Points on Computable Curves
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Abstract

The “analyst’s traveling salesman theorem” of ge-
ometric measure theory characterizes those subsets of
Euclidean space that are contained in curves of finite
length. This result, proven for the plane by Jones (1990)
and extended to higher-dimensional Euclidean spaces
by Okikiolu (1992), says that a bounded set K is con-
tained in some curve of finite length if and only if a cer-
tain “square beta sum”, involving the “width of K" in
each element of an infinite system of overlapping “tiles”
of descending size, is finite.

In this paper we characterize those points of Eu-
clidean space that lie on computable curves of finite
length. We do this by formulating and proving a com-
putable extension of the analyst’s traveling salesman
theorem. Our extension, the computable analyst’s trav-
eling salesman theorem, says that a point in Euclidean
space lies on some computable curve of finite length if
and only if it is “permitted” by some computable “Jones
constriction”. A Jones constriction here is an explicit
assignment of a rational cylinder to each of the above-
mentioned tiles in such a way that, when the radius of
the cylinder corresponding to a tile is used in place of
the “width of K in each tile, the square beta sum is fi-
nite. A point is permitted by a Jones constriction if it is
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contained in the cylinder assigned to each tile contain-
ing the point. The main part of our proof is the construc-
tion of a computable curve of finite length traversing all
the points permitted by a given Jones constriction. Our
construction uses the main ideas of Jones’s “farthest in-
sertion” construction, but takes a very different form,
because, having no direct access to the points permit-
ted by the Jones constriction, our algorithm must work
exclusively with the constriction itself.

1. Introduction

Where can an infinitely small robot go? This paper
answers a precise form of this fanciful question by for-
mulating and proving a computable extension of the cel-
ebrated “analyst’s traveling salesman theorem” of geo-
metric measure theory.

The precise statement of our question is straightfor-
ward. Our robot is the size of a geometric point (the
“ultimate nanobot”), and it moves in a Euclidean space
R™, where n > 2. The robot’s motion is algorithmic,
and there are no obstacles, thermal effects, or quantum
effects, so its path is a computable curve, i.e., a curve
traced by a computable function f : [0,1] — R™. The
robot’s path has arbitrary but finite length. (The com-
putable curve is rectifiable. Among other things, this
implies that it is not a space-filling curve [19].) The
robot’s motion is otherwise unrestricted. For example,
it may cross or retrace its own path, so the function f



is not required to be one-to-one. (In the terminology of
some, f describes a tour, rather than a curve. In the ter-
minology of others, f describes a curve that need not be
simple.)

The collection of all possible paths of our robot forms
a “‘computable transit network” R C R™. This is the set
of all rectifiable points in R", i.e., all points x € R"
lying on rectifiable computable curves. Our question is
simple. Which points in R" lie in the set R?

A brief summary of some basic properties of R (de-
veloped in detail in section 3) sets the stage for our main
results. It is easy to see that R has Hausdorff dimen-
sion 1, so most points in R™ are not rectifiable. On the
other hand, R is a dense subset of R”, and R is path-
connected in the strong sense that any two points in R lie
on a single computable curve of finite length. Each point
x € R has dimension at most 1 (by which we mean that
{z} has constructive dimension at most 1 [12]), but the
complement of R contains points of arbitrarily small di-
mension, so this does not characterize membership in
R.

Our main theorem characterizes points in R by ex-
tending the famous “analyst’s traveling salesman theo-
rem” of geometric measure theory to a theorem in com-
putable analysis. The analyst’s traveling salesman theo-
rem, proven for R? by Jones in 1990 [7] and extended
to R™ for n > 2 by Okikiolu in 1991 [17] (see also
the monographs [14, 4]), gives a precise characterization
of those subsets of R™ that are contained in rectifiable
curves.

For eachm € Z, let Q,,, be the set of all dyadic cubes
of order m, which are half-closed, half-open cubes

Q= [al,al + 2_m) X oo X [an,an + 2—m)

in R” with a4, ...,a, € 27™Z. Note that such a cube
@ has sidelength £(Q)) = 27™ and all its vertices in
277", Let Q@ = U,,cz @m be the set of all dyadic
cubes of all orders. We regard each dyadic cube @) as
an “address” of the larger cube 3@, which has the same
center as @ and sidelength ¢(3Q) = 3¢(Q). The ana-
lyst’s traveling salesman theorem is stated in terms of the
resulting system {3Q | Q € Q} of overlapping cubes.

Let K be a bounded subset of R™. For each Q € Q,
let 7(Q) be the least radius of any infinite closed cylinder
in any direction in R™ that contains all of K N 3(Q). Then
the Jones beta-number of K at @) is

r(Q)
0(Q)’
and the Jones square beta-number of K is

BAK) =) Bo(K)*U(Q)

QeQ

Bo(K) =

(which may be infinite). Here is the analyst’s traveling
salesman theorem.

Theorem 1.1 (Jones [7], Okikiolu [17]). Let K C R"
be bounded. Then K is contained in some rectifiable
curve if and only if 3?(K) < oo.

Jones’s proof of the “if” direction of Theorem 1.1
is an intricate “farthest insertion” construction of a
curve containing K, together with an amortized analysis
showing that the length of this curve is finite. This proof
works in any Euclidean space R™. However, Jones’s
proof of the “only if”” direction of Theorem 1.1 uses non-
trivial methods from complex analysis and only works in
the Euclidean plane R? (regarded as the complex plane
C). Okikiolu’s subsequent proof of the “only if” direc-
tion is a clever geometric argument that works in any Eu-
clidean space R". (It should also be noted that these pa-
pers establish a quantitative relationship between 32 (K)
and the infimum length of a curve containing K, and that
the constants in this relationship have been improved in
the recent thesis by Schul [20]. In contrast, in this paper,
we are only concerned with the qualitative question of
the existence of a rectifiable curve containing K.)

Theorem 1.1 is generally regarded as a solution of the
“analyst’s traveling salesman problem” (analyst’s TSP),
which is to characterize those sets K C R™ that can
be traversed by curves of finite length. It is then nat-
ural to pose the computable analyst’s TSP, which is to
characterize those sets X' C R"™ that can be traversed by
computable curves of finite length. While the analyst’s
TSP is only interesting for infinite sets K (because ev-
ery finite set K is contained in a rectifiable curve), the
computable analyst’s TSP is interesting for arbitrary sets
K. In fact, the question posed at the beginning of this
introduction is precisely the computable analyst’s TSP
restricted to singleton sets K = {z}. (We repeat that
we are focusing on the qualitative question here. The
quantitative version of the analyst’s TSP is interesting
for finite sets, though not for singletons.)

To solve the computable analyst’s TSP, we first re-
place the Jones square beta-number of the arbitrary set
K with a data structure that can be required to be com-
putable. To this end, we define a cylinder assignment to
be a function ~y assigning to each dyadic cube @ an (in-
finite) closed rational cylinder v(Q), by which we mean
that v(Q) is a cylinder whose axis passes through two
(hence infinitely many) points of Q™ and whose radius
p(Q) is rational. (If p(Q) = 0, the cylinder is a line; if
p(Q) < 0, the cylinder is empty.) The set permitted by a
cylinder assignment - is the (closed) set k() consisting
of all points z € R™ such that, for all Q € Q,

z € (3Q)" =z ev(Q),



where (3Q) is the interior of 3Q.

There is one technical point that needs to be ad-
dressed here. If ~ is a cylinder assignment that, at
some Q € Q, prohibits a subcube 3Q" of 3Q (.e.,
v(Q) N (3Q")° = @), then () contains no interior
point of 3Q)’, so it is pointless and misleading for ~y to
assign @’ a cylinder v(Q') that meets (3Q’)°. We de-
fine a cylinder assignment ~ to be persistent if it does
not make such pointless assignments, i.e., if, for all
Q,Q € Qwith @ C Q and v(Q) N (3Q")° = T, we
have v(Q')N(3Q’)° = @. Itis easy to transform a cylin-
der assignment <y into a persistent cylinder assignment
~' that is equivalent to  in the sense that x(y) = &(v'),
with 7/ computable if ~ is.

Definition. Let vy be a cylinder assignment.

1. The Jones beta-number of vy at a cube Q) € Q is

_r@Q)
5@(7) = @

2. The Jones square beta-number of ~ is

B = Bo()UQ).

QeQ

Note that 32(+) may be infinite.
Definition. A Jones constriction is a persistent cylinder
assignment ~y for which 32(y) < cc.

We can now state our main result, the computable
analyst’s traveling salesman theorem.

Theorem 1.2 Let K C R"™ be bounded. Then K is con-
tained in some rectifiable computable curve if and only
if there is a computable Jones constriction vy such that

K C k(7).

Theorem 1.2 solves the computable analyst’s TSP,
and thus immediately solves our question about where
an infinitely small robot can go:

Corollary 1.3 A point x € R" is rectifiable if and only
if x is permitted by some computable Jones constriction.

That is,
R=J =&,

computable ~

where the union is taken over all computable Jones con-
strictions.

It should be noted that (the proof of) Theorem 1.2 rel-
ativizes to arbitrary oracles, so it implies Theorem 1.1.
This is the sense in which our computable analyst’s trav-
eling salesman theorem is an extension of the analyst’s
traveling salesman theorem.

Our proof of the “only if” direction of Theorem 1.2 is
easy, because we are able to use the corresponding part
of Theorem 1.1 as a “black box”. However, our proof
of the “if” direction is somewhat involved. Given an
arbitrary computable Jones constriction -y, we construct
a rectifiable computable curve containing (). In this
construction, we are able to follow the broad outlines of
Jones’s “farthest insertion” construction and to use its
key ideas, but we have an additional obstacle to over-
come. The analyst’s TSP does not require an algorithm,
so Jones’s proof can simply “choose” elements of the
given set K according to various criteria at each stage
of the construction (often moving these points later as
needed). However, even if v is computable, neither the
set k() nor its elements need be computable. Hence
the algorithm for our computable curve cannot directly
choose points in (or even reliably near) x(y). Our con-
struction succeeds by carefully separating the algorithm
from the amortized analysis of the length of the curve
that it computes. The proof is discussed in some detail
in section 4 and at greater length in the full version of
this paper.

2. Curves and Computability

We fix an integer n > 2 and work in the Euclidean
space R™. A curve is a continuous function f : [0,1] —
R™. The length of a curve f is

k—1

length(f) = sup Z|f(ai+1) — flai)l,

@ =0

where || is the Euclidean norm of a point z € R™ and
the supremum is taken over all dissections @ of [0, 1],
ie,alld = (ag,...,ar) With0 = ag < a1 < --+ <
ar = 1. Note that length(f) is the length of the ac-
tual path traced by f. If f is one-to-one (i.e., the curve
is simple), then length( f) coincides with H(f([0, 1])),
which is the length (i.e., the one-dimensional Hausdorff
measure [3]) of the range of f, but, in general, f may
“retrace” parts of its range, so length(f) may exceed
H(£([0,1])). A curve f is rectifiable if length(f) <
0.

A tour of aset K C R™isacurve f : [0,1] — R"
such that K C ([0, 1]).

Since curves are continuous, the extended com-
putability notion introduced by Braverman [1] coincides
with the computability notion formulated in the 1950s
by Grzegorczyk [5] and Lacombe [9] and exposited
in the recent paper by Braverman and Cook [?] and
in the monographs [18, 8, 22]. Specifically, a curve
f :0,1] — R™ is computable if there is an oracle



Turing machine M with the following property. For all
t € [0,1] and r € N, if M is given a function oracle
¢t N — Q such that, forall k € N, |¢;(k) —t| < 27k,
then M, with oracle ¢, and input 7, outputs a rational
point M*#*(r) € Q™ such that |M*#*(r) — f(¢)| < 27".

A point x € R™ is computable if there is a com-
putable function ¢, : N — Q" such that, for all r € N,
|tz (r) — x| < 277, Tt is well known and easy to see
that, if f : [0,1] — R™ and ¢ € [0, 1] are computable,
then f(t) is computable.

3. The Set R

As in the introduction, we let R denote the set of all
rectifiable points in R"”, i.e., points that lie on rectifiable
computable curves. We briefly discuss the structure of
‘R, referring freely to existing literature on fractal geom-
etry [3] and effective dimension [11, 12, 2].

For each rectifiable curve f, we have H!(f([0,1])) <
length(f) < oo, so the Hausdorff dimension of f ([0, 1])
is 1, unless f([0,1]) is a single point (in which case
the Hausdorff dimension is 0). Since R is the union of
countably many such sets f([0, 1]), it follows by count-
able stability [3] that R has Hausdorff dimension 1. This
implies that R is a Lebesgue measure O subset of R,
i.e., that almost every point in R" lies in the complement
of R.

Since R contains every computable point in R™, R is
dense in R™. Also, if x € f([0,1]) and y € ¢([0,1]),
where f and ¢ are rectifiable computable curves, then
we can use f, g, and the segment from f(1) to g(0)
to assemble a rectifiable computable curve h such that
x,y € h([0,1]). Hence, R is path-connected in the
strong sense that any two points in R lie in a single rec-
tifiable computable curve.

For each rectifiable computable curve f, the set
£([0,1]) is a computably closed (i.e., I1{) subset of R"
[16]. Since R is the union of all such f([0,1]), it fol-
lows by Hitchcock’s correspondence principle [6] that
the constructive dimension of R coincides with its Haus-
dorff dimension, which we have observed to be 1. (It is
worth mention here that R can easily be shown not to
have computable measure 0, whence R has computable
dimension n [11]. By Staiger’s correspondence princi-
ple [21, 6], this implies that R is not a 28 set.) It fol-
lows that each point x € R has dimension at most 1 (in
the sense that {z} has constructive dimension 1 [12]). It
might be reasonable to conjecture that this actually char-
acterizes points in R, but the following example shows
that this is not the case.

Construction 3.1 Given an infinite binary sequence R,
define a sequence Ay, A1, As,... of closed squares
in R? by the following recursion. First, Ay = [0,1]2.
Next, assuming that A, has been defined, let a and
b be the 2nth and (2n + 1)st bits, respectively of R.
Then A, 11 is the ab-most closed subsquare of A,, with
area(A,41) = tgarea(A,), where 00 =“lower left”,
01 =*“lower right”, 10 = “upper left”, and 11 =“upper
right”. Let xp be the unique point in R? such that
xR € Ay foralln € N.

Itis well known [15, 4] that the set K consisting of all
such points x  is a bounded set with positive, finite one-
dimensional Hausdorff measure (and hence with Haus-
dorff dimension 1), but that K is not contained in any
rectifiable curve. The next lemma is a constructive ex-
tension of this fact.

Lemma 3.2 For any sequence R that is random (in the
sense of Martin-Lof [13]; see also [10, 2]), the point
xR of Construction 3.1 has dimension 1 and does not lie
on any computable curve of finite length.

The following theorem shows that more is true, al-
though the proof, a Baire category argument, does not
yield such a concrete example.

Theorem 3.3 The complement of R contains points of
arbitrarily small dimension, including 0.

4. The Computable Analyst’s Traveling
Salesman Theorem

This section presents the main ideas of the proof of
Theorem 1.2. The detailed proof appears in preliminary
form in the full version of this paper.

We first dispose of the “only if” direction. If we
are given a rectifiable computable curve f and a ra-
tional € > 0, it is routine to construct a computable
Jones constriction vy such that f([0,1]) C k(y) and
B%(v) < B%(f([0,1])) + €. The “only if” direction of
Theorem 1.2 hence follows easily from the “only if” di-
rection of Theorem 1.1. We thus focus our attention on
proving the “if”” direction of Theorem 1.2.

As pointed out by Jones [7], the analyst’s TSP is sig-
nificantly different from the classical TSP in that it typi-
cally involves uncountably many points at locations that
are not explicitly specified. In his construction, he has
the privilege to “know” whether a point is in the set K
or not, since he is concerned only with the existence of
a tour and not with the computability of the tour. This is
no longer true in our situation, since we work with only



a computable constriction, from which we may not com-
putably determine whether a point is in the set. Although
the situations differ by so much, ideas with a flavor of
the “farthest insertion” and ‘“nearest insertion” heuris-
tics that are used in Jones’s argument and the classical
TSP are essential parts of our solution.

Given a computable Jones constriction v, we con-
struct computably a tour f : [0,1] — R™ of the set
K = k() permitted by  such that x(y) C f([0,1])
and the length of the tour is finite.

Our construction proceeds in stages. In each stage
m € N, a set of points with regulated density is cho-
sen according to the constriction and a tour f,,, of these
points is constructed so that every point in K is at most
roughly 27™ from the tour. Every tour is constructed by
patching the previous tour locally so that the sequence
of tours { f,, } converges computably.

During the tour patching at each stage, the insertion
ideas mentioned earlier are applied at different parts of
the set K according to the local topology given by the
constriction. Note that it is not completely clear that
the use of “farthest insertion” is absolutely necessary.
However, it greatly facilitates the associated amortized
analysis of length, which is as crucial in our proof as it
isin Jones’s. In the following, we describe in more detail
how and when these ideas are applied in the algorithmic
construction of the tour.

In each stage m € N, we look at cubes () of side-
length A2~™, where A = 20 is a sufficiently large
universal constant. We pick points so that they are at
least 27™ from each other and every point in K is at
most 2~ from some of those chosen points. Based
on the value of (g(y), which measures the relative
width of 3QQ N K, we divide cubes into “narrow” ones
(Ba(7) < €o) and “fat” ones (Bg(y) > €o), where ¢ is
a small universal constant.

The fat cubes are easy to process, since the associ-
ated square beta-number is large. We connect the points
in those cubes to nearby surrounding points, some of
which are guaranteed to be in the previous tour due to
the density of the points in the tour. Since the points
are chosen with regulated density, the number of con-
nections we make here is bounded by a universal con-
stant. The length of each connection is proportional to
the sidelength of the cube, which is proportional to 27",
Thus the total length we add to the tour is bounded by
co - €5¢(Q), which is then bounded by ¢ - 33 (7)4(Q),
where ¢y is a sufficiently large universal constant.

For the narrow cubes, we carry out either “farthest
insertion” or “nearest insertion” depending on the local
topology around each insertion point.

Suppose that we are about to patch the existing tour

to include a point z. Since from stage to stage, the
points are picked with increasing density, there is al-
ways a point 27 already in the tour inside the cube that
contains z. However, there are two possibilities for the
neighborhood of x. One is that there is another point 2o
already in the tour and 2 is inside the cube that contains
x. The other possibility is that z; is the only such point.

In the first case, point x lies in a narrow cube and
there are points z; and 25 in the narrow cube such that
is between z; and zo. Points z; and 29 are in the existing
tour and are connected directly with a line segment in
the tour. In this case, we apply “nearest insertion” by
letting z; and z5 be the closest two neighbors of z in the
existing tour, breaking the line segment between 21, 22,
and connecting 21 to x and z to zo. The increment of the
length of the tour is £([z1,z]) + £([x, 22]) — £([z1, 22]).
which is bounded by ¢; ﬂé (7)¢(Q) by an application of
the Pythagorean theorem, since the cube is very narrow.

In the second case, point z; is the only point in the
existing tour that is in the same cube as x. It is not guar-
anteed that x can be inserted between two points in the
existing tour. Even when it is possible, the other point
in the existing tour would be outside the cube that we
are looking at and thus it might require backtracking an
unbounded number of stages to bound the increment of
length, which would make the proof extremely compli-
cated (if even possible). Therefore, we keep the patching
for every point local and, in this case, we make sure x
is locally the “farthest” point from z; and connect x di-
rectly to z;. (Note that the actual situation is slightly
more involved and is addressed in the full proof.) In
this case, the Pythagorean theorem cannot be used and
thus we cannot use the Jones square beta-number to di-
rectly bound the increment of length. To remedy this, we
employ amortized analysis and save spare square beta-
numbers in a savings account over the stages and use
the saved values to bound the length increment. In order
for this to work, we choose €y so small that at a partic-
ular neighborhood, “farthest insertion” does not happen
very frequently and we always have the time to save up
enough of the square beta-number before we need to use
1t.
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