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Abstract

Stochastic Petri nets (SPNs) with product-form solution are nets for which there is an analytic expression of the
steady-state probabilities with respect to place markings, as it is the case for product-form queueing networks with re-
spect to queue lengths. The most general kind of SPNs with product-form solution introduced by Coleman et al. (and
denoted here byS�-nets) suffers a serious drawback: the existence of such a solution depends on the values of the
transition rates. Thus since their introduction, it is an open question to characterizeS�-nets with product-form solu-
tion for any values of the rates. A partial characterization has been obtained by Henderson et al. However, this charac-
terization does not hold for every initial marking and it is expressed in terms of the reachability graph. In this paper, we
obtain a purely structural characterization ofS�-nets for which a product-form solution exists for any value of prob-
abilistic parameters of the SPN and for any initial marking. This structural characterization leads to the definition of
S�2-nets (Stochastic Parametric Product-form Petri nets). We also design a polynomial time (with respect to the size
of the net structure) algorithm to check whether a SPN is aS�2-net. Then, we study qualitative properties of�-nets
and�2-nets, the non-stochastic versions ofS�-nets andS�2-nets: we establish two results on the complexity bounds
for the liveness and the reachability problems, which are central problems in Petri nets theory. This set of results com-
plements previous studies on these classes of nets and improves the applicability of product-form solutions for SPNs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic models of discrete events systems have been proven for many years to be powerful tools
for modelling and evaluating the performances of systems like parallel and distributed systems, database
systems, communication networks, etc. For the steady-state performance analysis, it is usually necessary
to compute the steady-state distribution of a Continuous Time Markov Chain (CTMC) derived from the
model. This is the case for Queueing Networks (QN) and Stochastic Petri Nets (SPNs) models. Because
of the huge state space describing these complex systems, it is often extremely difficult to compute
the exact numerical solution of this CTMC. This situation is obviously even worse with infinite state
space models which prevent such a computation. A first attempt to overcome this so-called state space
explosion problem is to leave the domain of exact solutions. Three main approaches have been and are
still developed in this area: discrete-event simulation, approximate methods and computation of bounds.
If we wish to stay in the framework of exact methods, then we need to improve numerical methods solving
the underlying mathematical problem (linear or differential systems of equations) and/or we may relate
the structure of the modelto the properties of the mathematical problem. The latter approach, which
is the framework of this paper, aims at describing the steady-state probabilities and other performance
measures asfunctionsof a fixed set of parameters of the states, derived from the model structure. Models
for which such solutions may be developed are said product-form models, since the structure of the
functions are usually a product of elementary terms corresponding to the parameters. The analysis of
Queueing Networks (QNs) with product-form (PF-QN)[25,24]provided the first important results in this
direction. The general approach of product-form analysis for QNs is made up of four main parts. First
it is necessary to recognize, among all possible QNs, the properties that ensure a PF-solution. This has
led to well-known classifications of QNs (closed, open or mixed, single or multi-classes, disciplines of
the queues, etc.[24,18,2]) together with the introduction of several notions such as visit-ratios, routing,
etc. and required relations among them. Then, the visit-ratios, related to the load of customers in each
station are computed using the parameters of these stations and the routes followed by the customers
(the routing process). From the structure of the QN and the visit-ratios, it has been shown, for several
classes of QNs, that the steady-state probabilities of the model may be expressed as a product of terms,
depending on the state of each station, up to a normalization constant. Finally, the normalization constant
must be determined and performance indices (throughput, length and service times, utilization, etc.) can
be both derived by adapted algorithms such as, for instance, the Mean Value Analysis (MVA) method[7]
and the convolution algorithm[40].

Due to the explicit modelling of competition and concurrency, the stochastic Petri nets model[1], is
an attractive (and complementary with respect to QNs) modelling paradigm when studying performance
of systems for which these complex phenomena have an important impact on their behaviour. In contrast
with PF-QN, it is almost always necessary to turn towards approximate methods (see[4] for a presentation
of various methods, and[3] for synchronized QN) to deal with such systems, although analogous trends
can also be observed with SPNs (see for example[8]). From the late 1980’s, Product-Form Stochastic
Petri Net (PF-SPN) were introduced as an attempt to cope with the state explosion problem for SPN
models. Although the global steps for PF-SPNs and PF-QNs are analogous, specific problems arise with
PF-SPNs. The first one, and in some sense, the most important one, is to find what properties of SPN are
relevant with regard to the existence of a product-form solution (PF-solution). Since SPN models take into
account complex synchronization schemas, it is not surprising that the search for required properties to
ensure a PF-solution gave rise to many proposals. Historically, we observe that works started from purely
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behavioural properties (i.e. by a analysis of the reachability graph) as in[30], and then progressively
introduced more and more structural parameters to ensure a PF-solution[31,17,19,5]. In [5], Boucherie
introduces the product of Competing Markov Chains (PPCMC) and shows that several SPN generate
such chains. In his paper, the author identifies some structural properties of the SPN, but they are not
studied for their own sake and the PF-solution are established on a case by case basis. The work[19]
introduces several important structural properties: the identification of cyclic activities in the net (T-flows,
i.e. sequences of transitions which may be repetitively fired while leaving the markings unchanged) and
the existence of “balanced” input and output bags of transitions, providing structural conditions for shared
resources usage. The importance of T-flows (more precisely, closed support minimal T-semiflows) was
emphasized with the identification of the class of so-called�-nets[6] which is now the starting point
for obtaining SPNs with a PF-solution. The crucial breakthrough was done by Henderson et al. when
they established a numerical condition on the parameters of the�-net which ensures the existence of
a PF-solution[19]. Unfortunately, this technical numerical condition has no intuitive interpretation in
relation with the modelling, and above all, it relies the existence of a PF-solution on thenumerical values
of the rates of the transitions of the net, in contrast with other models such as QNs. Thus in a later work
[13], these authors have characterized�-nets for which the existence of the product-form solution does
not depend on the particular values of the nets. However, their characterization suffers two drawbacks:
on the one hand, it holds only when the initial marking is sufficiently large and, on the other hand, this
condition is expressed on the reachability graph of the net. Since the aim of the product-form methods is
to avoid the construction of such a graph, checking this condition does not make sense.

Thus the existence of a structural characterization of�-nets with PF-solution whatever are the rates
(i.e. expressed with respect to the structure of the net) was still an open problem. The main contribution
of the present work issuch a structural characterization. Furthermore, we show that this characterization
can be checked in polynomial time with respect to the size of the net. In the sequel, we will denote such
nets as rate-insensitive PF-�-nets.

In order to informally explain our characterization, we first recall what is a�-net while simultaneously
giving an intuitive interpretation. In a�-net, the transitions are partitioned in components. The transitions
of each component model the activities of a group of (virtual) clientsnot explicitly represented in the net.
Each place represents a kind of resource and the input (resp. the output) arcs of a transition represent
the resources consumed (resp. produced) by the activity associated to the transition. In�-nets, each
multi-set of resources consumed (resp. produced) by a transition of a component must be exactly the
multi-set of resources produced (resp. consumed) by another transition of the same component. In other
words, the partition of transitions may be deduced from these multi-sets (called in the sequelinput/output
bags) by requiring that an input/output bag belongs to a single component. The concurrent accesses to
resources between two transitions belonging to different components are not restricted in any way. The
product-form solution we look for should be a product of factors over the components multiplied by a
normalization constant. The factor associated to a component should be again a product of sub-factors
over the “states” of the clients associated to a component. Here is the crucial point for the existence of
the product-form solution. How can we characterize the number of clients in a given state or at least
the variation of this number? Starting from the above interpretation, the entry into a state is witnessed
by the production of the associated input/output bag due to some transition firing in the component and
the state exit is witnessed by the production of the input/output bag due to some other transition firing.
In other words given a markingm reached by a sequenceσ, the variation of the number of clients in a
“state” should be given by a weighted sum of transition occurrences inσ (i.e. an item ofthe count vector
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defined by[13]). Consequently in order to obtain a product-form solution, the count vector should be a
function of the reachable marking. This observation is the core of the partial characterization given in
[13]. Actually, what we will prove here is that a�-net is a rate-insensitive PF-�-net iff every item of the
count vector is obtained by a linear mapping applied on the difference between the current marking and
the initial marking. Then in such nets, a (virtual) client state is characterized by a linear combination of
places whose current marking gives the variation of the number of virtual clients in this state. From an
algebraic point of view, these linear combinations are partial flows and can be seen as an extension of
the synchronic distance relation[46] which quantifies the firing dependencies between transitions. We
call �2-nets, the�-nets for which such algebraic relations hold, andS�2-nets (Stochastic Parametric
Product-form PNs) their stochastic version.

Furthermore, since inS�2-nets we have precisely identified virtual clients states, we also add to the
functional dependencies of the rates of the transitions in a component, a uniform dependency based on
the states of the clients in the other components. We illustrate the interest of this extension on a short
example. We also design an algorithm for the verification of our characterization whose time complexity
is polynomial with respect to size of the net.

The second group of results presented here relates to the complexity of the reachability and the liveness
problems for�-nets and�2-nets. Several standard subclasses of nets have been identified since the
introduction of PNs and many important complexity results have been obtained for these classes. It was
shown[43] that�-nets cannot be directly classified with respect to the standard subclasses of PNs. This
motivated the study of the complexity of these central problems. In this respect, we provide different
complexity bounds with tight lower and upper bounds in two cases.

The organization of the paper is as follows. InSection 2, we remind�-nets for which we also provide
a new and efficient membership algorithm. Then we present inSection 3our main contribution: the
structural characterization of rate-insensitive PF-�-nets, i.e. the definition ofS�2-nets and the proof
that a�-net is a rate-insensitive PF-�-net iff it is a S�2-net. InSection 4, we study the complexity of
the liveness and the reachability problems in�-nets and�2-nets. We conclude with a review of open
problems and future works inSection 5.

2. �-nets

In this section, we summarize previous results about SPN with PF-solution. One may find introductory
presentations of Petri net concepts for instance in[36,38,45]and we remind the reader only with definitions
necessary to understand product-form results for stochastic Petri nets.

A Petri Net system(or PN for short) is a tupleS = (P, T,W,m0), whereP andT are disjoint sets of
placesandtransitions(with |P| = np and|T | = nt); W : P× T ∪ T× P→ N defines theweighted flow
relation: if W(j, i) > 0 (resp.W(i, j) > 0) then we say that there is anarc from tj to pi, with weightor
multiplicityW(j, i) (resp. there is an arc frompi to tj with weightW(i, j)); m0 is the initial marking. We
denote byN = (P, T,W) the Petri net, derived fromS without considering the initial marking.

For a given transitiontj ∈ T, its presetand postsetare given by•tj = {pi|W(i, j) > 0} and tj
• =

{pi|W(j, i) > 0}, respectively. In the same manner we can define thepresetandpostsetof a given place.
We also define theinput vectori(tj) = [W(l, j),W(2, j), . . . ,W(np, j)] and theoutput vectoro(tj) =
[W(j,1),W(j,2), . . . ,W(j, np)] of a transitiontj. The matrixC with entriesC[i, j] = W(j, i)−W(i, j)
is called theincidence matrixof N.
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Fig. 1. An introductory example of�-net.

A transitiontj is enabledin a markingm iff m ≥ i(tj). Being enabled,tj mayoccur(or fire) yielding
a new markingm′ = m− i(tj)+ o(tj) = m+ C[·, j] (C[·, j] is the jth column ofC), which is denoted
by m→tj m′. The set of all the markings reachable fromm0 is called thereachability setof S, and is
denoted by RS(m0).
Semiflowsare non-null natural annullers ofC. Right and left annullers are called T- and P-semiflows,

respectively. A semiflows is calledminimalwhen its support (i.e., the set‖s‖ of places or transitions
corresponding to the non-zero components of the vectors) is not a proper superset of the support of any
other semiflow, and the g.c.d. of its elements is 1.

2.1. Introductory example and definitions

Obviously, general SPNs may not allow a PF-solution. Even before looking at the stochastic problems,
we must enforce some structure in their behavior, as for QN. Moreover, as usual with PNs, we want to
deduce these structures from the syntax of the net and not by examining its reachability graph. Let us
give an example of such a net that we will use throughout the paper. The net ofFig. 1models a system
with two groups of concurrent activities, for instance computation tasks and interactive tasks performed
by two categories of “clients” (batch jobs and human beings). In PN, basic activities are modelled by
transitions; we have two sets of transitions:t1, t2, t3 (batch jobs) andt4, t5, t6, t7 (interactive tasks). The
cyclic behaviour of activities is allowed by the balance between the input/output bags of transitions be-
longing to the same component. Inside a component, a client may have several behaviours like (t4, t5)
or (t4, t6, t7) for interactive clients. Activities use or produce resources, may be in a competitive way.
In PN models, (passive) resources are modelled by tokens in places and input/output bags of transi-
tions indicate how each activity manages these resources. For instance,p1 could represent free CPUs,
required by clients of both components, whilep2, p3 model specific resources for batch jobs only like
disks.

Such a structure in PN models is captured by the following definitions.

Definition 1. A subsetT ′ of transitions is said to be closed if
⋃

t∈T ′ i(t) =
⋃

t∈T ′ o(t).
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We will denote byR(T ′) =⋃
t∈T ′ {i(t),o(t)} the set of input and output bags for transitions inT ′.

We can now recall the definition of the�-net class of PN. All Stochastic Petri Nets with PF-solution
studied in this paper, will be�-nets.

Definition 2. N is a�-net if ∀t ∈ T there exists a minimal T-semiflowx such thatt ∈ ‖x‖, and‖x‖ is a
closed set.

In other words,N is a�-net if all transitions are covered by closed support minimal T-semiflows.
Finally, the structural category corresponding to a group of activities is defined as follows.

Definition 3. Two different minimal closed support T-semiflowsx andx′ are said to be freely related[9]
(denoted as (x, x′) ∈ FR), if there existst ∈ ‖x‖ andt′ ∈ ‖x′‖ such thati(t) = i(t′).

FR∗ is the transitive closure of FR. It induces an equivalence relation among transitions (and among
their input/output bags): (t, t′) ∈ FR∗ iff t ∈ ‖x‖, t′ ∈ ‖x′‖ and (x, x′) ∈ FR∗. We denote byC(t) the FR∗

class oft or the FR∗ class of its input/output bags (since no confusion can arise).

In the example ofFig. 1, we can see that there are three minimal T-semiflowsx1 = [1,1,1,0,0,
0,0], x2 = [0,0,0,1,1,0,0] and x3 = [0,0,0,1,0,1,1], with ‖x1‖ = {t1, t2, t3}, ‖x2‖ = {t4, t5} and
‖x3‖ = {t4, t6, t7}. We observe that

⋃
tj∈‖x1‖ i(tj) = {[1,0,0,0,0,0], [0,1,0,0,0,0], [0,0,1,0,0,0]} =⋃

tj∈‖x1‖ o(tj),
⋃

tj∈‖x2 ‖ i(tj) = {[1,0,0,1, 0,0], [0,0,0, 0,1,0]} = ⋃
tj∈‖x2‖ o(tj) and

⋃
tj∈‖x3‖ i(tj) =

{[1,0,0,1,0,0], [0,0,0,0,1,0], [0,0,0,0,0,1]} =⋃
tj∈‖x3‖ o(tj). The three T-semiflows have closed

support set. Since any transition belongs to a closed support minimal T-semiflow, this net is a�-net.
We can also note that we have six input/output bagsi(t) and two FR∗ classes,C1 = {t1, t2, t3} and
C2 = {t4, t5, t6, t7} sincei(t5) = i(t6).

2.2. Membership problem

From the definition of�-nets, we can decide whether a given net falls in this class. The problem that
arises is the complexity of a straightforward application ofDefinition 2because the number of minimal
T-semiflows can be exponential in the number of transitions[33]. We present now an algorithm that allows
to recognize whether a net is a�-net in polynomial time(unless explicitly mentioned, all complexity
results in the paper are with respect to the size of the net, i.e. the number of places, transitions, arcs and
the binary representation of valuations). The soundness of the algorithm is based on the following lemma.

Lemma 4. If x is a closed support minimal T-semiflow then

(i) for each transitionti ∈ ‖x‖, x[i] = 1 (x[i] is the ith component ofx);
(ii) ‖x‖ may be ordered as{tj0, tj1, . . . , tjh−1} such thato(tji) = i(tji+1 modh) (for i = 0,1, . . . , h− 1), and

l �= l′ ⇒ i(tjl) �= i(tjl′ ).

Proof. Letx a closed support minimal T-semiflow andtj0 ∈ ‖x‖, then∃tj1 ∈ ‖x‖ such thati(tj1) = o(tj0).
We iterate the procedure until we find a transitiontjk ∈ ‖x‖ such that∃k′ < k with i(tjk ) = i(tjk′ ). We get a
new closed T-semiflowx′ with ‖x′‖ = {tjk′ , . . . , tjk−1}. By constructionx′ has all the required properties,
i.e.,o(tji) = i(tji+1 mod (k−k′) ) (for i = k′, . . . , k − 1), l �= l′ ⇒ i(tjl) �= i(tjl′ ), and‖x′‖ ⊆ ‖x‖. The minimality
of x implies that‖x′‖ = ‖x‖ (another proof is given in[6]). �
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2.2.1. Algorithm for�-net membership
The previous lemma states that a closed support minimalT -semiflow can be seen as a cycle of transitions

tj0, tj1, . . . , tjh−1 such thato(tji) = i(tji+1 modh) (for i = 0,1, . . . , h− 1). The algorithmVerify�-netexploits
this feature for checking if a net is a�-net.

Algorithm (Verify �-net).

begin

L← T
fail← false

repeat

let t ∈ L
A← {t}
In← {i(t)}
Out← {o(t)}
while ∃t′ ∈ L s.t. i(t′) ∈ Out do

A← A⋃{t′}
L← L \ {t′}
In← In

⋃{i(t′)}
Out← Out

⋃{o(t′)}
endwhile

fail← (In �= Out)

/∗ if not fail thenA is aFR∗ class∗/
until L = ∅ or fail

/∗ fail is true iff the net is not a�-net∗/
end

We point out that the algorithm yields a covering set of closed support minimal T-semiflows (if the PN
is a�-net).

We can easily see that any transition is analyzed exactly once during the execution of the algorithm.
Moreover, other tests may require at most O(np × nt) elementary computations, so that the complexity
of the algorithm that allows to recognize if a given net satisfyDefinition 2 is at most O(n2

t × np) (i.e.
O(|T|2× |P|)).

2.3. FromΠ-nets to PF-SΠ-nets

Stochastic Petri Net systems(or SPN for short) are PN where the transitions have exponentially dis-
tributed firing delays with rateµt. The sojourn time in the markingm before the firing oft is exponentially
distributed with rateµ(t,m) (if µ(t,m) = µt we say that the firing rates are marking independent). In the
rest of the paper, we assume that the CTMC underlying the SPN (with state space RS(m0)) is ergodic.
Since the initial marking of a�-net is a home state (due to the existence of the closed T-semiflows) then
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the ergodicity is ensured if and only if the invariant measure associated to the product-form solution is
finite. Several authors added stochastic characteristics to�-nets (Stochastic�-nets,S�-nets), leading
to PF-SPN under specific conditions.

Following [19,22], we considerS�-nets, with ratesµ(t,m) satisfying, fort enabled inm, the relation

µ(t,m) = µt

ψ(m− i(t))
φ(m)

, whereψ ≥ 0, φ > 0. (1)

The functionsψ andφ can be thought of as “potential functions”, the state dependent firing rate of
transitiont in m being the product of its intrinsic firing rateµt and the ratio of the functionsψ andφ
evaluated at the states that exist after and before consuming tokens, respectively. Marking independent
firing rates can be modelled by choosingψ = φ = 1.

In order to adopt a virtual client perspective, we define∀i ∈ R(T ), µ(i) =∑
t∈T,i(t)=i µt the intrinsic

exit rate from the state associated toi and∀t s.t. i(t) = i,P[i, t] = µt/µ(i) the probability to firet when
exiting this state. Starting from the client point of view, we can also reformulate the firing rate of a
transition:

µ(t,m) = µ(i(t))
ψ(m− i(t))

φ(m)
P[i(t), t]. (2)

A service function of the form (2) is common in the literature on PF-QNs (see, for example[20] or [44]).
In the SPN context, it was first used in[19] where several examples are given which illustrate its range
of application. For single movement queueing networks, a form withψ = φ first appeared in[28], as a
generalization of the state dependent service rates introduced in[24].

As for QNs, PF-solutions for SPNs are based on the analysis of underlying Markov chains (MCs). It is
then convenient to study an auxiliary Discrete Time Markov Chain (DTMC)y, called therouting process
[19] of theS�-net, with states being the input/output bags. Let us define its transition matrix:

P[i, i ′] def=
∑
t∈T

i(t)=i,o(t)=i′

P[i(t), t].

The traffic equations of the routing processy are the global balance equations of this DTMC. Denoting
with v(i(t)) the so-called visit-ratio to nodei(t), these traffic equations can be expressed as

∀t ∈ T, v(i(t)) =
∑
t′∈T

v(i(t′))P[i(t′), i(t)], (3)

or equivalently,

∀i ∈ R(T ), v(i) =
∑

i ′∈R(T )

v(i ′)P[i ′, i]. (4)

Boucherie and Sereno[6] showed that traffic equations and structural properties of a net are closely
related.

Theorem 5 (From [6]).Let C be the set of input/output bags classes of aS�-net with respect to the
relationFR∗. Then
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(i) C is a partition of the routing chain y into|C| irreducible absorbing sub-chains on eachC ∈ C.
(ii) the trafficequation(4) are equivalent to the|C| systems of equations

∀i ∈ C, v(i) =
∑
i ′∈C

v(i ′)P[i ′, i], (5)

which are independent.
(iii) each system(5) admits a unique positive solution up to a multiplicative constant.

Unfortunately, the existence of a positive solution for the Traffic equation (3) is not a sufficient
condition to assert a PF-solution forS�-nets. The following result from Coleman et al.[14], states that
the equilibrium distribution has a product-form over the places of the SPN whenever one additional
condition holds. Let us denotef = v/µ with v a solution for the traffic equations, and define the vector
wf = [w1, . . . , wnt ] as

wf =
[
log

(
f (i(t1))
f (o(t1))

)
, log

(
f (i(t2))

f (o(t2))

)
, . . . , log

(
f (i(tnt ))
f (o(tnt ))

)]
. (6)

There are many such functionsf corresponding to different solutions of the traffic equations. However
each one is unique up to a multiplicative constant in each FR∗ class. This implies that the ratio
f (i(ti))/f (o(ti)) is invariant.

Theorem 6 (Product-Form for SPN (from[14])). Letf = v/µwithv a solution for the traffic equations.
The equilibrium distribution for the SPN has the form

π(m) = 1

G
φ(m)

np∏
i=1

y
mi

i , ∀m ∈ RS(m0) (7)

if and only ifRank(C) = Rank([C|wf ]), where[C|wf ] is the matrixC augmented with the rowwf and
G is a normalization constant.

In this case, thenp-component vectorl = [log(y1), . . . , log(ynp)], satisfies the matrix equation
−l · C = wf .

It must be noted that, generally, the condition Rank(C) = Rank([C|wf ]) depends on theratesof the
transitions of the net and not only on the structure of the net.

2.4. Examples ofS�-nets

Let us work out two detailed examples of PF-S�-nets. The first one complements the study of the
introductory example, and the second one shows a more complex situation related to the rank condition
of Theorem 6.

2.4.1. Example 1
In this example we briefly review the procedure used to obtain the equilibrium distribution for the

S�-net ofFig. 1. For additional details the reader is referred to[6,14,19,21,22]. Since we know that the
net is aS�-net, andC = {C1, C2}with C1 = {t1, t2, t3} andC2 = {t4, t5, t6, t7}, there is a solution for each
of the systems (5):
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• classC1:

v(i(t1)) = v(i(t2)),

v(i(t2)) = v(i(t3)),

v(i(t3)) = v(i(t1));

• classC2:

v(i(t4)) = µ5

µ5+ µ6
v(i(t5))+ v(i(t7)),

v(i(t5)) = v(i(t4)) (andi(t6) = i(t5)),

v(i(t7)) = µ6

µ5+ µ6
× v(i(t5)).

Obviously, each system has a redundant equation. Setting for instancev(i(t1)) = 1 andv(i(t4)) = 1, we get
v(i(t1)) = v(i(t2)) = v(i(t3)) = v(i(t4)) = v(i(t5)) = 1, andv(i(t7)) = µ6/(µ5+ µ6), from which we ob-
tainf (i(t1)) = 1/µ1, f (i(t2)) = 1/µ2, f (i(t3)) = 1/µ3, f (i(t4)) = 1/µ4, f (i(t5)) = 1/µ5 andf (i(t7)) =
1/(µ5+ µ6). The row vectorwf is

wf =
[
log

(
µ2

µ1

)
, log

(
µ3

µ2

)
, log

(
µ1

µ3

)
, log

(
µ5

µ4

)
, log

(
µ4

µ5

)
, log

(
(µ5+ µ6)µ7

µ5µ6

)
,

log

(
µ4µ6

(µ5+ µ6)µ7

)]
.

It can be verified that the rank condition rank(C) = rank([C|wf ]) is satisfied independently of the rate
values and a simple derivation gives the equilibrium distribution of the introductory example:

π(m) = 1

G

(
µ1

µ2

)m[p2] (
µ2

µ3

)m[p3] (
µ4

µ5

)m[p5] (
µ6

µ5+ µ6

µ4

µ7

)m[p6]

.

2.4.2. Example 2
The SPN shown inFig. 2, taken form[14], represents an SPN in which the rank condition is not satisfied

independently of the rate values. This SPN is covered by four minimal T-semiflows whose support sets
are‖x1‖ = {t1, t4}, ‖x2‖ = {t2, t3}, ‖x3‖ = {2t1, t2}, and‖x4‖ = {t3,2t4}. Only x1 andx2 are closed, but
they coverT so that the SPN satisfiesDefinition 2. Then the SPN is a�-net and hence there exists a
positive solution for the traffic equations.

In particular we obtainf (i(ti)) = 1/µi for i = 1, . . . ,4. The vectorwf is given by

wf =
[
log

(
f (i(t1))
f (i(t4))

)
, log

(
f (i(t2))

f (i(t3))

)
, log

(
f (i(t3))
f (i(t2))

)
, log

(
f (i(t4))

f (i(t1))

)]

=
[
log

(
µ4

µ1

)
, log

(
µ3

µ2

)
, log

(
µ2

µ3

)
, log

(
µ1

µ4

)]
.
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Fig. 2. A rate-sensitive PF-SPN (example 2).

The rank conditions arew2+ 2w1 = 0, w3− 2w1 = 0, and w1+ w4 = 0, which implies,
f (i(t2))/f (i(t3))(f (i(t1))/f (i(t4)))2 = 1, f (i(t3))/f (i(t2))(f (i(t4))/f (i(t1)))2 = 1, and l = 1 respectively.
The first and second conditions are the same and arise because there is more than one way to produce the
same change of marking. Substituting for the functionf, the rank condition becomesµ2/µ3 = (µ4/µ1)2.
If this condition is met,Theorem 6applies, and, lettingy2 = 1 givesy1 = f (i(t1))/f (i(t4)). Finally,
πf (m) = [µ4/µ1]m[p1] .

The major drawbacks of the above results about a PF-solution forS�-nets are threefold. First, the
technical rank condition (Theorem 6) has no intuitive interpretation in relation with the modelling.
Second, and this is, for sure the most important point, the existence of a PF-solution depends on the
numerical valuesof the rates of the transitions of the net, in contrast with other models. Note also
that the log functions involved in the formulae lead to numerical sensitivity of the verification of
the condition. Finally, there is an apparent contradiction with the negligible theoretical occurrence of
the condition satisfaction and the fact that it occurs quite often in practice. These remarks motivated
the search for a structural characterization ofS�-nets with PF-solution, which is exposed in the next
section.

3. �2-nets: definition and performance analysis

In this section we define the class ofS�2-nets (Stochastic Parametric Product-form Nets) (and�2-nets,
their non-stochastic version) and we will show that it exactly corresponds to the class of rate-insensitive
PF-�-nets. Moreover, we introduce a more general dependency of the firing rates of transitions with
respect to the global the marking of the net system.

3.1. Definition of�2-nets

In order to introduce the additional requirement for a�2-net to be a�-net, we illustrate on the�-net
of Fig. 1how one characterizes by linear combinations of places the virtual client states. Let us focus on
the batch jobs. A job is initially idle. When firingt1 it enters a computing stage followed by a printing
stage initiated by firingt2 and terminates by firingt3. Thus a job has three states:idle, computingand
printing. The characterization of the statescomputingandprinting is easy. For instancep2 is a witness of
the number of computing jobs: indeed the start of a job (t1) puts a token in this place, the beginning of the
printing stage (t2) consumes a token in this place and the firing of any other transition does not modify
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the marking ofp2. Similarlyp3 is a witness of the stateprinting. But the characterization of theidle state
is more intricate: for instancep1 is not a witness of this state as its marking is modified byt4 related to
another change of state. Nevertheless the linear combination−(p2+ p3) is a witness of theidle state:
indeed given a markingm, the end of a job (t3) increases by one unit−(m[p2] +m[p3]), the start of a
job (t2) decreases by one unit−(m[p2] +m[p3]) and the firing of any other transition does not modify
−(m[p2] +m[p3]). In order to formally define these linear combinations of places, we generalize the
notion of flow. We define apartial flow as a pair (s, g) of Q vectors on places (s, the “solution”) and
transitions (g, the “constraints”), such thats · C = g. This is effectively a generalization of flows, for
which g is always0. Thanks to this definition, we characterize the clients with a partial flow where the
constraint vectorg is a vector such thatg[t] = 1 if t adds a client to the “state”,g[t] = −1 if t removes
a client andg[t] = 0 otherwise. The�2-net property expresses, by means of rational vectorsar , the
relation which must hold between virtual clients states of a�-net and input/output vectors of the net,
to ensure that this�-net has a PF-solution. For the rest of the paper we set•r = {t ∈ T |o(t) = r } and
r • = {t ∈ T |i(t) = r } for everyr ∈ R(T ).

Definition 7 (�2-net). A�2-net (parametric�-net) is a�-net such that for everyr ∈ R(T ), there is
ar ∈ Qnp such that

ar · C[P, j] =




1 if tj ∈ •r ,
−1 if tj ∈ r •,
0 otherwise

whereC is the incidence matrix of the net (note that this excludes transitionst with i(t) = o(t)).

Note that the computation of the rational vectorsar (or else the proof that there are no suchar ), is
performed in polynomial time with respect to the size of the net through a usual Gaussian elimination
(applied on rational numbers).

The�-net ofFig. 2 is not a�2-net. To see that, let us setr 1 = {p1}, therefore•r 1 = {t4} andr 1• =
{t1}. If we try to define the vectorar1 = [a, b], we geta− b = 1 (sincet4 ∈ •r 1) anda− b = 0 (since
t2 /∈ •r 1

⋃
r 1•). Hence,ar1 does not exist and this SPN is not a�2-net.

Introducing the stochastic version of�2-nets, the explicit relation on states of virtual clients in�2-
nets, allows us to go one step further: we can express the dependency of the firing rate of a transitiontj
with respect to the global state of the components different from the one oftj. This kind of dependency,
introduced by functionsρC(t) in the definition below, cannot be taken into account in the framework of
�-nets.

Definition 8 (S�2-net). A Stochastic�2-net (S�2-net) is a�2-net such that the firing rate of a transition
t in the markingm is given by

µ(t,m) = µ(i(t)) · ρC(t)((ar ′′ ·m)r ′′ /∈C(t)) · ψ(m− i(t))
φ(m)

P[i(t),o(t)]. (8)

Positive, real valued functionsρC(t)((ar ′′ ·m)r ′′ /∈C(t)) make possible a homogeneous dependency of the
transitions of the componentC(t) with respect to the state of the virtual clients in the other components,
represented by the sequence (ar ′′ ·m)r ′′ /∈C(t).
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The �-net of Fig. 1 is a S�2-net. We have six input vectorsr , belonging to two classes (we
use the same notationC(t) for the classes of transitions and the classes of their input/output vectors):
C1 = {r 1 = [1,0,0,0,0,0], r2 = [0,1,0,0,0,0], r3 = [0,0,1,0,0,0]}, C2 = {r4 = [1,0,0,1,0,0],
r5 = [0,0,0,0,1,0], r6 = [0,0,0,0,0,1]}. Thear vectors are

ar1 = [0,−1,−1,0,0,0], ar2 = [0,1,0,0,0,0], ar3 = [0,0,1,0,0,0],

ar4 = [0,0,0,1,0,0], ar5 = [0,0,0,0,1,0], ar6 = [0,0,0,0,0,1].

Let us assume that the rates oft1, t2 and t3 depend on the load oft5 (and t6) in such a way that if the
marking ofp5 is greater thanK5, t1, t2, t3 cannot fire. Moreover, suppose that the rates oft1, t2, t3 decrease
linearly fromµM toµm with the marking ofp5 varying from 0 toK5. Here we want to model some weak
priority of interactive tasks over batch jobs. We emphasize that theS�-net model does not allow such a
modelling. WithS�2-nets, the above dependency is straightforwardly defined:

ρC(t1)((ar ′′ ·m)r ′′ /∈C(t1)) =



0, if m[p5] ≥ K5,

µm − µM

K5
·m[p5] + µM, if 0 ≤ m[p5] < K5.

We have still a PF steady-state distribution sincear5 ·m = m[p5].

3.2. A product-form forS�2-nets

We establish the first result aboutS�2-net, which states that aS�2-net is a rate-insensitive PF-S�-net.

Theorem 9. For any transition rates, the steady-state distribution of aS�2-net has the product-form

π(m) = 1

G
· φ(m) ·

∏
r∈R(T )

(
v(r )
µ(r )

)ar ·m
, ∀m ∈ RS(m0), (9)

where G is a normalization constant and v is a solution ofEq. (3).

Proof. The steady-state distributionπ of an ergodic CTMC with state spaceSand generatorQ satisfies
the so-calledCut Balance Equations(CBE) [29]∑

s∈U
π(s)

∑
s′∈Ū

q(s, s′) =
∑
s′∈Ū

π(s′)
∑
s∈U

q(s′, s) (10)

for any subsetU andŪ = S\U of S. A classical method[37] to prove thatπ may have a PF-solution is
to group (10) with respect to some partition ofSand to find a PF-solution which satisfies this other set of
equations, usually termed asLocal Balance Equations(LBEs). Obviously, if someπ satisfies the LBE,
then it also satisfies the CBE (but the converse is usually false). We follow this approach here, and we
start from the so-called Group Local Balance Equation (GLBE) (11) corresponding to group the CBE
with respect to a given vectorr and a markingm

π(m)
∑
t∈r•

Q[m,m− i(t)+ o(t)] =
∑
t′∈•r

π(m+ i(t′)− o(t′))Q[m+ i(t′)− o(t′),m]. (11)
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For simplicity, we first establish the proof with all functionsρC(t)((ar ′′ ·m)r ′′ /∈C(t)) equal to 1.
From the structure of the ratesQ[m,m′], we derive the equivalent relation

π(m)
∑
t∈r•

µ(i(t))
ψ(m− i(t))

φ(m)
P[i(t),o(t)]

=
∑
t′∈•r

π(m+ i(t′)− o(t′))µ(i(t′))
ψ(m− o(t′))

φ(m+ i(t′)− o(t′))
P[i(t′),o(t′)]

and, sinceo(t′) = i(t) = r ,

π(m)
∑
t∈r•

µ(r )
ψ(m− r )
φ(m)

P[r ,o(t)] =
∑
t ′∈•r

π(m+ i(t′)− r )µ(i(t′))
ψ(m− r )

φ(m+ i(t′)− r )
P[i(t′), r ],

but
∑

t∈r• P[r ,o(t)] = 1, so that (11) is equivalent to

π(m)µ(r )
φ(m)

=
∑
t′∈•r

π(m+ i(t′)− r )
µ(i(t′))

φ(m+ i(t′)− r )
P[i(t′), r ]. (12)

Let us prove that the expression ofπ(m) given in the theorem verifies this last equation. To this aim, we
introduce in (12) the proposed expression, and after simplification with 1/G

∏
r ′∈R(T )[v(r ′)/µ(r ′)]ar ′ ·m,

we obtain the equivalent equation

µ(r ) =
∑
t′∈•r

∏
r ′∈R(T )

[
v(r ′)
µ(r ′)

]ar ′ ·(i(t′)−o(t′))

µ(i(t′))P[i(t′), r ]. (13)

Fromi(t′)− o(t′) = −C[P, t′] and the definition ofar , only two terms (r ′ = i(t′) andr ′ = r ) are different
from 1 in each product, so we get

µ(r ) =
∑
t′∈•r

µ(r )
v(r )

v(i(t′))
µ(i(t′))

µ(i(t′))P[i(t′), r ] (14)

and, after rewriting, we obtain

v(r ) =
∑
t′∈•r

v(i(t′))P[i(t′), r ], (15)

which are exactly the traffic equations of the net since ift′ /∈ •r ,P[i(t′), r ] = 0.
We now extend the proof to generalρ functions. Starting again fromEq. (14) modified with functions

ρ, we have

µ(r )ρC(t)((ar ′′ ·m)r ′′ /∈C(t)) =
∑
t′∈•r

µ(r )
v(r )

v(i(t′))
µ(i(t′))

µ(i(t′))ρC(t′)((ar ′′ · (m+ i(t′)− r ))r ′′ /∈C(t′))P[i(t′), r ].

(16)

In fact, if t′ ∈ •r andr ′′ /∈ C(t′),ar ′′ · (m+ i(t′)− r ) = ar ′′ ·m. Indeed,C(t′) = C(r ) andr ′′ �= r for all r ′′.
Hence,r ′′ �= i(t′) and r ′′ �= o(t′) andar ′′ · (m+ i(t′)− r ) = ar ′′ ·m− ar ′′ · C[P, t′] = ar ′′ ·m from the
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definition of thear vectors. We may now simplify the two terms ofEq. (16) with ρC(t)((ar ′′ ·m)r ′′ /∈C(t))
becauseC(t) = C(t′) for all t′ ∈ •r , and we obtainEq. (15).

Let us remark that this product-form expression induces, of course, a product-form with respect tom,
since:

∏
r∈R(T )

(
v(r )
µ(r )

)ar ·m
=

∏
r∈R(T )

∏
pi∈P

(
v(r )
µr

)ar [i]·m[i]

=
∏
pi∈P


 ∏

r∈R(T )

(
u(r )
µ(r )

)ar [i]



m[i]

.

3.3. Characterization of the rate-insensitive PF-S�-nets

GLBE (11) is an essential ingredient to find PF-solution for SPN, and theS�-nets for which a PF-
solution exists, verify the GLBE. The next theorem proves that a rate-insensitive PF-S�-net is aS�2-net.
GatheringTheorems 9 and 10, we thus establish that theS�2-nets are exactly the rate-insensitive PF-
S�-nets.

Theorem 10. Let(P, T,W,µ,m0) be a�-net andv a solution of the traffic equations. If there is a family
(ar )r∈R(T ) of rational vectors such that the distribution

π(m) = 1
G
· φ(m) ·

∏
r∈R(T )

(
v(r )
µ(r )

)ar ·m
, ∀m ∈ RS(m0),

satisfies the group local balance equation(11) for any(µ(r ))r∈R(T ), then we have

ar · C[P, j] =




1 if tj ∈ •r ,
−1 if tj ∈ r •,
0 otherwise.

Proof. For simplicity, and without loss of generality (see the proof ofTheorem 9), we may assume that
φ(m) = ρC(t)((ar ′′ ·m)r ′′ /∈C(t)) = 1 for anym andt.

The GLBE for a givenm with respect to a givenr are (see (13))

µ(r ) =
∑
t∈•r

∏
r ′∈R(T )

[
v(r ′)
µ(r ′)

]−ar ′ ·C[P,t]

µ(i(t))P[i(t), r ], (17)

sincear ′ · (i(t)− o(t)) = −ar ′ · C[P, t].
Let bt =

∏
r ′∈R(T )[v(r ′)]−ar ′ ·C[P,t]P[i(t), r ]. ∀t, b(t) > 0 sincev is a solution of the traffic equations.

We define the vectorsγ(t) andγ0 in the following way:

γ(t)[r ′] =
{
ar ′ · C[P, t] if r ′ �= i(t),

ar ′ · C[P, t] + 1 if r ′ = i(t)
and γ0[r ′] =

{
1 if r ′ = r ,

0 otherwise.
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Eq. (17) is then equivalent to∏
r ′∈R(T )

[µ(r ′)]γ0[r ′] −
∑
t∈•r

bt ·
∏

r ′∈R(T )

[µ(r ′)]γ(t)[r ′] = 0. (18)

Grouping terms by identicalγ, we have


1−

∑
t∈•r
γ(t)=γ0

bt




∏
r ′∈R(T )

[µ(r ′)]γ0[r ′] −
∑
γ �=γ0




∑
t∈•r
γ(t)=γ

bt




∏
r ′∈R(T )

[µ(r ′)]γ(t)[r ′] = 0.

It is well-known that ifA is a finite set ofdifferentvectorsα = (α1, . . . , αn) of Rn, and (aα)α∈A a family of
reals, then∀(X1, . . . , Xn) ∈ (R+)n,

∑
α∈A aαX

α1
1 , . . . , Xαn

n = 0⇒ ∀α ∈ A, aα = 0. Applying this result
with A = {γ(t)|t ∈ T}⋃{γ0}, n = |R(T )|,

aα =


1−

∑
t∈•r
γ(t)=γ0

bt




if α = γ0 and

aα =




∑
t∈•r
γ(t)=γ

bt




if α = γ(t), for Xr ′ = µ(r ′), we get
∑
t∈•r
γ(t)=γ

bt = 0.

But, sincebt > 0 for all t, the set{t ∈ •r |γ(t) = γ �= γ0} is empty, so that∀t ∈ •r , γ(t) = γ0. We can now
evaluate thear ′ · C[P, t] numbers (let us remind thatt ∈ •r meanso(t) = r ):

if i ′ �= r (t) andr ′ �= o(t), ar ′ · C[P, t] = γ(t)[r ′] = 0;

if r ′ = i(t) (hencer ′ �= o(t)), ar ′ · C[P, t] + 1= γ(t)[r ′] = 0;

if r ′ �= i(t) andr ′ = o(t), ar ′ · C[P, t] = γ(t)[r ′] = 1.

which concludes the proof.�
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To be complete, we have established in[35] a connection betweenS�2-nets and Product Process of
K Competing Markov Chains MCk (PPCMC) introduced by Boucherie in[5]. Boucherie has studied
nets with a product-form solution which are notS�-nets. He has showed on different case studies their
transformation into semantically equivalentS�-nets (i.e. generating the same CTMC). We have showed
that these equivalentS�-nets areS�2-nets.

3.4. Comparison with the previous characterization

In [13], Coleman et al. proposed another characterization of the rate-insensitive PF-S�-nets expressed
in terms of batch queuing networks which are equivalent toS�-nets. We first recall in extenso their
characterization:

“Suppose that the initial staten0 is large enough so that the set of possible firing vectors result-
ing from transition sequences that take the state of the network fromn0 back to itself is the set of
T-invariants. Then the equilibrium distribution factorizes into a product-form over the nodes for all
valuesΞ(a) if and only if there is a one-to-one correspondence between states of the network and count
vectors.”

In this theorem, the family of values1(a) corresponds the familyµ(i) presented here and the count
vectors are exactly what we call the virtual client states. We now compare the two characterizations:

• The previous characterization points out that, given a state of the net, there is a single set of current virtual
client states corresponding to it. Our characterization shows that furthermore this correspondence is
necessarilygiven by a linear application.

• The previous characterization requires that the initial marking must be sufficiently large whereas our
characterization is valid for any initial marking.

• The previous characterization must be checked at the reachability graph level with a procedure whose
time complexity is exponential with respect to the size of the net in the worst case.Proposition 12shows
that this negative result holds even for 1-safeS�-nets. Here we provide a polynomial time algorithm
to check our characterization.

• This new characterization has enabled us to enlarge the functional dependencies of the rates of the
transitions. Otherwise stated, theS�2-nets family is a strict superset of theS�-nets family except for
the pathological cases.

4. Qualitative analysis of�-nets and�2-nets

Since the central problems related to PNs (liveness, boundedness, reachability, coverability, etc.) have
high complexity lower bounds, the consideration of some net subclasses, enjoying particular properties
has quickly appeared as a mean to cope with this complexity. Forty years of research in the PN area,
have accumulated a large amount of qualitative results and several classes of PN have been identified,
particularly: State Machines (SM), Marked Graphs (MG) (also known as T-Systems (TS)) and Extended
Free-Choice (EFC) nets. It is consequently a standard approach to situate a new class of PNs with respect
to these “classical” subclasses: this may allow us to easily derive some of their properties (boundedness,
deadlock freeness, etc.). In fact, it was shown (see[43] for instance) that�-nets cannot be directly
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compared to standard families of PN. We strengthen below these negative results, by complexity results
which constitute our third contribution.

It is clear that if there is an enabled transition in any FR∗-class in the initial marking of a�-net,
then the net system is live. This condition is obviously only a sufficient condition. In fact, checking
liveness seems not easier for�-nets, and even for 1-safe�2-nets, than for many other classes of Petri
nets (a 1-safe marked Petri net is a (bounded) marked net with at most one token in every place of every
reachable marking). We have shown inSection 2.2that the complexity of the computation of FR∗-classes
is polynomial time. But checking liveness requires to verify that each FR∗-class is live. If some FR∗-class
is notinitially firable, this is still a complex problem. Indeed, the next proposition gives some insight into
this point. We recall that for general Petri nets, Lipton’s result[32] implies a 2O(

√
n) lower bound space

complexity (withn the size of the problem, seeSection 2.2) for the liveness problem (see[16,15] for
recent surveys on decidability problems for Petri nets). In fact, we are able to complement these results
for the�-nets and�2-nets classes, although the exact complexity of the reachability/liveness for�2-nets
still remains an open problem. Moreover, it has been also shown in[11] that the liveness problem for
1-safe nets is PSPACE complete. The next lemma gives a lower bound of the problem for 1-safe�2-nets.

Proposition 11. The liveness problem for 1-safe�2-nets is NP-hard.

Proof. To prove it, we reduce in polynomial time the 3SAT problem to the liveness problem for�2-nets,
following the idea first presented in[26]. The 3SAT problem is a well known NP-complete problem. We
haveK logical formulaeC1, . . . , CK, each one being a disjunction of three boolean variablesvi or their
negation (̄vi), from a set ofI variables: for instance,CK = v1 ∨ v̄3 ∨ v6. The 3SAT problem can be stated
as follows: is there a set of values forv1, . . . , vI such thatC1 ∧ C2 ∧ · · · ∧ CK is true? We explain the
reduction through the exampleC1 = v1 ∨ v̄2 ∨ v3, C2 = v2 ∨ v3 ∨ v4 (K = 2, I = 4) (Fig. 3).

For each variablevi, we have two placespi andp−i and two transitionsti andt−i. Arcs between places
and transitions forvi are as indicated in the figure. We have alsoK sets of placespCk,i (the introduction of
several places for eachC formulae ensures 1-safeness). Ifvi is inCk (like v2 andC2) there is an arc from
t−i to pCk,i and one arc frompCki to ti. In contrast ifv̄i is in Ck (like v̄2 in C1), these arcs are reversed.
Otherwise, there is no arc betweenti, t−i and placepCki. Places detailed in the right dotted part ensure
that the placepCk

will contain at most one token (pC2x is a mutex place). Finally, we have one transition
ts1 (for Success) and we added placeps and transitionts2 to have a�2-net and not only a�-net. We
choose an initial uniform affectationtrue for thevi. So the initial marking is chosen as follows: there is
one token inpi and one token in placepCki if vi occurs inCk.

We can easily verify that the net system is a 1-safe�2-net and that all transitions except possiblyts1, ts2
are live. Clearly, the formula is true for some set of boolean values of variables iff the transitionts1 is live
(and consequentlyts2 is also live). �

Thus, there is still an open problem for�2-nets since the upper bound of complexity for general Petri
nets is in PSPACE. By contrast, the next proposition provides an exact characterization of the complexity
of the problems for 1-safe�-nets.

Proposition 12.

1. The liveness and the reachability problems for 1-safe�-nets are PSPACE complete.
2. The reachability problem for�-nets is EXPSPACE-complete.
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Fig. 3. Reduction of 3SAT to liveness in 1-safe�2-nets.

Proof.

1. Let us first prove that the reachability problem for 1-safe�2-nets (RP for short) is PSPACE complete.
Since RP for 1-safe Petri nets is in PSPACE[11], we only prove that RP is PSPACE hard. To this end, we
reduce in polynomial time the termination problem of deterministic Türing Machines (DTM) with finite
length tape to RP. LetM be a DTM with a tape of lengthnon an alphabetA = {a1, . . . , am} (including
the blank character), a setQof states (withQF the subset of final states), and a (partially defined) transi-
tion functionδ(q, a) = (q′, a′, d) with d ∈ {n, l, r} (no move, left move, right move). A configuration of
M is a tuple〈a, q, i〉 with a ∈ An the current content of the tape,q ∈ Q the current state and 1≤ i ≤ n

the current position of the head. A change of configuration is denoted by〈a, q, i〉 →M 〈a′, q′, i′〉.
We encodeM by a Petri net systemS(M) = (N,m0). The set of places is partitioned into three

subsets:Ptape= {ci,j|1≤ i ≤ n,1≤ j ≤ m} encodes the possible values of the cells{i}1≤i≤n of the
tape;Q encodes the possible states ofM; Phead= {hi|1≤ i ≤ n} encodes the possible positions of the
head ofM. Givenq a state ofM, i a position of the head andj such thataj is the possible value of the
cell i, we definetq,ij a transition ofN which represents the change of configuration. For instance (see
Fig. 4), if δ(q, aj) = (q′, aj′, l), the transitiontq,i,j (i > 1) is defined as follows: there are three input
arcs fromq, hi andcij to tq,i,j and there are three output arcs fromtq,i,j toq′, hi−1 andci,j′ . Let us callm
an appropriate marking iff

∑
q∈Qm(q) = 1,

∑
1≤i≤nm(hi) = 1 and∀1≤ i,≤ n

∑
1≤j≤mm(ci,j) = 1.

There is an obvious one-to-one correspondence between the configurations ofM and the appropriate
markings ofN. We choosem0 as the appropriate marking corresponding to the initial configuration
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Fig. 4. Encoding a DTM with a Petri net.

of M. Givenm an appropriate marking, we note〈am, qm, im〉 the configuration corresponding tom.
Thus by construction, one hasm→tq,i,j m′ iff m′ is an appropriate marking andq = qm and i = im
anda(i) = aj and〈am, qm, im〉 →M 〈am′, qm′, im′ 〉.

This property shows thatS(M) is an exact simulation ofM. So the termination problem forM
is reduced to a coverability problem ofS(M), i.e. to find a reachable markingm s.t.m(q) = 1 for
someq ∈ QF . To get a reachability problem we may assume, without loss of generality, thatM has
moreover the following properties: the setQF is a singleton{qF }; in qF ,M is “reset”, i.e. the head ofM
is on the first case of the tape and∀i, bi = a1, and there is no transition fromqF . Then the termination
of M is now reduced to the reachability of the appropriate marking (denotedmF ) corresponding to
this final configuration.

Of courseS is not necessarily 1-safe�-net. Starting fromS, we define a 1-safe�-net system
S ′, adding for each transitiontq,i,j of N, its “reverse” transition denoted byt′q,i,j (the firings of the
“reverse” transitiont′ “undoes” the effect of the firing oft, i.e., the input places oft are the output
places oft′ and vice versa). Observe that inS′, starting from an appropriate marking, we reach only
appropriate markings.

We claim that the termination problem ofM is reduced to the reachability ofmF in S ′. Since
any firing sequence ofS is a firing sequence ofS ′, if M terminates thenmF is reachable inS ′. We
now prove that ifmF is reachable inS ′, thenmF is reachable inS and soM terminates. Assume
thatm0→σ ′mF , with σ ′ a firing sequence ofN′. We claim that there is a firing sequenceσ of N s.t.
m0→σmF . The proof is done by induction on|σ ′| = k. If k = 0,m0 = mF . If k > 0 and if there is no
“reverse” transition inσ ′ theσ = σ ′ otherwise let us denote byt′q,i,j the last reverse transition ofσ ′,
so thatm0→ut′q,i,jm→vmF andv is a sequence ofN. Then we have first|v| ≥ 1, because ifv is empty
thenq = qF the definition oftq,i,j implies thatδ(qF , aj) is defined which contradicts our hypotheses on
M. Sov = tq′,i′j′v

′. Consequently, we havem→tq,i,j andm→tq′,i′,j′ . Sincem is an appropriate marking
the above property and the fact thatM is deterministic ensure that〈q, i, j〉 = 〈q′, i′, j′〉. So, we have
m0→ut′q,i,j tq,i,jv

′
mF , implyingm0→uv′ mF with |uv′| < k anduv′ satisfies the induction hypothesis.

The reduction to the liveness problem may be done in the same way, extending the translated Petri
net systemS′ with extra places and transitions.

2. For symmetric nets systems, we know[10,34] that the reachability problem is EXPSPACE complete.
A net is symmetric iff for every transitiont, the reverset′ of t is a transition of the net. Symmetric
nets are clearly�-nets. Thus, the reachability problem is EXPSPACE-hard for�-nets. But any
�-net defines implicitly a symmetric net: for any transitiont, we may add a reverse transitiont′
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without changing the resulting reachability set, because from any closed T-semiflow of transitions to
which t belongs, one can pick the other transitions of this flow and build a sequence (following the
input/output bags) such that this sequence is firable iff the reverse transition is firable with the same
reached marking. Thus, the reachability problem for�-nets is reducible to the one for symmetric
nets, hence in EXPSPACE, and finally EXPSPACE complete.�

5. Conclusion

In this paper, we have characterized the class of rate-insensitive PF-�-nets giving a definitive answer
to a question partially solved in[13]. This characterization has two important features. It relies on purely
structural conditions (i.e., it is not defined in terms of the reachability graph) and it can be checked
in polynomial time with respect to the size of the net. Furthermore this structural characterization has
allowed us to extend the previous model with new dependencies between components of the net, thus
covering a broader range of applications. We have also studied the complexity of the reachability and
liveness problems in�-nets and�2-nets. We have established lower and upper bounds for the complexity
of different problems obtaining for some of them an exact characterization. This work has different
perspectives that we describe below:

• There are still some open problems about the exact characterization of checking some properties (e.g.,
the reachability problem in 1-safe�2-nets).

• The efficient computation of the normalization constant is closely related to the research of a compact
representation of the reachability set of the Petri net. When looking about our complexity results
seems that, in the general case, this objective is unrealistic. So we need to identify additional structural
properties that must enjoy a�2-net in order to obtain such a compact representation.

• Another direction which would enlarge the application of product-form methods would be to use it
as part of an approximate method. For instance, given a stochastic Petri net, we could compute the
T-semiflows, then we could define T-components of the net with respect to these semi-flows and we
should apply the product-form solution to a�2-net obtained by a slight transformation of the original
net. Obviously, this direction must be investigated in order to examine for which kinds of nets such a
method would give accurate (or acceptable) results.

• The implementation of the method is planned in the tool GreatSPN[12]. This will complement the
numerous functionalities of this software.

• Whereas this product-form strongly relies on the algebraic nature of Petri net (i.e., T-semiflows and
partial flows), we still believe that we can obtain similar but different product-forms for other models like
stochastic process algebra[23], queueing networks with resources[27,42]and networks of stochastic
automata[39].
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