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Abstract

Fluidification is a classical relaxation technique for
approximated performance evaluation of discrete sys-
tems. In this paper we deal with T-timed fully con-
tinuous Petri Nets working under infinite servers se-
mantics, what leads to (deterministic) piecewise linear
differential systems. Switches among dynamic linear
systems are triggered by internal events through mini-
mum operators on marking variables. The observabil-
ity problem consists of estimating the (initial) marking
from a partial measure. This paper is devoted to ob-
servability concepts and criteria in this particular class
of systems, not to the observers design. The concept of
structural observability, regarding to the possibility of
estimating the marking of places for any speed of the
transitions is introduced and studied for the subclass
of Join-Free Petri Nets (JF). For non Join-Free Petri
Nets, conditions to compute suitable estimates will be
established.

1 Introduction

Petri nets represent a powerful formalism for the
modelling of discrete concurrent systems [7, 12].
Stochastic T-timed Petri nets under infinite server se-
mantics is a well-known performance evaluation dis-
crete model [11, 1]. Under high traffic or heavy loads
discrete event systems often suffer from the state ex-
plosion problem. One of the possibilities to tackle this
problem is to relax the original discrete model.

This work was partially supported by project CICYT and
FEDER TIC2001-1819 and DPI2003-06376. Jorge Júlvez is sup-
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Fluidification is a relaxation technique in which dis-
crete elements of the system are taken as continuous.
As in other discrete event systems, the continuous re-
laxation of Petri nets has been introduced in order
to deal with the state explosion problem. Under in-
finite servers semantics, a timed continuous Petri net
system can be seen as a deterministic piecewise linear
system [13, 14], i.e., the evolution of the state of the
system is ruled by a set of switching linear differential
equation systems. Hence, there exists the chance of
applying some results coming from Systems Theory to
continuous Petri nets. The timed continuous Petri net
system has the particularity that, at a given instant,
the differential equations that rule its evolution depend
uniquely on the state of the system (marking). Hence,
the switch from one linear differential equation system
to another one is activated by an internal event, i.e.,
by a certain change in the marking of the system.

Analysis and synthesis are two major issues of study
regarding continuous Petri nets. Focusing on synthesis,
a crucial topic of research is the design of control laws
that drive the evolution of the system in a desired way.
When considering discrete event systems, it has to be
noticed that scheduling problems are in fact dynamic
performance control problems.

In order to control a dynamic system, frequently it is
necessary to know its current state. In order to gather
this information, sensors can be placed on several lo-
cations of the plant being modeled. However, it may
happen that some state variables of the system cannot
be directly measured by sensors. It can also happen
that the cost of the sensors required to measure every
state variable is prohibitive. In a general dynamic sys-
tem, under some conditions, some of the variables that
cannot be directly measured can be estimated. This
estimate constitutes the observation. The observabil-



ity problem, i.e., the characterization of which state
variables are observable and its observation, has been
studied in detail in the framework of linear systems (see
for example [8, 3]). For these systems, the observable
subspace can be characterized algebraically. A system
state estimation based on such algebraic equation can
be theoretically obtained from the computation of the
derivatives of the output signal.

Observability problems have also been studied in the
discrete event systems setting (see for example [9, 4]).

The main goal of this paper is the study of observ-
ability in the framework of continuous Petri net sys-
tems [2, 13]. Our attention is first focused on the study
of net systems without synchronizations, named Join
Free (JF) systems. For this class of net systems a linear
differential equation system describes its behavior, thus
classical results on observability of linear systems apply
here. For JF systems, an effort has been made to intro-
duce and study the concept of structural observability.
A JF system is said to be structurally observable if its
marking can be estimated independently of the speeds
of the transitions. Results on structural observability
for JF systems that are presented in this paper can be
extended to other linear systems. Afterwards, general
systems including synchronizations will be considered.
Some inherent features of continuous Petri net systems
allow us to extract less restrictive observability condi-
tions than the ones known for general piecewise linear
systems [15].

The paper is structured as follows: In Section 2 con-
tinuous Petri nets are introduced. In Section 3 the ob-
servability problem for continuous Petri nets is stated
in a similar way to the observability problem for linear
systems. In Section 4 we concentrate on JF systems.
For this type of systems, structural conditions of ob-
servability are obtained from the output of a fix point
algorithm. Section 5 is devoted to the study of the
problem for general Petri net systems. Section 6 sums
up the main results of the paper.

2 Continuous Petri Net Systems

2.1 Untimed Continuous Petri Net Systems

The reader is assumed to be familiar with Petri nets
(PNs) (see for example [7, 12]). The Petri net systems
that will be considered are continuous. Continuous sys-
tems are obtained as a relaxation of discrete ones. Un-
like ’usual’ discrete systems, the amount in which a
transition can be fired in a continuous Petri net sys-
tem is not restricted to be a natural number. Firing of
a transition a non-negative real amount of times may
cause the marking of the system to become a vector of
real numbers. A PN system is a pair 〈N ,m0〉, where

N specifies the net structure, N = 〈P, T,Pre,Post〉
and m0 is the initial marking. The sets of places and
transitions are denoted by P and T respectively. Ma-
trices Post and Pre are the arc weight arc matrices
and C = Post − Pre is the token flow matrix. The
set of input (output) places of a given set of transitions
V is denoted as •V (V •). Respectively, the set of in-
put (output) transitions of a given set of places W is
denoted as •W (W •). As in discrete nets, continuous
nets can be classified according to their structure. A
net is Join Free (JF) iff every transition has only one
input place (for every t, |•t| = 1).

In continuous Petri net systems a transition t is
enabled at a marking m iff every input place of t
is marked (every p ∈ •t, m[p] > 0). As in dis-
crete systems, the enabling degree at marking m of
a transition measures the maximum amount in which
the transition can be fired in a single occurrence, i.e.,
enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t
in an amount α ≤ enab(t,m) produces a new mark-
ing m′, and it is denoted as m αt−→m′. It holds m′ =
m + α ·C[P, t], hence, as in discrete systems the state
equation m = m0 + C · σ summarizes the way the
marking evolves, where σ is the firing count vector.

2.2 Timed Continuous Petri Net Systems

For the timing interpretation, a first order (or deter-
ministic) approximation of the discrete case [10] will
be used, assuming that the delays associated to the
firing of the transitions can be approximated by their
mean values. Each transition t has associated an in-
ternal firing speed λ[t] > 0. The state equation has an
explicit dependence on time m(τ) = m0 + C · σ(τ).
Deriving with respect to time, ṁ(τ) = C · σ̇(τ) is
obtained. Let us denote f = σ̇, since it represents
the flow through the transitions. In this paper it will
be assumed that every transition has at least one in-
put place. Infinite servers semantics will be consid-
ered. Under this semantics, the flow of a transition is
given by the product of λ and its enabling degree, i.e.,
f [t] = λ[t] ·enab(t,m) = λ[t] ·minp∈•t{m[p]/Pre[p, t]},
what leads to a non-linear system.

In JF systems, transitions have only one input place,
and so the computation of the enabling degrees does
not require the min operator. Hence, the flow of
the transitions can be expressed as f = Ψ · m where
Ψ[t, p] = λ[t]/Pre[p, t] if p = •t, Ψ[t, p] = 0 otherwise.
Consequently, the evolution of the marking can be de-
scribed by an equation in the form ṁ = C · f = A ·m,
where A = C ·Ψ. Hence, a JF system can be inter-
preted as a linear system.

For a general system, matrix A is not constant
but piecewise-constant. The value of A at a given



instant is determined by the marking m at that in-
stant. To compute A, it is necessary to know the
set of places that is actually enabling the transitions,
i.e., the set of places that are giving the minimum
in the expression for the enabling degree. Once this
set is computed, it is easy to establish a linear re-
lationship between the marking of the places in this
set and the flow of the transitions: ṁ = A ·m, with
A = C ·Ψ where Ψ[t, p] = λ[t]/Pre[p, t] if p ∈ •t and
m[p]/Pre[p, t] = minq∈•t{m[q]/Pre[q, t]}, Ψ[t, p] = 0
otherwise.

The marking of the places restricts the behaviour
of their output transitions. For each marking m, its
PT-set can be defined as the set of all the pairs, (p, t),
such that the marking of p is restricting the flow of
transition t at marking m.

Definition 1 Given a net system, the PT-set at a
marking m is

PT-set(m) = {(p, t) | f [t] = λ[t] ·m[p]/Pre[p, t]} (1)

Obviously, for JF systems a unique PT-set exists,
and ṁ = A · m. Otherwise, if the PT-set is known,
the system evolves according to ṁ = A1 ·m where A1

depends on PT-set(m) and the λ of the transitions. If
at a given instant the PT-set changes, i.e., a transition
is restricted by other input place, the system will be
ruled by another linear system ṁ = A2 ·m. That is,
every PT-set, k, has associated a square matrix Ak and
a linear system Σk : ṁ = Ak ·m. The set of PT-sets
that will be active during the evolution of the system,
i.e., behavioral PT-sets, depends on the net structure
and the initial marking. If the initial marking is not
known, the net structure defines the set of potential
PT-sets, i.e., structural PT-sets, that might be active.
Clearly, the set of structural PT-sets contains the set
of behavioral PT-sets.

In this way, a continuous Petri net system can be
seen as a piecewise linear system in which the switches
among the linear systems are activated by internal
events, i.e., the change from one PT-set to another
does not need any external agent, just a certain change
in the system marking. Due to the way in which the
system evolution is defined, it can be assured that the
marking of the system and its first derivative with re-
spect to time are continuous.

In order to illustrate the evolution of a non JF
system, let us consider the system in Figure 1 with
initial marking m0 = (3 0 0) and transition speeds
λ = (0.9 1 1). If m[p1] ≤ m[p2], the flow of transition
t2 will be defined by the marking of p1 (Σ1) and the
PT-set will be {(p1, t1), (p1, t2), (p3, t3)}. Similarly, if
m[p1] ≥ m[p2] the flow of t2 will be restricted by p2

2

p1 t1 p2

t2

p3

t3

Figure 1. A non JF net system with two PT-sets.

(Σ2) and the PT-set will be {(p1, t1), (p2, t2), (p3, t3)}.

Σ1 : ṁ =



−1.9 0 2
−0.1 0 0

1.0 0 −1


 · m

Σ2 : ṁ =



−0.9 −1 2

0.9 −1 0
0.0 1 −1


 · m

At the time instant in which m[p1] = m[p2], Σ1 and
Σ2 behave in the same way and any of them can be
taken. Figure 2 shows the evolution of the system along
time. At the beginning the system evolves according
to Σ2. Then a switch occurs and the dynamics of the
system is described by Σ1. A second switch turns the
system back to Σ2, the system stabilizes and no more
switches take place.

Notice that for a given marking, the set of places
that are not in the PT-set do not play any role in the
evolution of the system. Mathematically this is ex-
pressed by null columns in the system matrix Aj cor-
responding to the places that are not in the PT-set.
Such places can be temporarily considered as a kind of
timed-implicit places, since the system evolution does
not depend on them. However, when a switch occurs,
at least one place that was acting as timed-implicit be-
comes member of the new PT-set. For the net system
in Figure 1 with m0 = (3 0 0), p2 is timed-implicit
only in the period when Σ1 is describing the system
dynamics.

3 Observability: Problem Statement

Let us consider first linear time invariant systems,
for which observability has been thoroughly stud-
ied [6, 8, 3]. An unforced linear system (i.e., without
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Figure 2. Marking evolution of the system in Fig-
ure 1 with m0 = (3 0 0).

inputs) is usually expressed by equations ẋ = A·x,y =
S · x where x is the state of the system and y is the
output, i.e., the set of measured variables. The state
space is denoted as X. Knowing the matrices A and
S and being able to watch the evolution of y, a linear
system is said to be observable iff it is possible to com-
pute its initial state, x(t0) (in fact, since the system is
deterministic, knowing the state at the initial time is
equivalent to knowing the state at any time).

In Systems Theory a well-known observability cri-
terion exists that allows to decide whether a conti-
nous (deterministic) time linear system is observable or
not [8, 3]. Besides, several approaches exist to compute
the initial state of continuous time linear system that
is observable. Nevertheless, in order to simplify the
presentation of the results and make them more intu-
itive, the evolution of the systems will be expressed in
discrete time (continuous time will be used only when
dealing with structural observability, in Section 4) .

Given a linear system of dimension n expressed in
discrete time, x(k + 1) = F · x(k), y(k) = S · x(k) the
output of the system in the first n− 1 periods is:




y(0)
y(1)
y(2)

..
y(n− 1)


 =




S
S · F
S · F2

..
S · Fn−1


 · x0 = ϑ · x0 (2)

The matrix ϑ is called observability matrix [6, 8, 3].
The linear system is observable iff ϑ has full rank. For
a non observable system it is possible to decompose
the state space X into two subspaces: the observable
subspace, Xo, and the non observable subspace, Xno. It

can be verified that Xno is the kernel of ϑ, i.e., ϑ·Xno =
0, because it does not have any influence on the vector
of outputs.

Let us now consider timed continuous Petri net sys-
tems. As it has been seen, the evolution of a Petri net
system is ruled by a set of switching linear systems,
each one associated to a PT-set, where the state vec-
tor is the marking of the net, m. Every linear system
Σi : ṁ = Ai ·m associated to a PT-set of the Petri net
can be discretized in time. The associated discrete time
system can be written as Σd

i : m(k + 1) = Fi ·m(k),
with Fi = eAi·δ where δ is the time period. The out-
put of the net system is given by y = S ·m. Here it
will be assumed that each place is either measured or
unmeasured. It will be said that a place pi is measured
iff there exists a row j in S such that S(j, i) 6= 0 and
S(j, k) = 0 for every k 6= i.

Let us define the concept of observability for a con-
tinuous Petri net system:

Definition 2 Let N be a continuous Petri net system,
λ the internal speeds of the transitions, and D the set
of measured places.

• A place p ∈ P is observable from D iff it is possible
to compute its initial marking m0[p] = m(τ0)[p] by
measuring the marking evolution of the places in
D.

• N is observable from D iff every place p ∈ P is
observable.

Applying [8, 3] an observability criteria is immedi-
ately deduced:

Property 3 Given a Petri net system and Σd
i : m(k+

1) = Fi ·m(k) the linear system associated to PT-set
i. The PT-set i is observable iff its associated observ-
ability matrix ϑi has full rank.

Clearly, when the net system is ruled by an observ-
able PT-set the marking of all the places can be com-
puted through Equation 2.

For a general PT-set, the places not in the PT-set
can be considered as timed-implicit and do not play any
role in the dynamics of the system (see Subsection 2.2).
Consequently, no information about the marking of the
timed-implicit places can be inferred from the marking
of the places in the PT-set. Therefore, if a PT-set is
wanted to be observable, the only way to compute the
marking of the timed-implicit places is to take them
directly in the output matrix S.

Notice that every Fi is an exponential matrix and
therefore it can be inverted. Hence continuous Petri
net systems can be simulated backwards if the actual
marking is known. Observe that the PT-set changes



can be detected also from the backwards simulation.
This implies that if the marking of the system at a
given instant is known then the marking of the system
at any previous instant can be computed.

4 Observability in Join Free Systems

As already pointed out, in continuous JF systems
the evolution of the marking can be modelled as ṁ =
A ·m (or m(k +1) = F ·m(k) if time is discrete or dis-
cretized). As in Property 3, the existing observability
criterion for linear systems can be directly applied. In
this section, an effort is made to extract an observabil-
ity criterion that is independent of the internal speeds
of the transitions, i.e., vector λ.

4.1 Structural Observability

Definition 4 Let N be a continuous Petri net and D
the set of measured places of the system:

• Place p is structurally observable from D iff it is
observable from D for any λ > 0.

• N is structurally observable from D iff every
place p is structurally observable.

In other words, structural observability looks for ob-
servability for any λ, like structural boundedness looks
for boundedness for any m0. As an example, let us
suppose that the only measured place of the system
in Figure 3 is p3 and that the vector λ is known.
The variation, i.e., the derivative, of the marking of
a place is given by the difference between its input
and output flows. For p3, we have ṁ[p3] = f2 − f3
where: f2 = λ[t2] ·m[p2] and f3 = λ[t3] ·m[p3], and so
m[p2] = (ṁ[p3] + λ[t3] ·m[p3])/λ[t2]. Therefore, from
the evolution of m[p3], m[p2] can be computed. Fur-
thermore, it holds ṁ[p2] = f1−f2 and f1 = λ[t2]·m[p1].
Thus, being m[p2] computable, m[p1] can also be com-
puted. This procedure can be carried out whatever the
value of λ is, i.e. this net is structurally observable.

t3t2t1p1 p2 p3

Figure 3. A JF net system whose marking can be
computed from the observation of p3.

This result can be easily generalized:

Proposition 5 Let N be a continuous JF Petri net
and D the set of measured places. Let p be a place such
that a path from p to D exists in which all the places

p3

2

t3

t2t1

p1 p2

Figure 4. A JF net system whose marking cannot
be computed from the observation of p3 if λ[t1] =
λ[t2], because t1 and t2 make an attribution to p3.

have only one input transition (i.e., it is attribution
free). Then, p is structurally observable.

Proof: In a JF system, the output flow of
a place p is proportional to its marking, fout[p] =∑

t∈p• Pre[p, t] · λ[t] · enab(t,m) =
∑

t∈p• λ[t] · m[p].
From ṁ[p] = fin[p] − fout[p], if m[p], and ṁ[p] are
known, the total input flow of p can be obtained. If
place p has only one input transition it is easy to ob-
tain the marking of the input place of that transition,
fin[p]/Post[p, •p] = λ[•p] ·m[•(•p)]/Pre[•(•p), •p].

However, for the system in Figure 4, if p3 is mea-
sured, it is not possible to observe p1 or p2 if λ[t1] =
λ[t2] (it can be seen that the observability matrix does
not have full rank unless this condition holds). Intu-
itively, if the flow of both transitions comes with “the
same speed” it cannot be decided how much comes
from each source. Hence, this net is not structurally ob-
servable. However, it is observable when λ[t1] 6= λ[t2].

On the contrary, from the knowledge of the mark-
ing of place p it is not possible to compute the mark-
ing of the place(s) (p•)•: Let p′ ∈ (p•)•, and as-
sume to simplify that p• = •p′ = t. To compute the
marking of p′ it would be necessary to solve ṁ[p′] =
fout[p]·Post[p′, t]/Pre[p, t]−fout[p′]. If the initial mark-
ing of p′ is not known that equation cannot be solved
whatever the value of Pre,Post and λ are. This means
that from the measured places at most the marking of
the supplying places can be inferred.

Moreover, it can be proved that the set of places
whose marking can be computed does not depend on
the “output” of the measured places.

Proposition 6 Let N be a continuous JF Petri net
and D the set of measured places. The observable sub-
space (and so the set of structurally observable places)
neither depends on the output arc weights of the mea-
sured places, Pre[p, T ] ∀p ∈ D, nor on the firing



speeds of their output transitions, λ[t] ∀ t ∈ D•, nor
on the output arc weights of their output transitions,
Post[p, T ] ∀ p ∈ (D•)•.

Applying Proposition 6 to the system in Figure 5(a)
with p4 as the only measured place, the observable sub-
space of the system does not depend on the values of
r, s, t, q, λ[t4]. Even after removing the input/output
arcs of transition t4 as in Figure 5(b) (this is equiva-
lent to λ[t4] = 0), the obtained system is identical to
the original one in terms of observability.

p1 p2

t1 t2

a b

t4

p4

q

fed

r s t

t3

p3

c

(a)

p1 p2

t1 t2

a b

p4

fed

t3

p3

c

(b)

Figure 5. Two net systems with identical observ-
able subspaces if the only measured place is p4.

According to Proposition 6 the output transitions of
the measured places can be removed (by setting their
λ to zero) without affecting the observable subspace of
the system. Therefore:

Corollary 7 Let N be a continuous Petri net and D
the set of measured places. If a place p is structurally
observable then a forward path from p to D exists.

As an example, let us consider that the only mea-
sured place in Figure 3 is place p2. Using the derivative
of the marking of p2 the marking of p1 can be com-
puted. However, there exists no forward path going
from p3 to p2 and therefore, according to Corollary 7,
p3 is not structurally observable. Intuitively, the mark-
ing of p3 cannot be deduced from its input flow.

4.2 Computation Algorithm

A similar approach to the one taken to observe p1

and p2 in the system in Figure 3 can be used to ob-
serve p1 and p2 in the system in Figure 6, where the
measured places are p3, p4 and p5. Let us consider a
matrix Postu ∈ IR|P |×|T | containing only the output
arc weights of the transitions whose flow is, “in princi-
ple”, unknown, i.e., the marking of their input places is
not known. More formally, for the iterative algorithm
that will be proposed, Postu[i, j] = 0 if the marking

of the place •tj is measured or has been computed in
previous iterations, and Postu[i, j] = Post[i, j] other-
wise.

t3

p1 p2 p3

t1 t2

q r s

a
b c d e

f

p4 p5

Figure 6. A JF system whose marking is com-
putable from the evolution of p3, p4 and p5.

Here, the first three rows (that correspond to places
p1, p2 and p3) of Postu are zeros and the forth and fifth
rows (that correspond to places p4 and p5) are (a c 0)
and (b d 0), respectively. The marking evolution of
places p4 and p5 is known (because they are measured)
and here it is equal to their input flow. Subtracting
the flow coming from p3, fp3

i4 and fp3
i5 , we will obtain

the flow coming from the unknown places p1 and p2:

(
ṁ[p4]− fp3

i4

ṁ[p5]− fp3
i5

)
=

(
a c
b d

)
·




λ[t1] · m[p1]
q

λ[t2] · m[p2]
r




Hence, if the matrix (a c; b d) has full rank it will
be possible to compute the markings of p1 and p2 in-
dependently of the λ of the transitions.

The procedure developed for the above examples can
be generalized leading to a fix point algorithm. The
goal of the algorithm is, given a set of measured places,
D, deduce which places of the net system can be ob-
served for whatever value of λ. The basis of such itera-
tive algorithm is to look for sets of places whose mark-
ing has been computed in previous iterations and such
that the matrix composed of their input arcs weights
has full rank. If such a set exists, then it is possible to
compute the marking of the supplying places.

Given a set of places H, Postu
H denotes a matrix

composed by the rows of Postu corresponding to the
places in H, and whose null columns have been re-
moved. The input data of the algorithm are the net
structure, N , and the set of measured places, D. The
output of the algorithm is the set of places, Q, that
are observable for every λ. At a given iteration, Q
stores the set of places whose markings are known to
be computed till that instant.

Algorithm 8

Input (N , D)



Output Q % places that can be observed ∀ λ > 0
Q := D
Compute Postu

While ∃ H ⊆ Q, such that •(•H) 6⊂ Q and
Postu

H has full rank do
Q := Q∪ •(•H)
Compute Postu according to Q

End While

The following statements establish sufficient condi-
tions for structural observability:

Proposition 9 Let N be a JF net, D the set of mea-
sured places and Q the output of the Algorithm 8 ap-
plied on (N , D):

• Every place p ∈ Q is structurally observable.

• If Q = P (the set of places of N ) then the net is
structurally observable.

p4

2

p2

p1

t2

t1 p3
2

3

t3

t4

p5 t5
p6

t6

Figure 7. A JF net system that is structurally
observable.

If the measured places of the system in Figure 7 are
p4 and p6, the first iteration of Algorithm 8 on this
system includes p5 in the set of observable places. The
second iteration includes p3 and the third and last it-
eration includes p1 and p2. Therefore, it can be con-
cluded that the whole net is structurally observable.

p1 p2

t1 t2

p3

Figure 8. A JF system for which Algorithm 8
does not conclude that it is structurally observ-
able.

Unfortunately, the conditions given in Proposition 9
are only sufficient for structural observability. The

execution of Algorithm 8 on the system in Figure 8,
whose only measured place is p3, yields Q = p3,
i.e., Proposition 9 cannot decide whether the sys-
tem is structurally observable or not. Nevertheless,
the observability matrix, ϑ, for that system is ϑ =
(0 0 1; λ[t1] λ[t2] 0;−λ[t1]2 0 0) which has full rank
for every λ > 0. Therefore the system is structurally
observable.

Although a formal proof is missing, after testing a
wide variety of examples, it seems reasonable to think
that the condition on Proposition 9 is necessary and
sufficient for those JF systems that are conservative.

5 Observability in General Net Sys-
tems

As mentioned in Section 2, continuous Petri net sys-
tems under infinite servers semantics can be seen as
piecewise linear systems. The goal of this Section is
the study of the conditions under which the initial PT-
set as well as the initial marking can be unequivocally
determined.

A way to face this problem consists of computing
an estimate for every structural PT-set of the net. For
simplicity, let the estimates be obtained by means of
Equation 2 defined for n− 1 consecutive periods. The-
oretically and assuming that there is no noise, time
discretization (δ) can be done as small as desired. It
can be assumed that, for a small enough δ, no switch
between PT-sets takes place in the first n− 1 periods.
The computed estimates can be used to filter those PT-
sets that for sure are not ruling the evolution of the
system. If only one PT-set remains, then the system
evolves according to it.

The sorts of non suitable estimates that allow to
filter a PT-set are:

• Infeasible estimates: No solution of Equation 2

• Incoherent estimates: The PT-set of the estimate
is not the one for which it was computed

• Suspicious estimates: The estimate belongs simul-
taneously to several PT-sets.

5.1 Infeasible and Suspicious Estimates

Let us show through an example how infeasible and
suspicious estimates can be used to filter PT-sets.

Consider a system composed of a single synchroniza-
tion with two input places p1 and p2 (see Figure 9). The
net has two structural PT-sets, either W1 = {(p1, t1)}
or W2 = {(p2, t1)}. If the time period is one time unit,
the evolution of the system according to PT-set W1 is



t1

p1 p24 2

Figure 9. A simple synchronization with two in-
put places.

ruled by the matrix F1 = (e−1 0; e−1−1 1). The sys-
tem matrix for PT-set W2 is F2 = (1 e−1 − 1; 0 e−1).
Considering that the initial marking is m0 = (4; 2), the
initial PT-set for the system is W2, and after one time
unit the marking will be m(τ = 1) = (2·e−1+2; 2·e−1).

As external agents of the system we will consider 4
cases (see Figure 10): The output of the system, i.e.,
measured place, can be either p1 or p2; the PT-set that
is assumed to be ruling the net system can be either
W1 or W2.

   PT−set
Estimate

output
System

W2

W1
Infeasible estimation

case 1

Right estimation

( m1 = m2 )

Suspicious estimation

case 4case 2

case 3

Right estimation

of m2of m1 and m2

p1 p2

S=(0 1)S=(1 0)

Figure 10. The four possible cases for an estimate
for the system in Figure 9.

In the first two cases m[p1] is the output of the sys-
tem (y = (4; 2 · e−1 + 2)):

Case 1: W2 is assumed to be the PT-set. For this
case ϑ = (1 0; 1 e−1 − 1) whose rank is 2. Us-
ing Equation 2 the initial marking m0 = (4; 2) is
obtained.

Case 2: W1 is assumed to be the PT-set. The ob-
servability matrix is ϑ = (1 0; e−1 0). Equation 2
has no solution.

In this way, by means of an “infeasible” estimate (case
2), it has been detected that the PT-set of the system
is W2.

If p2 is measured, (y = (2; 2 · e−1)), the two cases
are:

Case 3: W2 is assumed to be the PT-set. ϑ =
(0 1; 0 e−1), which is not a full rank matrix. The
observable subspace is in this case m[p2], i.e., only
the marking of p2 is known. The application of
Equation 2 yields m0[p2] = 2.

Case 4: W1 is assumed to be the PT-set. The observ-
ability matrix is ϑ = (0 1; e−1−1 1) which has full
rank. The solution for Equation 2 is m0 = (2 2),
different from the real initial marking of the sys-
tem.

The at first glance surprising result yielded in Case
4 will be obtained for any initial marking of p1 greater
than or equal to 2. The reason for this phenomenon
is that the output of the system, m[p2], is evolving
according to the flow of the transition t1 that depends
only on m[p2]. The estimator “thinks” that the flow
of the transition is ruled by p1 (W1 is assumed), so
the only way in which p2 can evolve according to the
output y is assigning the same initial marking to both
places.

An initial marking m0 = (2 2) would mean that
at the beginning the system is in both PT-sets, W1

and W2. If we assume that the initial marking was
really (2 2) both PT-sets (case 3 and case 4) would
correctly estimate here the marking of p2. The PT-set
W1 can also estimate the marking of p1, but it is not
possible to know whether this estimate is correct since
the same estimate would have been obtained for any
m0[p1] ≥ 2. Therefore, it seems safer to stick to the
PT-set W2, even if it might mean losing some informa-
tion. Those estimates that belong to several PT-sets
will be considered “suspicious estimates”. Notice that
the only non desirable effect that may happen after fil-
tering suspicious estimates is that some information (in
case 4 the estimate of p1) is lost if the system was re-
ally in several PT-sets. However, for sure the estimate
that is not filtered (case 3) is correct.

5.2 Incoherent Estimates

Another rule to filter a PT-set is that the estimates
should be coherent with the PT-set for which they are
computed. In other words, it does not make sense to
consider an estimate that assigns a greater marking to
p1 than to p2, if the PT-set for which it is computed
happens when m[p1] ≤ m[p2].

By means of Equation 2, it is possible to compute
the set of estimates for a given PT-set. If the matrix ϑ
has full rank, then only one estimate is possible for the
PT-set. Otherwise, a set of possible estimates appears.
In order to avoid those estimates that are not coherent
with the PT-set, a set of inequalities may be added to
Equation 2.



As an example, suppose that we are interested in
computing an estimate for the system in Figure 1. That
net has two structural PT-sets: we will say that the
system is in PT-set W1 if m[p1] ≤ m[p2] and the sys-
tem is in PT-set W2 if m[p1] ≥ m[p2]. In the case that
m[p1] = m[p2], the system is considered to be in both
PT-sets simultaneously. Two estimates will be com-
puted for this system, one per PT-set. The estimate
corresponding to PT-set W1, m̂(1)

0 , (W2, m̂(2)
0 ) has to

be solution of Equation 2 with ϑ computed for the lin-
ear system associated to the PT-set and m̂(1)

0 (m̂(2)
0 )

has to fulfill m̂(1)
0 [p1] < m̂(1)

0 [p2] (m̂(2)
0 [p1] > m̂(2)

0 [p2]).
The use of strict inequalities allows to filter also sus-
picious estimates like the one shown in Subsection 5.1.
If there were no solution with strict inequalities, equal-
ities would have to be added taking care of the suspi-
cious cases.

5.3 Deciding on Observability

Let us observe the output of the system in Figure 1
during three time periods in order to have enough out-
put information to use Equation 2. Let us assume
that no change of PT-set has taken place during these
three time periods. After the observation, two equa-
tion systems, E1 and E2, can be defined to compute
an estimate for the initial marking. The system E1

(resp. E2) contains Equation 2 with ϑ1 (resp. ϑ2) and
the set of inequalities that defines the PT-set W1, i.e.,
m̂(1)

0 [p1] < m̂(1)
0 [p2] (resp. W2, m̂(2)

0 [p1] > m̂(2)
0 [p2]). If

only one of those equation systems has solution, that
equation system corresponds to the initial PT-set of the
net system. If both equation systems, E1 and E2 have
solution, it is not possible to decide the initial PT-set
of the system. The case in which none of the equation
systems has solution happens when the initial marking
of the system is in both PT-sets at the same time, i.e.,
m0[p1] = m0[p2]. In this case, the inequalities in E1

and E2 must be substituted by m̂(1)
0 [p1] = m̂(1)

0 [p2].
Any solution of E1 or E2 is a suitable estimate for the
initial marking.

For a general Petri net system with k structural PT-
sets, a set of equation systems, E1 . . . Ek, can be de-
fined. Each Ei contains Equation 2 with ϑi and the set
of inequalities that defines the PT-set.

Proposition 10 Let 〈N , λ,m0〉 be a continuous sys-
tem, whose initial marking, m0, is unknown but be-
longs to only one PT-set. Let S be the output matrix
of the system and Ei the set of equations associated to
the i-th PT-set.

Then the PT-set of m0 can be determined before a
switch to another PT-set happens iff only one system
Ei, 1 ≤ i ≤ k has solution.

Proof:
(⇒) Let us assume that more than one system, Ei and
Ej , have solution. This would imply that at least two
estimates for the initial marking exist, one for Ei and
one for Ej . Taking those estimates as initial mark-
ing, the constraints for the PT-sets that Ei and Ej

represent are verified, and the system output evolves
according to the dynamics of Ei and Ej . This means,
that both estimates are feasible, and so the initial PT-
set of the system cannot be determined.
(⇐) If only one system Ei has solution, it means that
from the initial marking the output of the system can
only evolve according to the equations in Ei.

In relation to general piecewise linear systems, de-
termining the PT-set of a continuous Petri net is equiv-
alent to determining the linear system that at a certain
moment rules the evolution of the piecewise linear sys-
tem. However, the condition that establishes whether
it is possible to determine the linear system is much
harder in general piecewise linear systems: in contrast
to the condition in Proposition 10, it is required that
the joint observability matrix of every couple of linear
systems has full rank [15, 16]. This difference is due to
the fact that in Petri nets the PT-set depends only on
the marking (and the net structure).

For a system 〈N , λ,m0〉, the verification of the con-
dition in Proposition 10 implies that the initial PT-set
can be determined. However, it does not imply that the
initial marking can be obtained. This happens when
there exists only one system Ei that has solution, but
the solution is not unique, i.e., there exists a non ob-
servable subspace. Assume that 〈N ,λ,m0〉 switches
to a PT-set that corresponds to an observable linear
system. By using Equation 2 during the evolution of
the system in this new PT-set, the complete marking
can be computed. Once the complete marking of the
system is known, the system can be “simulated” back-
wards, see Section 3. Since timing is deterministic, a
backwards simulation till the initial time yields the ini-
tial marking, i.e., the system is observable.

Proposition 11 Let 〈N ,λ,m0〉 be a continuous sys-
tem and S the output matrix. If the evolution of the
marking of 〈N , λ,m0〉 passes through an observable
PT-set then the system is observable.

In other words, Proposition 11 implies that having a
period in the evolution of the system during which the
PT-set allows to compute the complete current mark-
ing is enough to determine the initial marking.

6 Conclusions

The performance model of continuous Petri nets
working under infinite servers semantics has been con-



sidered. Structural observability has been introduced
and studied for continuous Petri net systems without
synchronizations. The main advantage of considering
structural observability is that it depends only on N ,
thus it can be parametrized by the internal speeds of
transitions, λ. That is, a structurally observable sys-
tem can be observed for any λ. A fix point algorithm to
compute the set of places that are structurally observ-
able has been presented. It is based on the net graph of
the system and some elementary algebraic properties.

A general (with synchronizations) timed continuous
Petri net can be analyzed as a specific kind of piecewise
linear system in which switches are triggered by inter-
nal events. By using some concepts of linear systems
theory, a marking estimate can be computed for each
structural PT-set. This may lead to a large number
of estimates. However, several cases have been shown
in which the estimate for a given PT-set cannot be a
suitable marking estimate: the estimate is either in-
feasible or incoherent or suspicious. Such non suitable
estimates must be “filtered”. The PT-set ruling the
evolution of the system can be identified iff only one
estimate is not filtered. Given that a (deterministic)
continuous Petri net system can be simulated back-
wards, it is enough that the system passes through a
observable horizon in order to be able to estimate the
initial marking. Therefore, the conditions for observ-
ability in continuous Petri nets that have been obtained
are much less restrictive than those for general piece-
wise linear systems [15].

Based on the results here introduced, the design
of suitable observers for continuous Petri nets can be
faced. In [5] a multi-linear observer is proposed. The
switches among the linear observers running in parallel
are triggered in such a way that the residual is mini-
mized.
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