
Impact of SOAP Implementations in the

Performance of a Web Service-Based
Application�

Elena Gómez-Mart́ınez and José Merseguer

Dpto. de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza
C/Maŕıa de Luna,1 50018 Zaragoza, Spain

{megomez, jmerse}@unizar.es

Abstract. This article recalls, from the literature, a performance study
of a web service. That study, based on the layered queuing network
(LQN) paradigm, is now addressed following the PUMA approach to
obtain a new performance model, in this case in terms of Petri nets,
for the target web service. Such Petri net model is used to extend the
previous LQN results with respect to some key web service performance
aspects: the SOAP toolkit and the XML parsers. Actually, this paper
aims to explore through a case study some of the main concerns of web
services performance at the middleware layer. The acquired background
is meant to start to develop a methodology, based on the SPE principles,
useful to analyze web services performance.

1 Introduction

A web service is a collection of protocols and standards used for exchanging of
XML messages between applications. Unlike other middleware technologies [2],
they allow to communicate heterogeneous environments deployed on the net-
work, offering flexibility and interoperability.

Performance is one of the key aspects and probably the Achilles’ heel of web
services and in general of services offered over the Internet [28]. However, it has not
been adequately addressed from a formal modeling viewpoint in the literature yet.
In this work, we try to overcome some aspects of this lack by accomplishing an in-
depth study of different key aspects of web services performance at the middleware
layer: the SOAP implementations and the XML parsers.

This work is proposed as a first step to develop a methodology to evaluate
web service performance, and we start addressing some middleware performance
issues. The methodology will use Petri nets (PN) [1] as formal method, and
will follow the Software Performance Engineering (SPE) [19] principles and the
Performance by Unified Model Analysis (PUMA) approach [30]. PUMA aims
translations from different kinds of design models and performance models.

� This work was supported by the projects TIC2003-05226 and DPI2006-15390 of the
Spanish Ministry of Science and IBE2005-TEC-10 of the University of Zaragoza.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 884–896, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Impact of SOAP Implementations 885

Our study is based on an interesting performance study of a web service devel-
oped, also under the SPE principles, in [3]. We rearchitect this case study follow-
ing the PUMA approach to get a Generalized Stochastic Petri Net (GSPN) [1].
The GSPN, properly analyzed with the TimeNET tool [23], allows us to offer
interesting results about performance middleware key aspects and to contrast
them with the results obtained from pragmatic (non-formal) studies.

The rest of the paper is organized as follows. Section 2 revises the state of the
art and places our proposal for study performance of web services in the current
scene. Section 3 addresses key issues concerning performance of web services at
middleware layer. Section 4 recalls the web service under study and we obtain
the PN that models the target system. Such net will be useful, in section 5,
to accomplish the study proposed in this work. Therefore, the impact of SOAP
implementations and XML parsers is studied by means of that formal model.
The article ends in section 6 giving the conclusion.

2 Related Work

Performance is an important aspect of web services. Nevertheless, from the best
of our knowledge, very few papers focuss on performance evaluation of web
service-based applications. And a very few of them follow the techniques pro-
posed by the SPE [19].

Menascé and Almeida [13] developed a methodology from we have learnt the
key issues of performance evaluation of web services. While this methodology
is focussed on capacity planning using queuing networks (QN), we aim at its
performance prediction using PN and the Unified Modeling Language (UML).

Chandrasekaran et al. [4] propose a simulation technique for analyzing per-
formance of composite web services in order to obtain efficient web processes.
Menascé in [12] studies QoS issues of composite web services. In [26], Datla
and Goševa-Popstojanova present a measurement-based study of performance of
e-commerce applications. They study the impact of web services together with
other components on integrated applications using benchmark techniques. Ng et
al. [14] evaluate diverse SOAP implementations by means of benchmarks of a sim-
ple service with three types of message. In contrast to us, they probe that serializa-
tion and deserialization are the primary important bottleneck for this application.

Liu et al. [11] propose an approach to predict performance metrics for a
middleware-hosted application using QN models. Although, this work is focussed
on a J2EE application, their modeling approach is suitable to other middleware
technologies, such as CORBA and COM+/.NET.

Verdickt et al. [27] propose a Model Driven Architecture (MDA) model
transformation for Platform Specific Models (PSM), including middleware
performance details. It is based on SPE and the UML-SPT [15] profile. The
transformation process is made by a tool which generates LQN models.

Gilmore et al. [9] propose an UML-based methodology for analyzing security
and performance aspects using PEPA models. This method is implemented in the
Choreographer design platform.

886 E. Gómez-Mart́ınez and J. Merseguer

3 Performance Issues of the Web Services

Web service technology has not been developed with performance as a goal.
Performance issues affect several aspects: the XML protocols, such as discovering
using UDDI [13], transporting using usually HTTP [7], the latency of SOAP
implementations [5] or the use of an XML parser [10]. Furthermore, web services
can be provided with dynamic composition of web services, affecting performance
in any way [4,12]. The software infrastructure is other significant factor [11].

Although all of these issues are relevant, this paper focusses on those that
being closer to the middleware layer can be parameterized in a UML design.
Among them, SOAP implementation is one of the key factors that have influ-
ence on performance, as previous studies have shown [5,7,10]. Therefore, it is im-
portant to determine which particular SOAP toolkit can meet the performance
requirements of an application. These studies remark the following topics:

Serialization is the process to convert an in-memory object into an XML
stream. This includes to pack the XML message in the SOAP envelope and
to build the message which will be sent by the corresponding transport pro-
tocol, mainly HTTP [10].

Deserialization converts XML streams in wire-format objects in memory. In
this process two phases must be emphasized: (1) unpacking the SOAP enve-
lope and (2) parsing and interpreting the XML document. The most widely
models used for parsing are Document Object Model (DOM) [6], Simple API
for XML (SAX) [18] and XML Pull Parser (XPP) [8]. DOM parsers are
suitable for small documents which must be validated and/or modified. SAX
parsers are better for large documents. XPP is optimized when the XML el-
ements are processed in succession and do not need to be visited again. The
parser process has a great impact in the performance of SOAP implementa-
tion, as previous works have studied [7,10]. Note that XML native parsers
and those embedded in SOAP have to be differentiated, since they exhibit
different features and performance characteristics [21,8].

However, not only these processes affect the performance of a SOAP toolkit,
others such as data structure support, optimizations to handle scientific data or
algorithms implementation and protocols have influence too [5,10]. These topics
will not be addressed in this work, since they are out of scope of the case study
which guides it. Other significant factors that may impact in performance are
the service processing time, i.e. the business logic, and the XML file size [3].

The goal of this paper is to study the impact of the following aspects in web
service performance: (G1) XML parsers and (G2) SOAP toolkits. Furthermore,
other factors that may impact in performance will be studied, such as (G3) the
sensibility of a web service with respect to the document file size exchanged and
(G4) the service processing time. The implementations of XML parsers under
consideration are: Xerces [24], Xerces2 [25], Crimson [22] and XML Pull Parser
(XPP) from [8]. The SOAP toolkits considered are AxisJava and .NET, since
they are widely used. We have also included XSUL for its excellent performance
for large documents [8].

Impact of SOAP Implementations 887

4 SPE for Web Services

In order to study the impact of the previous goals, we recall a performance case
study taken from [3], then section 4.1 summarizes it and its results. In section 4.2
we apply the PUMA approach to obtain a GSPN model from the UML system
description.

4.1 Case Study: CDSS Web Service

Catley et al. propose in [3] “an infrastructure to support artificial intelligence-
based clinical decision systems (CDSSs). The system processes multidomain med-
ical data in high-risk medical environments in order to reduce medical errors
and alert detection systems”. It integrates and accesses CDSSs and distributed
databases from different medical domains in order to predict medical outcomes.
These CDSSs are offered as web-services. The paper models a representative sub-
set of this infrastructure, which invokes a CDSS as a web service and accesses
the patient’s Electronic Patient Record (EPR). Figure 2(a) depicts the sequence
diagram (SD) of such CDSS invocation process, that proposes an initial system
configuration made of one instance per hardware and software resource.

The system parses XML documents using the Xerces parser through a DOM
interface. The required response time for 50 users requesting the system should
not exceed 8 seconds.

Catley et al. applied the SPE techniques developed in [16] to assess the required
metric. Then they modeled the system by means of deployment and sequence di-
agrams annotated according to the UML Profile for Schedulability, Performance
and Time Specification (UML-SPT) and translated them into an LQN model [29].

This model was solved with the initial configuration, determining that the sys-
tem can not meet the performance target, see Figure 1(a1) where the response
time for 50 users is 39.9 seconds. They identified system bottlenecks and proposed
a new configuration that replicates processors and threads (10 WSCoordinator, 10
CDSS, 3 AppCPU and a variable number of EPR). Figure 1(a2) depicts the results of
multithreading the EPR task when the system is executed by 50 users. They de-
termined that the target is achieved in this new configuration with 8 threads of
EPR.

4.2 Applying the PUMA Approach

PUMA [30] was designed as a framework to obtain performance models from de-
sign models. Therefore, we use PUMA to obtain a GSPN model from the SD in
Figure 2(a), which models the CDSS. The GSPN model aims for validating the
CDSS results in [3] and for dealing with the performance goals previously given.

PUMA uses an intermediate model, the Core Scenario Model (CSM) [17], which
is suited to produce a performance model, such as layered and regular QNs, and
stochastic PNs.

The CSM defines a performance Scenario as a sequence of Steps that are
linked by Connectors. A Step is a sequential piece of execution. Connectors can

888 E. Gómez-Mart́ınez and J. Merseguer

include branches, merges, and forks and joins. A scenario has a Start point and
an End point. Start points are associated with Workload. There exist two kind
of Resources : Active, which execute steps, and Passive, which are acquired and
released during scenarios by special ResAcquire and ResRelease steps. Steps are
executed by (software) Components which are passive resources.

PUMA gives a translation process to get a CSM model from a UML SD.
Figure 3(a) depicts the resulting CSM for our target SD. Observe that this
CSM is made of two scenarios, the one corresponding to the CDSS invo-
cation process (left column) and the CDSS processing (right column). The
CDSS processing scenario comprises the messages from processWebService()
to WebServiceDone(). The other messages of the SD correspond to the CDSS
invocation process.

Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

0 10 20 30 40 50

AXIS DOM
XSUL

AXIS SAX

Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

0 10 20 30 40 50

AXIS DOM
XSUL
AXIS SAX

(a) Response times obtained by [3]. (b) Response times obtained from the GSPN model.

(c) Response times for XML parsers. (d) Response time for different SOAP implementations.

Number of Users

R
es

po
ns

e
Ti

m
e(

se
c)

0 20 40 60
0

10

20

50

40

30

(a1) Initial configuration
Number of EPR threads

R
es

po
ns

e
Ti

m
e(

se
c)

0 5 10 15
0

2

4

6

8

(a2) New replicated configuration

0

10

20

30

40

50

0 10 20 30 40 50
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

(b1) Initial configuration

0

2

4

6

8

10

12

14

0 5 10 15
Number of EPR threads

R
es

po
ns

e
Ti

m
e

(s
ec

)

(b2) New replicated configuration

Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

0 10 20 30 40 50

Xerces DOM
Crimson DOM
Xerces2 DOM

XPP2

(c1) Initial configuration
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

2

4

6

8

10

12

0 10 20 30 40 50

Xerces DOM
Crimson DOM
Xerces2 DOM
XPP2

(c2) New replicated configuration
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

0 10 20 30 40 50

AXIS
.NET
XSUL

(d1) Initial configuration
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

2

4

6

8

10

0 10 20 30 40 50

AXIS
.NET
XSUL

(d2) New replicated configuration

(e) Response time for the CDSS web service when EPR file increases in size.

(e1) EPR file sized
with 100 KBytes.

(e2) EPR file sized
with 1 MBytes.

(f) Response time when CDSS processing time increases.

Time for CDSS process (sec)

R
es

po
ns

e
Ti

m
e

(s
ec

)

0
20
40
60
80

100
120
140

0,0 0,5 1,0 1,5 2,0

Axis DOM
Axis SAX
XSUL

2,5

(f1) EPR file sized with 5 KBytes
Time for CDSS process (ms)

R
es

po
ns

e
Ti

m
e

(s
ec

)

0
20
40
60
80

100
120
140 Axis DOM

Axis SAX
XSUL

0,0 0,5 1,0 1,5 2,0 2,5

(f2) EPR file sized with 100 KBytes
Time for CDSS process (ms)

R
es

po
ns

e
Ti

m
e

(s
ec

)

0
25
50
75

100
125
150
175

0,0 0,5 1,0 1,5 2,0

Axis DOM
Axis SAX
XSUL

2,5

(f3) EPR file sized with 1 MBytes

Fig. 1. Results of the experiments

The CSM in Figure 3(a) is translated into a GSPN, see Figure 3(b), by means
of a extraction process developed in [30]. So, each class of the CSM corresponds

Impact of SOAP Implementations 889

<<PAresource>>
WSRequestor

<<PAresource>>
WSCoordinator

<<PAresource>>
SOAP1

<<PAresource>>
XML1

<<PAresource>>
CDSS

<<PAresource>>
SOAP2

<<PAresource>>
XML2

<<PAresource>>
EPR

User

requestWS()

protocolProcessing()

transmitWSRequest()

parseXMLDoc()

processWebService()
retrieveEPR()

validate()

transformXMLDoc()

CDSS_Processing()

parseXMLDoc()

updateEPR()
native XML DB Write()

native XML DB Read()

WebServiceDone()

determineOutputFormat()

pack()

transmitWSResult()
display()

unpack()

<<PAresource>>
DISK

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(25,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(12.5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(12.5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(500,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.8,’ms’))}
<<PAstep>>

{PAdemand=(’asmd’,
’mean’,(50,’ms’)),

PArep=8}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(18.75,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(12.5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(60,’ms’)),
PArep=12}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(25,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.7,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(2.1,’ms’))}

<<PAclosedLoad>> {PApopulation=$NUsers}

<<PAstep>>
{PArespTime=((’req’,’percentile’,100,(10,’s’)),

(’pred’,’percentile’,100,$UserR))}

(a) Sequence diagram taken from [3] describing the system.

(c) Changes in the CDSS w.r.t. the original proposal.

<<PAresource>>
WSCoordinator

<<PAresource>>
CDSS

<<PAresource>>
XML2

<<PAresource>>
EPR

<<PAresource>>
DISK

retrieveEPR()

validate()

transformXMLDoc()

parseXMLDoc()

updateEPR()
native XML DB Write()

native XML DB Read()

processWebService()

WebServiceDone()

CDSS_Processing()

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.8,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(50,’ms’)),
PArep=8}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(60,’ms’)),
PArep=12}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(500,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tv,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tt,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tp,’ms’))}

D

C

A

(b) SD describing the proposed key
performance scenario with SOAP toolkit.

<<PAresource>>
WSRequestor

<<PAresource>>
WSCoordinator

<<PAresource>>
SOAP Toolkit

<<PAresource>>
CDSS

User

requestWS()

protocolProcessing()

transmitWSRequest()

processWebService()

WebServiceDone()

determineOutputFormat()

serialize()

transmitWSResult()
display()

deserialize()

<<PAclosedLoad>> {PApopulation=$NUsers}

<<PAstep>>
{PArespTime=((’req’,’percentile’,100,(10,’s’)),

(’pred’,’percentile’,100,$UserR))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,($tl,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($td,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.7,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($ts,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(2,’ms’))}

E
F

G

Fig. 2. Sequence diagrams

890 E. Gómez-Mart́ınez and J. Merseguer

(a) Core Scenario Models.

CDSS Invocation Scenario CDSS process Scenario

pack

determineOutputFormat

WSInterface

WSCoordinator

WSP

transmitWSResult

CDSS

SOAP

XML

unpack

WSRequestor

transmitWSRequest

WSControlprotocolProcessing

User

validate

retrieveEPR

native_XML_read

XML

EPR

DISK

CDSS_processing

transformXMLDoc
updateEPR

native_XML_write

parseXMLDoc

AppCPU

parse

(b) GSPN representing the SD in Figure 2 (a).

Start

ResAcq

protocolProcessing

transmitWSRequest

ResAcq

WSControl

ResAcq

unpack

ResRel

ResAcq

parseXMLDoc

ResRel

ResRel

ResAcq

ResAcq

WSControl

determineOutputFormat

ResAcq

pack

ResRel

transmitWSResult

ResRel

ResRel

ResRel

UserP
ProcessingResource

Network
ExtOp

WSCoordinator
Component

WSP
ProcessingResource

SOAP
Component

processWebService

ResRel

End

XML
Component

CDSS
Component

App_CPU
ProcessingResource

Network
ExtOp

ResAcq

WSRequestor
Component

CDSS Invocation Scenario

retrieveEPR

ResAcq

ResAcq

native_XML_DB_Read

ResRel

ResRel

ResAcq

validate

ResRel

ResAcq

transformXMLDOC

ResRel

CDSS_processing

ResAcq

parseXMLDOC

ResRel

updateEPR

ResAcq

ResAcq

native_XML_DB_Write

ResRel

ResRel

ResRel

Start

CDSS
Component

App_CPU
ProcessingResource

ResAcq

EPR
Component

Database
Component

DB_CPU
ProcessingResource

XML_2
Component

End

ResAcq

ResRel

DISK
Passive
Resource

ResAcq

ResRel

CDSS process Scenario
processWebService

Fig. 3. Core Scenario Model and LGSPN for the SD in Figure 2(a)

Impact of SOAP Implementations 891

with a GSPN pattern. For instance, a step is translated into a timed transition
with an input place, where its delay is the demand attribute of the step. All
of the GSPN patterns are composed until the GSPN representing the whole
scenario is built.

Performance metrics can be obtained using TimeNET [23] to solve this GSPN
by means of simulation techniques. Figure 1(b1) and Figure 1(b2) present the
same experiments as Figure 1(a1) and Figure 1(a2), respectively, i.e. the re-
sponse times for the initial and the new replicated configuration. In Figures 1(b2)
and 1(a2), the response time for 50 users is stated in 9.23 seconds and 5.4 seconds,
respectively. These response times are greater since PNs introduce synchroniza-
tion in the model. However, both the order of magnitude and the tendency of
the results are kept.

Once it has been verified that the results, obtained by the derived GSPN, are
similar to those obtained in [3] with LQN, the following step is to study, using
this GSPN, the impact of XML parsers and SOAP implementations.

5 Web Services Tunning: CDSS Performance
Improvements

In this section we exploit the CDSS case study to deal with the goals (G1),
(G2), (G3) and (G4) proposed in section 3. The final objective is to extract
conclusions about those key aspects of web service performance from the case
study.

5.1 Impact of XML Parsers

Since XML parsers affect web service performance [7,5,10], we explore different
alternatives of them in order to study their impact in the CDSS web service.

We realized that some of the CDSS parameters in [3] should be changed for
the following considerations:

A Document build time is the time to scan and interpret the XML docu-
ment [20], but in [3] is assigned to the packing operation. In our experiments,
we will assign this value for parsing operations, see Table 1.

B Document modify time is the time required to systematically modify the
constructed document representation [20], but in [3] is assigned to the parsing
operations. We do not assign this value to an operation, since we consider
that EPR file is not updated.

C Document walk time is the time required to walk the constructed document
representation [20]. As [3], we will assign it to validate the XML document,
see Table 1.

D Text generation time is the time required to output document representa-
tions as text XML documents [20]. As [3], we will assign it to transform the
XML document, see Table 1.

892 E. Gómez-Mart́ınez and J. Merseguer

Table 1. Performance parameters for XML operations from [21]

parameter Mean Execution Time (ms)
Operation in SD Xerces Xerces2 Crimson XPP

(A) parseXMLDoc() $tp 6.957 2.898 9.856 1.159
(C) validate() $tv �0 �0 �0 �0
(D) transformXMLDoc() $tt 1.055 1.231 1.231 0.703

Table 1 gives the new values taken from an updated benchmark [21]. Fig-
ure 2(c) depicts the part of the SD that has been changed to consider the new
values in the model.

Figure 1(c1) and Figure 1(c2) depict the response times when the parameters
in Table 1 are applied. These results can be compared with those in Figure 1(a1)
and Figure 1(a2), as well as with those in Figure 1(b1) and Figure 1(b2), being
similar in all cases. Therefore, it does not matter which parser is used.

However, according to [7,21], the response times for Xerces parsers are worse
than the obtained ones for Crimson or XPP parsers. Slightly best results are
obtained by XPP. The reason for our results is the small size of the EPR file,
only 5 KBytes. So, in this case, the XML parser significantly does not affect the
performance of the CDSS web service. But in section 5.3 we try to validate the
conclusions in [7,21] by varying the EPR file size.

5.2 Impact of SOAP Implementations

Currently, several implementations of SOAP are emerging and their performance
differs to a great extent [5,10]. Therefore, it is profitable to determinate what
toolkit meets performance objectives in the CDSS invocation web service.

We guess that in [3] the SOAP parameters are taken from [20], but we consider
more appropriate to use an specific SOAP benchmark, taken from [10]. Table 2
provides the values of SOAP operations, (F) deserialization and (G) serialization
and the overhead that the SOAP toolkit imposes, (E) the latency. Note that
they have been calculated assuming that most of the content of the EPR file are
strings. Figure 2(b) depicts the part of the SD changed to include in the CDSS
these new parameters.

Figure 1(d1) shows that all the SOAP toolkit give similar response time for
the CDSS. Only XSUL performs a little better in the replicated configuration,
see Figure 1(d2). Comparing these results with those in Figure 1(a1), they
are alike. We guess that as the SOAP message, which contains the EPR file, is
small, the time taken by processing SOAP is negligible with respect to the CDSS

Table 2. Performance parameters for SOAP toolkits from [10]

parameter Mean Execution Time (ms)
Operation in SD AxisJava .NET XSUL

(E) Latency → protocolProcessing() $tl 8.35 3.5 2.435
(F) Deserialization → deserialize() $td 10.476 4.797 3.935
(G) Serialization → serialize() $ts 16.151 4.481 3.706

Impact of SOAP Implementations 893

processing time. In section 5.4, we try to verify this affirmation by varying this
service processing time.

5.3 Impact of the EPR File Size

The previous experiments showed that due to the small size of the EPR file,
both the XML parser and the SOAP implementations have no relevant impact
for the performance of the CDSS web service.

Table 3. Performance parameters from [21] and [10]

Mean Execution Time (ms)
Parameter 100 KBytes 1 MBytes

in SD AxisJava DOM AxisJava SAX XSUL AxisJava DOM AxisJava SAX XSUL
(A) $tp 27.68 10.19 40.79 297.8 78.37 501.56
(C) $tv 1.37 �0 0.68 31.34 �0 15.67
(D) $tt 11.36 �0 26.51 282.13 �0 203.76
(E) $tl 8.35 8.35 2.435 8.35 8.35 2.435
(F) $td 44.39 44.39 26.78 917.11 917.11 431.464
(G) $ts 32.00 32.00 35.53 291.82 291.82 265.81

If it would be considered that this file increases in size, the results could be
different. Note that the XML-based EPR file is also enveloped in the SOAP
message, therefore its size affects both XML and SOAP operations. Table 3
provides the new parameters, considering two sizes for the EPR, they are set in
sequence diagrams of Figure 2(b) and Figure 2(c). We have taken into account
that XPP is the native parser for XSUL and for Xerces through DOM or SAX
interface for AxisJava.

Figures 1(e1) and 1(e2) show the response time with the initial configuration
when the EPR file size is 100 KBytes and 1 MBytes, respectively. If we observe
the results when EPR file size is 100 KBytes, these are similar to those when it
is only 5 KBytes, see Figure 1(d1). However, the response time increases mean-
ingfully with 1 MBytes. As expected [7], comparing the SOAP implementations,
AxisJava through SAX interface outperforms AxisJava through DOM. Surpris-
ingly, in spite of the good results of XSUL presented in [10] for large sizes, it
performs poorly in this case. It may be due to the time required by XPP to build
the document in memory, as suggested in [21].

5.4 Impact of the CDSS Processing Time

Once studied the impact of EPR file size, we come back to section 5.2 to verify if
the time required for processing this EPR file (with SOAP and the XML parser)
is irrelevant with respect to the time taken by the CDSS Processing() process.
In order to validate this supposition, the service processing time will be modified.
See the annotation of the CDSS Processing() message self dispatched by the
CDSS in the sequence diagram depicted in Figure 2(a).

In section 5.1 and section 5.2, we guess that XML parser and SOAP toolkits
have not influence in CDSS web service, since XML-based EPR file size is small.

894 E. Gómez-Mart́ınez and J. Merseguer

Therefore, the time required for being processed it by SOAP and XML parser
is irrelevant with respect to the time taken by CDSS Processing() process. In
order to validate this supposition, the service processing time is modified.

Figure 1(f1) depicts the response times for 50 users with the initial configu-
ration when the CDSS Processing() service time varies from 0.1 to 2.5 seconds
and the EPR file is 5 KBytes; in Figure 1(f2) the EPR file is 100 KBytes and
in Figure 1(f3), 1 MBytes. The response time of the different SOAP implemen-
tations and XML parsers follows the same tendency while sizing EPR file to
“small sizes”, 5 KBytes or 100 KBytes. However, when EPR file is 1 MBytes,
“big sizes”, and CDSS Processing() is less than 0.4 seconds, AxisJava through
SAX parser performs poorly compared to AxisJava through DOM and XSUL.
But, when service time increases, AxisJava through SAX parser outperforms
them. We guess that XSUL performs better when the service time is small be-
cause it is oriented to slightly processed scientific data. Similarly, we guess that
DOM and SAX outperform XSUL when the processing time is greater than 0.4
seconds since they are conceived to process generic information which may be
repeatedly accessed.

This experiment shows that the CDSS processing time (CDSS Processing())
and the EPR file size condition the impact of the XML parser and the SOAP
implementation.

6 Conclusion

This paper studies some of the main concerns of web services performance
through a set of goals established on a CDSS web service. We have focussed
on how XML parsers, SOAP implementations, the exchanged file size and the
service time influence the web services.

Our experiments indicate that the XML parser choice slightly affects web ser-
vices performance when the XML-based file size is small, whereas the SOAP im-
plementation influence is even smaller. However, when the EPR file increases in
size, the response times obtained are worst and there exist noticeable differences
among XML parsers and SOAP implementations. These differences intensify
when the service processing time changes.

We can conclude that the impact of the XML parsers and the SOAP
implementations is conditioned by both XML-based file size and service time,
i.e. the serialization and deserialization processes are not bottlenecks for large
data applications and large service times.

Acknowledgments. The authors would like to thank Diego Rodŕıguez for his
help in computing results using the TimeNET tool.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley Series in Parallel Com-
puting - Chichester, 1995.

Impact of SOAP Implementations 895

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Archi-
tectures and Applications. Springer, 2004.

3. C. Catley, D. Petriu, and M. Frize. Software Performance Engineering of a Web
service-based Clinical Decision Support infrastructure. In ACM WOSP, pages
130–138, 2004.

4. S. Chandrasekaran, J. Miller, G. Silver, I. Arpinar, and A. Sheth. Performance
Analysis and Simulation of Composite Web Services. Electronic Markets, 13(2),
2003.

5. D. Davis and M. Parashar. Latency Performance of SOAP Implementations. In
IEEE CCGRID, pages 407–412, 2002.

6. Document Object Model (DOM). http://www.w3.org/DOM/.
7. R. Elfwing, U. Paulsson, and L. Lundberg. Performance of SOAP in Web Service

Environment Compared to CORBA. In IEEE APSEC, pages 84–96, 2002.
8. Extreme! Computing Lab. Indiana University. http://www.extreme.indiana.

edu/xgws/xsoap/xpp/.
9. S. Gilmore, V. Haenel, L. Kloul, and M. Maidl. Choreographing Security and

Performance Analysis for Web Services. In EPEW/WS-FM, pages 200–214, 2005.
10. M. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-Ghazaleh, R. van Engelen,

K. Chiu, and M. Lewis. A Benchmark Suite for SOAP-based Communication in
Grid Web Services. In IEEE SC, page 19, 2005.

11. Y. Liu, A. Fekete, and I. Gorton. Predicting the performance of middleware-based
applications at the design level. In ACM WOSP, pages 166–170, 2004.

12. D. Menascé. Composing Web Services: A QoS View. IEEE Internet Computing,
8(6):88–90, 2004.

13. D. Menascé and V. F. Almeida. Capacity Planning for Web Services: metrics,
models, and methods. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

14. A. Ng, S. Chen, and P. Greenfield. An Evaluation of Contemporary Commercial
SOAP Implementations. In AWSA, pages 64–71, 2004.

15. Object Management Group, http://www.uml.org. UML Profile for Schedulabibity,
Performance and Time Specification., 2005.

16. D. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-
based derivation of LQN models from UML specifications. In TOOLS, volume
2324 of LNCS, pages 159–177. Springer, 2002.

17. D. Petriu and C. Woodside. A Metamodel for Generating Performance Models
from UML Designs. In UML, volume 3273 of LNCS, pages 41–53. Springer, 2004.

18. Simple API for XML (SAX). http://www.saxproject.org/.
19. C. Smith and L. Williams. Performance Solutions. Addison-Wesley, 2001.
20. D. Sosnoski. XML and JAVA technologies: Document models, Part 1: Performance.

http://www-128.ibm.com/developerworks/xml/library/x-injava/.
21. D. Sosnoski. XMLBench Document Model Benchmark. http://www.sosnoski.

com/opensrc/xmlbench/.
22. The Crimson Java Parser. http://xml.apache.org/crimson/.
23. The TimeNET tool. http://pdv.cs.tu-berlin.de/~timenet/.
24. The Xerces Java Parser. http://xerces.apache.org/xerces-j/.
25. The Xerces2 Java Parser. http://xerces.apache.org/xerces2-j/.
26. V. Datla and K. Goševa-Popstojanova. Measurement-based Performance Analysis

of E-commerce Applications with Web Services Components. In IEEE ICEBE,
pages 305–314, 2005.

27. T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester. Automatic Inclusion of Mid-
dleware Performance Attributes into Architectural UML Software Models. IEEE
Trans. Softw. Eng., 31(8):695–711, 2005.

896 E. Gómez-Mart́ınez and J. Merseguer

28. C. Woodside and D. Menascé. Application-Level QoS. IEEE Internet Computing,
10(3):13–15, 2006.

29. C. Woodside, J. Neilson, D. Petriu, and S. Majumdar. The Stochastic Ren-
dezvous Network Model for Performance of Synchronous Client-Server-like Dis-
tributed Software. IEEE Trans. Computers, 44(1):20–34, 1995.

30. C. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr, and J. Merseguer. Perfor-
mance by unified model analysis (PUMA). In ACM WOSP, pages 1–12, 2005.

	Introduction
	Related Work
	Performance Issues of the Web Services
	SPE for Web Services
	Case Study: CDSS Web Service
	Applying the PUMA Approach

	Web Services Tunning: CDSS Performance Improvements
	Impact of XML Parsers
	Impact of SOAP Implementations
	Impact of the EPR File Size
	Impact of the CDSS Processing Time

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

