
of TCPNs under infinite server semantics can be found in [100]

by definition

by definition

untimed

timed

behavioral structural

lim−liveness

timed−liveness

lim−liveness
structurally

timed−liveness
structurally

Figure 2.3: Relationships among liveness definitions for continuous models [87]

2.3.3 Performance bounds under infinite server semantics

The throughput of a transition in the steady state (if exists), i.e., the number of
firings per time unit, is an important performance index in the evaluations of systems
modelled as discrete PNs. In the continuous approximation, this corresponds to the
firing flow in steady state. Let us consider MTS [50] which represents an important
generalization of CF nets [93] and has reasonable modelling powers.

Assume that the system is consistent and does not have an empty siphons at
m0, then from Proposition 2.2.7, every lim-reachable marking is included in the
state equation; on the other hand since in MTS there exists a unique minimal T-
semiflow that includes all its transitions, the throughput (flow) of system can be
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computed using the following non-linear programming problem that maximizes the
flow of an arbitrary transition tj:

max f ss[tj ]
s.t. mss =m0 +C · σ

f ss[t] = λ[t] · min
pi∈•t

{

mss[pi]
Pre[pi,tj ]

}

,∀t ∈ T

C · fss = 0
mss,σ ≥ 0

(2.11)

where mss is the steady-state marking. Due to the minimum operator, problem
(2.11) is non linear and a branch & bound algorithm was propsed in [50] to solve
it. By relaxing the minimum operator to inequalities the problem is reduced to a
LPP, shown in (2.12), which can be solved in polynomial time, but usually we may
only obtain a non-tight upper bound, i.e., the solution may be not reachable if there
exists a transition for which the flow equation is not satisfied. If the net is not MTS,
similar developments can be done by adapting the equations in [23].

max fss[tj]
s.t. mss =m0 +C · σ

fss[t] ≤ λ[t] ·
mss[p]
Pre[p,t] ,∀t ∈ TS,∀p ∈

•t

fss[t] = λ[t] ·
mss[p]
Pre[p,t] ,∀t ∈ TU , p =

•t

C · f ss = 0
mss,σ ≥ 0

(2.12)

where TU is the set of transitions with unique input place, and TS the synchroniza-
tions transitions (TU ∩ TS = ∅, TU ∪ TS = T ) .

Once a solution of LPP (2.12) is obtained, it can be easily checked whether it is
the exact value of the flow by introducing it into the problem (2.11).

2.3.4 Parametric optimization under infinite server semantics

Parametric optimization considers “off line” problems in which, given the system
configuration, it is optimally parameterized for the steady state.

Among the problems belonging to parametric optimization, some of them are,
for example, computing the optimal initial marking m0 to achieve the maximal
throughput in the steady state, satisfying certain constraints; or problems of mini-
mizing certain cost function related to the initial marking; or optimizing other design
parameters, like the optimal routing or the optimal firing speed, etc.

A general formulation for this class of optimization problems with respect to the
steady state is trying to maximize a profit function depending on the throughput
(flow) vector (f ss) in the steady state, the marking in the steady state (mss), and
the initial marking (m0). The profit function can be represented, in linear terms,
like: g · f ss −w ·mss − b ·m0, where g is a gain vector w.r.t. the flow; w is the
cost vector due to immobilization to maintain the production flow, e.g. due to the
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levels in stores; and vector b represents depreciations or amortization of the initial
investments w.r.t. m0, e.g., the size of buffers, the number of machines.

Given K ·m0 ≤ d as linear cost-constraints to the initial state, assume that
we need to optimize the throughput of transition tj in the steady state, f ss[tj ], the
following LPP can be written [89]:

max f ss[tj ]
s.t. mss =m0 +C · σ

f ss[t] ≤ λ[t] ·
mss[p]
Pre[p,t] ,∀t ∈ TS ,∀p ∈

•t

f ss[t] = λ[t] ·
mss[p]
Pre[p,t] ,∀t ∈ TU , p =

•t

C · f ss = 0
σ,m0,mss ≥ 0
K ·m0 ≤ d

(2.13)

where TU is the set of transitions with unique input place, and TS the remaining
(synchronization) transitions.

If we compare LPP (2.13) with the LPP (2.12), the only difference is that now the
initial statem0 appears as a variable and that the linear cost-constraints associated
to m0 are added. In general, LPP (2.13) just provides an upper bound of the
throughput of transition tj.

Another parametric optimization problem concerns computing the minimal cost
initial marking w.r.t. a given cost weight vector b such that a certain cycle time
Γ = 1/f ss[tj] is guaranteed. This optimization problem can be solved by means of
the following LPP [89]:

min b ·m0

s.t. mss =m0 +C · σ

f ss[t] ≤ λ[t] ·
mf [p]

Pre[p,t] ,∀t ∈ TS ,∀p ∈
•t

f ss[t] = λ[t] ·
mf [p]

Pre[p,t] ,∀t ∈ TU , p =
•t

C · f ss = 0
σ,m0,mss ≥ 0
f ss[tj ] ≥ 1/Γ

(2.14)

where TU is the set of transitions with unique input place, and TS the synchroniza-
tions transitions (TU ∩ TS = ∅, TU ∪ TS = T ) .

2.3.5 Approximation to the discrete systems

The fluid PNs are a relaxation/approximation of the original discrete model, in par-
ticular, we consider the Markovian (discrete) Petri nets (MPNs): stochastic discrete
PNs with exponential delays associated to the transitions and conflicts solved by a
race policy [73]. MPNs enjoy the memoryless property, and it is widely used in the
performance evaluation, for example [73, 69, 8]; but the analysis of its underlying
Markovian Chain may be intractable, because of the computational issue cased by
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the state explosion problem. The approximation (steady-state as well as transient
behavior) of MPNs by using TCPNs under infinite server semantics was first con-
sidered in [80]. However, in some situations the fluid approximation may not be
good. Therefore it is interesting to investigate the conditions, based on which an
appropriate fluid model could be obtained.

Example 2.3.4. Let us still consider the net system in Fig.2.1. We simulate it
by using the Markovian PN model [73] and the corresponding TCPN model under
infinite server semantics. The state trajectories of both cases are illustrated in Fig.
2.4. We can see that the fluid model has a reasonable approximation of the original
discrete one, and the accuracy is improved if the system is more populated. Notice
that, if the initial marking is increased form m0 to 10 ·m0, the size of the state
space of the discrete PN model increases from 54 to more than 2.5 million—the
state explosion problem appears, so the analysis based on the discrete model could
be difficult. However, if we consider the fluid model, the number of variables in the
system, determined by the number of places, is not changed. On the other hand,
for the analysis by using the deterministic fluid model, only one round simulation is
enough, which is also much cheaper than using the (stochastic) discrete model.
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(a) Simulation results using initial state m0
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(b) Simulation results using initial state 10 ·m0

Figure 2.4: Simulations: a discrete PN and its fluid model

There are two main reasons that may introduce errors to the fluid models: the
weights on arcs and join transitions (rendez-vous). Let M be the marking of the
original discrete PN andm be the one of the corresponding fluid model, TCPN. We
assume that the state of fluid model approximates the one of discrete model, then
we have m ∼ E(M ), where E(M ) refers to the expectation of M . Assume a JF
nets, and w be the weight on the directed arc from place pi to tj. The expected
enabling degree of tj in the discrete model is E(enab(tj ,M)) = E(⌊M [pi]/w⌋);
while in the TCPN, enab(tj,m) = m[pi]/w ∼ E(M [pi])/w. Clearly, due to the
operation ⌊·⌋, E(enab(tj ,M)) may be different to enab(tj ,m) in a non-ordinary
net (w > 1). The similar problem may appear even in an ordinary net when tj
is a join (|•tj| > 1): E(enab(tj ,M) = E(min{M [pi]}), pi ∈

•tj is not equal to
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enab(tj,m) = min{m[pi]} ∼ min{E(M [pi])}, pi ∈
•tj, because it is a common

knowledge that operator min and E cannot commute. More detailed explanations
and illustrative examples about these issues can be found in [87].

It has been formally proved in [101] that for ordinary JF nets, perfect approx-
imation of the discrete model can be obtained by using TCPNs. If a JF net is
not ordinary, approximation errors may appears; however, if the net system has a
unique asymptotically stable equilibrium point, the errors are ultimately bounded
and the larger the average enabling degree the lower the errors. For non JF nets, if
the probability that the MPN system evolves inside a unique region (in which the
TCPN also evolves) is near 1, i.e., for each synchronization, it is almost always con-
strained by a single input place, the approximation error is also ultimately bounded
and can be improved if the average enabling degree is larger. In [29], the conditions
for an appropriate fuidization are investigated mainly based on the marking homo-
thetic behaviours of the system. In particular, the relations between the original
discrete model and the fluid one are established, in terms of some important logical
properties as boundedness, deadlock-freeness, liveness and reversibility.

Several techniques have been proposed to improve the approximation of using
TCPNs. For instance, by adding white noise to the flows of transitions of the TCPN
model [101], a continuous stochastic CPN (denoted by TnCPN) is obtained. Intu-
itively, the stochastic behavior of the MPN is better approximated, according to
the following evolution (in discrete time): mk+1 = mk + C(ΛΠ(mk)mk∆τ + vk)
where vk is a noise column vector, of length |T |, whose elements are of independent
normally distributed random variables with zero mean and covariance matrix. An
interesting issue is that, by adding the white noise according to the previous ap-
proach, the expected value and covariance of the original MPN and the resulting
TnCPN coincide.

Another class of techniques for improving the approximation consists in modify-
ing the server semantics of TCPNs. For example, we may change the infinite server
semantics by multiplying a marking-dependent function (m[pi]

q−1/qq) to the flow
of a transition tj, such that pi =

•tj and Pre[pi, tj ] = q [87], then the flow of tj is
modified to f [tj] = λj ·(m[pi]/q)

q. In this way, the approximation may be improved.
Belonging to the same category, in [59], the firing rate is considered as piece-wise
constant, depending on the regions of the current markings. It is show that the
asymptotic mean marking of discrete model can be approximated by the continuous
one, if the system is in non-critical regions (each join is driven by different place); in
[56] the case of critical regions is considered, by means of partial homothetic initial
markings but differently, the firing rate is not piece-wise constant but fixed value.
More constructive method has been proposed by the same authors in [57], where
the homothetic approach is used to compute a set of reference data for several firing
rates and an interpolation method is applied.

We can also improve the approximation by removing spurious solutions: those
markings that cannot be reached in the discrete model but become (lim-)reachable
after fluidization (it is an immediate result of Proposition 2.2.7). Spurious solutions
may appear due to the fact that in TCPNs, marked traps are finally emptied in
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the limit. Fortunately, this kind of spurious solutions can be cut by adding some
implicit places to the system. A comprehensive discussion of this technique can be
found in [87].

In this thesis, we focus on the synthesis of controllers directly based on the
fluid model and we assume that the approximation of the TCPN to the underlying
discrete model is appropriate.

2.4 An example: a kanban-like manufacturing system

This section is devoted to illustrate some of the basic concepts and techniques about
TCPNs that we have introduced in this chapter, by means of the analysis of the
model of a flexible manufacturing system.

The system is composed by two production lines with three machines M1, M2
and M3. The layout of the system and its production process are shown in Fig.2.5,
while the PN model is depicted in Fig. 2.6. Parts of type A are processed in machine
M1 and then in machine M2, with intermediate products stored in buffers B 1A and
B 2A. Parts of type B are first processed in M2 then in M1, with intermediate
products stored in buffers B 1B and B 2B. Finally, machine M3 assembles a part
A and a part B, obtaining the final product that is stored in buffer B 3 until its
removal. Places Max B 1A and Max B 1B initially have only one token, so there
can be at most one part of type A and one part of type B either in B 1A and B 1B,
or being processed by M1 and M2. Parts A and B are moved in pallets all along the
process, and there are 20 pallets of type A and 15 pallets of type B. Place Max B 3
has initially one token, so only one final product can be stored in the buffer B 3
until its removal. The initial state m0 of the system is as shown in Fig. 2.6.

Typical competition and cooperation relationships that often appear in manu-
facturing systems, are introduced by means of the movement of parts inside the
system. For instance, machine M1 and machine M2 are shared for processing parts
A and parts B, therefore, these activities are in mutual exclusion (mutex ). Final
products can be assembled only when both intermediate produces of type A and B
are available (i.e., buffer B 2A and B 2B are not empty) (rendez-vous).

Buffer

Input A

Input B

In_A M1

Output

Buffer

Buffer

Output M2

In_B M2 M1

M3

Machine 1 Machine 2 Machine 3

(a) (b)

Figure 2.5: (a) Logical layout of a manufacturing system and (b), its production
process

24



2.4. An example: a kanban-like manufacturing system
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Figure 2.6: The PN system that models the manufacturing system described in
Fig.2.5

Let us first consider the net system in Figure 2.6 as a continuous model without
any temporal interpretation (i.e., as an autonomous PN: a fully non-deterministic
model). Some important properties of the autonomous PN system can be studied:
conservativeness/consistency, boundedness, structurally implicit places, deadlock-
freeness, liveness.

Looking at the structure of the net, it can be checked that it is conservative:
∃y > 0 s.t. yT ·C = 0 (it has 8 elementary P-semiflows covering all the places, each
one gives an elementary token conservation law (see Table 2.2)). The system is also
consistent : it has a unique minimal T-semiflow x = 1 (C · x = 0). Given that the
net is conservative and has a unique T-semiflow that covers all the transitions, the
net system is mono-T-semiflow (MTS).

Table 2.2: P-semiflow of the system in Fig. 2.6

P-semiflow Corresponding token conservation law

y1 M1 A + M1 Idle + M1 B = 1
y2 Pallets B + M2 B + B1 B + M1 B + B 2B + M3 work + B3 = 15
y3 M2 B + B1 B + M1 B + Max B1 B = 1
y4 Pallets A + M1 A + B1 A + M2 A + B 2A + M3 work + B3 = 20
y5 M1 A + B1 A + M2 A + Max B1 A = 1
y6 M2 A + M2 Idle + M2 B = 1
y7 Max B 3 + B 3 = 1
y8 M3 Idle + M3 work = 1
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(Structural) Boundedness: The PN is conservative, thus it is structurally bounded
(i.e., bounded for any m0). The structural bound of each place can be computed
from (2.4). For example, SB(p1) = 20 and SB(p2) = 1.

Structurally implicit places: There exist six structurally implicit places (see
Proposition 2.2.12): M1 Idle, M2 Idle, M3 Idle, Max B 3, Max B 1A and Max B 1B.
The minimal initial marking of p5 to make it implicit (see Proposition 2.2.13) is
m0

′[p5] = 2. It means that, if we keep the initial marking of other places and we
have 2 or more tokens in p5, then it will no longer restrict the system. In other
words, even we put more machines of type M1 in the system, the throughput cannot
be improved. Analogously, the minimal initial marking of p6 to become implicit is
2; for p13, is 15; for p15, is 15; for p17, is 20; and finally for p18, it is 15.

Deadlock-freeness and liveness: As we have briefly recalled, there exist sev-
eral methods that can be used for checking the deadlock-freeness. For instance, we
can use the deadlock-trap property (DTP). In this particular ordinary net exam-
ple, siphons are also traps (see Table 2.3) and they are initially marked. So, every
siphon contains a marked trap, i.e., the DTP property holds. Thus the net sys-
tem is deadlock-free. Moreover, the DTP property guarantees not only homothetic
deadlock-freeness, but also monotonic deadlock-freeness. It means that, if the mark-
ing of any place is increased, the net system will remain deadlock-free. If a discrete
system 〈N ,M 0〉 is homothetic DF, then it is also DF as continuous [29]. Another
interesting way to approach the problem is the following: places M1 Idle(p5) and
M2 Idle(p6) are structurally implicit, if we add enough tokens to the initial state
of those places (one more token to each of them), they become implicit. Therefore
both can be removed without affecting structural liveness. After the removal, the re-
maining PN is a strongly connected marked graph with all circuits (i.e., P-semiflows)
marked. Thus, the original system is structurally live.

Table 2.3: Minimal siphons of the net. They coincide with the minimal traps.

Minimal siphons / minimal traps

{p1, p2, p3, p4, p11, p14, p16}
{p2, p3, p4, p17}
{p2, p5, p10}
{p4, p6, p8}
{p7, p8, p9, p10, p12, p14}
{p8, p9, p10, p18}
{p13, p14}
{p15, p16}

Let us now consider the model in Fig.2.6 as a timed PN system. We assume that
each transition is associated to a time delay that follows exponential distributions. In
particular, the time delay vector of transitions, represented by δ, is set as following.
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The transitions that model the starting of machines (labelled by S) have time delays
δ[t1] = δ[t3] = δ[t5] = δ[t7] = δ[t9] = 1 t.u.. The delays of transitions that model the
endings (labelled by E) are δ[t2] = δ[t6] = 3 t.u., δ[t4] = δ[t10] = 4 t.u. and δ[t8] = 5
t.u.. The output transition has a delay δ[t11] = 1 t.u. In the corresponding TCPN
model under infinite server semantics, time delays are approximated by their mean
values (λ[tj ] = 1/δ[tj], tj ∈ T ), obtaining a first order (or deterministic) relaxation
of the discrete case [80].

As an important part in the life-cycle of manufacturing systems, performance
evaluation has been widely investigated by using time interpreted PNs, under both
the framework of continuous and discrete systems, for example in [50, 69, 8]. We will
focus on the steady state evaluation and transient state evaluation, using TCPNs
under infinite server semantics.

Steady state analysis: By solving LPP (2.12), an upper bound of the flow, equal
to 0.1, is obtained (given that the net is MTS with the unique minimal T-semiflow
equal to 1, all the transitions will have the same flow in the steady state). We can
check that it is a solution of problem (2.11), i.e., the relaxed LPP (2.12) gives the
exact upper bound of the flow! On the other hand, if we consider the problem (2.11)
with min operator in the objective function, instead of max operator, i.e., computing
the lower bound of the flow, the obtained flow is also 0.1. The direct consequence
is that, the flow of transitions is exactly equal to 0.1 in the steady state, which is
mss = [0.1 0.3 0.1 0.4 0.2 0.3 13.5 0.3 0.1 0.5 18.6 0.1 0.6 0.4 0.9 0.1 0.2 0.1]T .

Transient analysis: The transient evaluation analyzes the behavior of the system,
from the initial state (at time zero) until a given end time. As we have mentioned
in the previous sections, TCPN models can approximate the average marking of the
corresponding MPN if the MPN evolves inside a unique region (in which the TCPN
also evolves), but it does not hold for this net system. In Fig.2.7 the transient
state evolution of M1 Idle (p5) is shown (obtained with the initial marking shown
in Fig. 2.6). The results of the MPN are obtained by 100 simulations and taking
the average value at each time instant. It can be observed that, even if the general
shape of curves of the TCPN and the MPN are similar, the approximation provided
by the fluid model is not very accurate: in the interval from 3.5 t.u. to 4.5 t.u. the
average value of M [p5] (for the MPN) is 0.40, while the average value of m[p5] (for
the TCPN) is 0.22, with error of (0.40 − 0.22)/0.40 = 45%.

We can further improve the approximation, for example, by applying the tech-
nique proposed in [101]. Adding white noise to the flows of transitions of the TCPN
model, we obtain the continuous stochastic CPN (TnCPN). In Fig.2.7, it can be
clearly seen that the TnCPN model gives more accurate approximation to the origi-
nal MPN: in the interval from 3.5 t.u. to 4.5 t.u., the average value of m[p5] for the
TnCPN is 0.34, the error is 15% (much better than the TCPN model with error of
45%).

One essential reason of the relatively inaccurate approximation of the determin-
istic model (Fig. 2.7) may be that the system is not truly very much populated:
in m0, there is only one machine for each operation, and the size of buffers is also
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Figure 2.7: Marking trajectory of place p5: with initial marking m0

limited to 1. In the case that the system is more populated, for example, instead
of using m0, we simulate the system with initial marking equal to 50 ·m0 (results
shown in Fig.2.8), a very good approximation can already be obtained by using the
deterministic TCPN model, even if no white noise is considered. More theoretical
results about the approximation of using CPN can be found in [63].

Figure 2.8: Marking trajectory of place p5: with initial marking 50 ·m0

Last but not least, let us consider the parametric optimization problem of com-
puting the optimal initial marking that satisfies a linear constraint K ·m0 ≤ d. As-
sume that because of constraints on the investment, we can have at most 5 machines
in the system (m0[M1 Idle] +m0[M2 Idle] +m0[M3 Idle] ≤ 5), and the total size
of buffers is constrained to no more than 10 (m0[Max B 1A] +m0[Max B 1B] +
m0[Max B 3] ≤ 10). At the same time, the total amount of available pallets for
the raw materials A and B are limited to 20 (m0[Pallets A]+m0[Pallets B] ≤ 20).
Under these constraints and with the other places initially set to be zero, we want
to compute an optimal m0, such that the throughput of transition Out (t11) in
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the steady state is maximized. An optimal m0 obtained by solving LPP (2.13) is:
m0[Pallets A] = 3.4,m0[Pallets B] = 3.6,m0[Max B 3] = 1.1,m0[Max B 1A] =
2.0,m0[Max B 1B] = 2.3,m0[M1 Idle] = 2.1,m0[M2 Idle] = 1.8,m0[M1 Idle] =
1.1. Using this initial marking, the maximal throughput of t11 is 0.2273.
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Chapter 3

Control of Continuous Petri
nets

This chapter recalls the main concepts and technical results related to the control of
continuous Petri nets, which is the main topic of this thesis. We assume that all the
transitions are controllable, and the system is controlled in the way that the flows of
transitions can be slowed down. We focus on two control problems: target marking
control and optimal flow control. Since in TCPNs under infinite server semantics
the control inputs are non-negative and state-dependently bounded, classical results
of the control of general continuous-state systems may not be directly applicable.
Firstly, controllability, generally related to the capability of driving the system in a
desired way, is discussed. Then, previous control methods are summarized. Some
initial comparisons are also presented.
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3.1 Introduction

3.1.1 Controlling the systems

In this section, we consider the systems under external control inputs (some dynamic
control variables). The flow of transitions is interesting to be controlled. It is similar
to the strategy which has been used for queuing networks, where servers activity
and routing of customers are controlled (see, for example, [54]). We assume that the
only admissible control action consists in slowing down the (maximal) firing flow of
transitions (defined for the uncontrolled or unforced systems) [89]. This means that
transitions modelling machines, for example, cannot work faster than their nominal
speeds. Under this assumption, the controlled flow of a TCPN system is denoted as:

w(τ) = f(τ)− u(τ)

with 0 ≤ u(τ) ≤ f(τ) as the control inputs and f(τ) = CΛΠ(m(τ))m(τ) being
the uncontrolled flow. Therefore, the overall behavior of the system is ruled by:

ṁ = C · (f(τ)− u(τ))

A transition tj is said to be uncontrollable if the only control input that can be
applied is u(τ)[tj ] = 0. The transitions set T can be partitioned into disjoint sets of
of controllable (Tc) and uncontrollable (Tnc) transitions, Tc∩Tnc = ∅ and Tc∪Tnc = T .
In this thesis, we focus on the systems where all the transitions are controllable, i.e.,
Tc = T , Tnc = ∅.

Many works can be found in the literature about the control of different classes
of net systems. For instance, in the case of discrete PNs, supervisory control the-
ory is studied (e.g. in [31, 38, 41]), in which the objective is to control the system
behavior to satisfy certain (safety) specifications, for example, to avoid some forbid-
den states by disabling transitions in particular situations; or in the hybrid systems,
e.g., aiming at optimizing a given objective function [9] or restricting the continuous
reachable state space to a desired state space, which is expressed in terms of linear
constraints only over the continuous variables [30]. Here, in TCPNs (under infinite
server semantics), we focus on driving the system towards a desired steady state, or
following certain state trajectories.

Among others, we will consider two related problems: (minimum-time) target
marking control and (minimum-time) optimal flow control.

3.1.2 Target marking control problem

The target marking control problem concerns how to drive a PN system to a desired
final state, denoted by mf , from a given initial state m0. In particular, we address
the problem of reaching mf in minimum-time. Then, we are able to maintain mf

(a steady-state) by using proper control inputs. For example, let us consider a very
simple MG system, shown in Fig.3.1.
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Figure 3.1: A simple MG system with firing rate vector λ =[1 1 1]T : (a) initial state;
and (b) desired final state
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Assume that we want to drive the system tomf =[8 1 1 1]T (shown in Fig.3.1(b)),
where the maximal flow of each transition can be obtained. For this particular
example, if we simply let the system running “free”, i.e., without applying any
control (u = 0), the system state will automatically evolve to mf and then mf is
maintained, in around 6.1 time units. In order to reach mf , we can fire a sequence
t1(9)t2(1), then a simple (sequential) control law could be: first fire t1 and block
t2, t3 for 2.3 time units, until 9 tokens are put into p1; then fire t2 and block t1, t3,
in 0.7 time units the final state is reached. Totally 3.0 time units are used, which
is much faster than the one of without any control. However, this control strategy
does not provide minimum-time state evolution tomf , because the firings of t1 and
t2 are not necessary to be sequential. In Chapter 4, some centralized minimum-
time control methods are proposed; in Chapter 5, 6 we will consider the problem in
decentralized/distributed settings for large scale systems.

It is important to remark that this target marking control problem is similar
to the set-point control problem, frequently addressed in general continuous-state
systems. On the other hand, assuming that the continuous model approximates cor-
rectly the corresponding discrete one, it is analogous to reaching an average marking
in the original discrete model. The control methods can be first developed in the
continuous model, then applied to the original one. For example, a method for the
control of open and closed manufacturing lines was proposed in [3]. Another related
contribution can be found in [98], dealing with a stock-level control problem of an
automotive assembling line system [27] originally modelled as a stochastic timed dis-
crete PN. A framework of applying the control laws from the continuous model to
the underlying discrete model was proposed, basically by applying additional delays
to the controllable transitions.
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Chapter 3. Control of Continuous Petri nets

3.1.3 Optimal flow control problem

Instead of driving the system to a given final state as in the target marking control
problem, in the optimal flow control problem we focus on reaching an optimal flow in
minimum-time. In particular, we are interested in a steady state where the maximal
flow can be obtained. An important difference to the previous problem, also its main
challenge, is that we may not be able to uniquely determine a final state, to which
the system is driven. Consequently, we do not know which possible final state can
be reached faster than the others—of course, it also depends on the control method
being applied.

Let us consider the same system shown in Fig. 3.1, the maximal flow of transi-
tions is equal to 1. It can be obtained in any marking that has at least one token
in each place, for instance mf

′ =[1 1 1 8]T . To reach mf
′ we can fire a sequence

t1(2)t2(1). If we apply a similar sequential control strategy as we have applied for
reaching mf = [8 1 1 1]T in the previous example, i.e., fire t1(2) and block other
transitions; then fire t2(1), the system state reaches mf

′ in only 0.91 time units.
Therefore the maximal flow is achieved much faster (than in the case of reaching
mf with 3.0 time units). As we have mentioned, the time spent to reach a steady
state with the maximal flow obviously depends on the applied control methods. For
this MG, if we apply the ON/OFF controller presented in Chapter 4, then mf

′ can
be reached in only 0.81 time units. Moreover, we may still be able to further improve
the time to reach the maximal flow (because mf

′ may not be the “best” choice).
We will address the (minimum-time) optimal flow control problem in Chapter 7.

3.2 Computing the initial and desired final states

3.2.1 About m0

In any practical system, for instance a production system, any transition should fire,
therefore every place should be marked. In this thesis, we usually assume an initial
state m0 > 0. With this assumption and if the net is consistent, the system is able
to move in any direction of its reachability space [96], simplifying the computation
of the control action. Even more, if at m0 some places are emptied and they are
the support of a siphon, the net system is non-live and the final marking may not
be reachable. For example, in the simple net shown in Fig. 2.2(a), provided with
m0 = [0 0 1]T the system deadlocks. There exists no control law to reach a final
state mf = [0 1 0]T even if mf is a solution of the state equation with σ = [2 0 1]T

(the net system cannot move, in particular neither in the direction of σ).

Let us assume that there exists no empty siphon atm0 ≥ 0. This is a reasonable
assumption in practice, otherwise, we can simply remove all the places in the empty
siphons. Under this condition, if some places are empty, the system is able to reach
a strictly positive marking easily. Nevertheless, since many solutions may exist,
an open problem is to compute the most reasonable intermediate marking. This
problem is not considered in this thesis.
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3.2.2 About the desired/final state

As we have already mentioned, we consider two control problems: (1) target marking
control problem, in which the desired marking is unique; and (2) optimal flow control
problem, in which the desired markings belong to a convex region.

• For the target marking control problem: the final state mf could be determined
in a preliminarily planning stage, according to some optimality criteria [89], such
as reducing the cost of resources or maximizing a benefit. A typical problem is to
minimize the work-in-process (WIP) cost, trying to maximize the flow (throughput).

In a first step, the maximal weighted flow may be computed by solving the
following LPP:

ψ = max g ·wss

s.t. mss =m0 +C · σ
C ·wss = 0

wss[t] = λ[t] ·
mss[pi]
Pre[pi,t]

− v[pi, t],

∀pi ∈
•t,v[pi, t] ≥ 0

wss,σ,mss ≥ 0

(3.1)

where v[pi, t] are slack variables; mss is a steady state marking, wss is the (con-
trolled) flow in the steady-state, and g is a gain vector w.r.t. the flow.

It is similar to the parametric optimization problem that we have briefly recalled
in Section 2.3.4, but remember that, due to the relaxation of min operator, the
solution of LPP (2.13) and (2.14) for the unforced system gives, in general, an (not
tight) upper bound of the optimal solution. However, in LPP (3.1) for a forced
system assuming that all the transitions are controllable, by introducing the slack
variable v[pi, tj], the original non-linear problem is transformed to a LPP. When pi
is the unique input place of tj , variable v[pi, tj] can be viewed as the control input
that reduces its flow. It is obvious that, if tj is a synchronization, the minimal one,
u[tj] = minpi∈•tj v[pi, tj ], should be applied. More discussions about the optimal
steady-state control problem of CPNs can be found in [65].

Since the maximal flow may be obtained in different steady states, then in a
second step an optimal one (mf =mss) with the minimal WIP cost, l ·mss (where
l is the work-in-process (WIP) cost vector), is computed by solving LPP:

min l ·mss

s.t. mss =m0 +C · σ
C ·wss = 0

wss[t] = λ[t] ·
mss[pi]
Pre[pi,t]

− v[pi, t],

∀pi ∈
•t,v[pi, t] ≥ 0

g ·wss = ψ
wss,σ,mss ≥ 0

(3.2)

• For the flow control problem, the final state is not unique, belonging to a convex
region in the reachability space of CPNs. All the states in this target convex region
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Chapter 3. Control of Continuous Petri nets

can maximize certain profit functions, for example, they correspond to the maximal
throughput (flow) of the system. Chapter 7 is devoted to this problem, in which
instead of reaching a specific final marking, we are interested in reaching the maximal
flow as fast as possible (without considering the WIP cost).

In TCPNs under infinite server semantics a marked place cannot be emptied in
finite time (like the theoretical discharging of a capacitor in an electrical RC-circuit).
Given a positive initial state m0 > 0, only a positive final state can be reached in
finite time, thus the final state should also be an interior point in the reachability
space, i.e., mf > 0.

3.3 Controllability

Controllability is an important property in every kind of dynamic systems. It is
related to the capability of being driven in a certain desirable way and in this thesis,
we consider the controllability in terms of the target marking control problem prob-
lem. More generally speaking, it is related to the classical controllability concept,
according to which a system is controllable if for any two states m1,m2 of the state
space it is possible to transfer the system from m1 to m2 in finite time (see, for
instance, [21]).

A lot works can be found in the literature addressing the controllability of dif-
ferent classes of hybrid systems, for instance in [11, 33, 110]. However, in TCPNs,
the control input are non-negative and state-dependently bounded, i.e., 0 ≤ u ≤
ΛΠ(m)m, therefore the complexity of the analysis of controllability increases, and
the classical controllability concept cannot be applied to TCPNs in general. Few
contributions about the controllability of TCPNs only focused on very limited sub-
class, for example, JF nets [43]. Even by assuming that the control of the system is
in a region such that the constraints are not active, systems are still not controllable
due to the marking conservation laws imposed by P-flows [65]. More specifically, if
y is a P-flow then any reachable marking m must fulfill yTm = yTm0, defining
thus a state invariant. Nevertheless, the study of controllability “over” this invari-
ant is particularly interesting. This set is formally defined as Class(m0) = {m ∈

R|P |
≥0 |B

T
ym = BT

ym0}, where By is a basis of P-flows, i.e., BT
yC = 0. For a gen-

eral TCPN system, every reachable marking belongs to Class(m0) (see Proposition
2.2.7).

Considering the constraints on the control input, an appropriate local controlla-
bility concept was proposed in [97]:

Definition 3.3.1. The TCPN system 〈N ,λ,m0〉 is controllable with bounded input
(BIC) over S ⊆ Class(m0) if for any two markings m1,m2 ∈ S there exists an
input u transferring the system from m1 to m2 in finite or infinite time, and it
is suitably bounded, i.e., 0 ≤ u ≤ ΛΠ(m)m, and ∀ti ∈ Tnc u[ti] = 0 along the
marking trajectory.
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3.3. Controllability

In the case that all the transitions in the system are controllable, the controlla-
bility of TCPNs only depends on the net structure, in particular, on the consistency.

Property 3.3.2. [97] Let Σ = 〈N ,λ,m0〉 be a TCPN system in which all the tran-
sitions are controllable. Σ is BIC over the interior of Class(m0) iff N is consistent.
Furthermore, the controllability is extended to the whole Class(m0) iff (additionally
to consistency) there exists no empty siphon at any marking in Class(m0).

Example 3.3.3. Consider for instance the TCPN of Fig. 3.2(a) and the markings
m0 = [2 1 1]T , m1 = [1 1 2]T and m2 = [1 2.5 0.5]T . Obviously, m1 and m2 are
both in Class(m0). The system has only one P-semiflow (involving p1, p2 and p3),
the marking of two places is sufficient to represent the whole state. For this system
∃σ ≥ 0 such that m1 =m0+C ·σ, but ∄σ ≥ 0 such that m2 =m0+C ·σ. So m1

is reachable but m2 is not. It can be easily verified that the TCPN in Fig. 3.2(a) is
not consistent, therefore according to Proposition 3.3.2 this TCPN is not controllable
over Class(m0). The shadowed area in Fig.3.2(a) corresponds to the set of reachable
markings. It is the convex cone defined by vectors c1, c2 and c3, which represent the
columns of C (here restricted to p1 and p3).
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Figure 3.2: Two TCPN systems with identical P-flows and initial marking. The
shadowed areas correspond to the sets of reachable markings. The net in (b) is
consistent and there exists no empted siphon, therefore controllable over Class(m0).

Now, consider the system of Fig. 3.2(b). In this case, m2 become reachable
from m0. In fact, for any marking m ∈ Class(m0), the vector (m−m0) is in the
convex cone defined by the vectors c1 to c4, which occurs due to the consistency of
the net and implies that m is reachable from m0. Moreover, since the only siphon
in this net, composed of {p1, p2, p3}, is always marked (at the same time it defines
an initially marked conservative component), the system is BIC over Class(m0).
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Chapter 3. Control of Continuous Petri nets

If uncontrollable transitions exist, the analysis of controllability becomes more
complex, and in general the systems are no longer controllable over Class(m0), even
for consistent nets (see [87] for some examples).

Since in the whole reachability space the system is usually uncontrollable when
uncontrollable transitions exist, some contributions studied the controllability on
the subsets of markings. For example, in [43], it is studied over the so called Con-
trollability Space (CS), the set of all the controllable markings, that is characterized
for Join-Free net. However, it is difficult to extend to general subclasses because
its dependence on the markings. Contribution [97] focused on equilibrium markings.
Marking mq ∈ Class(m0) is an equilibrium one if ∃uq (0 ≤ uq ≤ ΛΠ(mq)mq)
such that C(ΛΠ(mq)mq − uq) = 0. They represent the possible stationary oper-
ating points of the system. The results are interesting, considering that controllers
are frequently designed in order to drive the system towards a desired stationary
operating point. Although here the technical results are not detailed, this approach
is supported by the following proposition:

Property 3.3.4. Let 〈N ,λ,m0〉 be a TCPN system. Consider some equilibrium
sets S1, S2,..., Sj related to different regions R1, R2,..., Rj. If the system is BIC

(in finite time) over each one and their union
⋃j

i=1 Si is connected, the system is
BIC over the union.

Finally, let us mention that in the case of systems with uncontrollable transitions,
the controllability may depend not only on the structure of the net, but also on the
timing, more detailed explanations can be found in [87, 96].

3.4 Previous centralized control methods

Partially derived from [87], in this section we briefly summarize some control meth-
ods proposed in the literature for the target marking control problem of TCPNs.
Some preliminary comparisons are presented. Notice that all the methods men-
tioned in this section are in the framework of centralized control, the decentral-
ized/distributed control will be discussed in Chapter 5 and 6.

Most of the control methods that can be found in the literature assume that all
the transitions are controllable:

Fuzzy control [36]

The authors proposed a control method for a particular variable speed CPNs, in
which the firing speed vj of a transition tj is given by:

vj = Vjmax ·min{1,m[pj1],m[pj2], ...,m[pjn]}

where pj1, pj2, ..., pjn are the input places of tj and Vjmax is the maximal firing speed
of tj. It can be viewed as TCPNs under infinite server semantics with an implicit
self-loop in each fluid transition. It is shown that the flow of a transition, can be
represented as the output of two fuzzy rules under the Sugeno model. It was proved
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that if the integral of the output of each fuzzy rule converges to a finite value then
the resulting global fuzzy system (that represents the controlled flow) converges as
well. Moreover, upper and lower bounds of this convergence were derived. Based
on that, a proportional fuzzy control was proposed. Under a sufficient condition
that the desired output (the marking of a place) is smaller than the initial upstream
marking, it was proven that the convergence of the fuzzy global system can be
obtained. However, this is not applicable to general cases.

Control for a piecewise-straight marking trajectory [44, 45, 5]

This approach was firstly explored in [44] for Join-Free nets, in which the tracking
control problem of a mixed ramp-step reference signal is considered. Later, this
method was extended to general PNs in [45]. There, a “high and low” gain pro-
portional controller is synthesized, while a ramp-step reference trajectory, as a sort
of path-planning problem at a higher level, is computed. To illustrate this kind of
approach, let us detail a simple and more heuristic synthesis procedure introduced
later in [5]. Consider the line l connecting m0 and md, and the markings in the
intersection of l with the region’s borders, denoted as m1

c , m
2
c , ...., mn

c . Define
m0

c = m0 and mn+1
c = mf . Then, ∀k ∈ {0, 1, ..., n} compute τk by solving the

linear programming problem (LPP):

min τk
s.t. : mk+1

c =mk
c +C · x

0 ≤ xj ≤ λjΠ
k
jimin{m

k
c [pi],m

k+1
c [pi]}τk

∀j ∈ {1, ..., |T |} where i satisfies Πk
ji 6= 0

(3.3)

where Πk is the configuration matrix corresponding to the region, to whichmk
c and

mk+1
c belong and Πk

ji gives its element in the jth row and ith column.
The control law to be applied is thus w = x/τk, when the system is between

the markings mk
c and mk+1

c . The time required for reaching the desired marking is
given by τf =

∑n
k=0 τk. Feasibility and convergence to mf were proved in [5].

In order to reach the final state faster, the trajectory is now not constrained
to be straight linear, but piecewise-linear, i.e., only the states in the same region
are constrained to be in a linear trajectory. The following bilinear programming
problem (BPP) needs to be solved to find the intermediate states on the borders,
reducing the accumulated time for reaching the final state.

min τf =
∑n

k=0 τ(k)
s.t mk+1 =mk +C · xk, , k ∈ {0, 1, ..., n}

(Πk −Πk+1) ·mk = 0, k ∈ {1, 2, ..., n}
mk[pi] ≤m

k+1[pi], if m0[pi] ≤mf [pi], pi ∈ P, k ∈ {0, 1, ..., n}
mk(pi) ≥m

k+1[pi], if m0[pi] ≥mf [pi], pi ∈ P, k ∈ {0, 1, ..., n}
0 ≤ xk[tj] ≤ λj ·Π

k
ji ·min{mk[pi],m

k+1[pi]} · τ
k

∀tj ∈ T,where pi satisfy Πk
ji 6= 0, k = {0, 1, ...n}

(3.4)

Finally, by recursively solving similar BPPs as in (3.4), intermediate states are
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added in the interior of each region, obtaining faster trajectories, until the accumu-
lated time can not be significantly improved respect to a user specified threshold
value.

Model predictive control (MPC) [64]

Model predictive control (MPC) has been widely applied in the industry for control-
ling complex dynamic systems [17, 70]. By solving a discrete-time optimal control
problem over a given horizon, an optimal open-loop control input sequence is ob-
tained and the first one is applied. Then in the next time step, a new optimal
control problem is solved based on the current state and measurement, resulting in
a close-loop control. In [64], the MPC scheme is applied to the control of TCPNs.
The evolution of the timed continuous Petri net model, in discrete-time, is repre-
sented by the difference equation: mk+1 = mk + Θ · C · wk, subject to the con-
straints 0 ≤ wk ≤ fk with fk being the flow without control, which is equivalent
to G · [wT

k ,m
T
k ]

T ≤ 0, for a particular matrix G. The sampling period Θ must be
chosen small enough in order to avoid spurious markings, in particular, for ensuring
the positiveness of the markings. For that, the following condition is required to be
fulfilled ∀ p ∈ P :

∑

tj∈p•
λjΘ < 1.

By using this representation of continuous PNs, in each time step the following
optimization problem is solved:

min J(mk, N)

s.t. : mk+j+1 =mk+j +Θ ·C ·wk+j, j = 0, ..., N − 1 (3.5a)

G ·

[

wk+j

mk+j

]

≤ 0, j = 0, ..., N − 1 (3.5b)

wk+j ≥ 0, j = 0, ..., N − 1 (3.5c)

where J(mk, N) may be a quadratic objective function in the form of (3.6):

J(mk, N) = (mk+N −mf )
T ·Z · (mk+N −mf )

+
N−1
∑

j=0

[(mk+j −mf )
T ·Q · (mk+j −mf ) (3.6)

+ (wk+j −wf )
T ·R · (wk+j −wf )]

where Z, Q and R are positive definite matrices and N is a given time horizon, and
wf is a (desired) flow in the final state.

However, if the desired marking (mf ) has zero components, the standard tech-
niques used for ensuring converge in linear/hybrid systems (i.e., terminal constraints
or terminal cost) cannot be applied in continuous nets [64]. Nevertheless, a particu-
lar control law is proposed to overcome this problem: the system state at time k+N
is constrained to the straight line from mk to mf . Roughly, this is equivalent to
add a terminal constraint in the form of:
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{

mk+N =mk + α · (mf −mk)
0 ≤ α ≤ 1

(3.7)

where α is a new decision variable. The asymptotic stability of this method is proved
in [64].

An alternative MPC approach for this problem is the so-called explicit solution
[12], where the set of all states that are controllable is split into polytopes. In each
polytope the control command is defined as a piecewise affine function of the state.
The closed-loop stability is guaranteed with this approach. On the contrary, when
either the order of the system or the length of the prediction horizon are not small,
the complexity of the explicit controller becomes quickly prohibitive. Furthermore,
the computation of the polytopes sometimes is infeasible.

Proportional control synthesis with LMI [51]
The proposed control scheme consists of a set of proportional (affine) control laws,
one for each region. In detail, the controlled flow is represented, in discrete time, by
w(k) = F r(m(k)−md)+R, where R is a vector and F r is a gain matrix computed
for each region (the subindex r denotes the r−th region). In each region, the control
and the marking are required to fulfill:

1. the input constraints: 0 ≤ w(k) ≤ f(k), where f(k) represents the flow
without control,

2. the region membership: m(k) ∈ P(Gr,gr), where P(Gr,gr) = {m|Grm ≤
gr} is the inequality representation of the r-th region (a polyhedral),

3. the existence of a contractive invariant set (in order to prove closed-loop sta-
bility), which is stated as: x(k) ∈ P(Q,µ) → x(k + 1) ∈ P(Q, αµ), where
x(k) = (m(k)−md) is the current error, α < 1 and P(Q, αµ) = {x|Qx ≤ αµ}
is the contractive set (so, the absolute error is monotonicdecreasing).

The methodology consists in expressing the previous conditions as sets of linear
matrix inequalities (LMI), one set for each region. The solution of a LMI can be
achieved in polynomial time. Furthermore, convergence to the desired marking md

is guaranteed. The main drawback of this approach is that a LMI must be solved
for each region, but the number of these increases exponentially w.r.t. the number
of synchronizations (joins).

Affine control [102]

The synthesis of controllers for TCPNs can be geometrically expressed in terms of
polytopes. An affine system in polytopes χ is defined as:

ẋ = Ax+Bu+ a

with restriction x ∈ χ and u ∈ U , where U is a polytope of admissible inputs.
An admissible affine control law is a affine function u : χ → U , characterized by
u(x) = Fx + g. The affine control is used in the synthesis of piecewise hybrid
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system in [34, 32], by decomposing the polytopes into simplices and synthesizing a
proper affine control law for each of them. In [102] this method is extended to the
control of TCPNs, in which global affine control laws for the complete polytopes are
synthesized. The vertices of a polytope of dimension k − 1 are enumerated, and it
is assume that the first k vertices define a simplex of dimension k − 1. Then the
evaluation of the control law at the vertices and conditions for the unique equilibrium
point (in close loop) are derived. It is proved that given a consistent TCPN with
initial state m0 > 0, using this affine control technology, the system can always be
driven to a desirable final state mf > 0. The main drawback of this method is that
the number of vertices increases exponentially respect to the number of dimensions
that is determined by the number of places, therefore its computational complexity
may be intractable (although it can be partially done off-line).

In this work, we assume all the transitions are controllable. In the case that
uncontrollable transitions exist, the control problem becomes much more complex.
Few works can be found in the literatures considering partially controllable systems.
For instance, in [58], a Gradient-base control based method was proposed; anther
method that considered uncontrollable transitions is Pole assignment control pro-
posed in [99], where the initial and desired markings are equilibrium states.

3.4.1 Initial comparisons

The availability of many control methods for this target marking control problem of
TCPNs makes difficult the selection of the most appropriate technique for a given
system and purpose. In order to make an appropriate choice, several properties may
be taken into account, e.g., feasibility, closed-loop stability, robustness, computa-
tional complexity (for the synthesis and during the applications), etc.

Table 3.1: Qualitative characteristics of several control methods (assuming m0 >
0, mf > 0 and all transitions are controllable). The following abbreviations are
used: min. (minimize), suff. (sufficient conditions), comput. (computational), quad.
(quadratic) and poly. (polynomial).

Methods Comput. issues Optimizing index Stability

Fuzzy control two fuzzy rules per
transition

None under suff.

Piecewise-straight
trajectory

LPPs or BPPs on |T | Heuristic Min. time Yes

MPC QPPs on |T |, N Min. quad. (or lin-
ear) functions

under suff.

LMI A LMI for each con-
figuration

None under suff.

Affine Control Expon. on |P | None Yes
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Table 3.1 (that partially derived from Table 4 in [87]) demonstrates some quali-
tative properties of different control methods (under infinite server semantics) that
have been described, assuming all the transitions are controllable. All those methods
are applicable to any PN structure. The fuzzy control guarantees the convergence
based on some sufficient conditions that may be too “restrictive” in general cases.
The MPC based approaches ensure convergence and minimize a quadratic or lin-
ear objective function, obtaining a desired state trajectory. Nevertheless, when the
number of transitions grows, or a large time horizon N is considered, its complexity
for solving the problem with a huge number of variables may become intractable.
In such cases, the piecewise-straight trajectory method could be more appropriate.
However, when the process for obtaining heuristic minimum-time evolution is con-
sidered, the computational complexity is also very high. For instance, in the method
proposed in [5], a non-linear BPP problem needs to be solved once an intermediate
state is introduced to reduce the time. Affine controller also guarantees the conver-
gence to the final state, but no optimizing index is considered; on the other hand,
its complexity may increase rapidly in a larger system with many places.

Now let us consider some a few examples using different methods for the target
marking control problem. The simulations are performed by using Matlab 8.0 on a
PC with Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz, 3.24GB of RAM.

This first net system we consider is shown in Fig. 3.3. Let us assume that the
firing rate of every transition is equal to 1; the sampling period is Θ = 0.01. We
will consider two different initial states m01 = [3 3 1 3]T ; m02 = [2.1 2.1 0.1 2.1]T

and also two different final marking: mf 1 = [1 4.5 1.5 3]T and mf 2 = [0.1 3.6 0.6
2.1]T , respectively. It can be checked that mf i

can be reached from m0i, i = 1, 2
with the same firing count vectors, but one element of m02 is very small. We can
observe later that the performance of some control methods is quite dependent on
the initial marking.

For this control example we have applied the approaching minimum-time con-
troller (appro. min-time) [5], affine controller [102] and the MPC controller [64].
Different parameters of the MPC controller are used. The simulation results are
shown in Table 3.2 (considering m01/mf 1) and Table 3.3 (considering m02/mf 2).
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Figure 3.3: A simple TCPN system

Table 3.2: Simulation results of reaching mf 1 from m01, in the net system of Fig.

3.3 (for the MPC control, the weight matrix Q = q · 1|P |, R = r · 1|T |)

Control methods Time steps CPU time (ms) Parameters
appro. min-time 176 402
affine control⋆ 1,639 102
MPC control 173 630 N = 1, q = 1000, r = 0.2
MPC control 185 684 N = 1, q = 1000, r = 2
MPC control 249 885 N = 1, q = 1000, r = 20
MPC control 173 1,126 N = 3, q = 1000, r = 0.2
MPC control 182 1,157 N = 3, q = 1000, r = 2
MPC control 236 1,385 N = 3, q = 1000, r = 20
MPC control 173 1,929 N = 5, q = 1000, r = 0.2
MPC control 181 2,002 N = 5, q = 1000, r = 2
MPC control 228 2,260 N = 5, q = 1000, r = 20
MPC control 173 5,099 N = 10, q = 1000, r = 0.2
MPC control 180 5,318 N = 10, q = 1000, r = 2
MPC control 219 5,816 N = 10, q = 1000, r = 20

⋆The affine control is not designed for minimum-time control, and there may exist many optimizing

parameters, but it is not clear how to choose one to minimize the time. Here, no optimizing

parameter is used.

We can observe in this example that in the case of reaching mf 1 from m01, the
approaching minimum-time controller gives a number of time steps slightly larger
than that of the MPC controller; but its computational cost is less. However, in
the case of reaching mf 2 from m02 (Table 3.3), the approaching minimum-time
controller does not work very well. Because in this approach, between each pair

44



3.4. Previous centralized control methods

Table 3.3: Simulation results of reaching mf 2 from m02, in the net system of Fig.

3.3 (for the MPC control, the weight matrix Q = q · 1|P |, R = r · 1|T |)

Control methods Time steps CPU time (ms) Parameters
appro. min-time 1,076 490
affine control⋆ 6,454 356
MPC control 490 1,833 N = 1, q = 1000, r = 0.2
MPC control 486 1,811 N = 1, q = 1000, r = 2
MPC control 517 1,880 N = 1, q = 1000, r = 20
MPC control 493 3,203 N = 3, q = 1000, r = 0.2
MPC control 492 3,193 N = 3, q = 1000, r = 2
MPC control 514 3,214 N = 3, q = 1000, r = 20
MPC control 493 5,565 N = 5, q = 1000, r = 0.2
MPC control 494 5,572 N = 5, q = 1000, r = 2
MPC control 512 5,571 N = 5, q = 1000, r = 20
MPC control 492 14,916 N = 10, q = 1000, r = 0.2
MPC control 493 14,887 N = 10, q = 1000, r = 2
MPC control 509 14,962 N = 10, q = 1000, r = 20

⋆The affine control is not designed for minimum-time control, and there may exist many optimizing

parameters, but it is not clear how to choose one to minimize the time. Here, no optimizing

parameter is used.

of adjacent states of the trajectory the firing speed is constant and determined by
the one with smaller flow; therefore, if one of the states has very small flow (in this
case, the initial one), the time spent for reaching mf could be large. The affine
controller costs more time steps to reach the final state, because it is not designed
for the minimum-time control. For the MPC controller, both Tables show that a
small number of time steps could be obtained by using a large weight for matrix Q
and a small weight for R. We should also notice that the MPC controller is not
designed for minimum-time evolution either, and using a larger time horizon N does
not guarantee a smaller time to reach the final state.

Now let us consider a larger net system in Fig. 2.6 that we have discussed in
Section 2.4. We assume a positive initial state (required by the control methods)
that each of the emptied place in Fig. 2.6 has marking equal to 0.1, and for the
other places we keep their markings as in Fig. 2.6. Let us assume that we want to
reach a final state that obtains the maximal flow ψ = 0.13 (computed by solving a
LPP similar to (3.1)), mf = [18.78 0.39 0.13 0.52 0.16 0.29 13.65 0.39 0.13 0.65 0.13
0.13 0.58 0.52 0.97 0.13 0.26 0.13]T . The simulation results are shown in Table 3.4.

As we have already mentioned, in affine control the number of vertices increases
exponentially with respect to the number of dimensions that is determined by the
number of places; therefore its computational complexity may easily be intractable.
In the PC that we do the simulation, the computational cost of the affine controller
is intractable for the net system of Fig. 2.6 . In this example, the smallest number
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Table 3.4: Simulation results in the net system of Fig. 2.6 (for the MPC control,
the weight matrix Q = q · 1|P |, R = r · 1|T |)

Control methods Time steps CPU time (ms) Parameters
appro. min-time 875 6,584
affine control NA NA
MPC control 678 6,339 N = 1, q = 1000, r = 0.2
MPC control 724 6,396 N = 1, q = 1000, r = 2
MPC control 984 7,697 N = 1, q = 1000, r = 20
MPC control 682 32,391 N = 3, q = 1000, r = 0.2
MPC control 703 29,641 N = 3, q = 1000, r = 2
MPC control 920 30,958 N = 3, q = 1000, r = 20
MPC control 683 81,614 N = 5, q = 1000, r = 0.2
MPC control 695 74,965 N = 5, q = 1000, r = 2
MPC control 879 80,076 N = 5, q = 1000, r = 20
MPC control 677 481,274 N = 10, q = 1000, r = 0.2
MPC control 686 427,351 N = 10, q = 1000, r = 2
MPC control 818 415,506 N = 10, q = 1000, r = 20

of time steps is obtained by using the MPC controller. However it has very high
computational costs when N increases (when N = 10, its consumed CPU time is
almost 100 times as large as the one of the approaching minimum-time controller).
We can also observe that the number of time steps does not improve quickly by
using a larger N , so a smaller N may be a reasonable choice.

3.5 Conclusions

In this chapter, we review the basic concepts, theories and methodologies about the
control of TCPNs, mainly under infinite server server semantics. In this thesis, we
consider two control problems:

• target marking control problem—driving the system to a given desired final
state from an initial one;

• optimal flow control problem—driving the system to an optimal flow (obtained
in a convex region).

Most of the work in the literature related to the control of TCPNs are devoted
to the first one, which is similar to the typical set-point control problem in a general
continuous-state system. The controllability—the capability of being driven in a
certain desired way, in particular, moving form one state to another, is reviewed. We
also briefly recall the existing (centralized) methods for the target marking control
problem, and an initial comparison of some qualitative properties of several different
control methods are given in Table 3.1.
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Regarding to the previous works, we may conclude: 1) the computational com-
plexity of many of the described control methods may increase very fast, even ex-
ponentially, with respect to the size of the system (for example the affine control
proposed in [102]); 2) for the target marking control problem, one important goal is
to reach the desired final state as fast as possible, but this minimum-time problem
has not been addressed in most of the existing methods; 3) most of the contribu-
tions focus on the centralized control, it may be interesting to consider the problem
in decentralized environments. Although few work can be found in the literature,
(eg., in [4], assuming nets to be mono-T-semiflow), it is still very limited; 4) to the
best knowledge of the author, the (minimum-time) optimal flow control problem
of TCPNs has not be studied. In the following chapters, those problems will be
addressed.
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Chapter 4

Centralized Control: ON/OFF
Based Methods

This chapter focuses on centralized methods for the target marking control problem,
addressing minimum-time evolution to the desired final state. In particular, several
ON/OFF based controllers (or Bang-Bang based controllers that frequently arise in
optimal control) are presented. First, we propose a (standard) ON/OFF controller
for Choice-Free (CF) net systems and prove that it is a minimum-time controller
driving the system to the final state. However, an illustrative example shows that
the standard ON/OFF control strategy is not “fair” for solving the conflicts and
may “impose deadlocked” situations even to a live and bounded system. In order to
overcome this problem, we introduce some heuristic strategies for solving the con-
flicts, obtaining three extended controllers for general nets: ON/OFF+, B-ON/OFF
and MPC-ON/OFF. We also give an algorithm to compute the minimum-time con-
trol law, but it may easily become intractable for a large system because of its high
computational complexity. Finally, we demonstrate the proposed control methods
with examples. More case studies are presented in Chapter 8.
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4.1 Motivation: minimum-time state evolution

Optimal control [77, 6, 14] deals with the problem of finding a control law for a
given system such that a certain optimality criterion, formulated as a cost function
of state and control variables, is achieved. Among other objectives, minimum-time
control has been widely studied (see, for example, [52, 86, 15]).

In this Chapter we focus on the minimum-time target marking control problem
of TCPNs under infinite server semantics, which can be simply represented as follows
[89]:

min τ
s.t. mf =m0 +C ·

∫ τ

0 w(δ)dδ

w(δ)[tj ] = λ[tj] ·minpi∈•tj{
m(δ)[pi]
Pre[pi,tj ]

} − u(δ)[tj ],∀tj

m(δ),w(δ),u(δ) ≥ 0

(4.1)

where u(δ), w(δ) are the control input and controlled flow at time δ.

In general, problem (4.1) is difficult to solve because of the simultaneous existence
of minimum operators and state (marking) dependent constraints for the control
variables. Except for the heuristic minimum-time controller proposed in [5], among
the control methods for TCPNs we have mentioned in Chapter 3, they only address
the convergence to the final state. Moreover, the MPC controller can be used to
optimize the state trajectory, but minimum-time evolution is not guaranteed and
this is very difficult to approach in the general MPC framework. Actually, the time
spent for reaching a desired final state by applying different control methods may
vary significantly, for example as shown in the control examples of Section 3.4.1.

An ON/OFF (or Bang-Bang) controller, is a feedback controller that switches
actions from one extreme to the other at certain times (switching points). Regarding
the optimal control, ON/OFF strategies frequently arise in minimum-time problems.
A very simple example is to drive a car to a desired position (in a straight line) in
shortest time—the solution is to apply the maximum acceleration until a unique
switching point, then apply the maximum breaking and stop the car exactly at the
desired position. Other common applications of the ON/OFF controller include
residential thermostats, process of boiling water, etc.

In the following sections, we propose several ON/OFF based controllers. We
prove that for some subclasses like CF nets, minimum-time state evolution is ensured;
for general nets systems, we present heuristic algorithms. For the standard ON/OFF
controller of CF nets, a positive initial state (i.e., m0 > 0) is not mandatory; while
for the extended controllers of general nets, we assumem0 > 0. We always assume a
positive final state (i.e., mf > 0), because in TCPNs under infinite server semantics
it takes infinite time to empty a marked place. The main advantage of our methods
is that the computational complexity is very low and a reasonable number of time
steps for reaching the final state can be obtained.
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4.2 Minimum-time controller for Choice-Free nets

In this section we propose an ON/OFF controller for CF nets: every transition
fires as fast as possible until a given upper bound, the minimal firing count vector,
is reached. We prove that this very simple ON/OFF control strategy drives the
system to the desired final state in minimum-time. A manufacturing system is used
to illustrate the proposed method.

4.2.1 Minimal firing count vector

In general, a markingm can be reached fromm0 by using different firing sequences.
For example, if the net is consistent and m is reached by firing σ, it is also reached
by firing a T-semiflow α ≥ 0 times before, or interleaved with σ. Here we introduce
the notion of minimal firing count vector, and prove that for CF nets it is unique
under some general assumptions .

Definition 4.2.1. Let 〈N ,λ,m0〉 be a CPN system and mf be a reachable marking
through a sequence σ, i.e., mf =m0 +C · σ. A firing count vector σ is said to be
minimal if for any T-semiflow x, ||x|| 6⊆ ||σ||, where || · || stands for the support of
a vector. We can simply compute a σ by solving the following LPP:

min 1T · σ
s.t. mf =m0 +C · σ

σ ≥ 0
(4.2)

Example 4.2.2. The minimal firing count vector may not be unique for a non-CF
net. For example, let us consider the non-CF net in Fig. 4.1. Assume that m0 =
[4 0 0 0 0]T and mf = [2 0 0 0 1]T . To drive the system to its final state, there
exist two minimal firing count vectors σ1 = [1 1 0 1 0 0] T and σ2 = [0 0 1 0 1 0]
T . The final state can also be reached by firing σ3 = [1 1 1 1 1 1] T , but σ3 is not
a minimal firing count vector, because it contains a T-semiflow [0 0 1 0 1 1] T .

Proposition 4.2.3. Let 〈N ,m0〉 be a CF net system and mf be a reachable mark-
ing. If one of the following assumptions holds, there exits a unique minimal firing
count vector σ.

(A1) The matrix C has full rank;

(A2) The net is strongly connected and consistent.

Proof: Suppose there exist two minimal firing count vectors σ1 and σ2, then (1)
mf =m0 +C · σ1, (2) mf =m0 +C · σ2. Subtracting (2) from (1), we obtain:

C · (σ1 − σ2) = C · σ12 = 0

If (A1) holds, we must have σ12 = 0, so σ1 = σ2(6= 0, if mf 6= m0).
If (A2) holds, there is only one minimal T-semiflow [93], denoted by x > 0. σ12

may have negative elements, but we can always find an α ≥ 0, such that σ12+α·x ≥
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Figure 4.1: A non-CF Petri net system

0. Since C · (σ12 + α · x) = 0 and σ12 + α · x ≥ 0, it is a T-semiflow. Therefore,
there exists β > 0 such that σ12 + α · x = β · x, implying σ12 = (β − α) · x. If
β − α = 0 then σ1 = σ2 which is impossible by assumption. If β − α > 0 then
σ1 = σ2 + (β − α) · x > (β − α) · x. Therefore, σ1 is not a minimal firing count
vector. Similarly, if β − α < 0 then σ2 is not a minimal firing count vector.

In the sequel, we assume strongly connected and consistent CF nets. Thus, any
controller driving the system tomf must follow the minimal firing count vector plus
eventually a T-semiflow. We will prove that by using the minimal firing count and
applying an ON/OFF controller, mf can be reached in minimum-time.

4.2.2 ON/OFF controller: discrete-time case

As already said in Section 3.4, by sampling the continuous-time CPN system with
a sampling period Θ, we obtain the discrete-time TCPN ([64]) given by:

mk+1 =mk +Θ ·C ·wk

0 ≤ wk ≤ fk (4.3)

Heremk and wk = fk−uk are the marking and controlled flow at sampling instant
k, i.e., at τ = k ·Θ, while fk and uk are the uncontrolled flow and control input.

It is proved in [64] that if the sampling period satisfies (4.4), the interior reach-
ability spaces of discrete-time and continuous-time CPN systems are the same.

∀p ∈ P :
∑

tj∈p•

λj ·Θ < 1 (4.4)

In the sequel, we assume that the sampling period Θ is small enough to satisfy
(4.4). We first develop the ON/OFF controller based on the discrete-time model,
then it is naturally extended to continuous-time settings.
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In a CF net system, if two transitions t1 and t2 are enabled at the same time,
the order of firing is not important (i.e., both sequence t1t2 and t2t1 are fireable).
Based on this observation, if there exists a transition that has not fired with the
maximal amount at one moment, certain amount of its firings may be moved ahead
in order to reach this maximal quantity.

Example 4.2.4. Let us consider the trivial CF net system in Fig. 4.2 and as-
sume mf = [0.2 0.5 0.3]T , the minimal firing count vector for reaching the fi-
nal state is σ = [0.8 0.3 0]T . Following this vector, one firing sequence may be
σ1 = t1(0.5)t2(0.3)t1(0.3). It can be observed that t1 is 1-enabled under m0, and the
required amount that t1 should fire is 0.8. Therefore, we can fire t1 more than 0.5 in
the beginning. In particular, the final marking is also reached by the firing sequence
σ2 = t1(0.8)t2(0.3), for example.

p3t1 t3t2p2p1

Figure 4.2: A trivial CF net system with m0 = [1 0 0].

The strategy of the ON/OFF controller is quite simple: every transition fires as
fast as possible at any moment until the required firing count σ[tj ] (mf =m0+C ·σ)
is reached. The control input of tj at kth sampling period is:

uk[tj] =














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

0 if Θ ·
k−1
∑

i=0
wi[tj ] + Θ · fk[tj ] ≤ σ[tj] (a)

fk[tj] if Θ ·
k−1
∑

i=0
wi[tj ] = σ[tj ] (b)

fk[tj]−
σ[tj ]−Θ·

k−1∑

i=0
wi[tj ]

Θ

if Θ ·
k−1
∑

i=0
wi[tj ] < σ[tj ] and (c)

Θ ·
k−1
∑

i=0
wi[tj ] + Θ · f [tj ] > σ[tj ]

(4.5)

where at k = 0, Θ ·
k−1
∑

i=0
wi[tj ] = 0. Remember wk = fk − uk, (a) says that before

reaching the required total firing count σ[tj], we simply let transition tj to fire free
(ON), i.e. uk[tj ] = 0; (b) means once σ[tj ] is reached, the transition is completely
stopped (OFF), i.e. uk[tj] = fk[tj]; (c) represents the last firing of tj. Algorithm
1 synthesizes the ON/OFF controller, in which w0, w1, w2, . . . is the sequence of
control inputs at the time instants.

Lemma 4.2.5. Let 〈N ,λ,m0〉 be a discrete-time continuous CF net system and
mf > 0 be a reachable final state. Among all the controllers that drive the system to
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Algorithm 1 ON/OFF controller

Input: 〈N ,λ,m0〉, mf , σ, Θ
Output: w0, w1, w2, . . .

1: k = 0

2: while Θ ·
k−1
∑

i=0
wi ≤ σ do

3: Solve the following LPP :

max 1T ·wk

s.t. mk+1 =mk +Θ ·C ·wk

0 ≤ Θ ·wk ≤ σ −Θ ·
k−1
∑

i=0
wi

wk[tj ] ≤ λj · enab(tj ,mk),∀tj ∈ T

(4.6)

4: Apply wk : mk+1 =mk +Θ ·C ·wk

5: k := k + 1
6: end while
7: return w0, w1, w2, . . .

mf by firing σ, i.e., mf =m0+C ·σ, the ON/OFF controller costs the minimum-
time.

Proof: Assume an arbitrary non ON/OFF controller G. Hence, at a sampling
period k there exists a transition tj that is not sufficiently fired, i.e., not fired as
much as possible. In other words, tj has to fire later in a sampling period l, l > k.
Let us assume, without loss of generality, that tj does not fire between the kth and
the lth sampling periods. It is always possible to “move” some amounts of its firings
from the lth sampling period to the kth one until tj becomes sufficiently fired in
k. According to the persistency property of CF nets, this move is not reducing
the enabling degree of the other transitions. Iterating the procedure, all transitions
can be sufficiently fired in all sampling periods and the obtained controller is an
ON/OFF one. Obviously, the number of discrete-time periods required to reach the
final marking after moving firings from a sampling period l to another one k with
k ≤ l is at least the same. Hence the number of sampling steps of the ON/OFF
controller is not more than the one of controller G, i.e., the ON/OFF controller
costs the minimum time.

Lemma 4.2.5 only holds for CF nets. For a net system that is not CF, the
ON/OFF controller may be not a minimum-time controller for a given σ, and in the
worst case, the final state may not be reached, i.e., the stability is not guaranteed
(see Ex. 4.3.1 for an example, in which the (reachable) final state cannot be reached
by applying the ON/OFF controller using the given σ.)

Lemma 4.2.6. Let 〈N ,λ,m0〉 be a discrete-time continuous CF net system, σ
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and σ′ be firing count vectors, such that σ ≤ σ′ and they both drive the system to
mf > 0, i.e., mf = m0 + C · σ and mf = m0 + C · σ

′. By using the ON/OFF
controller, firing σ′ costs at least the time of firing σ.

Proof: If firing σ′ costs less time than firing σ, there must exist at least a
transition tj , such that firing σ′[tj ] costs less time than firing σ[tj]. We will prove
that it is not possible.

Since by firing σ′ and σ the same final state is reached, σ′[tj] ≥ σ[tj] implies
that in the case of firing σ′, more tokens should be put into each of its input place
pi ∈

•tj (with the quantity of Pre[pi, tj] · (σ
′[tj ] − σ[tj ])), and later they are all

moved out (by firing tj). Remember that tj is the unique output transition of pi
(the net is CF), so the time spent for moving out this quantity of tokens depends
only on tj; and since this quantity of tokens have to be moved out, they do not
contribute to the firing of σ[tj ] (they do not make σ[tj ] firing faster). Therefore,
firing σ′[tj ] cannot cost less time than firing σ[tj ].

Lemma 4.2.6 holds also only for CF nets. Let us consider the following simple
example:

Example 4.2.7. Assume that in the non-CF net system in Fig. 4.3 the firing rate
vector is λ = [1 0.01 1 1 1]T , the sampling period is Θ = 0.1, and we want to reach
a final state mf = [0 0.5 0.5 4]T . mf can be reached, for example, by using σ =
[0 0.5 0 0 0]T or σ′ = [0 0.5 0 4 4]T . Although σ ≤ σ′, we can verify that if we
apply the ON/OFF controller using σ the final state is reached in 692 time steps; if
we we apply the ON/OFF controller using σ′ the final state is reached in only 673
time steps. In the case of σ, only t2 fires, so the time used for the firing of σ[t2]
determines the time to reach the final state. In the case of σ′, transitions t4 and t5
also fire (an additional T-semiflow [0 0 0 1 1]T is fired). By firing t4 we can increase
the marking of p2 (at some time instants, later this increased quantity of marking is
moved back to p4 by firing t5), so t2 fires faster; on the other hand, since the firing
rate of t2 is much smaller than the others, the firing of σ′[t2] still determines the
total time to reach mf . Therefore, the final state is reached faster in the case of
firing σ′.

On the other hand, even for CF nets, given σ ≤ σ′, mf = m0 + C · σ and
mf

′ = m0 + C · σ
′, if mf 6= mf

′, by applying the ON/OFF controller, reaching
mf

′ with σ′ may be faster than reaching mf with σ.

Example 4.2.8. Let us consider again the trivial MG (a subclass of CF) in Fig.
4.2 of Ex. 4.2.4. Now assume that m0 = [1 1 0]T ; λ = [10 1 1]T ; and sampling
period is Θ = 0.01. Given σ = [0 0.5 0]T and σ′ = [0.5 0.5 0]T (σ ≤ σ′), by using
the ON/OFF controller, σ is fired in 69 time steps ([1 0.5 0.5]T is reached) and σ′

is fired in only 42 time steps ([0.5 1 0.5]T is reached).

Proposition 4.2.9. Let 〈N ,λ,m0〉 be a consistent and strongly connected discrete-
time continuous CF net system and σ ≥ 0 be a firing count vector driving the system
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Figure 4.3: A simple non-CF net (a state machine): by using the ON/OFF controller,
firing σ may cost more time than firing σ′ ≥ σ

to mf > 0, i.e., mf = m0 + C · σ. The ON/OFF controller is a minimum-time
controller driving the system to mf if σ is the minimal firing count vector.

Proof: In consistent and strongly connected CF nets, there exist a unique minimal
firing count vector and a unique minimal T-semiflow x > 0 [93], hence for any
other firing count vector σ′ 6= σ that drives the system to mf we must have σ′ =
σ + α · x > σ, α > 0. According to Lemma 4.2.5 and 4.2.6, the results can be
derived straightforwardly.

Remark 4.2.10. When the final statemf has been reached by applying the ON/OFF
controller, all the transitions are stopped. If mf is an equilibrium point, it can be
maintained by using an appropriated control uk, such that C ·wk = 0.

4.2.3 ON/OFF controller: continuous-time case

By taking the sampling period Θ→ 0, the ON/OFF controller can be easily extended
to the continuous time setting, the control input for transition tj at time τ is given
by:

u(τ)[tj ] =

{

0 if
∫ τ−

0 w(δ)[tj ] dδ < σ[tj] (ON) (a)

f(τ)[tj ] if
∫ τ−

0 w(δ)[tj ] dδ = σ[tj] (OFF ) (b)
(4.7)

where σ is the minimal firing count vector and w(δ)[tj ] is the controlled flow of tj
at time δ; f(τ)[tj ] is the uncontrolled flow at time τ .

It should be noticed that for continuous timed systems under infinite server
semantics, once a place is marked it will take infinite time to be emptied (like the
discharging of a capacitor in an electrical RC-circuit). Therefore, if there exist places
that are emptied during the trajectory to mf , the final marking is reached at the
limit, i.e., in infinite time. If mf > 0 and use the proposed control method, this
situation does not happen.
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One main advantage of the ON/OFF control strategy is its low computational
complexity. Given a (minimal) firing count vector (that can be computed in poly-
nomial time), the control actions can be obtained by solving a simple LPP (also in
polynomial time) at each time step. On the other hand, the minimum-time state
evolution is guaranteed.

Although the ON/OFF is only proposed for CF nets, we can also guarantee its
convergence to the final state if the system is Join-Free (JF) and conservative. But
now it cannot ensure a minimum-time evolution to mf in general.

Proposition 4.2.11. Let 〈N ,λ,m0〉 be a conservative Join-Free TCPN system and
σ ≥ 0 be a firing count vector driving the system to mf > 0, i.e., mf =m0+C ·σ.
By applying the ON/OFF controller, the system state converges tomf in finite time.

Proof: We prove it by contradiction. Assume that the system reaches a state
m and m 6= mf . Therefore, there must exist a transition tj that cannot reach
its accumulative firing upper bound σ[tj]. Since the system is JF, tj can fire if its
unique input place pi is not emptied, it implies that m[pi] = 0. For any other place
p′i such that its output transitions fire completely the firing amounts give by σ, it
holds m[p′i] ≤ mf [p

′
i] because the firing of every transition is upper bounded by

σ and mf = m0 + C · σ. Therefore, for any place p ∈ P it holds m[p] ≤ mf [p]
and there exists at least one place pi ∈ P , such that m[pi] = 0 < mf [pi]. This
contradicts the conservativeness of the net.

Remark 4.2.12. Let us notice that in the standard ON/OFF controller proposed
here, we do not necessarily require a positive initial marking. However, it is needed
for the extended controllers for general nets that will be presented in Sections 4.4.

4.2.4 A case study

Let us consider the net system in Fig. 4.4, which models a table factory system
(taken from [93]). The system consists of several parts, including board maker,
leg maker, assembler, painting line. Assume that in the initial marking m0[p1] =
m0[p2] = m0[p3] = m0[p4] = 1, m0[p6] = m0[p8] = m0[p10] = m0[p12] = m0[p16] =
m0[p19] = 0.5, and the other places are empty; in the final marking mf [p3] =
mf [p17] = 0.1, mf [p4] = mf [p5] = 0.2, mf [p13] = 0.15, and all the other places with
markings equal to 0.25. The corresponding minimal firing count vector σ = [0.85
0.85 1.0 0.9 0.6 0.6 0.75 0.65 0.45 0.2 0.35 0.10]T .

Fig. 4.5 shows the stopping time instants of transitions when the ON/OFF con-
troller is applied. After t9 is stopped at 4.28 time units, the markings of all the
places are at the final state values.
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Figure 4.4: The CF net model (weighted T-system) of a table factory system. The
firing rate of every transition is equal to 1.

Figure 4.5: Transitions’ stopping time instants obtained by applying the ON/OFF
controller to the CF system in Fig. 4.4

Fig. 4.6 shows the marking trajectory of places p3, p13, p14 and p17. For instance,
the marking of place p17 depends on transitions t5, t10 and t11, which are stopped
at 2.9, 3.24 and 4.19 time units, respectively. When t11 stops, p17 also reaches its
final state, at 4.19 time units.
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Figure 4.6: Marking trajectories of applying the ON/OFF controller to the CF
system in Fig. 4.4

4.3 Drawbacks of the ON/OFF controller for general
nets

In general net systems, multiple minimal firing count vectors may exist. Therefore
it is not clear which one gives the minimum-time by using the ON/OFF controller
(moreover, minimum-time may be with a non-minimal firing count vector). On the
other hand, the convergence of the final state may not be ensured: in the case of
non-CF nets, conflicts (|p•| > 1) may appear, thus firing faster one transition may
reduce the firing of another transition, and the overall time for reaching mf may
increase, being infinity in the extreme case. The following example shows a live and
bounded system, in which by applying the ON/OFF strategy, the final state cannot
be reached.

Example 4.3.1. Assume we want to drive the system in Fig.4.7 to final state mf =
[0.5 0.5 0.5 0.5 0.2 0.4 1.4]T , the firing rate of t3 is 10, while the firing rates of
other transitions are all set to 1. σ = [0.8 1.3 0.5 0 1 0 0]T is a minimal firing
count vector driving the system from m0 (shown in the figure) to mf . By using this
setting and applying the ON/OFF controller, mf cannot be reached and the system
will be “blocked” in an intermediate markingm = [1 0 0.78 0.22 0 0 2]T . Notice that,
this “blocking” situation is imposed by the controller. For instance, transition t7 is
actually enabled at m, but the control law has forbidden its firing because σ[t7] = 0.

One may think that deadlock-freeness is a sufficient condition for applying the
ON/OFF controller to a general net system. But we should notice that, the control
laws may forbid the firings of some transitions (like in Ex.4.3.1, the firing of t7 is
forbidden because σ[t7] = 0), bringing the system to some “blocking” situations.
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Figure 4.7: A live and bounded CPN system that the ON/OFF controller brings to
a “deadlock” situation if λ3 ≫ λ2

4.4 Extended ON/OFF based methods

Because the ON/OFF controller cannot be directly applied to general TCPNs, three
heuristic extensions are proposed: ON/OFF+, B-ON/OFF and MPC-ON/OFF. In
all the methods the convergence to the final state is always guaranteed, although
we may not obtain a minimum-time state evolution. The ON/OFF+ overcomes
the problem of the standard ON/OFF controller by forcing proportional firings of
conflicting transitions; B-ON/OFF is proposed to handle those bad cases of applying
the ON/OFF+ controller; the MPC-ON/OFF controller has higher computational
complexity, but may lead to better solutions, i.e., solutions that need less time to
reach the final state.

4.4.1 ON/OFF+ controller

The problem of the ON/OFF controller arises from “inappropriate” manners of
solving the conflicts (e.g., in the system of Fig. 4.7, since λ3 ≫ λ2, t3 fires much
faster than t2). Two transitions ta and tb are in a structural conflict relation if
•ta ∩

•tb 6= ∅. The coupled conflict relation is its transitive closure. For example,
in the net shown in Fig. 4.7, the sets of places in coupled conflict relation are
{t1}, {t4}, {t2, t3} and {t5, t6, t7}. In the sequel, let us denote by Tp the set of
persistent transitions (transitions that are not in any conflict relation) and Tc the
set of transitions in any coupled conflict relation, Tp ∩ Tc = ∅, Tp ∪ Tc = T .

In order to overcome this problem, we consider a more “fair” strategy to solve the
conflicts: forcing the flows of transitions that are in coupled conflict relation to be
proportional to the given firing count vector. Meanwhile, for the rest of (persistent)
transitions the ON/OFF strategy is applied.

The modified ON/OFF controller is shown in Algorithm 2 and we will call it
ON/OFF+ controller.

The procedure of the ON/OFF+ controller is similar to the one of the standard
ON/OFF, except the last constraint of LPP (4.8) in the step 3 of Algorithm 2, which
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Algorithm 2 ON/OFF+ controller

Input: 〈N ,λ,m0〉, mf , σ, Θ
Output: w0, w1, w2, . . .

1: k ← 0

2: while Θ ·
k−1
∑

i=0
wi 6= σ do

3: Solve the following LPP:

max 1T ·wk

s.t. mk+1 =mk +Θ ·C ·wk

0 ≤ Θ ·wk ≤ σ −Θ ·
k−1
∑

i=0
wi

wk[tj ] ≤ λj · enab(tj ,mk),∀tj ∈ T
mk+1 ≥ 0
wk[ta] · σ[tb] = wk[tb] · σ[ta]

∀ta, tb,
•ta ∩

•tb 6= ∅ and σ[ta] > 0,σ[tb] > 0

(4.8)

4: Apply wk :mk+1 ←mk +Θ ·C ·wk

5: k ← k + 1
6: end while
7: return w0, w1, w2, . . .

means that, at any time step k, if transitions ta and tb are in conflict, the following
will be forced: wk[ta]

wk [tb]
= σ[ta]

σ[tb]
. Since we need positive flows (wk[tb] > 0), in the sequel

we assume an initial state m0 > 0. Also Notice that, only transitions with positive
values in the corresponding firing count vector should be considered.

In order to prove the convergence, we first show that by using some reduction
rules, the original system with the ON/OFF+ controller is equivalent to a CF net
system with a particular controller A, i.e., the same state trajectory can be obtained.
Then, we prove that controller A drives the CF net system to mf , implying that
the ON/OFF+ controller also drives the original one to mf .

Reduction Rule. Given a net N = 〈P, T,Pre,Post〉, let Tj = {t1, t2, ..., tn} ⊆ T
be a set of transitions that are in coupled conflict relation. These transitions fire
proportionally according to a given firing count vector σ, i.e., for any ta, tb ∈
Tj, σ[ta],σ[tb] > 0, if ta fires in an amount sa, simultaneously, tb fires in an

amount sb, such that sa
sb

= σ[ta]
σ[tb]

. Let σ̄ =
∑

t∈Tj
σ[t], N is transformed to N ′ =

〈P, T ′,Pre′,Post′〉 in the following way:

(1) T ′ = T \ Tj

(2) Merge Tj to a new transition tj, T
′ = T ′ ∪ {tj}

(3) ∀p ∈ •Tj, Pre
′[p, tj] =

∑

t∈p•
Pre[p, t] · σ[t]/σ̄
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(4) ∀p ∈ Tj
•, Post′[p, tj ] =

∑

t∈•p

Post[p, t] · σ[t]/σ̄

Example 4.4.1. Let m > 0 and σ[t1] > 0, σ[t2] > 0. Fig. 4.8 shows how two
conflicting transitions t1 and t2 are merged into t1 2.
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(b) Transformed system

Figure 4.8: Dynamic reduction rule for a given σ: merging t1 and t2

Proposition 4.4.2. Let S = 〈N ,m0〉, and S
′ = 〈N ′,m0〉 be the transformed system

from S by merging Tj = {t1, t2, ..., tn} to tj by using the reduction rule. If in S, the
transitions in Tj fire proportionally according to a given firing count vector σ, and
in S ′, transition tj fires in an amount equal to the sum of the firing amounts of
transitions in Tj, then the same marking is reached in S and S ′.

Proof: It follows immediately by the definition of the reduction rule.
For example, consider place p2 in Fig. 4.8, and let s1 = α · σ[t1], s2 = α · σ[t2],

α > 0. If t1(s1)t2(s2) is fired in the original system, the new marking of p2 is:

m1[p2] =m0[p2]− g2 · α · σ[t1]− g3 · α · σ[t2]

In the transformed system, if t1 2(s1 + s2) is fired, the new making of p2 is:

m′
1[p2] =m0[p2]− (s1 + s2) ·

g2 · σ[t1] + g3 · σ[t2]

σ[t1] + σ[t2]

=m0[p2]− α · (σ[t1] + σ[t2]) ·
g2 · σ[t1] + g3 · σ[t2]

σ[t1] + σ[t2]

=m1[p2].

Similarly, markings of places p1 and p3 are also equal in both systems.

Corollary 4.4.3. If mf > 0 is reachable in S by firing σ from m0 > 0, then mf

is reachable in S ′ by firing σ′, where:

σ′[tj ] =







∑

t∈Tj

σ[t] if tj is obtained by merging a set of transitions Tj

σ[tj] otherwise
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Proposition 4.4.4. Let S = 〈N ,λ,m0〉 be a discrete-time TCPN system with
m0 > 0 and Θ the sampling period. Let σ ≥ 0 be a firing count vector driving the
system to mf > 0, i.e., mf = m0 +C · σ. By applying the ON/OFF+ controller,
the system state converges to mf in finite time.

Proof: Let S ′ = 〈N ′,λ′,m0〉 be the system transformed from S by merging all
the conflicting transitions, using the reduction rule (therefore S ′ is CF).

Assume there exists a controller A applied to S ′, with w′
k[tj] the controlled flow

at each time step k, such that: (1) if tj is obtained by merging a set of transitions Tj
in a coupled conflict relation, we have w′

k[tj ] =
∑

t∈Tj
wk[t]; (2) otherwise w

′
k[tj] =

wk[tj ], where wk[tj] is the flow of transition tj in S that is controlled by using the
ON/OFF+ controller. Then, according to Proposition 4.4.2, the state trajectory of
S ′ obtained by applying controller A is the same as in S obtained by applying the
ON/OFF+ controller. Therefore it is equivalent to prove that by applying controller
A to S ′, mf is reached in finite time.

This controller A always exists, because if the firing rate of tj in S ′, λ′j, is large
enough, case (1) can always be satisfied, by using a positive control action uk[tj ]. In
particular, it is defined as:

uk[tj ] = λ′j · enab(tj ,mk)− x
j
k (4.9)

where xjk is obtained by solving the LPP (4.10):

xjk = max
∑

td∈Tj

xdk

s.t. xak · σ[tb] = xbk · σ[ta],∀ta, tb ∈ Tj
0 ≤ xdk ≤ λd · enab(td,mk),∀td ∈ Tj

Θ ·
k
∑

i=0
xdk ≤ σ[td],∀td ∈ Tj

(4.10)

where enab(td,mk), td ∈ Tj , is the enabling degree of td in the original system at
mk.

For case (2) we simply use the ON/OFF strategy and the same firing rate as in
S.

Finally, let us notice that S ′ is a CF net, so for sure controller A can drive
S ′ to its final state in finite time [104], implying that by applying the ON/OFF+
controller to S, the final state is also reached in finite time.

Given a firing count vector σ, if transition tj is a persistent one and the goal
is to minimize the time spent for firing σ[tj ], the ON/OFF strategy is the optimal.
For the transitions in conflict, the ON/OFF+ controller gives a way to handle their
firings. However in general, it is just a successful heuristic (a solution always exists),
but not necessarily the optimal (the minimum-time is not guaranteed).

Example 4.4.5. Let us consider the net system in Fig. 4.9. Assume that the desired
final state is mf = [3.6 0.4 4 1.6]T , the firing rate vector λ = 1, and the sampling
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period Θ = 0.2. One minimal firing count vector to reach mf (in this case, the
unique one) is σ = [0.4 0 4 0]T . By applying the ON/OFF+ controller, at each
time step the firing flow of t3 is forced to be 10 times the flow of t1. For instance,
at the first time step, [0.04 0 0.4 0]T is fired, reaching making [7.56 0.04 0.4 1.96]T ,
etc. In this way, mf is reached in 12 time steps. However, mf could be reached in
only 10 time steps (that is actually the minimum-time). In particular, at each of the
first 9 time steps only t3 fires, i.e., [0 0 0.4 0]T is fired; at the last time step, t1 and
t3 fire, i.e., [0.4 0 0.4 0]T is fired.

8

2t1

t2

p2

p1

t3

t4

p4

p3

Figure 4.9: An EQ PN system with m0 = [8 0 0 2]T .

Remark 4.4.6. The results of Proposition 4.4.4 can be naturally extended to continuous-
time CPNs by making the sampling period Θ tend to 0.

4.4.2 Balanced ON/OFF controller (B-ON/OFF)

We can apply the ON/OFF+ controller to any TCPN system and ensure the conver-
gence to a final state mf > 0. Extremely fast to compute, nevertheless a possible
drawback of this method is the following: since a set of transitions in coupled conflict
relation are forced to fire proportionally, the required number of time steps for firing
σ is determined by the “slower” ones. Therefore, in extreme cases, when some of
these transitions have very small flows, the whole system may be slowed down.

Example 4.4.7. Let us consider the simple (sub-)system in Fig. 4.10, assuming
that t1, t2 have the same firing rate equal to 1. Moreover, they are forced by a given
σ to fire in the same amounts. It is obvious that the flow of t2 is 100 times the flow
of t1, but if t1 and t2 should fire proportionally according to σ, then t2 is slowed
down.

To overcome cases like that, we can fire first the “faster” transitions and block
the “slower” ones for some time periods, expecting that the flows (speeds) of some
of the “slower” transitions are increased, i.e., we expect somehow to “balance” the
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1 100 100p1 p2 p3

t1 t2

Figure 4.10: Fast transitions may be slowed down

“faster” and “slower” transitions. After that, we simply apply the pure ON/OFF+
controller until the final state is reached.

We will first show how to classify the “slower” and “faster” transitions, and then
present this balancing strategy.

Assume that the system is at marking m with w its controlled flow, and let σ

be the firing count vector that should be fired to reach mf . Then sj = ⌈
σ[tj ]

Θ·w[tj ]
⌉ can

be viewed as an estimation of the number of time steps that transition tj needs to
fire, assuming that tj fires with a constant speed equal to w[tj ]. For two transitions
ta and tb, if sa > sb, it is said that ta is “slower” than tb.

The estimation of the number of steps for tj at m0 is defined by:

s0j =

⌈

σ[tj]

Θ · λj · enab(tj,m0)

⌉

(4.11)

Let us consider again the system in Ex.4.4.7 and let σ[t1] = σ[t2] = 10, Θ =
0.01. The initial estimation of the number of time steps is: s01 = 10

1·0.01 = 1000,
s02 =

10
100·0.01 = 10. So transition t1 is “slower” than transition t2.

Based on this initial estimation, we partition any given set of transitions Tc that
are in coupled conflict relation into two subsets, the “faster” ones T1 and the “slower”
ones T2, such that:







T1 ∩ T2 = ∅, T1 ∪ T2 = Tc
∀ta ∈ T1, tb ∈ T2, s

0
b/s

0
a > d

∀ta1, ta2 ∈ T1, s
0
a1/s

0
a2 ≤ d

(4.12)

where d ≥ 1 is a design parameter used to classify “slower” and “faster” transitions.
From (4.12), the estimations of the number of time steps of the transitions in T2

are at least d times as large as the ones of transitions in T1. If we fire the transitions
in T1 and T2 proportionally, transitions in T1 may be slowed down by the ones in
T2.

Notice that, if the value of d is too large, all the transitions are put into T1, then
it is equivalent to applying the ON/OFF+ controller directly; if d is too small, most
of the transitions are put into T2 and initially blocked. For example, in the system
shown in Ex. 4.4.7, because s01/s

0
2 = 100, for any d < 100 the conflicting transition

set Tc = {t1, t2} is partitioned to T1 = {t2} and T2 = {t1}.
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Now let us consider that the system is at time step k with markingmk, and the
firing count vector σ′ has been fired, i.e., mk =m0 +C · σ

′. The remaining firing
count vector that should be fired is σk = σ−σ′ ≥ 0. The estimation of the number
of steps for transition tj ∈ Tc at mk is defined by:

skj =

{

⌈
σk[tj ]

Θ·wk[tj ]
⌉, if tj ∈ T1

⌈
σk[tj ]

Θ·λj ·enab(tj ,mk)
⌉, if tj ∈ T2

where wk[tj] is the flow of transition tj when the ON/OFF+ strategy is applied.
Because the transitions in T1 fire proportionally, for any tj ∈ T1, the same estimation
skj is obtained, denoted by hk. For any tb ∈ T2, let D

k
b = skb/h

k, which reflects the
“difference” of the estimations between tb and the “faster” transitions.

Let T i
c , i = 1, 2, 3, ..., l be the sets of transitions in coupled conflict. Algorithm 3

synthesizes the control method: for transitions in Tp, the ON/OFF strategy is always
applied; for any T i

c = T i
1∪T

i
2, those “faster” transitions in T

i
1 fire proportionally using

the ON/OFF+ strategy; while every “slower” transition tb in T
i
2 is blocked. Applying

this strategy until tb gets balanced with the “faster” transitions, i.e., conditions (C1)
is satisfied; or until the “difference” between tb and the “faster” transitions cannot
decrease, i.e., condition (C2) is satisfied, then we move tb to T i

1 and start to fire it
using the ON/OFF+ strategy. When T i

2 = ∅, i.e., all the transitions are moved to
T i
1, it is equivalent to apply the pure ON/OFF+ controller to the system.

(C1) Dk
b ≤ d

(C2) Dk
b ≥ D

k−1
b

Now we prove the convergence of this B-ON/OFF controller to the desired final
state.

Proposition 4.4.8. Let 〈N ,λ,m0〉 be a TCPN system with m0 > 0 and σ ≥ 0 be
a firing count vector driving the system to mf > 0, i.e., mf =m0 +C ·σ. Given a
parameter d ≥ 1, by applying the B-ON/OFF controller, the system state converges
to mf in finite time.

Proof: According to the algorithm, any set of conflicting transitions T i
c is first

divided into subset T i
1 of “faster” transitions and subset T i

2 of “slower” transitions
according to the value of d. Any transition tb ∈ T

i
2 is initially blocked and all the

transitions in T i
1 are fired by using the ON/OFF+ strategy. In this way, more tokens

may arrive to the input places of tb and its flow may increase, consequently the value
of Dk

b may decrease. If the value of Dk
b decreases to d then condition (C1) is satisfied;

if at one moment, the value of Dk
b cannot decrease any more, then condition (C2) is

satisfied. When one of conditions (C1) and (C2) is satisfied, tb is moved from T i
2 to

T i
1 and starts firing using the ON/OFF strategy.
In finite time, all the transitions in T i

2 will be moved to T i
1 , so the system is

controlled by the pure ON/OFF+. Now, we only need to prove that by this moment,
the system is in a state m > 0 and mf is reachable from m.
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Algorithm 3 B-ON/OFF Controller

Input: 〈N ,λ,m0〉, mf , σ, Θ, d , Tp, T
i
c , i = 1, 2, 3..., l

Output: w0,w1,w2, . . .

1: Partition every T i
c into T i

1 and T i
2, i = 1, 2, ..., l

2: k ← 0

3: while Θ ·
k−1
∑

i=0
wi 6= σ do

4: Obtain wk[tj ] for any tj ∈ Tp : applying the ON/OFF strategy
5: for i = 1 to l do
6: For any tj ∈ T

i
2: wk[tj]← 0

7: Obtain wk[tj] for any tj ∈ T
i
1 : applying the ON/OFF+ strategy

8: end for
9: Apply wk : mk+1 ←mk +Θ ·C ·wk

10: σk+1 ← σ −Θ ·
k
∑

i=0
wi

11: for i = 1 to l do
12: if T i

2 6= ∅ then
13: Compute wk+1[ta], ta ∈ T

i
1

14: hk+1 ← σk+1[ta]/(Θ ·wk+1[ta])
15: for each tb ∈ T

i
2 do

16: sk+1
b ← σk+1[tb]/(Θ · λb · enab(tb,mk+1))

17: Dk+1
b ← sk+1

b /hk+1

18: if Dk+1
b ≤ d or Dk+1

b ≥ Dk
b then

19: T i
1 ← T i

1 ∪ {tb}
20: T i

2 ← T i
2 \ {tb}

21: end if
22: end for
23: end if
24: end for
25: k ← k + 1
26: end while
27: return w0,w1,w2, . . .

Since the accumulative firing counts of transitions are upper bounded by σ, then
we have m = m0 + C · σ

′, 0 ≤ σ′ ≤ σ. Because m0 > 0, in a finite time m > 0.
Since σ − σ′ ≥ 0 and mf =m+C · (σ − σ′) > 0, mf is reachable from m ([49]).
Therefore, the final state can be reached in finite time.

Remark 4.4.9. The B-ON/OFF controller is computationally more expensive than
the ON/OFF+ controller, because an estimation of the number of time steps has to
be computed at each iteration. However, the B-ON/OFF strategy may significantly
decrease the time of reaching the final state if the flows of conflicting transitions are
of different orders of magnitude. The choice of the design parameter d also influences

67



Chapter 4. Centralized Control: ON/OFF Based Methods

the performance of Algorithm 3. In particular, we suggest using a small d, because
if d is too large, the controller is not “sensitive” to the difference between “faster”
and “slower” transitions, thus it is similar to applying the ON/OFF+ strategy. In
the example of Section 4.4.5, we use d ≤ 10 and reasonable results are obtained.

4.4.3 MPC-ON/OFF controller

Both the ON/OFF+ and B-ON/OFF controllers are using some “greedy strategies”
to fire transitions, they solve the conflict based on the flows and the required firing
counts in a current time step, without a “careful looking at the future”. In this
section, we combine the ON/OFF strategy with Model Predictive Control (MPC),
obtaining the MPC-ON/OFF controller.

MPC has been widely applied in the industry for controlling complex dynamic
systems. By solving a discrete-time optimal control problem over a given time
horizon, an optimal open-loop control input sequence is obtained and the first one
is applied. Then at the next time step, a new optimal control problem is solved. In
[64], the MPC scheme is applied to the control of TCPNs, by solving the following
optimization problem (3.5) at each time step, with cost function J(mk, N) (3.6):

MPC is usually used for optimizing trajectories subject to certain constraints.
In our problem, the aim is to reachmf as soon as possible, i.e., minimizing the time.
Although it is difficult to obtain a minimum-time control by using a MPC approach,
we will consider this method for transitions in conflicts while for the others we use a
similar ON/OFF strategy. We may obtain smaller number of time steps than those
of the ON/OFF+ or B-ON/OFF controller, particularly with large time horizon N
(even if an improvement is not guaranteed by using a larger N), what means with
higher computational complexity.

The MPC-ON/OFF controller is synthesized in Algorithm 4.

Algorithm 4 MPC-ON/OFF controller

Input: 〈N ,λ,m0〉, mf , σ, Θ, Q, R, N ǫ, ζ
Output: w0, w1, w2, . . .

1: k ← 0
2: σk ← σ

3: while mk 6=mf do
4: Solve problem (4.13)
5: Apply wk : mk+1 ←mk +Θ ·C ·wk

6: σk+1 ← σk −Θ ·wk

7: k ← k + 1
8: end while
9: return w0, w1, w2, . . .
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The problem that should be solved at each time step k is:

min J(mk, N)

s.t. : mk+j+1 =mk+j +Θ · C ·wk+j, j = 0, ..., N − 1 (4.13a)

G ·

[

wk+j

mk+j

]

≤ 0, j = 0, ..., N − 1 (4.13b)

wk+j ≥ 0, j = 0, ..., N − 1 (4.13c)

Θ ·
N−1
∑

j=0

wk+j ≤ σk (4.13d)

mk+1 ≥ 1 · ǫ (4.13e)

1T ·wk ≥ ζ (4.13f)

where ǫ and ζ are sufficient small positive numbers and σk is the remaining firing
count vector that should be fired. Constraint mk+1 ≥ 1 · ǫ (4.13e) ensures that
the system only evolves inside an interior region of the reachability space; in order
to include m0 and mf in that region, it should hold mf ≥ 1 · ǫ and m0 ≥ 1 · ǫ.
Constraint 1T ·wk ≥ ζ (4.13f) forces a non-zero flow in the first predictive step. For
our specific problem, we use the following assumptions:

(A1) m0,mf > 0.

(A2) Q ∈ R|P | ≥ 0 are positive definite matrices.

(A3) R ∈ R|T |
≥0 is a diagonal matrix, such that if tj ∈ Tp, R[j, j] > 0, otherwise

R[j, j] = 0.

We define the cost function as:

J(mk, N) =
N
∑

j=0

[(mk+j −mf )
′ ·Q · (mk+j −mf )]−w

′
k ·R ·wk (4.14)

By means of the item −w′
k · R · wk in the cost function and choosing large

values for R[j, j], tj ∈ Tp, we try to fire the persistent transitions as fast as possible,
similarly to applying the ON/OFF strategy. Now, we will prove that the asymptotic
stability holds.

Proposition 4.4.10. Let 〈N ,λ,m0〉 be a TCPN system with m0 > 0. Let mf > 0
be a reachable final marking, such that mf = m0 + C · σ. Assume that the sys-
tem is controlled by using the MPC-ON/OFF controller shown in Algorithm 4, and
assumptions (A1)–(A3) are satisfied. Then the closed-loop system is asymptotically
stable.

Proof: We will define a Lyapunov function and prove that it is strictly decreasing.
Let V (mk) = 1T · (σ−Θ ·

∑k
i=0wi), where wk is the controlled flow at time step

k and Θ is the sampling period. According to constraint (4.13d), the accumulative
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firing count is upper bounded by σ. Therefore, V (mk) ≥ 0 and V (mk) 6= 0 until
σ = Θ ·

∑k
i=0wi, i.e., untilmk =mf . Now we need to prove that V (mk) is strictly

decreasing, and it is equivalent to prove that wk 6= 0 until σ is reached. Considering
the last constraint (4.13f), we only need to prove that problem (4.13) is feasible until
mf is reached.

Assume that the system is at time step k with marking mk 6= mf , according
to constraint (4.13e), we have mk > 0. Let us denote by σ′ the firing count vector
that has been fired. It is clear that σ′ ≤ σ, therefore, σ − σ′ ≥ 0 and:

mf =mk +C · (σ − σ
′) > 0 (4.15)

so mf is reachable from mk > 0 [49]. Since the net is consistent, the marking of
the system is able to move from mk in any direction (may be a small movement)
inside the reachability space. Therefore, if ζ is small enough, we can always find a
solution of problem (4.13) in which mk+1 is, for example, on the straight line from
mk to mf .

4.4.4 Initial Comparisons

In order to have a good “guess” of selecting the most appropriate technique for a
given system, several qualitative properties may be taken into account. Table 4.1
shows some qualitative characteristics of the already mentioned control methods.
Apart from the methods proposed in this Chapter, another heuristics proposed in
[5] for minimum-time control of TCPNs is also included in the comparison.

Table 4.1: Qualitative characteristics of several control methods that all ensure the
stability (assuming m0 > 0, mf > 0).

Methods Subclass Computational
issues

Optimizing index

Approaching
minimum-time [5]

All A BPP for each in-
termediate state

Heuristic Min. Time

ON/OFF CF a LPP at each time
step

Min. time

ON-OFF+ All a LPP at each time
step

Heuristic Min. Time

B-ON/OFF All a LPP at each time
step

Heuristic Min. Time

MPC-ON/OFF All a QPP at each time
step

Heuristic Min. Time

The ON/OFF controller is particularly suitable for the minimum-time control of
CF nets, while all the other methods can be applied to general net systems. For the
ON/OFF, ON/OFF+ and B-ON/OFF controllers, at each time step only a LPP
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needs to be solved, therefore those methods have very low computational complex-
ity. Nevertheless, for the MPC-ON/OFF controller, the number of variables also
depends on the time horizon N , being computationally expensive if N is large. The
approaching minimum-time controller [5] also has high computational complexity,
since bilinear programming problems (BPPs) have to be solved when intermediate
states are added to the trajectory for decreasing the duration of the evolution.

4.4.5 A case study

In this section, we apply different control methods to the CPN model of an assembly
system using different settings. The simulations are performed on a PC with Intel(R)
Core(TM)2 Quad CPU Q9400 @ 2.66GHz, 3.24GB of RAM. More case studies are
in Chapter 8.

The system model in Fig. 4.11 represents an assembly system. There are two
kinds of input raw materials stored in p1 and p2. The material A, B are first processed
by Proc A1, then the obtained semi-products are further processed by Proc A2
and Proc A3. In the other processing line, material B is sequentially processed by
Proc B1 and Proc B2. Then final produces are obtained after assembling all the
semi-products.

t1
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0.4

3

0.10.1

0.5

0.1
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Proc_B1

Proc_B2

Assemble

Figure 4.11: The TCPN model of an assembly system.

It is assumed that the firing rate of t2 is 4, while for the other transitions, they
are equal to 1. The simulations are performed under four different settings, in which
setting s.1) and setting s.2) have different initial and final states, but the same
firing count vector is used; setting s.3) uses the same initial marking as in s.1), but
a different final state (therefore a different firing count vector) is considered.; the
difference between setting s.3) and setting s.4) is that, for the places with markings
smaller than 1 in s.3), their markings are increased by 1 in s.4), while the same
firing count vectors are used in both cases.
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s.1) Θ = 0.01, m0 = [1 2 0.4 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.7 0.2 0.2 0.5
0.3 4.7 0.4]T , σ = [0.4 0 0.2 0.5 0.3 0.1 0]T ;

s.2) Θ = 0.01, m0 = [1 2 0.001 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.301 0.2 0.2
0.5 0.3 4.7 0.4]T , σ = [0.4 0 0.2 0.5 0.3 0.1 0]T ;

s.3) Θ = 0.1, m0 = [1 2 0.4 0.5 0.1 0.1 0.1 5 0.1]T , mf = [0.6 1.8 0.7 0.2 0.2 0.5
0.3 3 2.1]T , σ = [2.1 1.7 1.9 2.2 2 1.8 0]T .

s.4) Θ = 0.02, m0 = [1 2 1.4 1.5 1.1 1.1 1.1 5 1.1]T , mf =[0.6 1.8 1.7 1.2 1.2 1.5
1.3 3 3.1]T , σ = [2.1 1.7 1.9 2.2 2 1.8 0]T .

The simulation results are shown in Table A.1–A.4 in the Appendix (for the B-
ON/OFF controller, smaller numbers of time steps are usually obtained with smaller
values of d. In the case that the numbers of time steps of using the ON/OFF+ con-
troller cannot be reduced by using the B-ON/OFF controller, the result is not sensi-
tive to d. For the MPC-ON/OFF controller, although in some cases the numbers of
time steps are not very sensitive to the weights on matrix R and Q, we suggest to
use larger weights on matrix R and smaller weights on matrix Q; we may slightly
reduce the time steps with larger N , but at the same time, the computational costs
grows fast with respect to N). In Table 4.2, we summarize the smallest numbers of
time steps that obtained by using different control methods, and the corresponding
parameters.

From the aspect of the number of time steps spent to reach the final state, the
B-ON/OFF controller gives the best result in most of the cases (it is the best for
setting s.1) (Table A.1) and setting s.2) (Table A.2), and close to the best in setting
s.3) (Table A.3) and setting s.4) (Table A.4); usually smaller d lead to smaller
numbers of time steps. The ON/OFF+ controller also gives quite small number of
time steps, except in setting s.2). This is because that there are four transitions,
t1, t2, t3 and t4, in coupled conflict relation and in setting setting s.2), the initial
marking of place p3 is much smaller than those of p1 and p2, therefore the flows
of t3 and t4 are much smaller than those of t1 and t2. As we have discussed in
previous sections, in the case of conflicting transitions with very different flows, the
overall system may be highly slowed down by applying ON/OFF+ controller. The
approaching minimum-time controller does not give smaller numbers of time steps
comparing with the other controllers, except in setting s.4). The reason is what
we have already mentioned before: the performance (with respect to the time) of
the approaching minimum-time controller highly depends on the initial state of the
system, if there exist places with very small initial markings, the time to reach the
final state could be large. Regarding the MPC-ON/OFF controller, the numbers of
time steps are not far from the best among other control methods, even the best
in setting s.3). We can also observe that, usually with larger time horizon N we
could obtain smaller number of time steps (in setting s.2), s.3) and s.4)); but it is
not guaranteed, for example the smallest time step in setting s.4) is obtained with
N = 1. On the other hand, with larger weights to the matrix R (i.e., putting more
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Table 4.2: The smallest numbers of time steps of using different control methods
among different parameters (if exist), derived from Table A.1–A.4. For the MPC-
ON/OFF controller, the weight matrix Q = q · I |P |, R[j, j] = r,∀tj ∈ Tp.

Control methods Time steps CPU time (ms) Parameters
appro. min-time 101 847
ON/OFF+ 94 41

s.1) B-ON/OFF 91 136 d = 2 (or 1)
MPC-ON/OFF 91 955 N = 1, r =1000, q = 1

(or 100, 1000)
MPC-ON/OFF 91 50,784 N = 5, r = 1000, q = 1
appro. min-time 176 465

s.2) ON/OFF+ 954 410
B-ON/OFF 132 192 d = 2 (or 1)
MPC-ON/OFF 145 16,240 N = 5, r = 1000, q = 1
appro. min-time 94 352

s.3) ON/OFF+ 76 34
B-ON/OFF 76 115 d =20 (or 15, 10)
MPC-ON/OFF 75 52,803 N = 10, r=1000, q=1000
appro. min-time 122 2,546

s.4) ON/OFF+ 126 55
B-ON/OFF 126 195 d = 20 (or 15, 10)
MPC-ON/OFF 125 90,781 N = 10, r=1000, q=1

weight on the flow of persistent transitions), we often obtain a smaller number of
the time steps.

From the computational costs point of view, the ON/OFF+ controller gives low-
est consumed CPU time, except in setting s.2). The B-ON/OFF controller also has
very low computational costs, slightly higher than that of the ON/OFF+ controller
because an estimation of number of time steps should be computed. The approach-
ing minimum-time controller usually costs more CPU time to compute the control
low than the ON/OFF+ and B-ON/OFF controller, because a BPP problem needs
to be solved whenever an intermediate point is added to the trajectory to improve
the time. The most computationally expensive method here is the MPC-ON/OFF
controller: a QPP should be solved at each time steps and with larger N its compu-
tational costs increase fast.

Notice that we have shown the results of different methods for a particular exam-
ple with different settings, however, the number of time steps required for reaching
the final state may depend on many variables, such as net structures, firing rates, ini-
tial/final state. More comparisons using different examples are presented in Chapter
8.
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4.5 Computation of minimum-time control laws

Assume that by applying one of the ON/OFF (based) controllers, we reach the final
state in h steps. For a general PN system, usually it does not give a minimum-
time control law (see Ex. 4.4.5 for an example). However, after the application of
the ON/OFF (based) method and reaching the final state in h steps, one may be
interested in computing (or knowing) the minimum number of time steps. This can
be computed by applying Algorithm 5.

The idea of the algorithm is the following: because we already know that mf

can be reached in h steps, now we verify ifmf can also be reached in k = h−1 steps,
by solving LPP (4.16). If a control law is found, then we decrease k again and check
ifmf can still be reached; repeat this process until we find a k such thatmf cannot
be reached, then the minimum number of time steps to reachmf is k+1. Instead of
a sequential decreasing of k we may apply different approaches (e.g., binary search
algorithms) to “search” for the minimum-time control laws. However, the problem
is that the computational complexity of this kind of method may become intractable
in practice when the system is large or h is very large.

Algorithm 5 Computation of minimum-time control laws

Input: 〈N ,λ,m0〉, mf , Θ
Output: w0, w1, w2, . . .

1: Apply one of the ON/OFF based controllers
2: W = {w0,w1,w2, . . . ,wh−1}, W last = ∅
3: k = h
4: repeat
5: k = k − 1
6: Solve the following problem:

min Z = ||mk −mf ||1
s.t. mi+1 =mi +Θ ·C ·wi, i = 0, 1, ..., k − 1

wi[tj] ≤ λj · enab(tj ,mi),∀tj ∈ T, i = 0, ..., k − 1
wi ≥ 0, i = 0, ..., k − 1

(4.16)

7: if Z = 0 then
8: W last =W
9: W = {w0, w1... wk−1}

10: end if
11: until Z 6= 0
12: return W

Remark 4.5.1. In problem 4.16, the minimization of ||mk −mf ||1 can be turned
into a LPP by introducing a new variable v with constraints v ≥ mk −mf , v ≥
−(mk −mf ), then solving the problem by minimizing 1T · v.
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4.6 Conclusions

The time spent on the trajectory and the computational complexity of control syn-
thesis are naturally important for the targeting control problem that we address
in this thesis. In this chapter we develop several controllers for TCPNs under in-
finite server semantics, based on the ON/OFF strategy, which frequently arises in
minimum-time problem. The basic idea is to fire transitions as fast as possible until
a upper bound is reached. This upper bound is specified by a given firing count vec-
tor that brings the system to its desired final state. The final state, if an equilibrium
point, can be maintained by using proper control inputs. We first prove that for CF
net systems, the standard ON/OFF controller ensures minimum-time evolution. For
a general net system, we only obtain heuristic minimum-time by using one of the
extended ON/OFF methods—additional techniques for solving conflicts are used.
Low computational complexity is a main advantage of our methods. We can see
from Table 4.2 that, the ON/OFF+ and B-ON/OFF controllers have much lower
computational costs than the approaching minimum-time controller. By applying
the proposed methods, we obtain a reasonable trade-off on quality vs computational
complexity: relatively small numbers of time steps for reaching the final state and
acceptable computational costs.
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Chapter 5

Decentralized Control of CF
nets: ON/OFF Based Methods

In this chapter, decentralized methods for the target marking control problem of
TCPNs are studied. Here, we assume nets to be Choice-Free; they are cut into dis-
joint subnets through a set of buffer places. Due to the disconnection of subsystems,
different behaviors may appear. In order to overcome this problem, we propose two
reduction rules to obtain an abstraction of the missing part of each disconnected sub-
system. The abstractions are then used to complement the subsystems; in this way,
the behaviors (firing sequences) of the original system are preserved. Algorithms
are proposed to make an agreement among those local control laws computed sep-
arately in complemented subsystems, because they may be not globally admissible
considering the states of the buffer places. After that, the minimum-time ON/OFF
controller presented in Section 4 can be implemented independently in subsystems.
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5.1 Problem definitions

Let us consider a large scale discrete event dynamic system, e.g., a complex trans-
portation system connecting cities from different countries. The distributed physical
deployment of the system often makes it impossible to implement a centralized con-
troller that knows the detailed structures and the current states of all subsystems. A
more practical way to proceed is to have local controllers allocated to each subsystem,
which is the essence of decentralized control. The intersections among neighboring
subsystems (in our case, modelled by places) play an important role in facilitating
the interaction and communication between neighboring subsystems.

In this chapter, this method is extended to Choice-Free (CF) nets. It is assumed
that the original system modelled by a CPN is cut into disconnected subsystems
by sets of places (buffers). The addressed problem is to compute the control law to
drive the system from an initial state to a desired final one, in a decentralized way:
local controllers first compute control laws separately, then based on the local control
laws, a globally admissible one is derived without knowing the detailed structures of
subsystems. There are two main problems arising in this process: 1) disconnected
subsystems can exhibit different behaviors from the original ones, e.g., properties
like liveness or boundedness in the original system may not be preserved; and 2)
since the buffer places are essentially shared by more than one subsystem, there
must be an agreement among the neighboring local controllers. The first problem
can be overcome by complementing the subsystems with an abstraction of the parts
that are missing. For this purpose, two reduction rules are proposed to substitute
the “missing parts” by a set of places. For the second problem, a simple coordinator
controller is introduced. Two important characteristics of the proposed method are:

• The coordinator does not know the detailed structures of subsystems, but only
the interface transitions.

• Local controllers only send limited information—the firing count vector and
the minimal T-semiflow—to the coordinator.

Based on the limited information, algorithms are proposed to reach an agreement.
After a globally admissible control laws is obtained, simple ON-OFF controllers
(presented in Chapter 4) are applied. They bring the system to the desired final
state in minimum-time. The sketch of the system structure is shown in Fig. 5.1.

5.2 Related work

In the context of decentralized control on discrete PNs, some approaches have been
proposed. For example, in [40, 10], decentralized supervisory control was addressed.
These works focused on enforcing states to satisfy certain constraints (specifications).
Contribution [7] addressed the problem of driving the system from an initial marking
to a given set of desired markings, by means of adding some control places; it did not
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Figure 5.1: System Structures

discuss how the set of desired markings should be defined, and the control structural
(the control places) highly depended on these markings.

In this chapter, we will address the decentralized target marking control prob-
lem of continuous PNs. This problem has been considered in, for example, [4, 102].
Contribution [4] considers continuous models composed by several subsystems that
communicate through buffers (modelled by places). By executing the proposed al-
gorithm iteratively in each subsystem, their respective target markings are reached
and then maintained. This work contains two significant improvements with respect
to [4]. Firstly, we do not assume that subsystems are strongly connected. Secondly,
a globally admissible control law is achieved by a simple coordinator, therefore the
iterative process executed in subsystems is not needed anymore. The method pro-
posed in [102] considers subsystems of more general structures, where an affine
control is applied to each subsystem, driving the system to a positive defined final
state. One important difference of our method with respect to [102] is related to
the communication strategy: while in [102] the coordinator needs to exchange infor-
mation with subsystems during each time step, in this work, once the agreement is
achieved, all the subsystems work independently, so no communication is necessary.
On the other hand, the method proposed here addresses minimum-time evolution
to the final state, but the affine control used in [102] does not directly consider any
optimizing index and it is not designed for the minimum-time control.

There exist different ways to partition a large scale system into subsystems. This
may be done by partitioning the sets of places and transitions as in [40, 10], or by
explicitly cutting through a set of places [4, 102] or transitions [7]. In this work,
subsystems are first obtained by cutting through a set of (buffer) places, then an
abstraction and complementing process is applied. The obtained complemented
subsystems have identical firing sequences to those of the original system. Thus,
they can also be used to solve other interesting problems, for example, as in [75], for
throughput approximations.
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5.3 Decentralized control of CF nets

5.3.1 Cutting the system

Here the structural cutting method developed in [75] is extended to CF nets. In
order to simplify the notation, we assume that the system is cut into two parts.
This is not a limitation, since each part can be further divided into two more parts.

Definition 5.3.1. Let S = 〈N ,m0〉 be a strongly connected CF net system, where
N = 〈P ∪ B,T,Pre,Post〉. B is said to be a cut if there exist two subnets N i =
〈P i, T i,Prei,Posti〉, i = 1, 2, such that:

(1) T 1 ∪ T 2 = T , T 1 ∩ T 2 = ∅

(2) P 1 ∪ P 2 = P , P 1 ∩ P 2 = ∅

(3) P 1 ∪B = •T 1 ∪ T 1•, P 2 ∪B = •T 2 ∪ T 2•

(4) T 1 = •P 1 ∪ P 1•, T 2 = •P 2 ∪ P 2•

where U = •B∪B• is said to be the interface, which is partitioned into U1, U2, such
that U1 ∪ U2 = U , U i = T i ∩ U .

Example 5.3.2. Fig. 5.2(a) shows a CF net system. The set of places B =
{p1, p2, p10} is a cut decomposing the original system into two subsystems, S1 and
S2, where the interface transitions are U1 = {t1, t10} and U

2 = {t2, t3, t8, t9}.

5.3.2 Reduction rules

Due to the cut, different behaviors can be introduced, because subsystems become
disconnected from the remaining parts. For instance, the net system in Fig.5.2(a) is
live and bounded. After cutting by B = {p1, p2, p10}, both obtained subsystems S1

and S2 become unbounded. A solution to this problem is to build an abstraction of
the missing parts and use it to complement the disconnected subsystem.

In this section, we propose two reduction rules to obtain the abstractions of
subsystems, in particular, the paths between interface transitions are reduced to a set
of places, but no transitions. In the sequel of this section, net systems are assumed
to be lim-live and bounded (in CF nets, these assumptions imply consistency and
conservativeness, and if the net is connected they also imply strong connectedness).
Let us first recall the concepts gains and weighted markings that we use in developing
the rules.

The gain of a directed path was introduced in [92] for Weighted T-system. It
represents the mean firing ratio between the last transition and the first one in the
path. It can be naturally extended to CF net systems:
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Figure 5.2: (a) A live and bounded CF net system and a cut B = {p1, p2, p10}; (b)
complemented subsystem CS1; (c) complemented subsystem CS2

Definition 5.3.3. Let 〈N ,m0〉 be a CF net system, and π = {t0, p1, t1, p2, ..., pn,
tn} be a directed path in N from transition t0 to tn. The gain of π is:

G(π) =

n
∏

i=1

Post(pi, ti−1)

Pre(pi, ti)

The weighted markingM(π,m) of a path π under markingm in a CF net system
is the natural extension of the sum of tokens of paths in MGs.

Definition 5.3.4. Let 〈N ,m0〉 be a CF net system, and π = {t0, p1, t1, p2, ...,
pn, tn} be a directed path in N from transition t0 to tn. The weighted marking of π
under marking m is:

M(π,m) =
n
∑

i=1





m[pi]

Post(pi, ti−1)

i−1
∏

j=1

Pre(pj, tj)

Post(pj, tj−1)





Let tin and tout (t0 and tn in the former definition) be the first and last transitions
of π, M(π,m) can be interpreted as the number of firings tin is required to fire to
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reach m, in the case that π is initially empty. It can be deduced that, starting from
m, if all the intermediate transitions between tin and tout fire with the maximal
amounts, the enabling degree of tout becomes G(π) ·M(π,m).

t1

p1

t2

p2

t3

p3

2 4

2

Figure 5.3: A simple CF net system with m0 = [0 0 2]T

Example 5.3.5. Let us consider the CF net system in Fig. 5.3. The path between
t1 and t3 is π = {t1, p1, t2, p2, t3}, according to the definition of gains, G(π) =
Post(p1,t1)·Post(p2,t2)
Pre(p1,t2)·Pre(p2,t3)

= 2·1
1·4 = 1/2. It means that if t1 fires once, t3 can fire 1/2 times

(in the case that p1 and p2 are empty initially).
In the initial state, path π is empty, i.e., m0[p1] = 0, m0[p2] = 0. In order to

reach a marking m, such that m[p1] = 1, m[p2] = 1, so σ =[1 1 0]T , t1 needs to
fire once, therefore, the weighted marking of π under m is M(π,m) = 1.

Assume that from m the intermediate transition t2 fires in a maximal amount
that is equal to 1, the enabling degree of t3 becomes 1/2, obviously it is equal to
G(π) ·M(π,m).

Transition Reduction Rule (T-RR). Let tj be a transition in a continuous CF
net system S = 〈N ,m0〉, with |•tj| = n, |tj

•| = k. Let us denote its inputs by
Pin = •tj , and its outputs by Pout = tj

•. Let px ∈ Pin, py ∈ Pout. Transition tj
with its input and output places can be reduced to n · k places, obtaining the reduced
system S ′ = 〈N ′,m0

′〉, by using the following process:

(1) Replace each elementary path {px, tj, py} with a place px y.

(2) Add arcs such that •px y = •px ∪
•py, px y

• = py
•.

(3) Add weights such that G(π(tin, tout)) = G(π′(tin, tout)), where tin ∈
•Pin∪

•Pout,
tout ∈ Pout

•, π(tin, tout) and π
′(tin, tout) are the paths from tin to tout, in S and

S ′ respectively.

(4) Put the initial marking m0
′[px y] = Post(px y, tin) · M(π,m0), where π =

{tin, px, tj , py, tout}.

In step (3), the gains of paths should be maintained by putting appropriate
weights on the arcs. Let us remark that the weights on the arcs can be scaled and
the same behaviros are obtained. For instance, in the CPN in Fig. 5.3, to keep the
gain of path {t1, p1, t2}, we can put weight Post(p1, t1) = 4 and Pre(p1, t2) = 2
(in this case, the marking of p1 is still zero). Obviously, the overall behaviors of the
system are not changed.
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Example 5.3.6. Consider the CF net system S in Fig. 5.4(a), by applying T-RR
to reduce tj, the system in Fig. 5.4(b) is obtained. In the original system, transition
tj has two inputs Pin = {pi 1, pi 2} and two outputs Pout = {po 1, po 2}, therefore
n = k = 2. Transitions ti 1 and ti 2 are the inputs of pi 1 and pi 2 which may have
more inputs denoted by tim 1 and tim 2. Transitions to 1 and to 2 are the outputs of
po 1 and po 2 which may also have more inputs denoted by tom 1 and tom 2.

ti_1 pi_1

…... …...

ti_2

to_1

to_2

tim_1

tim_2

tom_1

tom_2

pi_2

po_1

po_2

w1

w2

w3

w4

w5

w6

w8

w9

w10

w7

w11

w12

tj

(a) Original system S = 〈N ,m0〉

ti_1

p1_1

…... …...

ti_2

to_1

to_2

tim_1

tim_2

tom_1

tom_2

…

g1

g3

g2

g4

g6

g5

g7

g8

g9

g16

g10

g11

g12

g13

g14

g15

p1_2

p2_1

p2_2

(b) Reduced system S ′ = 〈N ′,m0
′〉

Figure 5.4: Transition reduction rule (T-RR): reducing tj

In the reduced system S ′ there are four new places, p1 1, p1 2, p2 1 and p2 2.
In particular, p1 1 is the reduction of path {pi 1, tj , po 1}, p1 2 is the reduction of
path {pi 1, tj , po 2}, etc. Observe that the gain of the path from ti 1 to to 1, i.e.,
π = {ti 1, pi 1, tj , po 1, to 1} is G(π) =

w2·w8
w5·w11

. The weights g2, g10 on the paths of the
reduced net between the same transitions, i.e., π′ = {ti 1, p1 1, to 1}, should satisfy
g2
g10

= G(π). Considering p1 1 in S ′ for example, step (4) implies that m0
′[p1 1] =

g2 ·M(π,m0).

Let S = 〈N ,m0〉 and S
′ = 〈N ′,m0

′〉 be the original and reduced CF net systems,
σ be a firing sequence in S. Sequence ς is said to be the projection of σ from S to
S ′ when ς is obtained from σ by removing the elements corresponding to transitions
tj, tj /∈ T ∩ T

′.

Proposition 5.3.7. Let S be a continuous CF net system, and S ′ be its reduced
system obtained by applying T-RR, removing transition tj. Assume σ is a firing
sequence of S, and ς is its projection to S ′. Then σ is fireable in S if and only if ς
is fireable in S ′.

Proof: Let us first consider a given firing sequence σ, and prove that σ is fireable
in S iff ς is fireable in S ′. The proof can be easily extended to any firing sequence
by using a similar argument.

Consider T-RR applied in Fig. 5.4 to reduce transition tj and its input/output
places. For the sake of simplicity, we consider a representative firing sequence in S
composed by transitions ti 1, ti 2, tj , tom 1 and to 1, σ = ti 1(α1)ti 2(α2)tj(β) tom 1(α3)
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to 1(α4), and its projection to the reduced system S ′ is ς = ti 1(α1)ti 2(α2)tom 1(α3)
to 1(α4). For other transitions, since the gains of all paths between transition should
be reserved according the reduction rules, consider tim 1 is similar to consider ti 1,
putting tokens to pi 1 with different weights; for the same reason, consider tim 2 is
similar to consider ti 2. If tj fires tokens are put into po 1 and po 2 at the same time
just with different weights, so consider transition to 1 is similar to consider to 2.

In S, let π1 = {ti 1, pi 1, tj, po 1, to 1} and π2 = {ti 2, pi 2, tj, po 1, to 1}; In S
′, let

π′1 and π′2 be the paths corresponding to the same transitions as π1, π2, respectively,
i.e., π′1 = {ti 1, p1 1, to 1} and π

′
2 = {ti 2, p2 1, to 1}.

Let us first consider a subsequence of σ, σ1 = ti 1(α1)ti 2(α2)tj(β)tom 1(α3), and
its corresponding projection to S ′, ς1 = ti 1(α1)ti 2(α2)tom 1(α3). Obviously, σ1 is
fireable in S iff ς1 is fireable in S ′ because transitions ti 1, ti 2 and tom 1 have the
same input places and corresponding markings in S and S ′.

In S, if tj fires with the maximal amount in σ1, to 1 will get the maximal enabling
degree. Therefore by firing σ1, the enabling degree of to 1 can be maximally increased
by:

φ = min{α1 ·G(π1) + α3 ·
w7

w11
, α2 ·G(π2) + α3 ·

w7

w11
}

Considering the initial markingm0, the maximal enabling degree of to 1 by firing
of σ1 is:

min {G(π1) ·M(π1,m0), G(π2) ·M(π2,m0)}+ φ

In S ′, the enabling degree of to 1 under the initial marking is equal to:

min

{

m0
′[p1 1]

g10
,
m0

′[p2 1]

g12

}

According to according the reduction step (4), it is equal to

min

{

g2 ·M(π1,m0)

g10
,
g5 ·M(π2,m0)

g12

}

= min{G(π1) ·M(π1,m0), G(π2) ·M(π2,m0)}

By the firing of ς1, it is increased by the same amount φ as in S, because G(πi) =
G(π′i), i = 1, 2 and w7/w11 = g9/g10 = g11/g12.

Therefore, if σ is fireable in S, ς is for sure fireable in S ′. The other direction, if
ς is fireable in S ′, σ is fireable in S when the intermediate transition tj fires in the
maximal amount.

A similar proof can be achieved for any firing sequence following the procedure:
1) any sequence that consists of the transitions whose input places are the same in
S and S ′ (like ti 1, ti 2 in Fig.5.4), is fireable in S iff its projection in S ′ is fireable;
2) any other transitions (like to 1, to 2 in Fig.5.4) can get the same enabling degrees
in S and S ′, when sequences in 1) fire.

Remark 5.3.8. It can be observed that, each time T-RR is applied to a subnet
formed by paths between Tin ∈ T and Tout ∈ T , one transition t /∈ Tin ∪ Tout is
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removed. Therefore the repetitive application of T-RR results in a set of places
between Tin and Tout but no transition.

Place Reduction Rule (P-RR). Let p1, p2 be two places in a continuous CF net
system, such that •p1 = •p2 = Tin ⊆ T, p1

• = p2
• = tout. If for any tin ∈ Tin, paths

πa = {tin, p1, tout} and πb = {tin, p2, tout} have the same gain, i.e., G(πa) = G(πb).

Then, if m0[p1]
Pre(p1,tout)

≤ m0[p2]
Pre(p2,tout)

, p2 can be removed, otherwise, p1 can be removed.

In order to apply P-RR, G(πa) = G(πb) has to be satisfied. Notice that if
G(πa) 6= G(πb), it implies that the system is not live or not bounded. In particular,
if G(πa) > G(πb) then place p1 is not bounded, otherwise the net system is not live;
if G(πa) < G(πb) then place p2 is not bounded, otherwise the net system is not live
either.

Example 5.3.9. Fig. 5.5(a) shows a CF net system in which Tin = {ti 1, ti 2}.
In order to apply P-RR, the weights of arcs should satisfy w1

w5
= w2

w6
, and w3

w5
=

w4
w6

. Assume m0[p1]
w5

≤ m0[p2]
w6

, then by removing p2, the reduced system is shown in
Fig. 5.5(b).

ti_1 p1

to

w1

p2
…...

w5

w4
w6

ti_2

…...

w2

w3

(a) Original subsystem S

top1

ti_1

…...

ti_2

w1

w5

w3

(b) Reduced subsystem S ′

Figure 5.5: Place Reduction Rule (P-RR): reducing p2

Proposition 5.3.10. Let S be a continuous CF net system, and S ′ be the reduced
system obtained by applying P-RR, sequence σ is fireable in S if and only if σ is
fireable in S ′.

Proof: It is easy to verify that the places being removed by applying P-RR belong
to a particular type of implicit places, i.e., those places that never uniquely restrict
the firing of its output transitions (see [90]). Therefore, they can be removed without
affecting the behavior of the rest of the system.

Example 5.3.11. Let us apply the reduction rules on subsystem S2 in Fig. 5.2(a).
The net system in Fig. 5.6(a) is obtained by applying P-RR to remove place p5. By
applying T-RR to the path between t2 and t6, p2 6 is obtained (Fig.5.6(b)). Similarly,
the application of T-RR to the path between t3 and t7 in Fig.5.6(b), removes t5 and
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obtains p3 7 (Fig.5.6(c)). The application of T-RR to the path between t2 and t8 in
Fig.5.6(c), removes t6 and obtains p2 8 (Fig.5.6(d)). The application of T-RR to
the path between t3 and t9 in Fig.5.6(d), removes t7 and obtains p3 9 (Fig.5.6(e)).
Finally, only two places are left with markings m0

′[p2 8] = 2, m0
′[p3 9] = 1. The

reduced subsystem in Fig.5.6(e) is the abstraction of S2.
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p2_8

(e) applying T-RR to (d)

Figure 5.6: Reduction process of S2 in Fig. 5.2(a)

Let us point out that if we apply the classical reduction rules proposed for discrete
nets (see, for example, [13]) to the example shown in Ex. 5.3.11, the same reduced
net system can be obtained. However, in this work we extend the classical reduction
rules to CPNs where the markings, also the weights, are real numbers. Let us
consider the following simple example:

Example 5.3.12. Given the a (partial) CPN system shown in Fig. 5.7(a) and
it is assumed that we want to reduce the paths between transition ta and tb. By
applying T-RR to remove transition t1, Fig.5.7(b) is obtained; similarly, t2 can also
be removed, obtaining Fig.5.7(c) which is clearly equivalent to Fig.5.7(d).

Let us point out that the main limitation of applying the classical reduction rules
to this example is that, in those rules for discrete nets fractional firings are not
considered. For example, after the reduction, the marking of the single place left
between ta and tb and the weights on arcs are decimal fractions, which are forbidden
in discrete cases.

Assume that, using T-RR and P-RR, we reduce the paths between two sets of
transitions Tin and Tout. Now we will discuss the uniqueness of the fully reduced
system.
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Figure 5.7: Reduction of the paths between ta and tb using T-RR: the classical
reduction rules for discrete nets cannot be applied

Property 5.3.13. Any arbitrary and interleaved application of T-RR and P-RR
until none of them can be applied produces the same reduced system.

Proof: It is first proved that the order of adjacent rules that are applied can be
interchanged, obtaining the same reduced system. Otherwise stated, let A and B
be the instances of two rules, by applying AB or BA, the same system is obtained.
Then we will show that any sequence of rules, leading to the fully reduced system,
can be reordered. After that, the uniqueness of the reduced system can be easily
proved.

1) if A and B are both instances of T-RR (or P-RR), it is trivial.

2) if A and B are instances of different rules. Without loss of generality, assume
A is an instance of T-RR, removing a transition tj and B is an instance of P-RR,
removing an implicit place px. Obviously, if tj /∈

•px∪px
•, A and B are independent,

so the system obtained after applying AB is equivalent to the one obtained after
applying BA. Therefore, we only need to consider the two cases shown in Fig.5.8,
where tj can be removed by using T-RR, at the same time, its input or/and output
places can be reduced by using P-RR. Its extension to more general structures is
quite straightforward.

We will show that for case (a), by applying AB and BA, the same system is
obtained. The analysis to case (b) is similar.

Since px can be removed by using P-RR, then w1/w3 = w2/w4 and in the
initial state m0[px]/w3 ≥ m0[p1]/w4. Let path π1 = {t1, px, tj , p2, t2} and π2 =
{t1, p1, tj , p2, t2}, then we have the weighted marking M(π1,m0) ≥M(π2,m0).

If first T-RR has been applied to remove tj, the system in Fig.5.9(a) is obtained.
Let us first consider the obtained place pa and p′a. Without loss of generality, we
should have: g1

g5
= w1·w5

w3·w7
= g2

g6
= w2·w5

w4·w7
, moreover, with the initial markingm0

′[p′a] =
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Figure 5.8: The two cases with tj ∈
•px ∪ px

•

g1 · M(π1,m0) and m0
′[pa] = g2 · M(π2,m0), therefore, m0

′[p′a]
g5

≥ m0
′[pa]
g6

, p′a is

implicit place. Then, it can be removed by applying P-RR. Similarly, for pb and p
′
b,

let g3
g7

= w2·w6
w4·w8

, g4
g8

= w1·w6
w3·w8

, p′b is also implicit and can be removed. The obtained
system is shown in Fig.5.9(c).

If first P-RR has been applied to remove px, the system in Fig.5.9(b) is obtained.
Then by applying T-RR, tj is removed, it is clear that the same reduced system in
Fig.5.9(c) is achieved.

Now we know that the order of applying reduction rules is not important. Let
Γ1 and Γ2 be two sequences of rules leading to two fully reduced systems S1 and
S2. It is clear that, the same number of T-RR is applied in Γ1 and Γ2 (because
applying T-RR once, one transition between Tin and Tout is removed). From 1) and
2), we can transform the sequence Γ1 to Γ′

1 by interchanging the order of adjacent
rules, until all the instances of T-RR are moved ahead of instances of P-RR. Assume
that by applying all the instances of T-RR, the obtained system is S ′1. On the other
hand, we can also transform the sequence Γ2 to Γ′

2 by doing the same interchanging
and assume that by applying all the instances of T-RR, the obtained system is S ′2.
Obviously, S ′1 and S ′2 are equivalent, and there are only places (but no transition)
left between Tin and Tout. After that, the instances of P-RR are applied to reduce
implicit places in S ′1 and S ′2. If they are fully reduced, for sure the finally obtained
systems are the same, i.e., S1 and S2 are equivalent. Therefore, the fully reduced
system is unique.

Remark 5.3.14. In order to obtain the fully reduced system, we need to explore the
paths between transitions. Concerning the computational complexity, it is suggested
that before considering to apply T-RR, we should first apply P-RR as much as possible
to remove the implicit places. For example, in Ex.5.3.11, P-RR is first applied to
remove the implicit place p5.

5.3.3 Complemented subsystems

Definition 5.3.15. Let S be a continuous CF net system, and Si, i = 1, 2 be the
subsystems obtained by cutting through places B ∈ P . The complemented subsystems,
denoted by CSi, is obtained from S by substituting Sj, j = 1, 2, j 6= i with its
abstraction.
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Figure 5.9: Reduction by applying rules in different order

Let us still consider the system in Fig.5.2(a). By applying the proposed rules,
the paths in S1 between interface transitions t1 and t10 can be reduced to a single
place p10 1, obtaining the abstraction of S1. Using this abstraction to complement
S2, the complemented subsystem CS2 is obtained, shown in Fig.5.2(c). Similarly,
the abstraction of S2 can be constructed, and the complemented subsystem CS1 is
shown in Fig.5.2(b). Notice that, the cutting places and interface transitions are
shared in both complemented subsystems.

Remark 5.3.16. A direct consequence of Proposition. 5.3.7 and 5.3.10 is that the
firing sequences and reachable markings of the original system are preserved in its
complemented subsystems.

The decomposition method can be easily extended to a large scale system that is
decomposed into K subsystems, by given sets of cutting places. The complemented
subsystems are constructed in two steps: first, each subsystem builds its abstraction
(the reduced subsystem respect to its interface transitions); then, each subsystem
constructs its complementing parts based on the abstractions of the rest of the
system that have been built in the first step. In this way, each subsystem does not
need the detailed structures and states of other parts of the system, but only their
abstractions.
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5.3.4 The control law computation

A interesting property of the complemented subsystem is that their firing sequences
are identical to those of the original system (Remark 5.3.16). Thus, the local control
laws can be computed separately, driving all subsystems to their corresponding final
states. However, local control laws may not be compatible with each other, i.e.,
there may exist a interface transition that does not fire with the same amount in
the corresponding complemented subsystems (see Ex.5.3.17 for a example). In order
to overcome this problem, a coordinator is introduced (see the control structure in
Fig. 5.1). Local controllers will send limited information (the local control law and
the minimal T-semiflow) to the coordinator. Algorithms are proposed to compute
a globally admissible control law based on this information, without knowing the
detailed structures of subsystems but only the interface transitions.

Example 5.3.17. Let us consider the CF net in Ex. 5.3.2 and the two obtained
complemented subsystems in Fig.5.2(b) and Fig.5.2(c). The initial and final marking
m0, mf of the original system, and its corresponding minimal firing count vector
σmin are shown in Table 5.1. As for the subsystems, the minimal firing count vectors
σi
min of CSi for reaching the corresponding final marking mi

f from mi
0 are computed

separately, they are also given in Table 5.1. It can be observed that σ1
min and σ2

min

are not compatible, because their interface transitions do not have the same firing
counts, for instance, σ1

min[t1] 6= σ
2
min[t1].

Let S = 〈N ,m0〉 be the original system, with mf > 0 the desired final state.
It is assumed that S is decomposed into K subsystems, S1 to Sk. The following
notations are used:

(1) σmin: the minimal firing count vector driving S to mf .

(2) B(i1,i2): the buffer cutting places between Si1 and Si2 .

(3) U (i1,i2): the interface transitions between Si1 and Si2 .

(4) CSi = 〈CN i,m0
i〉: the complemented subsystems with corresponding final

state mi
f , i = 1, 2, ...,K.

(5) xi: the minimal T-semiflow in CN i, i = 1, 2, ...,K.

(6) σi
min: the minimal firing count vector driving CSi to mi

f , i = 1, 2, ...,K.

According to the decomposition and reduction process, the obtained comple-
mented CF subnets are also consistent and conservative. Therefore, the minimal
T-semiflow and minimal firing count vector are unique [93, 104], i.e., xi and σi

min

are unique. So, any firing count vector σi driving CSi to its final state can be written
as follows

σi = σi
min + αi · xi, αi ≥ 0 (5.1)
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