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Abstract

Aiming to reach a desired final state from a given initial one, this paper focuses on decentralized
control of systems modeled by continuous Petri nets. The general PN systems considered in the
paper are composed by subsystems interconnected by places (modeling buffers). Local control laws
are first computed separately in subsystems, but “incorrectly” chosen ones may cause the reachability
problem of the final state. We provide two sufficient conditions that should be satisfied by the interface
between subsystems and they can be verified in polynomial time. It is proved that if one of those
conditions is satisfied, we can always obtain globally admissible control laws based on some limited
information, without knowing the structure of each subsystem.

1 Introduction

Petri Nets (PN) is a well known paradigm used for modeling, analysis, and synthesis of discrete event
systems (DES). Since it can easily represent sequences, conflicts, concurrency and synchronizations, it is
widely applied in the industry, for the analysis of manufacturing, traffic, software systems, etc. Similarly
to other modeling formalisms for DES, it also suffers from the state explosion problem. To overcome it,
a classical relaxation technique called fluidification can be used.

Continuous PN (CPN) [6, 17] are fluid approximations of classical discrete PN obtained by removing
the integrality constraints, which means that the firing count vector and consequently the marking are
no longer restricted to be in the naturals but relaxed into the non-negative real numbers. An important
advantage of this relaxation is that more efficient algorithms are available for their analysis. Many works
can be found in the literature about the control of different classes of continuous PN, e.g., [1, 8, 12].
For the kind of time interpreted systems under infinite server semantics, several control approaches have
been considered, e.g., [13, 3, 20].

Decentralized control is extensively explored in recent decades for complex dynamic systems (e.g., [16,
22, 19, 7]), in which multiple controllers may be allocated to subsystems. In the context of decentralized
control on PN, some approaches have been proposed. In [4], a decentralized approach based on overlapping
decompositions was proposed. The centralized admissibility concept was extended to d-admissibility for
the decentralized setting in [9]. Under certain assumptions, the methods in [5] focused on global state
specifications given in terms of Generalized Mutual Exclusion Constraints (GMECs) and on a control
architecture without central coordinator and communication between local supervisors.

Different from the methods in [9, 5] proposed for discrete systems, which focus on enforcing states to
satisfy certain constraints (specifications), we address the problem of driving the system from an initial
state to a specific final one, which is similar to the set-point control problem in a general continuous-state
system. Considering the method in [4], systems are targeted to a set of desired states, but when a specific
one is chosen, the control complexity may be increased (because more control places should be be added).
On the other hands, its control structures are also strongly dependent on the desired markings.

Two of the recent work dealing with the similar problem are presented in [2] and [21]. In the former
one, mono-T-semiflow net systems are considered, where continuous models composed of several sub-
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systems that communicate through buffers (modeled by places). By executing the proposed algorithm
iteratively in each subsystem, their respective target markings are reached and then maintained. In [21],
decentralized control methods for Marked Graphs are discussed, where the missing part of disconnected
subsystems are reduced to sets of places, obtaining the complemented subsystems. Then local control
laws are independently computed and a coordinator is used to reach an agreement among them.

The previous works are extended in this paper in the sense that general net structures are considered.
Local control laws are separately computed in subsystems. Considering that the buffer places are shared
by more than one subsystems, there must be an agreements among local control laws. In a general PN
system, the “incorrectly” chosen local control laws may lead the global state to be unreachable, i.e.,
the agreement may never be reached. We introduce two sufficient conditions and prove that, if one of
them is satisfied, we can always obtain globally admissible control laws based on the local ones using the
proposed algorithms, mainly consisting of solving Liner Programming Problems (LPP) and executed in
a coordinator. The coordinator only needs limited information (abstractions of local control laws and T-
semiflows) from local controllers, ensuring low communication costs. When we get the admissible control
laws, several control methods can be applied to drive the system to its desired state, e.g., [13, 3], but this
is out of the scope of this paper.

This paper is organized as follows: Section 2 briefly recalls some basic concepts of continuous PN.
Section 3 presents the system and control structures consider in this work. In section 4, two sufficient
conditions are first presented, then algorithms are proposed to compute the globally admissible control
laws. A manufacturing system is used to illustrate the proposed method in Section 5. The conclusions
are in section 6.

2 Continuous Petri Nets and notations

The reader is assumed to be familiar with basic concepts of continuous Petri nets (see [6, 17] for a gentle
introduction).

Definition 2.1 A continuous PN system is a pair ⟨N ,m0⟩ where N = ⟨P, T,Pre,Post⟩ is a net
structure where:

• P and T are the sets of places and transitions respectively.

• Pre,Post ∈ Q|P|×|T|
≥0 are the pre and post incidence matrices.

• m0 ∈ R|P|
≥0 is the initial marking (state).

For v ∈ P ∪ T, the sets of its input and output nodes are denoted as •v and v•, respectively. Let
pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T| denote the places and transitions. Each place can contain a
non-negative real number of tokens, its marking. The distribution of tokens in places is denoted by m.
The enabling degree of a transition tj ∈ T is given by:

enab(tj ,m) = min
pi∈•tj

{
m(pi)

Pre(pi, tj)

}
which represents the maximum amount in which tj can fire. Transition tj is called k-enabled under
marking m, if enab(t,m) = k, being enabled if k > 0. An enabled transition tj can fire in any real
amount α, with 0 < α ≤ enab(tj ,m) leading to a new state m′ = m+α ·C(·, tj) where C = Post−Pre
is the token flow matrix and C(·, j) is its jth column.

Non negative left and right natural annullers of the token flow matrix C are called P-semiflows
(denoted by y) and T-semiflows (denoted by x), respectively. If ∃y > 0, y ·C = 0, then the net is said
to be conservative. If ∃x > 0, C ·x = 0 it is said to be consistent. The support of a vector v, denoted by
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||v||, is the set of index of nonzero components. A semiflow v is said to be minimal when its support is
not a proper superset of any other, and the greatest common divisor of its components is one. A PN is a
mono-T-semiflow net iff it is conservative and has a unique minimal T-semiflow whose support contains
all the transitions [11].

If m is reachable from m0 through a finite sequence σ, the state (or fundamental) equation is satisfied:

m = m0 +C · σ, where σ ∈ R|T|
≥0 is the firing count vector, i.e., σ(tj) is the cumulative amount of firings

of tj of the sequence σ. A firing count vector σ is said to be minimal one driving the system to m if for
any T-semiflow x, ||x|| ̸⊆ ||σ||.

In timed continuous PN (TCPN) the state equation has an explicit dependence on time: m(τ) =
m0 +C ·σ(τ) which through time differentiation becomes ṁ(τ) = C · σ̇(τ). The derivative of the firing
count f(τ) = σ̇(τ) is called the firing flow. Depending on how the flow is defined, many firing server
semantics appear, being the most used ones infinite (or variable speed) and finite (or constant speed)
server semantics ([6, 17]), for which a firing rate λj ∈ R>0 is associated to transition tj . This paper deals
with infinite server semantics for which the flow of a transition tj at time τ is the product of its firing
rate, λj , and its enabling degree at m(τ):

f(tj , τ) = λj · enab(tj ,m(τ)) = λj · min
pi∈•tj

{
m(pi, τ)

Pre(pi, tj)

}
(1)

In this paper the net system is considered to be subject to external control actions, and it is assumed
that the only admissible control law consists in slowing down the firing speed of transitions ([17]). Un-
der this assumption, the controlled flow of a TCPN system is denoted as: w(τ) = f(τ) − u(τ), with
0 ≤ u(τ) ≤ f(τ). The overall behavior of the system is ruled by: ṁ = C · (f(τ)− u(τ)). In this paper,
it is assumed that every transition is controllable (tj is uncontrollable if the only control that can be
applied is u(tj) = 0).

3 System structures and control problems

The kind of systems we consider in this work are composed by several subsystems modeled with CPN,
interconnected and communicate with sets of places, for instances, the Deterministically Synchronized
Sequential Processes that cooperate through buffers ([15]).

As a simple example, let us consider a conservative and consistent PN system shown in Fig.1. It is
composed by two subsystem S1 = ⟨N 1,m′

0⟩ and S2 = ⟨N 1,m2
0⟩, places p13 to p16 model the buffers

that are used by subsystem for cooperating (for example, in a production/consumption schema), denoted
by B(1,2). In each subsystem, those transitions connected with buffer places are said to be interface
transitions, denoted by U1 = {t2, t3, t4, t5, t6, t7} and U2 = {t8, t10, t12, t13}.

The control problem addressed in this work is how to compute the control law to drive a system,
composed by multiple subsystems, from an initial state to a desired final state, including the state of
buffer places. Similar distributed/decentralized system structures and control methods can be found in
literatures, but only for limited subclasses. In [2], it is assume that the system is mono-T-semiflow and
each buffer is input and output private, i.e., given a buffer b, only one subsystem i can put tokens in b,
and only one subsystem j can remove tokens from b. In [21], systems are assumed to be Marked Graph.

The decentralized control structures consist of local controllers and a coordinator, the system skeleton
is shown in Fig.2.

It is assume that the local controllers only know the structures of their corresponding subsystems.
A high level coordinator is used to make the agreement among local control laws. The coordinator can
receive some limited information from local controllers, in particular, abstractions of T-semiflows and
minimal firing count vectors (will be explained in the next section).
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Figure 1: A Ct and Cv PN system, composed by two subsystems
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Figure 2: Decentralized Control Structures

4 Decentralized control methods

This section discusses how to compute in a decentralized way the control laws that will drive the global
system from an initial state to a final state. Initial local control laws (minimal firing count vectors) are first
computed independently in subsystems, then by adding some T-semiflows we try to make the agreements
among them, and obtain the globally admissible ones. Unlike the mono-T-semiflow PN system, when
a general CPN model is considered, minimal firing count vectors may be not unique (depending on
the structure and also initial/final states). If an “incorrect” one is chosen, the final state may become
unreachable (see the example shown in Ex. 4.1).

Example 4.1 Let us consider the consistent and conservative PN system in Fig. 1. Assume we want to
move the one token from p1 to p6, and the two tokens from p7 to p12, i.e., in the final state mf (p6) = 1,
mf (p12) = 2, while keep the state of buffers unchanged. Consider subsystem S1, in order to reach this
state, one possible minimal firing count vector is to fire t2, t4, t6, t7, i.e., fire σ1

min = [0 1 0 1 0 1 1]T .
For subsystem S2, one possible minimal firing count vector driving it to its final state is to fire t9, t11,
t12, t13, i.e., σ

2
min = [0 2 0 2 2 2 0]T . Notice that, in this case, we can never maintain the states of

buffers, by adding some T-semiflows to σ1
min and σ2

min. For example, by firing σ1
min and σ2

min, p13 will
obtain one more token than expected, so a T-semiflow contains t8 should be fired to remove it. But at the
same time, p15 will get unnecessary tokens. To reduce the tokens of p15 by firing T-semflows in S1, we
recursively put more tokens in p13 and so on. In this example, the correct minimal firing count vector
should be chosen for S2 is [2 0 2 0 2 2 0]T .
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In the following, we give two sufficient conditions and prove that if interface transitions satisfy one
of them, we can always obtain the globally admissible control laws by applying the algorithm that is
proposed afterwards.

Proposition 4.2 Let S = ⟨N ,λ,m0⟩ be a consistent PN system, and mf be a reachable final marking.
Let σ1 and σ2 be firing count vectors that can drive the system to mf , i.e., mf = m0 + C · σ1 =
m0 +C · σ2. Let ta, tb ∈ T , and assume σ1(tj) ≥ σ2(tj), j = a, b, if condition (C1) or (C2) is satisfied,
then there exists a T-semiflow x such that

σ1(tj) = σ2(tj) + x(tj), j = a, b (2)

(C1) there exist T-semiflows x1,x2, such that ta ∈ ||x1||, tb /∈ ||x1|| and tb ∈ ||x2||, ta /∈ ||x2||.

(C2) there exists β > 0, such that for any T-semiflow x, if ta ∈ ||x|| and tb ∈ ||x|| then x(ta) = β ·x(tb).

Proof: 1) When condition (C1) is satisfied: assume σ1(ta) − σ2(ta) = d1 ≥ 0 and σ1(tb) − σ2(tb) =
d2 ≥ 0, then, just let x = d1

x1(ta)
· x1 +

d2

x2(tb)
· x2, (2) is satisfied.

2) When condition (C2) is satisfied: Since σ1 and σ2 both drive the system to mf , then according
the state equations, we have C · (σ1 − σ2) = 0. Let σ1 − σ2 = σ12, there may have negative elements
in σ12, but since N is consistent, we can add a T-semiflows x1 > 0 to σ12, obtaining σ′

12 that has all its
elements positive value, i.e., σ′

12 = σ12 + x1 > 0, so σ′
12 is a T-semiflow. According to condition (C2),

σ′
12(ta)

σ′
12(tb)

= x1(ta)
x1(tb)

= β, then σ12(ta)
σ12(tb)

= β. Therefore, let x =
σ12(tj)
σ′

12(tj)
· σ′

12, j = a or b, (2) is satisfied.

Proposition 4.2 gives the sufficient conditions to obtain a (new) firing count vector σ′ from σ2 by
adding a T-semiflow x, i.e. σ′ = σ2+x, such that according to σ′, both ta and tb are fired with the same
amounts as in σ1, i.e., σ

′(tj) = σ1(tj), j = a, b, and σ′ also drives the system to mf . For instance, let
us consider the subsystem S2 in Fig.1. It is obvious that t8 and t10 satisfy condition (C2), because they
always show in the same T-semiflows with fixed proportion. In order to move the two token from p7 to
p12 we may fire, for example, σ1 = [ 2 0 2 0 2 2 0]T or σ2 = [ 0 2 0 2 2 2 0]T and we have σ1(tj) > σ2(tj),
j = 8, 10. According to Proposition 4.2, we can construct σ′ by adding x = [ 2 0 2 0 2 2 2]T to σ2, such
that σ′ = [ 2 2 2 2 4 4 2]T , and obviously σ′(tj) = σ1(tj), j = 8, 10, and by firing σ′ the same marking
is reached as fring σ1.

Now we will show that both of these conditions can be verified in polynomial time by solving several
LPPs.

Let us consider the LPP (3), if it has a solution , it means that there exists a T-semiflow x1, such
that t1 ∈ ||x1|| and t2 /∈ ||x1||. Similarly, if at the same time, LPP (4) also has a solution, then condition
(C1) is satisfied. Otherwise, we need to check LPP (5). If it does not have a solution, then condition
(C2) is satisfied.

min 1T · x
s.t. C · x = 0

x ≥ 0
x(t1) ≥ 1
x(t2) = 0

(3)

min 1T · x
s.t. C · x = 0

x ≥ 0
x(t2) ≥ 1
x(t1) = 0

(4)
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min 1T · x
s.t. C · x = 0

x ≥ 0
||x(t1)− x(t2) · β||1 ≥ ϵ
ϵ ≥ 0

(5)

where ϵ is a very small positive value.
In the following, it is assumed that any pair of transitions in a interface transition set Uk, satisfies

condition (C1) or (C2). We will prove that under this assumption, the globally admissible control laws
can always be obtained from the local ones by adding some T-semiflows. Let us first consider the system
consists of two subsystems, then algorithms for a general decentralized control framework is given.

Proposition 4.3 Let S be a consistent PN system, assume it is composed by two subsystems Sk1 and
Sk2, σk1

min and σk2
min are minimal firing count vectors driving them to their corresponding final states. If

each pair of interface transitions in Uk1 and Uk2 satisfies condition (C1) or (C2), then we can construct

σ′ =

[
σk1

min + xk1

σk2
min + xk2

]
, such that σ′ can drive S to mf , where xk1, xk2 are T-semiflows of Sk1, Sk2

respectively.

Proof: Since mf is reachable and consider that S is consistent, we can always find a big enough

σ =

[
σk1

σk2

]
(by adding T-semiflows), such that σk1 ≥ σk1

min, σ
k2 ≥ σk2

min, and σ can drive S to mf . It

is clear, σk1 and σk2 can drive Sk1 and Sk2 to their corresponding final states. According to Proposition
4.2, we can find xk1, such that ςk1 = σk1

min +xk1, in which the interface transitions in Uk1 are fired with
the same amount as in σk1. Similarly, we can also find xk2, such that ςk2 = σk2

min + xk2, in which the
interface transitions in Uk2 are fired with the same amount as in σk2, implying that the buffer places
also reach their final states. Therefore, by firing σ′, mf is also reached.

Example 4.4 Let us still consider the system shown in Ex.4.1, but remove buffer places p15 and p16,
then U1 = {t2, t3, t4, t5} and U2 = {t8, t10}. It can be verified that each pair of transitions in U1 and
U2 satisfies condition (C1) or (C2), for instance, in U1, t2 and t3 satisfies condition (C1), t2 and t4
satisfies condition (C2). In U2, t8 and t10 satisfies condition (C2). In order to reach the final state,
considering each system independently, we may choose σ1

min = [ 0 1 0 1 0 1 1 ]T and σ2
min = [ 0 2 0 2

2 2 0 ]T . In order to reach the global final state (including the buffer places), we can add x2 = 0.5 · [ 2

0 2 0 2 2 2 ]T to σ2
min, then we have σ′ =

[
σ1

min

σ2
min + xk2

]
. Then σ′ can drive the global system to its

final state. Notice that, depends on how the local control laws are chosen, σ′ may not be a minimal firing
count vector, because subsystems do not have the global information.

Now let us consider a system composed by multiple subsystems. In order to have low communication
costs and high efficiency, the coordinator should only exchange limited information with local controllers,
in particular, the abstractions of local control laws and T-semiflows.

Let σk
min be a minimal firing count vector that can drive Sk from m0

k to mf
k, and Uk be the set of

interface transitions. The abstraction of σk
min corresponding to Uk is defined as σk

U ∈ Q|Uk|
≥0 , such that

for every tj ∈ Uk, σk
U (tj) = σk

min(tj).
Notice that, if any pair of transition of Uk satisfies condition (C1) or (C2), then Uk can be partitioned

into nk (1 ≤ nk ≤ |Uk|) disjoint subsets, i.e., Uk = Uk
1 ∪ Uk

2 ∪, ...,∪Uk
nk

and Uk
1 ∩ Uk

2 ∩ ... ∩ Uk
nk

= ∅ such
that the transitions in Uk

i , i = 1, 2, ..., nk are always fired in the same T-semiflows and with constant
proportions. Let us denote the constant proportion between ta and tb by β(a,b). We will represent this

proportional relation corresponding to the transitions in Uk
i by a vector γk

i ∈ N|Uk| — the abstractions
of T-semiflows in Sk, such that:
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(1) the greatest common divisor of the positive components of γk
i is one.

(2) ∀ta, tb ∈ Uk
i , γ

k
i (ta)/γ

k
i (tb) = β(a,b).

(3) ∀t /∈ Uk
i , γ

k
i (t) = 0.

Example 4.5 As in Ex.4.4, we consider the same system as in Fig.1 but removing buffer places p15
and p16, then the interface transitions in U1 = {t2, t3, t4, t5} satisfy condition (C1) or (C2). It can then
be partitioned into U1

1 = {t2, t4}, U1
2 = {t3, t5}: for any T-semiflow x in S1 containing U1

1 , we have
x(t2)/x(t4) = β(2,4) = 1. Similarly, for any T-semiflow x containing U1

2 , we have x(t3)/x(t5) = β(3,5) =
1. The abstractions of T-semiflows corresponding to U1

1 and U1
2 are γ1

1 = [ 1 0 1 0 ]T and γ1
1 = [ 0 1 0

1]T , respectively. Let σ1
min = [ 0 1 0 1 0 1 1 ]T , its abstraction corresponding to U1 is σ1

U = [ 1 0 1 0 ]T .

Let x be a T-semiflow of Sk, and xk
U be its part corresponding to transitions in interface Uk. It can

be observed that, xk
U can always be represented by the linear combinations of γk

i , i = 1, 2, ..., nk, i.e.,
there exist αk

1 , α
k
2 , ..., α

k
nk
≥ 0 such that:

xk
U = αk

1 · γk
1 + αk

2 · γk
2 + ...+ αk

nk
· γk

nk
(6)

Given a system composed by K subsystems, Alg.1 gives the procedure for computing the globally
admissible control laws based on the local ones. Notice that, the coordinator only needs to exchange
with local controller the abstractions of T-semiflows and control laws, but without knowing the detailed
structures of subsystems, therefore, the communications is very low.

Proposition 4.6 Let S = ⟨N ,λ,m0⟩ be a consistent PN system, and mf be a reachable final marking.
Assume S composed by K subsystems S1, S2, ... SK , and each pairs of transition in the interface transi-
tion Uk, k = 1, 2, ..K satisfies condition (C1) or (C2). The firing count vectors computed by Alg.1, [σ1;
σ2; ...; σK ] drives S to mf .

Proof: Since mf is a reachable marking of S, so the corresponding final marking in each subsystem
is also reachable, therefore LPP (7) is feasible.

Since S is consistent and mf is reachable, we can always find a σ driving S to mf , such that σ >
[σ1

min; σ2
min; . . . ; σk

min]. According to Proposition 4.3, for any connected subsystems Sk1 and Sk2,
there exist T-semiflows xk1 of Sk1, and xk2 of Sk2, such that σk1 = σk1

min + xk1 and σk1 = σk2
min + xk2.

By firng σk1 and σk1, the final markings of Sk1 and Sk2 are reached, while the buffer places between
them, B(k1,k2), are also in their corresponding final states. On the other side, considering (6), LPP (8)
is feasible.

By solving LPP (8), the firing counts of interface transitions are obtained, LPP (9) computes the
firing counts of other interior transitions, which will drive the interior places to its final states.

5 Case study

Let us consider the PN model in Fig.3 which models a manufacturing line that makes tables, it is adapted
from the example in [15]. It consists of three subsystems that make legs, boards, or assemble a table,
corresponding to S1, S2 and S3 respectively. Here places p17 to p20 model buffers, in which one subsystem
deposits products that are later consumed by others subsystems. The interface transitions in subsystems
are: U1 = {t5, t6}, U2 = {t7, t13}, U3 = {t15, t16, t17, t18, t19}.

Assume that in the initial state we have: m0(p5) = m0(p10) = m0(p16) = 10, m0(p17) = m0(p19) =
5, and in the desired final state: mf (p5) = 6, mf (p10) = 7, mf (p16) = 5, mf (p17) = 1, mf (p18) = 4,
mf (p19) = 3, mf (p20) = 2, mf (p7) = 0 and all the other places with one token inside.
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Algorithm 1: Computing globally admissible control laws

1 Input: Sk, m0, mf , k = 1, 2, ...,K

2 Output: σk , k = 1, 2, ...,K

3 Each local controller k compute its minimal firing count vector σk
min by solving LPP:

min 1T · σk
min

s.t. mf
k −m0

k = Ck · σk
min

σk
min ≥ 0

(7)

4 Each local controller k send the abstraction of σk
min, σ

k
U to the coordinator ;

5 Each local controller k compute the abstractions of T-semiflows γk
1 ,γ

k
2 , ...,γ

k
nk
, and

send them to the coordinator;
6 The coordinator solve LPP:

min
K∑

k=1

αk
1 + αk

2 + ...+ αk
nk

s.t. mf
B(k1,k2) −m0

B(k1,k2)

= C(k1,k2) ·

 σk1
U + αk1

1 · γk1
1 + αk1

2 · γk1
2 + ...+ αk1

nk1
· γk1

nk1

σk2
U + αk2

1 · γk2
1 + αk2

2 · γk2
2 + ...+ αk2

nk2
· γk2

nk2

 ,

∀k1, k2 ∈ {1, 2, ...,K}, Sk1 and Sk1 are neighboring subsystems

αk
1 , α

k
2 , ..., α

k
nk
≥ 0, k = 1, 2, ...,K

(8)

where C(k1,k2) ∈ Q|B(k1,k2)|×(|Uk1|+|Uk2|)
≥0 is the flow matrix corresponding to B(k1,k2) ;

7 The coordinator send αk
1 , α

k
2 , ..., α

k
nk

to subsystem Sk ;
8 Each local controller k solves LPP:

min 1T · σ
s.t. mf

k −m0
k = Ck · σ

σ(tj) = σk
min(tj) +

nk∑
i=1

αk
i · γk

i (tj), ∀tj ∈ Uk

σ ≥ 0

(9)

where Ck is the flow matrix of Sk.
9 updates control laws: σk ← σ ;

10 return σk, k = 1, 2, ...,K

If we apply Alg.1, minimal firing count vectors driving subsystems to their corresponding final states
are first computed independently, so we will obtain: in S1, σ1

min = [2 2 1 1 0 0]T ; in S2, σ2
min = [3 0

0 1 1 0 0]T ; in σ3
min = [0 1 2 3 4 5]T . It is easy to obtain their abstractions corresponding to interface

transitions: σ1
U = [0 0]T , σ2

U = [3 0]T , σ3
U = [1 2 3 4 5]T .

It can be verified that in S1, t5 and t6 satisfy condition (C1), so U1 can be partitioned into two
U1
1 = {t5} and u1

2 = {t6}, therefore, the abstractions of T-semfilows in S1 corresponding to the interface
transitions is γ1

1 = [1 0]T and γ1
2 = [0 1]T . In S2, interface transitions t7 and t13 satisfy condition (C2),

firing the same amount in any T-semiflow, so we have γ2
1 = [1 1]T . Similarly, in S3, we have γ3

1 = [1 1 1
1 1]T .

When the coordinate obtains the abstractions from subsystems, by solving LPP (8), it is obtained:
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Figure 3: A PN model of a manufacturing line consists of three subsystems

α1
1 = 0, α1

2 = 7, α2
1 = 7 and α3

1 = 0. Finally, by solving LPP (9), we can obtain the globally admissible
control laws in each subsystem: σ1 = [2 9 1 8 0 7 ]T , σ2 = [10 0 0 8 1 0 7 ]T , σ3 = σ3

min. It implies
that in addition to the firing amount given by the minimal firing count vector, we need to fire T-semflow
x1 = [0 7 0 7 0 7]T in S1 and x2 = [7 0 0 7 0 0 7]T in S2.

6 Conclusions

In this paper we address the decentralized control of general CPN system, driving the system from an
initial state to a desired final state. The system composed by several subsystems interconnected with sets
of buffer places are considered. Local control laws are computed separately, but they may not globally
admissible and cause the reachability problem of the final state. We propose two sufficient conditions and
prove that the globally admissible control laws can be achieved by using the proposed algorithms if one
of them is satisfied. The conditions can be verified in polynomial time, and the algorithm is also efficient
because only several LPPs should be solved. At the same time, since only limited information should be
exchanged between local controllers and the coordinator, the communication costs are also low.
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