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Abstract

The number of states in discrete event systems can increase exponentially with respect to the size of the system. A way to face thisstate
explosionproblem consists of relaxing the system model, for example by converting it to a continuous one. In the scope of Petri nets, the
firing of a transition in a continuous Petri net system is done in a real amount. Hence, the marking (state) of the net system becomes a vector
of non-negative real numbers. The main contribution of the paper lies in the computation of throughput bounds for continuous Petri net
systems with a single T-semiflow. For that purpose, a branch and bound algorithm is designed. Moreover, it can be relaxed and converted
into a linear programming problem. Some conditions, under which the system always reaches the computed bounds, are extracted. The
results related to the computation of the bounds can be directly applied to a larger class of nets calledmono T-semiflow reducible.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Different approaches have been studied to face the state
explosion problem that is inherent to large discrete event
systems. A frequent approach is to analyze a relaxed model.
A classical relaxation technique consists ofcontinuizingthe
system, i.e. the relaxed model is not discrete any more.
The idea of continuizing at net level a discrete Petri net
was introduced in the scope of manufacturing systems by
David and Alla (1987)(seeAlla & David (1998) for a re-
cent survey). Analogously, in parallel, developing structural
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analysis methods, linear programming techniques were in-
troduced instead of integer programming techniques (Silva
& Colom, 1987). However, for quantitative properties, some
precision may be lost, and even qualitative properties of
the discrete system may not be preserved by the continu-
ous one. For example, in general, the existence of home
states or mutual exclusion properties cannot be studied in
the continuous relaxation. Liveness (deadlock-freeness also)
of the continuous approximation is in general neither nec-
essary nor sufficient for the same property of the original
discrete model (Silva & Recalde, 2002). Furthermore, since
continuization implies removing a constraint (the integral-
ity of the firing), it could be thought that in timed systems
the throughput of the continuous system is an upper bound
of the discrete. However, this is not always the case (Silva
& Recalde, 2004). Hence, not every Petri net model can be
“reasonably continuized”, like not every non-linear system
can be “reasonably linearized”.

This paper focuses on the study of throughput bounds
for the subclass ofmono-T-semiflow(MTS) Petri nets(PN)
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(Campos et al., 1991). A Petri net is MTS if it is conservative
(i.e., all places are covered by P-semiflows), consistent and
has only one T-semiflow (i.e., all transitions are covered by
the unique minimal T-semiflow). Hence, it can be decided
in polynomial time whether a given net,N, is MTS or not.
MTS represents an important generalization ofchoice-free
nets (Teruel et al., 1997). A subclass of choice-free nets
are weighted-T-systems (Teruel et al., 1997), a weighted
generalization of the well-known subclass of marked graphs
(Commoner et al., 1971).

For the timing interpretation in transitions, a semantics of
infinite servers will be used (Silva & Recalde, 2002). Under
this firing semantics the continuous Petri net system behaves
as a piecewise linear system (Sontag, 1981).

The structure of the paper is the following: In Section 2,
timed continuous Petri nets are introduced, some interest-
ing/unexpected behaviors are shown and the class of MTS
systems is defined. In Section 3, some techniques to com-
pute throughput bounds are described and applied to a man-
ufacturing example. First, an algorithm based on a branch
and bound (b & b) technique is presented to compute upper
throughput bounds.A very similar algorithm can be designed
to compute lower throughput bounds. Then, it is shown how
upper bounds (less tight in general) can be polynomially
computed by means of a single linear programming prob-
lem. Conditions for reachability of the bounds computed by
this last approach are given. Even if MTS systems general-
ize a certain number of classical net subclasses, including
conflicts and synchronizations, Section 4 introduces a larger
class of nets,mono-T-semiflow reducible systems, to which
previous results can be applied. The main feature of a mono-
T-semiflow reducible system is that its visit ratio does not
depend on the initial marking and can be computed in poly-
nomial time. In Section 5, some conclusions are presented.

2. Timed continuous Petri nets

2.1. Basic definitions

We assume that the reader is familiar with Petri nets (PNs)
(see, for example, (Murata, 1989; DiCesare et al., 1993)).
The usual PN system,〈N,m0〉 (N = 〈P, T ,Pre,Post〉),
will be said to bediscreteso as to distinguish it from the
continuousrelaxation (Alla & David, 1998; Silva & Recalde,
2002). A first difference between continuous and discrete
PNs is in the firing of transitions, which in a discrete PN is
restricted to be in the naturals, while in continuous PNs is re-
leased into the non-negative real numbers. As a consequence
of this, the marking of the net system becomes also continu-
ous. It will be said that a transitiont isenabledatm iff for ev-
eryp∈•t , m[p]>0. In other words, for continuous systems
a transition is enabled iff every input place is marked. As
in discrete systems, theenabling degreeatm of a transition
measures the maximal amount in which the transition can be
fired in one go, i.e., enab(t,m)=minp∈•t {m[p]/Pre[p, t]}.
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Fig. 1. A continuous Petri net system.

The firing of t in a certain amount 0< ��enab(t,m) leads
to a new markingm′=m+� ·C[P, t], whereC=Post−Pre
is the token flow matrix. Hence, as in discrete systems, the
state (or fundamental) equation (m=m0+C·�) summarizes
the marking evolution.

All the concepts based on the representation of the net as a
graph can be directly applied to continuous nets, in particu-
lar, the conflict relationships. WhenPre[P, t]=Pre[P, t ′] �=
0, t andt ′ are inequal conflict(EQ) relation (Teruel & Silva,
1996). As an immediate generalization, it will be said thatt
andt ′ are incontinuous equal conflict(CEQ) relation when
there existsk >0 such thatPre[P, t] = k · Pre[P, t ′] �= 0.

Right and left natural annullers of the token flow matrix
C are called T- and P-semiflows, respectively. We call a
semiflowv minimalwhen its support,‖v‖, i.e., the set of its
non-zero components, is not a proper superset of the support
of any other semiflow, and the g.c.d. of its elements is one.
Wheny ·C=0, y>0 the net is said to beconservative, and
whenC · x = 0, x>0 the net is said to beconsistent.

For the timing interpretation ofcontinuousPNs a first-
order (or deterministic) approximation of the probability
density function will be used, assuming that the delays as-
sociated to the firing of transitions can be approximated by
their mean values. Here, as inSilva and Recalde (2002), in
order to compare behaviors, the discrete models are assumed
to be markovian. The state equation of a continuous Petri
net has an explicit dependence on timem(�)=m0+C ·�(�).
Deriving with respect to time,̇m(�)= C · �̇(�) is obtained.
Let us denotef = �̇, since it represents theflow through the
transitions.

Different semantics have been defined for continuous
PNs, the most important beinginfinite and finite servers
(Silva & Recalde, 2002) (variable and constantspeed, re-
spectively (Alla & David, 1998)). Infinite servers semantics
will be considered here. Under infinite servers semantics,
the flow through a transitiont is the product of thefiring
speed, �[t]>0, and the enabling degree of the transition,
i.e.,f [t]=�[t]·enab(t,m)=�[t]·minp∈•t {m[p]/Pre[p, t]},
leading to piecewise linear systems. A continuous timed
system will be represented as〈N, �,m0〉.

As an example, the equations that determine the flow
through transitions of the system inFig. 1are:f [t1]=�[t1] ·
min{m[p1]/2,m[p4]/2}, f [t2] = �[t2] · min{m[p2],m[p4]}
andf [t3] = �[t3] ·m[p3].
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Because of the existence of themin operator in the equa-
tion system, the state equation can be seen as commuting
among sets of ordinary linear differential equations (piece-
wise linearity). If the net is join free (i.e., each transition
has at most one input place) a single set of linear differ-
ential equations represents the evolution of the marking:
ṁ(�)=C·�·m(�),m(0)=m0 where�[t, p]=�[t]/Pre[p, t]
if p=•t , and 0 otherwise.

Definition 1. (Campos et al., 1991) A PN is a mono-
T-semiflow (MTS) net iff it is conservative and has a
unique minimal T-semiflow whose support contains all the
transitions.

Obviously, for MTS netsrank(C) = |T | − 1 (see
(Campos et al., 1991)). The results of this paper apply to
any MTS system that evolves through a transient and even-
tually reaches a steady state in which the marking of the
places and the flow through transitions remain constant.

A performance measure that is often used in discrete PN
systems is the throughput of a transition in the steady state,
i.e., the number of firings per time unit. In the continuous
approximation, this corresponds to the flow of the transition.
Observe that in the steady stateṁ(�)= 0, and so, from the
state equationC · fss= 0, wherefss is the flow vector of the
timed system in the steady state,fss= lim�→∞ f (�). Since
fss�0, the flow in the steady state is proportional tothe
minimalT-semiflow. The marking at the steady state will be
denoted asmss.

A classical concept in queueing network theory is the
“visit ratio”. In Petri net terms, the visit ratio of transi-
tion tj with respect toti , v(i)[tj ], is the average number of
timestj is visited (fired), for each visit to (firing of) the ref-
erence transitionti . Observe thatv(i) is a “normalization”
(v(i)[ti] = 1) of the flow vector in the steady state, i.e.,
v(i)[tj ]= lim�→∞ (f [tj ](�)/f [ti](�)). Hence, for anyti , fss=
�i ·v(i), with �i the throughput ofti . The vector of visit ratios
is a right annuler of the incidence matrixC, and therefore,
in MTS systems, proportional to the unique T-semiflow. For
MTS systemsfss=fss(N,�,m0), while v(i)=vi(N), i.e.,
the visit ratio does not depend neither on� nor onm0.

2.2. Remarkable behaviors of timed continuous systems

In this subsection someat first glanceunexpected behav-
iors of continuous MTS systems are briefly shown.

2.2.1. Continuous is not an upper bound of discrete
It could be thought that, since continuization removes

some restrictions of the system, the throughput of the con-
tinuous system should be at least that of the discrete one.
However, the throughput of a continuous PN isnot in gen-
eral an upper bound of the throughput of the discrete PN. For
instance, in the net system inFig. 2(a), with�=(3,1,1,10),
the throughput is 0.801 as discrete while it is only 0.535 as
continuous. If the continuous marking is seen as a very large
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Fig. 2. (a) A net system whose throughput as continuous is not an
upper bound for the throughput as discrete, with� = (3,1,1,10). (b),
(c) For this net system, with�[t2] = 1, increasing the rate oft1 does
not necessarily increase the throughput. Moreover a discontinuity point
appears at�[t1] = 2.

discrete marking, the reason for this “anomaly” lies in the
non-monotonicity of the throughput under initial marking
scaling (fromm0 to k ·m0, k >0 ) for discrete systems.

2.2.2. Non-monotonicities
Like in discrete nets, the throughput of a continuous net

system does not fulfill in general any monotonicity property,
neither w.r.t. theinitial marking, nor w.r.t. thestructureof
the net, nor w.r.t. thetransitions rates.

For example, with respect to the initial marking, if in the
timed net system ofFig. 2(a) the marking ofp5 is augmented
to 5, the systems deadlocks, i.e., the throughput goes down to
0. While if m0[p5] is reduced to 3 the throughput increases
from 0.535 to 1.071. Notice that this token (i.e., resource)
reduction is equivalent to adding a place “parallel” top5 (i.e.,
with an input arc fromt2 and an output arc tot1), marked with
3 tokens. Hence, with respect to the net structure, adding
constraints may increase the throughput!

Finally, an increase in a transition rate (for example, due
to a replacement by a faster machine) may also lead to a
decrease in the throughput. Moreover, a very small change
may have a large effect. For example, the solid curve in
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Fig. 2(c) represents how the throughput of the net system
in Fig. 2(b) changes if the rate oft1 varies from 0 to 4,
assuming�[t2]=1. Notice that even adiscontinuityappears
at�[t1]=2. Starting from the discrete underlying net system,
this effect can be interpreted as the limit case when the
number of discrete tokens goes to infinity (see the dotted
lines in Fig. 2(c) for the throughput of the discrete system
with initial markingm0 = (10 0 11), m0 = (50 0 55) and
m0 = (100 0 110)).

3. Performance evaluation bounds

In this section it will be shown how bounds for the
throughput of a continuous MTS system can be computed.
Section 3.1 presents a non-linear programming problem
that can be used to compute thetight bound of the system.
It will be explained later whattight means here. A way to
solve that programming problem consists in using a b & b
algorithm (Section 3.2). In Section 3.5 the programming
problem isrelaxed leading to a linear programming prob-
lem (LPP), although this may lead to a non-tight bound.
A sufficient condition for the reachability of the bound
computed by the obtained LPP is given in Section 3.5.1.

3.1. Formulating a non-linear programming problem for
performance bounds

Let mss be the steady-state marking of a continuous net
system. For every�>0, the following equations have to be
verified:

ṁ(�)= C · f (�), (1)

f (�)[t] = �[t] · min
p∈•t

{
m(�)[p]
Pre[p, t]

}
∀t ∈ T , (2)

m(0)=m0, (3)

mss= lim
�→∞ m(�). (4)

The above equations can be relaxed as follows (�ss and�ss
correspond tomss andfss):

�ss=m0 + C · �, (5)

�ss[t] = �[t] · min
p∈•t

{
�ss[p]

Pre[p, t]
}

∀ t ∈ T , (6)

C · �ss= 0, (7)

�ss,��0. (8)

Eq. (5) is obtained from (1) and (3), while (6) is a particular-
ization of (2). Eq. (6) may be seen as an application of the
underlying idea in the Little’s law for queueing systems (let
�[t]=1/�[t]): �[t] ·�ss[t]=minp∈•t {�ss[p]/Pre[p, t]}. For
JF nets it can be rewritten as:�ss[t]·Pre[•t, t]·�[t]=�ss[•t],
i.e., average flow of tokens by average residence time equals

average number of tokens (this idea was first used in the field
of Petri nets inChiola et al., 1993). Sincemss is a steady
state, from Eq. (1),C · fss= 0 is deduced, and therefore (7)
is immediately obtained.

With this relaxation we have replaced the condition of
being a reachable marking with being a solution of (5), the
fundamental equation. That is, we lose the information about
the feasibility of the transient path. Observe that the system
is non-linear (min operator) and that it may have several
solutions. For example, for the net system inFig. 1 with
� = (2,1,1), any marking[10− 5 · �,4 · � − 3, �, �], with
1���5/3, verifies (5)–(8).

Maximizing the flow of a transition (any of them, since
all are related by the T-semiflow), an upper bound of the
throughput in the steady state is obtained:

max{�ss[t1] | �ss=m0 + C · �,
�ss[t] = �[t] · min

p∈•t

{
�ss[p]

Pre[p, t]
}

∀t ∈ T ,
C · �ss= 0,
�ss,��0}. (9)

If the flow in (9) is minimized(see Section 3.4) instead of
maximized a very similar algorithm can be used for the
computation of lower bounds.

Let us consider the following proposition that will help
to understand better the kind of solutions obtained in (9).

Proposition 2 (Silva et al., 1998). If N is consistent and
conservative, the following statements are equivalent:

(1) �ss=m0 + C · � and��0,
(2) ∀ y�0 such thaty · C= 0, theny · �ss= y ·m0

This means that relaxing the conditions onmss to being
a solution of the fundamental equation (that is, making the
system insensitive to the transient), is equivalent to saying
that the solution is insensitive to the initial marking distribu-
tion inside the P-semiflows. More precisely, it only depends
on the loads of the P-semiflows,y ·m = y ·m0.

Notice that the solution of (9) is always “reachable” in the
sense that with a suitable initial distribution of the tokens
inside the P-semiflows (for instance, with the same steady
state distribution), its associated throughput can be obtained.
This is why, it will be said that the solution is atight bound.

Nevertheless, the non-linear programming problem in (9)
is difficult to solve due to the “min” condition coming from
Eq. (6). When a transitiont has a single input place, Eq. (6)
reduces to Eq. (6′). Whent has more than one input place,
then Eq. (6) can be relaxed (linearized) as Eq. (6′′).

�ss[t] = �[t] · �ss[p]
Pre[p, t] if p=•t, (6′)

�ss[t]��[t] · �ss[p]
Pre[p, t] ∀p∈•t otherwise. (6′′)
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This way we have a single linear programming problem
(LPP) (10) defined by equalities (5), (7) and (6′), and in-
equalities (8) and (6′′), that can be solved inpolynomial
time.

max{�ss[t1] | �ss=m0 + C · �,
�ss[t] = �[t] · �ss[p]

Pre[p, t] if p=•t,

�ss[t]��[t] · �ss[p]
Pre[p, t] ∀p∈•t otherwise,

C · �ss= 0,
�ss,��0}. (10)

Unfortunately, this LPP provides in general a non-tight
bound, i.e. the solution may be non-reachable for any dis-
tribution of the tokens verifying the P-semiflow load condi-
tions,y · m0. This occurs when none of the input places of
a transition really restricts the flow of that transition. When
this happens, the marking does not define the steady state
(the flow of that transition would be larger).

For example, for the net system inFig. 1 with � = 1, the
optimum of the LPP isfss[t1] = 1.25. This value is obtained
for m[p1]= 2.5,m[p2]= 3.25,m[p3]= 1.25, andm[p4]=
2.5. Under this marking the throughput oft2 would be 2.5,
while for the rest of the transitions, it is 1.25. Sincev(1) =
1, this cannot be the steady state. It can be seen that this
happens for any maximal solution of this particular LPP.
Hence the LPP in this case provides a non-reachable bound
of the throughput. In fact, the maximum throughput for this
system is 0.75.

3.2. Towards a branch and bound (b & b) algorithm

One way to improve this bound is toforce the equality for
at least one place per synchronization. This corresponds to a
correct interpretation of theminoperator in (9). The problem
is that there is no way to know in advance which of the input
places should restrict the flow. A b & b algorithm can be used
to compute a steady state marking that fulfills what (10) ex-
presses. If the marking solution of (10) does not correspond
to a steady state (i.e., there is at least one transition such that
all its input places have “more than the necessary” tokens)
choose one of the synchronizations and solve the set of LPPs
that appear when each one of the input places are assumed
to be defining the flow. That is, build a set of LPPs by adding
an equation that relates the marking of each input place with
the flow of the transition. These subproblems become chil-
dren of the root search node. The algorithm is applied recur-
sively, generating a tree of subproblems. If an optimal steady
state marking is found to a subproblem, it is a feasible steady
state marking, but not necessarily globally optimal. Since it
is feasible, it can be used to prune the rest of the tree: if
the solution of the LPP for a node is smaller than the best
known feasible solution, no globally optimal solution can
exist in the subspace of the feasible region represented by the
node. Therefore, the node can be removed from considera-

tion. The search proceeds until all nodes have been solved or
pruned.

The recursive Algorithm 1 sketches how the b & b algo-
rithm works. The inputs of the algorithm are the net, the
initial marking and the set of pairs(p, t) such that the mark-
ing of p is wanted to define the flow oft in the steady state.
This set of pairs is denoted byeqs(because it represents the
equalities, i.e., the constraints for the firing of transitions)
and in the first call to the algorithm will be equal to those
(p, t) such thatp=•t . Successive calls to the algorithm will
increase the seteqsin order to force the flow of the rest of
transitions to be defined by the marking of an input place.
The output of the algorithm is given by the global variable
bound. The proceduremax_LPP solves the LPP (10), i.e.,
Eqs. (5), (7), (6′) applied on the pairs(p, t) in eqs, inequal-
ity (6′′) applied on every input place of the transitions that
are not ineqs, and inequality (8). We assume thatmax_LPP
returns a scalarx corresponding to the solution of the LPP,
and a setnt (non-satisfied transitions) containing those tran-
sitions for which their flow according tox and the vector of
visit ratios is less than it should be according to the mark-
ings of their input places.

Algorithm 1 (b & b, upper bounds)
Global Variable: bound := 0
Branch–Bound(N,m0, eqs)

Begin
(x, nt) := max_LPP(N,m0, eqs)

if x�bound or the LPP was infeasible
% Do nothing. This node is pruned.

else
if nt = ∅ % The solution represents a steady state
bound := max(bound, x)

else
take at ∈ nt do
for everyp ∈ •t do
eqs := eqs ∪ (p, t)
Branch–Bound(N,m0, eqs)

end_for
end_if

end_if
End

The system model inFig. 3 is a MTS system (but not a
marked graph because of the Mi_Idle places). It represents a
flexible manufacturing system composed of three machines:
M1, M2 and M3. Parts of type A are processed first in ma-
chine M1 and then in machine M2, while parts of type B
are processed first in M2 and then in M1. The intermediate
products are stored in buffer B_1A and B_1B, and the final
parts in buffers B_2A and B_2B, respectively. Machine M3
takes a part A and a part B and assembles the final product,
that is stored in B_3 until its removal. In B_3 there is space
at most for 10 products. There can be at most 10 parts of
type A and 10 parts of type B either in B_1A and B_1B,
or being processed by M1 and M2. Parts are moved in pal-
lets all along the process, and there are 20 pallets of type



610 J. Júlvez et al. / Automatica 41 (2005) 605–616

M3_Iddle
M1_A

M2_B

B_1A

B_1B

M2_A

M1_B

B_2A

B_2B M3_Work

B_3_Empty

10

B_3

Pallets_A

20

Pallets_B

15

Max_A
10

Max_B
10

M2_IdleM1_Idle
Out

E_M3

S_M3

E_M1_BS_M1_BE_M2_BS_M2_B

E_M2_AS_M2_AE_M1_AS_M1_A

Fig. 3. A PN model of a flexible manufacturing system.

A and 15 pallets of type B. The firing speeds of transitions
are:�[Out]= �[S_M1_A] = �[S_M2_A] = �[S_M1_B] =
�[S_M2_B]=�[S_M3]=1, �[E_M3]=�[E_M2_A]=1/4,
�[E_M1_A] = �[E_M2_B] = 1/3, �[E_M1_B] = 1/5.

The visit ratio of the system isv(1)=1, that is, in the steady
state all the operations have to be executed at the same rate
(this is imposed by the assembly of one part A and one part
B). A solution of the original LPP (10) isfss[Out] = 0.111,
m[Pallets_A] = 9, m[B_2A] = m[Max_A] = m[B_2B] =
m[Max_B]=m[M3_Idle]=m[B_3]=m[M1_Idle]=0.111,
m[M1_A] = 0.333,m[B_1A] = 9.111,m[Pallets_B] = 4,
m[M2_A] = 0.444, m[M2_B] = 0.333, m[B_1B] = 9,
m[M1_B] = 0.555,m[M2_Idle] = 0.222,m[M3_Work] =
0.888,m[B_3_Empty] = 9.888. This solution corresponds
to the root node, see Node 1 inFig. 4, of the tree that the
b & b algorithm computes when applied to the flexible
manufacturing system.

According to the value obtained by the LPP,fss[Out] =
0.111, and the vector of visit ratios, the throughput of all
the transitions in the steady state should be 0.111. How-
ever, observe that if we consider the markings obtained
for the input places of transition S_M2_A and E_M3, the
throughput is greater than 0.111 (in the first call to the
branch–boundalgorithm nt equals {S_M2_A,E_M3}).
That is, the obtained marking is not a steady-state mark-
ing. If we first focus on S_M2_A, we should build
two LPPs since it has two input places, adding in each
one an equation for S_M2_A. If we force the through-
put to be defined by M2_Idle (i.e.,�ss[S_M2_A] =
�[S_M2_A] · �ss[M2_Idle]/Pre[M2_Idle, S_M2_A]),
Node 2, the system isinfeasible, while if we add a re-
striction for B_1A, Node 3, the solution is the same
but for m[Pallets_A] = 18, m[B_1A] = 0.111, and
m[Max_A] = 9.111. Now, the only problem is E_M3. If
we add an equation for B_3_Empty, Node 4, the system

is infeasible. Adding an equation for M3_Work, Node 5,
modifies m[Pallets_A] = 18.444, m[Pallets_B] = 4.444,
m[M3_Idle] = 0.555, andm[M3_Work] = 0.444. This
is a steady-state marking and the throughput associated
to it is equal to the one obtained with the original LPP,
fss[Out] = 0.111. No higher throughput may exist and no
more branching is needed.

3.3. Pruning nodes in the b & b algorithm

The branching process developed in the algorithm is based
on associating transitions with input places, i.e., forcing the
throughput of a transition to be defined by one of its in-
put places. The number of nodes of the tree in the worst
case is 1+ ∑

ti∈T ,|•ti |>1
∏i
j=1,|•tj |>1|•tj |, where the transi-

tions are sorted according to their number of input places
(|•t1|� |•t2|� |•t3| . . .). Number 1 stands for the root node
and each element of the sum stands for one transition (one
level of the tree) with several input places. In the worst case
the algorithm has to explore the complete tree and solve a
linear programming problem, whose complexity is polyno-
mial, per node. However, in most real cases such exhaus-
tive exploration is not required since some branches can be
pruned according to the b & b algorithm. Moreover, some
considerations will be done in this Subsection that allow us
to further reduce the number of nodes to be explored.

Places can be seen as suppliers of fluid, i.e., clients, to
their output transitions. Transitions can be seen as stations
demanding fluid to their input places. Since we are dealing
with MTS systems, in the steady state, the throughput of the
transitions has to be proportional to the vector of visit ratios.
Clearly, in the steady state, not all the output transitions of a
given place,p, are equallyfluid-demanding, i.e., one output
transitiont1 may require a higher marking ofp than other
output transitiont2, in order to fire according to its visit
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Node 2

Forced equalities:

{S_M2_A := M2_Idle}

Infeasible LPP

Node 4

Forced equalities:

{S_M2_A := B_1A,

E_M3 := B_3_EMPTY}

Infeasible LPP

Node 3

Forced equalities:

 = 0.111

nt = {E_M3}

{S_M2_A := B_1A}

Node 5

Forced equalities:

{S_M2_A := B_1A,

E_M3 := M3_WORK}

 =  0.111

nt = {}

Potential steady state marking

 = 0.111

nt = {E_M3, S_M2_A}

{}Forced equalities:

Node 1

fss

fss

f
ss

Fig. 4. Tree obtained by the B and B algorithm for the computation of upper bounds applied on the system inFig. 3.

ratio. In the steady state, a placep can at most define the
throughput of that output transition that is demanding the
greatest amount of fluid top. Thus, the b & b algorithm
should avoid the exploration of those nodes that associate
(the marking of) a place to (the flow of) an output transition
that is not its most fluid-demanding transition.

Let us reconsider Eq. (6) in order to compute the most
fluid-demanding transition for a given placep in the steady
state. A simple relaxation of (6) consists in just looking if
each place has enough fluid to fire all its output transitions:

�ss[p]� max
t∈p•

{
Pre[p, t] · �ss[t]

�[t]
}
. (11)

The right part of Eq. (11) can be seen as the amount of
fluid demanded to placep in the steady state by each of
its output transitions. The transition giving the maximum is
the most fluid-demanding transition, and so, it is the only
transition that can be associated to placep in the b & b
algorithm.

Let us consider the system inFig. 1 with � = 1 to show
how a node can be pruned by using the above reasonings. In
principle, in the steady state the throughput of transitiont2
could be defined by any of its input placesp2 or p4. Notice
that p4 has two output transitionst1 and t2, and so in the
steady state it has to supply enough fluid for both transitions.
The vector of visit ratios of this system isv(1)=1. Therefore,
in the steady state the throughput of every transition is the
same. Thus, since� = 1 also the enabling degree of every
transition should be the same in the steady state. Let us

assume that in the steady state the enabling degree oft2 is
given byp4. This implies that the enabling degree oft1 is
at most half the enabling degree oft2 since there is an arc
with weight 2 going fromp4 to t2. In other words,t1 is the
most fluid-demanding transition ofp4: t1 is demanding the
double of fluid top4 than t2. Hence, there cannot exist a
non-dead steady-state marking at whichp4 is defining the
flow of t2 (andt1).

Recall that for the system inFig. 1 the LPP (10) yields
fss[t1]=1.25 withm[p1]=2.5,m[p2]=3.25,m[p3]=1.25,
andm[p4] = 2.5. Under this solution the throughput oft2
would not be 1.25 and therefore it cannot represent a steady-
state marking. If we try to force the throughput oft2 to be
defined byp4, an infeasible LPP will be obtained. Therefore,
the b & balgorithm must avoid the computation of the node
that associatesp4 to t2. Forcing the throughput of transition
t2 to be defined byp2 the solution of the LPP isfss[t1] =
0.75 with m[p1] = 5.5, m[p2] = 0.75, m[p3] = 0.75, and
m[p4] = 1.5. That is a steady-state marking, and therefore
0.75 is an upper bound for the throughput of the system.

Taking into account the most fluid-demanding transitions
of places the complexity of the b & b algorithm presented
in the previous subsection is reduced in many cases. Since
a place will be associated only to its most fluid-demanding
transition, the higher the number of output transitions of
places, the higher the reduction of the complexity of the
algorithm. Unfortunately, if all the places have a single
output transition the complexity of the algorithm is not
reduced.
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t2

t1

p1

p3
p2

2

2

Fig. 5. A PN system with different upper and lower throughput bounds.

3.4. Lower bounds and exact throughput

Lower throughput bounds can be computed in a very sim-
ilar way to upper bounds by means of a b & b algorithm. In
this case, the goal function has to be minimized instead of
maximized.

Let us compute the upper and lower bounds for the MTS
system inFig. 5 with initial markingm0 = (4 0 1) and� =
(1 2). The visit ratio for the underlying net isv(1) = (1 1).
For the upper bound, the application of the b & b algorithm
discussed in the previous section yieldsfss[t1] = 2.5 with
m[p1]=2.5,m[p2]=1.5 andm[p3]=2.5 for the initial LPP
(without any branching). That is a steady-state marking, and
so, a suitable upper bound has been computed.

Minimizing the throughput of that LPP, we obtainfss[t1]=
0 with m[p1] = 1.45,m[p2] = 2.55 andm[p3] = 3.55. At
this marking, neithert1 nor t2 have a throughput of 0 as es-
tablished by the solution of the LPP. This is a non-surprising
result since every transition has more than one input place
and so0 is a trivial solution of the equations in (10).Fig. 6
represents the tree explored by the b & b algorithm to com-
pute the lower throughput bound for the system inFig. 5.

If we force the throughput of transitiont1 to be defined
by the marking ofp3, Node 2, the LPP yieldsfss[t1] = 2
with m[p1]=3,m[p2]=1 andm[p3]=2 which is a steady-
state marking. Hence no more branching is required from
this node. If transitiont1 is controlled byp1, Node 3, we
obtainfss[t1]=0 withm[p1]=0,m[p2]=4 andm[p3]=5.
In this case the throughput oft2 is not defined by any of the
markings of its input places. From this node it is possible
to associatet2 to eitherp2 or p3. If t2 is associated top2,
Node 5, an infeasible LPP is obtained. Ift2 is associated
to p3, Node 4, the LPP givesfss[t1] = 2.5 with m[p1] =
2.5, m[p2] = 1.5 andm[p3] = 2.5, which is a steady-state
marking. At this point, the b & b algorithm finishes and it
can be concluded thatfss[t1] = 2 is a suitable lower bound.

Reconsidering the system inFig. 1, the lower bound ob-
tained after the application of the b & balgorithm isfss[t1]=
0.75 with m[p1] = 5.5, m[p2] = 0.75, m[p3] = 0.75, and
m[p4]=1.5. This lower bound is identical to the upper bound
obtained for this system in Section 3.3. This means that the
exact throughput of the system in the steady state has just
been computed. The b & b algorithm focuses on the initial
load of the P-semiflows and not on the initial marking of

each place, therefore, it holds that for any initial distribution
of the given load, the system inFig. 1 will reach a steady
state in whichfss[t1] = 0.75.

In Section 3.2 the application of the b & b algorithm on
the system inFig. 3 yielded fss[Out] = 0.111 as an upper
bound for the throughput. If the b & b isapplied to compute
the lower bound for that system the same value is obtained.
That is,fss[Out]=0.111 is the exact throughput of the system
in the steady state. If the system is considered as a discrete
Petri net the number of reachable states is 1357486. The
throughput of the discrete system computed by solving the
associated Markov chain isfss[Out] = 0.1090.

3.5. Branching elimination for the computation of upper
bounds

Let us consider again the problem defined by the LPP
in (10). As it has been done in Section 3.3, Eq. (6) can be
relaxed to (11). The following single LPP can be obtained
to compute an upper throughput bound:

max{�ss[t1] | �ss=m0 + C · �,
�ss[p]� max

t∈p•

{
Pre[p, t] · �ss[t]

�[t]
}

∀p ∈ P,
C · �ss= 0,
�,�ss�0}. (12)

Since in MTS systemsv(1) is completely defined, if�ss=
� · v(1), LPP (12) can be written as

max{� | �ss=m0 + C · �
�ss�� · PD, �,�ss�0}, (13)

wherePD[p] = max
t∈p• {Pre[p, t] · v(1)[t]/�[t]}.

Defining� = 1/� and�′ = 1/� · �, (13) reduces to

min{� | � ·m0 + C · �′ �PD, �′ �0} (14)

The dual of this LPP is

max{y · PD | y · C�0, y ·m0�1, y�0}. (15)

One of the formulations of thealternatives theorem(Murty,
1983) states that the following two statements are equivalent:

(1) ∃ x>0 such thatC · x�0 and
(2) ∀ y�0 such thaty · C�0 theny · C= 0.

(16)

Since MTS nets are consistent, (16) is true andy·C�0, y�0
can be replaced byy · C = 0, y�0. Moreover, since we
are maximisingy · PD, the solution must verifyy · m0 = 1
(otherwise a better result can be obtained with� · y, � =
1/(y ·m0)).

Proposition 3. Let � be the solution of

� = max{y · PD | y · C= 0
y ·m0 = 1, y�0}. (17)

The throughput in the steady state verifiesfss�(1/�)v(1).
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Fig. 6. Tree obtained by the B and B algorithm for the computation of lower bounds applied on the system inFig. 5.

Intuitively, the idea of (17) is to find the slowest iso-
lated subnet among those generated by the elementary P-
semiflows. In other words, the bound is obtained by looking
at the bottleneck P-semiflow. The complexity of finding the
bottleneck P-semiflow is polynomial since it is obtained by
solving a LPP. In (Campos & Silva, 1992) a similar result
was obtained for discrete systems in which conflicts were
forbidden except among immediate transitions.

3.5.1. Reachability of the bound
For each markingm, its T-coverture(T-cov(m)) is defined

as the set of places that restrict the flow of the transitions.

Definition 4. Given a net system, theT-covertureat a mark-
ing m, is

T-cov(m)= {p | ∃t ∈ p• such that

f [t] = �[t] ·m[p]/Pre[p, t]}.
A characterization can be obtained for the solution of (17)

being the exact value. Given a vectorv, let us denote as‖v‖
its support, i.e., the set of its non-zero components.

Proposition 5. Let 〈N,m0〉 be a MTS continuous system.
The flow computed with(17) (or (13)) is the flow in

the steady state iff the T-coverture at the steady state,
T-cov(mss), contains the support of a P-semiflow.

Moreover, the maximum of(17) is reached for the P-
semiflow contained in the T-coverture.

Proof. Let mss be the steady-state marking,fss = �1 · v(1)
the flow vector associated to this state, and� the solution of
(17). Applying (17),�1�1/�.

For “⇒”, assume thaty0 is a P-semiflow such that the
maximum of the LPP is reached. If its support is not con-
tained in T-cov(mss), a placep ∈ ‖y0‖ exists such that
mss[p]>maxt∈p• {Pre[p, t] ·�1 ·v(1)[t]/�[t]}=�1 ·PD[p].
Hence,y0 ·mss> �1 · y0 ·PD, and 1/�1> y0 ·PD= �, con-
tradiction.

For “⇐”, let y0 be a P-semiflow such that‖y0‖ ⊆
T-cov(mss) and y0 · m0 = 1. Then, for everyp ∈ ‖y0‖,
a transitiont ∈ p• exists such thatmss[p] = Pre[p, t] ·
�1 · v(1)[t]/�[t]. Hence,mss[p] = �1 · maxt∈p• {Pre[p, t] ·
v(1)[t]/�[t]} = �1 · PD[p].

Therefore ��y0 · PD = y0 · mss/�1 = 1/�1. Then
1/�1 = �. �

From Proposition 5 the following corollary is
obtained:

Corollary 6. Let N be a MTS continuous net. If the P-
subnet defined by any T-coverture contains a P-semiflow,
then the flow at the steady state can be computed in poly-
nomial time with the LPP(17).
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4. Extending the subclass of nets: MTS reducible nets

One interesting property of MTS nets is that the vector
of visit ratios only depends on the net structure, i.e.,v(1) =
v(1)(N). Therefore, as it has been seen, knowing the flow
in the steady state of one transition, the flow of the rest of
transitions is trivially computed. However, the subclass of
nets for which the vector of visit ratios does not depend on
the initial marking is larger than the class of MTS nets. If
we consider the net inFig. 7(a) with � = (1 1 1 1), we will
realize that the flow through transitions in the steady state is
always proportional to the vector (2 1 2 1), that is the flow
through transitionst2 andt4 is double than the flow through
transitionst1 and t3, independently of the initial marking.
The reason for this fact is that given a continuous net (not
necessarily MTS), the following is verified:

f [ti]
Pre[P, ti] · �[ti] = f [tj ]

Pre[P, tj ] · �[tj ]
∀ti , tj in CEQ relation. (18)

In this section, the results obtained in Section 3 will be ex-
tended to a larger class of nets, the class ofmono-T-semiflow
reduciblenets (MTSR), for whichv(1) = v(1)(N,�), i.e.,
v(1) does not depend on the initial marking.

Definition 7. Let N be a consistent and conservative PN
and� a speeds vector. We will say that〈N, �〉 is mono T-
semiflow reducible(MTSR) if the following system has a
unique solution:

C · v(1) = 0,
v(1)[ti]

Pre[P, ti] · �[ti] = v(1)[tj ]
Pre[P, tj ] · �[tj ]

∀ ti , tj in CEQ relation, v(1)[t1] = 1. (19)

Every continuous MTSR net can bereduced to an
“equivalent” MTS net with identical behavior. Thereduc-
tion rule consists in merging those transitions in CEQ
relation into only one flow-equivalent transition. The arcs
and the firing speed,�, of the equivalent transition have to
be such that they preserve the evolution of their input and
output places. This can be achieved with simple arithmetic
operations on the weights of the input/output arcs and the
firing speeds of the original transitions.Fig. 8sketches how
two transitions in CEQ relation can be merged to a single
one. It can be checked that the evolution of the input places
is preserved and so is the flow associated to the output arcs.
An iterative merger on every couple of transitions in CEQ
relation leads to a net without CEQs and to a MTS if the
original net was MTSR. Notice that the arc weights of the
resulting net may not be natural numbers. Nevertheless, this
is not a problem for any of the properties being considered.

Observe that if the input and output arc weights of a tran-
sition are multiplied by a constant, the evolution of the input
and output places is the same. However, the flow through
the transition varies in an inverse proportion to the constant.
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t3 t4
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2 24
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Fig. 7. (a) A MTSR (but not MTS net) for every�>0. (b) Equivalent
MTS net given� = 1. (c) A MTS net that belongs to MTSR iff�1 = �2.
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Fig. 8. Two transitions in CEQ relation and an equivalent one.

Therefore, by varying that constant, it is possible to reduce
a MTSR net to an infinite number of equivalent MTS nets.

The net inFig. 7(a) is MTSR (for� = 1 its equivalent
MTS net is depicted inFig. 7(b)) but not MTS since it
has two T-semiflows. The net inFig. 7(c) with � = (1 1 1)
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X

Y

Z
Non structurally timed live MTS

MTS

MTSR

Structurally timed-live MTS

Multi-T-Semiflow reducible to structurally 
timed-live MTS

Fig. 9. Relationship between MTS and MTSR nets. MTSR only does not
include the non str. timed-live MTS nets.

belongs to both MTS and MTSR. Nevertheless, it should
be noticed that the class MTSR does not include the class
MTS: The net inFig. 7(c) with �= (1 2 1) belongs to MTS
but not to MTSR. However, disregarding those nets that
belong only to MTS does not imply a loss of generality since
their steady state throughput is zero, that is, they are not
structurally timed-live. Therefore, it has no sense computing
throughput bounds for systems like the one inFig. 7(c) with
� = (1 2 1), because it is null. The diagram inFig. 9 shows
the relationship between the classes MTS and MTSR.

Extending the results of Section 3 to MTSR is almost
immediate. For MTSR, the relaxation of the “min” condition
in the non-linear programming problem (9) yields (6′), (6′′)
and (18). This last equation is necessary to fulfill the flow
proportions between transitions in CEQ. Once Eq. (18) is
added, the b & b algorithm of Section 3.2 can be applied
directly to MTSR systems.

In the same way, Eq. (18) must also be added to the
programming problem (12) for MTSR systems. And with
identical reasoning of Section 3.5, same Eqs. (13)–(15) and
(17) are obtained. Every reasoning and result of Section
3.5.1 is also directly applicable on MTSR systems.

It is interesting to remark that the class of MTSR nets offer
a significant modeling power from a practical point of view.
Focusing on live and bounded systems, the class of MTSR
nets includes the class of equal conflict (EQ) nets (Teruel &
Silva, 1996), which is a superset of the classes of free-choice
(FC), choice-free (CF) (Teruel et al., 1997), weighted T-
systems (WTS) and marked graphs (MG) nets (Commoner
et al., 1971) (being MG a generalization of PERT charts).
Fig. 10 shows the inclusion relationships among the men-
tioned classes.

With respect to the reachability of the upper bound com-
puted by the LPP in (17) for MTSR systems, Corollary 6, it
has to be noticed that it suffices to prove that the minimal T-
covertures contain the support of a P-semiflow. This condi-
tion is in general difficult to solve since the number of mini-
mal T-covertures may be very large. Nevertheless, Corollary
6 holds for instance forstr. lim-live and str. bounded EQ nets
(or equivalently (Silva et al., 1998) EQ nets that are consis-
tent, conservative and the rank of the token flow matrix is
upper bounded by the number of conflicts). More general
classes exist for which this result holds too. For instance, it
holds for the net system inFig. 3.

Free Choice

Marked Graphs Choice Free

Mono-T-Semiflow reducible

Equal Conflict

Weighted t-systems

Mono-T-Semiflow

Fig. 10. Live and bounded net classes included in the class of MTSR nets.

5. Conclusions

Continuous Petri nets were introduced in order to over-
come the state explosion problem of high traffic or highly
populated discrete systems. Here, the attention is focused
first on the subclass of MTS nets. This subclass is poly-
nomially characterizable and offers a reasonable modeling
power. Removing the constraint on conservativeness is not
technically difficult and can be done by following the con-
cepts presented inCampos et al., 1992.

The continuized model does not always faithfully repre-
sent the original discrete model, and even for the MTS sub-
class of net models some unexpected results may happen.
This work presents a study of the throughput bounds (upper,
lower, reachability) in the steady state.

In MTS systems the vector of visit ratios does only depend
on the structure of the net. Therefore, once the steady state
flow of one transition is known, it is immediate to compute
the flow for the rest of transitions. Upper and lower bounds
for the throughput of the system in the steady state can be
computed by b & b algorithms. Relaxing some conditions
an upper bound can be computed by a single LPP (17).
This LPP is based on a search for theslowestP-semiflow
of the system and it is the continuousversionof the one in
Campos & Silva, 1992. It has been shown that the bound
computed by the LPP will be reached iff the set of places
that are determining the flow of the system in the steady state
(T-coverture) contains a P-semiflow.

The class ofmono T-semiflow reducible(MTSR) nets
considers those continuous nets whose visit ratio does only
depend on the structure and the speeds of transitions (not
on the initial marking), i.e.,v(1) = v(1)(N,�). In this case
the obtained results concerning the computation and reach-
ability of the bounds for timed MTS systems are directly
applicable.

References

Alla, H., & David, R. (1998). Continuous and hybrid Petri nets.Journal
of Circuits, Systems and Computers, 8(1), 159–188.

Campos, J., Chiola, G., Colom, J. M., & Silva, M. (1992). Properties and
performance bounds for timed marked graphs.IEEE Transactions on



616 J. Júlvez et al. / Automatica 41 (2005) 605–616

Circuits and Systems-I: Fundamental Theory and Applications, 39(5),
386–401.

Campos, J., Chiola, G., & Silva, M. (1991). Ergodicity and throughput
bounds of Petri net with unique consistent firing count vector.IEEE
Transactions on Software Engineering, 17(2), 117–125.

Campos, J., Silva, M. (1992). Structural techniques and performance
bounds of stochastic Petri net models. In G. Rozenberg (Ed.),Advances
in Petri nets 1992, Lecture Notes in Computer Science, Vol. 609 (pp.
352–391). Berlin: Springer.

Chiola, G., Anglano, C., Campos, J., Colom, J. M., & Silva, M
(October 1993). Operational analysis of timed Petri nets and application
to the computation of performance bounds. InProceedings of the
fifth international workshop on Petri nets and performance models,
Toulouse, France (pp. 128–137). Silver Spring: IEEE Computer Society
Press.

Commoner, F., Holt, A. W., Even, S., & Pnueli, A. (1971). Marked directed
graphs.Journal on Computer Systems Science, 5, 72–79.

David, R., & Alla, H. (1987). Continuous Petri nets. InProceedings of
the eighth European workshop on application and theory of Petri nets,
Zaragoza, Spain (pp. 275–294).

DiCesare, F., Harhalakis, G., Proth, J. M., Silva, M., & Vernadat, F. B.
(1993).Practice of Petri nets in manufacturing. London: Chapman &
Hall.

Murata, T. (1989). Petri nets: properties, analysis and applications.
Proceedings of the IEEE, 77(4), 541–580.

Murty, K. G. (1983).Linear programming. New York: Wiley.
Silva, M., & Colom, J. M. (1987). On the structural computation

of synchronic invariants in P/T nets. InProceedings of the eighth
European workshop on application and theory of Petri nets, Zaragoza,
Spain (pp. 237–258).

Silva, M., & Recalde, L. (2002). Petri nets and integrality relaxations:
a view of continuous Petri nets.IEEE Transactions on Systems Man
and Cybernetics, 32(4), 314–327.

Silva, M., & Recalde, L. (2004). On fluidification of Petri net models:
from discrete to hybrid and continuous models.Annual Reviews in
Control, 2004, 28, 253–266.

Silva, M., Teruel, E., & Colom, J. M. (1998). Linear algebraic and
linear programming techniques for the analysis of net systems. In G.
Rozenberg, & W. Reisig (Eds.),Lectures in Petri nets. I: Basic models,
Lecture Notes in Computer Science, Vol. 1491, Springer (pp. 309–373).

Sontag, E. D. (1981). Nonlinear regulation: The piecewise linear approach.
IEEE Transactions on Automatic Control, 26(2), 346–358.

Teruel, E., Colom, J. M., & Silva, M. (1997). Choice-free Petri nets:
a model for deterministic concurrent systems with bulk services and
arrivals. IEEE Transactions on Systems Man and Cybernetics, 27(1),
73–83.

Teruel, E., & Silva, M. (1996). Structure theory of equal conflict systems.
Theoretical Computer Science, 153(1–2), 271–300.

Jorge Júlvez received his Computer En-
gineering degree from the University of
Zaragoza in 1998. In 2001 he joined, as a
Ph.D. student, the Group of Discrete Event
Systems Engineering in the Departamento
de Informática e Ingeniería de Sistemas,
University of Zaragoza. His research is
related to the study of qualitative and quan-
titative properties of continuous Petri nets.

Laura Recalde received the M.S. degree in
Mathematics and the Ph.D. degree in Com-
puter Engineering from the University of
Zaragoza in 1995 and 1998, respectively.
She is currently Assistant Professor in the
Departamento de Informática e Ingeniería
de Sistemas, University of Zaragoza, where
she is in charge of courses in Systems The-
ory and Discrete Event Systems. Her main
research interest is the modeling and anal-
ysis of distributed concurrent systems using
Petri nets.

Manuel Silva received the Industrial-
Chemical Engineering degree from the
University of Sevilla in 1974 and the Post-
graduate and Ph.D. degrees in Control
Engineering from the Institut National Poly-
technique de Grenoble in 1975 and 1978,
respectively. From 1975 to 1978, he worked
for the Centre National de la Recherche Sci-
entifique at the Laboratoire d’Automatique
de Grenoble. In 1978 he started the group of
Systems Engineering and Computer Science
at the University of Zaragoza, where he was

named Professor in Systems Engineering and Automatic Control in 1982.
His research interests include modeling, validation, performance evalu-
ation, and implementation of distributed concurrent systems using Petri
nets, binary decision graphs, and robots programming and control. He
is the author of the bookLas Redes de Petri en la Automática y la In-
formática (AC, 1985; reprinted: Thomson, 2003), coauthor of the book
Practice of Petri Nets in Manufacturing(Chapman & Hall, 1993), and co-
editor of one special issue on CIM of the IEEE Transactions on Robotics
and Automation. Prof. Silva was dean of the Centro Politécnico Superior,
University of Zaragoza, from 1986 to 1992 and president of the Aragonese
Research Council (CONAI) and of the Research and Innovation Commit-
tee of the French–Spanish Comisión de Trabajo de los Pirineos (CTP)
from 1993 to 1995. He has been associate editor of the IEEE Transac-
tions on Robotics and Automation and associate editor of the European
Journal of Control. He is advisory member of the IEICE Transactions on
Fundamentals on Electronics, Communications and Computer Sciences,
member of the Steering Committees of the International Conferences on
Application and Theory of Petri Nets, WODES and QEST, and founder of
member of the Asociación Española de Robótica. Interested in the History
of Technology and Engineering. He has been distinguished with a medal
from Lille and by the Association of Telecommunication Engineers of
Aragón. He is a member of the Royal Academy of Engineering of Spain.


	Steady-state performance evaluation of continuous mono-T-semiflow Petri nets62626262
	Introduction
	Timed continuous Petri nets
	Basic definitions
	Remarkable behaviors of timed continuous systems
	Continuous is not an upper bound of discrete
	Non-monotonicities


	Performance evaluation bounds
	Formulating a non-linear programming problem for performance bounds
	Towards a branch and bound (b & b) algorithm
	Pruning nodes in the b & b algorithm
	Lower bounds and exact throughput
	Branching elimination for the computation of upper bounds
	Reachability of the bound


	Extending the subclass of nets: MTS reducible nets
	Conclusions
	References


