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Abstract - Petri nets (PNs) constitute a formal paradigm 
for discrete systems. Some discrete models can be relaxed 
into continuous models. Infinite server semantics 
continuous Petri nets (ISSCPNs) is one of the most relevant 
timed interpretation of Continuous PNs. ISSCPNs can be 
seen as piecewise linear systems. Forrester Diagrams (FD) 
are specific modelling tools inside System Dynamics, a 
methodology for the analysis of complex continuous 
systems. This paper explores and compares the modelling 
power of both formalisms, ISSSCPNs and FD. Previous 
comparative views focused on the formalisms and on 
positive and compartmental systems, constitute the basis of 
this work. The comparison is complemented taking into 
account the interpretation of linear ordinary differential 
equation systems (LODES), the information delays and 
some methodological considerations. ISSCPNs permit to 
model any LODES when known upper and lower bounds of 
the state variables exists. Therefore systems with cyclic 
behaviour or delays in the information can be modelled. 

Keywords: Continuous Petri nets, Forrester diagrams, 
relaxation of discrete event dynamic systems, positive 
systems, expressive power. 

1 Introduction 
 PNs constitute a well-known family of discrete event 
dynamic formalism over the nonnegative naturals. 
Although PNs models are originally discrete event models, 
their relaxation through continuization transforms them 
into continuous models. At the price of losing certain 
possibilities of analysis, this permits to obtain some 
advantage, such as avoiding the state explosion problem 
inherent to the discrete systems and taking advantage of the 
extensive theory about continuous dynamic systems. 
Although not all PN systems allow a “reasonable” 
continuization [1], this relaxation is possible in many 
practical cases, leading to a continuous-time formalism: 
continuous PNs. 1Different timed interpretations lead to 
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different firing/flow policies. One of the most relevant is 
ISSCPNs, the one that will be dealt with in this paper. 
Under this interpretation PNs are piecewise linear systems 
over the nonnegative reals. 

 FD, a specific modelling tool inside System 
Dynamics (SD), provides a graphic representation of 
continuous dynamic systems based on (eventually non 
linear) ordinary differential equation systems (ODES). 
They have been widely used to model complex systems 
with a friendly graphic representation, but they are totally 
equivalent to ODES. An interesting class of linear ODES 
are positive linear systems, whose state variables take only 
nonnegative values, the same as Continuous PNs. Another 
special class of positive linear systems are compartmental 
systems, which are systems composed of interconnected 
compartments or reservoirs. 

 Following [2] and [3], ISSCPNs are compared with 
FD, and with linear positive systems and compartmental 
models, in order to deepen into their expressive power, that 
is, the type of  behaviour that they can present and the kind 
of systems that can be modelled with them. 

 ISSCPNs are introduced in Section 2. Section 3 
presents them as piecewise LODES, and their positivity is 
analyzed; control arcs are presented, and the expressive 
power of ISSCPNs to model dynamical systems (including 
compartmental systems) is determined. Section 4 shows the 
capacity of ISSCPN to model and simulate linear systems 
based on FD, what leads to information delays or cyclic 
behaviours. Finally in Section 5 the conclusions obtained in 
this paper are summarized. 

2 Continuous Petri nets and Forrester 
diagrams 

2.1 Petri nets definitions 

 PNs constitute a well-known formal paradigm for the 
modelling, analysis, synthesis and implementation of 
systems that "can be seen" as discrete. Their basic concepts 
and notations are introduced, for instance, in [4], [5]. We 
will just remark that a system is a structure N= <P, T, Pre, 
Post> provided with an initial marking over P, m0. Pre and 



Post represent the static structure of the model, from which 
the token flow matrix, C = Post – Pre, can be deduced. A 
Petri net structure can also be represented as a bipartite 
directed graph, in which places p are usually represented as 
circles and transitions t as bars. The marking changes by 
the firing of transitions. Starting from a PN system, a state 
(or fundamental) equation can be written: m = m0 + C ⋅ σ, 
where σ ∈  N|T| and m∈  N|P|. 

 The set of reachable states of a discrete PN system 
may easily become extremely large. This is known as the 
state explosion problem. A way to try to overcome this 
problem, is to continuize the system, what allows the use of 
different mathematical tools (convex geometry and linear 
programming, differential equations …). 

 PNs can be interpreted with marking in the non-
negative reals (Continuous PNs) to model the relaxed 
continuous approximation of the discrete model. The firing 
is modified in the same way, that is, a transition t is enabled 
at m iff ∀  p∈ •t, m[p]>0. Its enabling degree is defined as 
enab[t] = min p∈• t {m[p]/Pre[p,t]}.  

 In a continuous PN we may consider the derivative of 
the state equation with respect to time. This way we obtain 
that m� = C · σ� , plus the initial condition m(0) = m0. Let 
us call f =σ� , since it represents the flow through the 
WUDQVLWLRQV� ,I I�2�� ZKHUH 2 UHSUHVHQWV WLPH� LV GHILQHG E\ DQ

interpretative extension then the timed evolution of the 
continuous PN can be obtained. Different firing semantics 
have been defined for continuous Petri nets [6], [7].  
Infinite servers semantics will be used in this paper. Under 
this firing semantics the flow through a transition ti is 
defined as f[ti]=D[ti]⋅enab[ti] where D[ti] is a positive real 
constant representing the internal speed of transition ti.   

2.2 Forrester diagrams definitions 

 SD constitute a modelling methodology that permits 
to systematize the creation of continuous models based on 
systems of non-linear multivariable time dependent 
differential equations. FD are specific modelling tools 
inside SD [8] that provide a graphic representation of 
dynamic systems (see Figure 1), modelling quantitatively 
the relationships between the parts by means of some 
symbols, which correspond to a hydrodynamic 
interpretation of the system. 

Material channel (or flow) 

Auxiliary variable 

Exogenous variable 

Parameter (constants) 

Information channel 

Source and sink (clouds) 

Level variable (Stock) 

Flow variable (valve) 

Delay  
(material or information)  

Figure 1: Forrester Diagrams elements 

 The levels correspond to the state variables in systems 
theory. They represent the variables whose evolution is 
more significant for the study of the system. The levels 
accumulate "material" from material channels, which are 
controlled by the valves (flow variables). Valves define the 
behaviour of the system, since they determine the speed of 
the material flow (through the material channels) according 
to a set of associated equations. The equations depend on 
the information that the valves receive from the system 
(levels, auxiliary variables and parameters) and from the 
environment (exogenous variables). The information is 
transmitted instantaneously through information channels. 
Auxiliary variables correspond to intermediate steps in the 
calculation of the functions associated to the valves, but 
they can always be removed. The clouds represent sources 
and sinks, that is, a non-determined (infinite) amount of 
material, and the parameters are constant values of the 
system. The interaction of the system with the exterior is 
represented with the exogenous variables, which have an 
evolution that is assumed to be independent from the 
evolution of the system. The delays can affect the material 
or the information transmission, but in both cases they do 
not introduce more description capacity, because they just 
correspond to a compact notation of elements that produce 
these delays. 

 A differential equations based model is directly 
derived from a FD, and the interest of the hydrodynamic 
analogy is that indicates that a FD model is equivalent to an 
(eventually non-linear) ODES, and vice versa.  

3 Petri nets and ordinary differential 
equation systems  

 In the previous section it has been seen that the 
evolution of a ISSCPN is described by the system: 

m� (τ)= C · f(τ) 
f(τ)[ti]=D[ti]⋅ enab(τ)[ti]         
m(0) = m0 

 Thus a continuous Petri net under infinite servers 
semantics becomes a piecewise linear system. The switch 
between two linear systems is triggered by a change of the 
place giving the minimum in the expression for the 
enabling degree. 

3.1 On positivity 

 Broadly speaking, positive systems are systems whose 
state variables take only nonnegative values. A positive 
system automatically preserves the non-negativity of the 
state variables, i.e., if non-negativity constraints on the 
state are added, they are redundant.  

 More formally, let � ��� EH D OLQHDU V\VWHP� 

      x� (t) = A x(t) + B u(t)                (1) 



 Definition 1. [9] � LV VDLG WR EH SRVLWLYH LII IRU HYHU\
nonnegative initial state and for every nonnegative input its 

state is nonnegative. Then the positive orthand +ℜ n  is a 

nonnegative invariant set. If B=0, the system is said to be 
uncontrolled or unforced.  

 Note that positivity in linear systems can depend on 
the basis of the input as well as on the basis of the state 
space. Some non-positive system can be transformed into 
another equivalent positive system by a basis change in the 
state space. This is the reason why some authors define 
positive systems by requiring the existence of an invariant 
set (without requiring, however, that such an invariant set 
be the positive orthand). 

 Theorem 1. [9] A linear system (1) is positive, iff A is 
a Metzler matrix and B is nonnegative (a matrix/vector is 
nonnegative if all its elements are nonnegative and a square 
matrix is Metzler if non-diagonal elements are 
nonnegative). 

 According to Definition 1, ISSCPNs are positive 
systems (the fact that the flow of a transition is proportional 
to its enabling degree ensures the nonnegativity of the 
marking). Nevertheless, the matrices Ai of the linear 
systems ruling the evolution of the net (recall that an 
ISSCPN is a piecewise linear system) can be non Metzler 
matrices. In a ISSCPN the switching between linear 
systems is triggered by a change in the place giving the 
minimum in the expression of the enabling degree.  

 The evolution of the net system in Figure 2 is driven 
by a linear system with matrix A1 if x1�[2 and with matrix 
A2 otherwise (if x1=x2 both systems are equivalent). Neither 
A1 nor A2 is a Metzler matrix, however the system is 
positive.  
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Figure 2: A ISSCPN whose associated linear 
systems have non Metzler matrices. 

 

3.2 Control Arcs in PNs. Expressive power 
of ISSCPNs. 

 Control arcs will be introduced in this section. A 
control arc is defined on a couple {place, transition} and 
allows to model instantaneous control of the flow of the 
transition without modifying the marking of the place. It 
will be shown that by using control arcs any bounded 
LODES can be represented by an equivalent ISSCPN. 

 Let us describe how a control arc can be added to a 
ISSCPN. Consider an ISSCPN with a vector of internal 
speeds λ and incidence matrices Pre and Post. Let us 
assumed that the flow of a transition t is desired to be λ[t] 
⋅m[p] all along the evolution of the system for a given place 
p that is not an input place of t. In other words, we want the 
flow of transition t to be controlled by place p. Recall that 
the flow of t is f[t]=λ[t]⋅ min p∈• t {m[p]/Pre[p,t]}. 
Therefore, in order to achieve our goal it is necessary that p 
is an input place of t and that it is always giving the 
minimum in the expression for the flow. This can be done 
by adding an arc going from p to t with weight k. We will 
asume that k is big enough to ensure that p always gives the 
minimum. If the internal speed of t, λ’[t], is made k times 
faster (λ’[t]=k·λ[t]) then f[t]=λ[t]⋅m[p]. In order to avoid 
that transition t consumes fluid from p, a new arc going 
from t to p with weight k is added to the net. This way, the 
flow of t is controlled by p, but the marking of p is not 
modified by the firing of t. Summing up, to put a control 
arc between {p,t} of weight k, two arcs of weight k have to 
be added (from p to t and from t to p), and the internal 
speed of t has to be multiplied by k. 

aijÂN

xi
xj

k
k

aijÂN

xi
xj

k
k

 
Figure 3: A control arc with weight k. 

 Note that in a control arc {p,t} the weight k is assumed 
to be big enough to ensure the control of the transition. If 
the markings of the input places of t are strictly positive 
and the marking of p is upperbounded then such a k does 
always exist. However, if the marking of one of the input 
places tends to zero or the marking of p tends to infinity, no 
finite k exists such that p gives the minimum in the 
expression for the enalbling degree. 

 An ideal control arc is defined as a control arc with its 
constant k equals to infinite. The use of ideal control arcs 
allows to control transitions even when the marking of an 
input place tends to zero or the marking of p tends to 
infinity. Ideal control arcs represent an extension in the 
modelling power of ISSCPN and can be used to empty a 
place in finite time. They are equivalent to the information 
arcs in FD (in linear and nonnegative restricted systems). 

 The following lemma states that by using regular 
control arcs (no ideal control arcs) any LODES that has a 
positive and known lower and upper bounds can be 
modelled by an equivalent ISSCPN. 

 Lemma 1: For any LODES with positive and known 
lower and upper bounds there exists an ISSCPN having 
identical behaviour. 

 Proof. Let us consider the following LODES 
x� =A·x+B·u of dimension n. Each scalar equation 



associated to this equation can be writen as x� i = �j aij · xj + 
�k bik · uk. Let q be the number of nonzero elements of A, r 
the number of nonzero elements of B and m the dimension 
of u. Let us consider an ISSCPN with n+m places and q+r 
transitions. Every transition is associated to a nonzero 
element of either matrix A or B. Let us first show how the 
expression �jaij·xj can be modelled by an ISSCPN. The 
modelling of �kbik·uk follows immediately by considering 
that the markings of the last m places correspond to the 
values of the input vector u.  

 Let us define the internal speed of the transition t 
associated to aij as λ[t]=|aij|. Let us assume that the term aij 
of the expression �jaij·xj is negative. In order to model x� i = 
aij · xj it is enough to add a control arc between the place 
associated to xj and the transition associated to aij. Let l be 
the lower bound of xi and u the upper bound of xj. The 
weight k of the control arc has to fulfill u/k<l to ensure that 
the flow of transition transition aij only depends on the 
marking of place xj. By adding an arc going from place xi 
to transition aij the expression x� i = aij · xj is modelled. The 
rest of the negative terms in �jaij·xj are modelled in the 
same way. 

 In order to model a positive term aij a control arc is 
required between between the place xj and the transition aij. 
Since aij is positive the expresión x� i=aij·xj is modelled by 
adding an arc from transition aij to place xi. In this case the 
weight of the control arc is not restricted since xj is the only 
input place to aij and hence its marking will always give the 
minimum in the expression for the flow of aij. 

 From Lemma 1, the following Proposition is 
immediately obtained. 

 Proposition 1: For any LODES whose state variables 
have a known lower and upper bound there exists an 
ISSCPN that represents the evolution of the LODES in the 
positive reals. 

  Proof: Any LODES with known lower bounds can be 
shifted to the positive reals by means of a change of 
variable. According to Lemma 1 there exists an equivalent 
ISSCPN for the shifted system.  

 Recall that by introducing ideal control arcs it is 
possible for a place to control a transition even if its 
marking stretches to infinity. Therefore the use of ideal 
control arcs allows to model also those LODES that are not 
upper bounded.  

3.3 Donor and Recipient Continuous Positive 
Systems 

 Compartmental systems are a particular case of 
positive systems. They are composed of a finite number of 
subsystems (compartments), interacting by exchanging 
material among the compartments and with the 

environment. A compartmental system can be represented 
as a graph (with compartments as nodes) with an associated 
interpretation (compartmental networks). The level of each 
compartment, xi, changes according to the input and output 
flows through the arcs, i.e., x� =�k fki – �jfij. 

 Inside compartmental systems generation of matter is 
forbidden. This means that for every column of A the sum 
of its elements is non-positive, i.e., �j aij � �� +HQFH� DOO WKH

eigenvalues have a non-positive real part, and so the 
systems are either asymptotically or marginally stable. If it 
is an unforced system, then x(t) is bounded; if it is a closed 
system then the “material” is constant, and otherwise there 
are loses in the system.  

 The flows can be defined according to difierent 
semantics: (pure) donor controlled when fij �GHSHQGV RQO\ RQ

xi (fij = bij · xi , in the linear case), (pure) recipient controlled 
when fij� GHSHQGV RQO\ RQ xj (fij = cij · xj in the linear case), 
donor and recipient controlled if fij� GHSHQGV RQ ERWK xi and 
xj (for example, fij = dij · xi · xj ). In general any kind of 
control can be defined, i.e., the flows may depend (global 
function) on any set of variables. Linear donor controlled 
systems are positive systems (in the sense of not to present 
negative states), but pure recipient controlled system are 
not, in general, positive systems. 

 Any linear compartmental system based on donor 
controller can be “naturally" simulated by means of a PN, 
because a basic element in the evolution of PNs is that 
behaviour is of the consumption/production type, that is, the 
common practice in PNs is to define the flow according to 
the enabling, i.e., the input places. That is not the idea in a 
recipient controlled system, but it is possible to represent 
recipient controlled compartmental systems with ISSCPN 
control arcs.  

4 Forrester diagrams and infinite 
server semantics continuous petri 
nets 

 As commented in Section 2, FD constitute a graphic 
representation of (eventually non positive and non linear) 
ODES, and they are mainly used to simulate the evolution 
of dynamic systems. Furthermore, it has been shown in 
section 3 that ISSCPNs allows to simulate the evolution of 
ODES with positive states, (or with the possibility of being 
transformed into another system with positive states). 

4.1 Behaviours types modelled with ISSCPN 

 Let be a general case of unforced linear ODES, x� (t) = 
A x(t), with dimension 2. Its solution is eAt · x(0). Certain 
particular cases that exemplify the types of behaviour of 
this system are shown in Table 1. Exponential (positive and 
negative), linear, oscillating, hyperbolic and even sine 
growing behaviours can been seen.  
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Table 1: Examples of behaviour that can be modelled 
 with ISSCPNs in positive systems. 

 
 Let us suppose a particular system with a material 
storage (St) and a staff of employees (E). The material is 
decreased due to the sales (S), which are assumed to be 
constant in time, and it is increased with the production (P), 
which is proportional to the number of employees. On the 
other hand, E varies with the contracting (C), which is 
proportional to the difference between the desired storage 
(DSt) and the present St. Figure 4 shows the FD that 
models this system.   

DSt

St

E

C

SPc1

c2 DSt

St

E
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SPc1

c2

 
Figure 4. DF of a storage with employees system. 

 The differential equations system corresponding to 
that FD and its matrices are, 

P(t) = c1 · E(t) 
C(t) = c2 · (DSt–St(t))  
dSt(t) / dt = P(t) – S 
dE(t) / dt = C(t) 

A= 
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 The eigenvalues of A are pure complex conjugated, 
independently of the values of c1 and c2 (due to the structure 
of the system), and their temporal evolution is oscillatory, 
sine shaped and with no damping. It can be described as: 

St= w · sin((c1·c2)
1/2 ·t) + DSt  (3) 

E= w · (c2/c1)1/2 · cos((c1·c2)
1/2 ·t) + S/c1 

where w depends on the initial state, and it is computed as  

 w = ((St(0)–DSt)2 + ((E(0)·c1–S)/(c1·c2))
2)1/2  

 So, if the storage is represented versus the 
employment, although the sales are constant a cyclic 
behaviour appears, with the parameters shown in Figure 5. 
As a curiosity, this type of behaviour (cyclic even with 
continuous inputs) was the origin of Forrester’s studies, 
which were the source of System Dynamics. 
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Figure 5. Behaviour of the system described in Figure 4 

 If St(0)=DSt and E(0)=S/c1, then the system is stable. 
It is also important to emphasize that this system has only 
physical sense when the levels (stored elements and number 
of employees) have positive values, but the system of 
differential equations is non positive, and negative 
employment and storage can be reached for some initial 
conditions. Therefore, the constraint for non negativity 
(St,,E��� PXVW EH DGGLWLRQDOO\ LQFOXGHG LQ RUGHU WR REWDLQ D

correct model.       

 The system with the non negativity constraint can be 
modelled with continuous PNs (Figure 6) but it must be 
taken into account that C, which can be positive or 
negative, must be implemented as a combination of a flow 
of new contracts and a flow of dismissals, both positive.  

 Note that two places have been used (those with 
unitary marking) in order to get a constant flow with ISS, 
and control arcs have been necessary to explicitly select the 
places that provide the information to the transitions with 
synchronizations.  The system will be described by (3) 
whenever St���N

�
 and E�6W�N

�
. Recall that k

�
 represents a 

finite constant as big we want (eventually tending to 
infinite). 
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Figure 6. ISSCPN equivalent to the system 

in Figure 4 restricted to positive values. 



 It is also important to note that an appropriate value of 
k
�
 in the PN depends on the minimum values that St and E 

can reach (and then on the initial marking). For instance, if 
c1=c2=1, St(0)=9, DSt=10 and E(0)=S=12, then k

�
 does not 

need to be higher than 1. Figure 7 shows simultaneously the 
evolution of the constrained system (modelled with 
ISSCPN or FD with constraints) and the non restricted one 
(modelled with ODES or FD without constraints). Both are 
similar from the initial state to the first intersection with the 
horizontal axis (point a in the graphic). Figure 7a presents 
St versus E, and Figure 7b shows the temporal evolution of 
the state variables.  

 

 
Figure 7: Evolution of the system with c1=c2=1, 

St(0)=E(0)=40; DSt=10, C=V=20 from constrained  
(broken line) and no constrained (unbroken line) models. 

4.2 Information delays in PNs 

 Models with material and information delays are 
frequently used in FD. In both cases delays are modelled 
either as one first order system, or as several ones in series 
(usually three), but no additional modelling elements are 
used.  In PNs material delays are often used, similar to 
material delays in FD, but similar delays can also be 
modelled with the information. Table 2 shows both types of 
delays in FD and in their equivalent ISSCPNs. Note that the 
dynamics (the differential equation) is similar in both 
delays (a first order system), but material delay is applied to 
a flow (material channels / arcs) while information delay is 

applied to the information of a state variable (information 
channels from a level / control arcs with the information of 
a place). 
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Table 2. Sketch, differential equation, FD and ISSCPNs in 
material and information delays. 
 
 Let us suppose another storage system. Sales (which 
are returns when negative) are proportional (with 
proportionality constant k) to de difference between the 
storage reference (r) and the number of stored elements (y). 
Figure 8 shows the system modelled with a FD and with an 
ISSCPN respectively. 

 
y

u

r

–+

k

y

u

r

–+

k

 

 
 
(a) 

y kk
r

y kk
r

 

 
(b) 

Figure 8. a) DF modelling a simple 
storage system,  b) its equivalent PN. 

 This system follows the differential equation 

 dy/dt = k·u = – k · y + k · r  

 Whose solution is y = (yo – r) · e-kt + r, where yo is the 
initial storage. Note that these equations are the same as 
those of the typical temperature (y) control system, with a 
temperature reference (r) and error (u) feedback loop. 



 Let us suppose now a delay in the information 
feedback loop, that is, the error information u is delayed 1/a 
time units, and x is the variable that represents the delayed 
signal. If a first order approximation if used to model the 
delay, the differential equations that drive the system 
evolution are 

x� = – a · x – a · y + a · r 
ù  N Â [ 

 And Figure 9 shows the models with FD and PNs 
respectively. 
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Figure 9. FD and ISSCPN models of a storage system with 
a first order delay in the information feedback loop. 

 Note that due to the positivity of PNs, the PN in Figure 
9 is not valid for negative values of the state variables (and 
then of x). And x becomes negative whenever y(0)>r. In 
order to avoid this problem, a reference change of the origin 
can be made when x is lower bounded: x = x’–lim where “–
lim” is a constant that represent a lower bound of x. The 
equations result then 

'x� = –a·x’ – a·y +a·r + a·lim  (2) 
ù  N Â [¶– k·lim 

 Figure 10 shows the PN that models the system with 
the change in the reference origin (or the ODES in (2)). 
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Figure 10. ISSCPN model of the storage 

system with a state variable change: x = x’–lim 
 
 However for this example a better solution to the non-
negativity problem exists that can be applied even if x is 
non bounded. The error u is a non-positive variable but 
corresponding to the difference between two positive 
variables: the temperature y and the reference r. Then x can 
be modelled by two variables, xr corresponding to the 
delayed reference and xy corresponding to the delayed 
temperature, as can be seen in Figure 11. That model is 
correct for any (non-negative) initial value, and it is not 
necessary to know a lower bound of x. 
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Figure 11. PN modelling a first order 
information delay in a storage system. 

 With this first order approximation of a delay, the 
matrix A of the system and its eigenvalues are, 

A = 






 −−
0k

aa       k·a·4a
2

1

2

a 2 −±−  

 Those eigenvalues have always a real negative part, 
and then the unforced system is stable for any finite delay 
time. It is well known that a thirsd order approximation 
delay is more similar to a pure delay, and it can cause 
unstable behaviours (poles with positive real part). Figure 
12 shows the FD of the thirsd order delay system and the 
corresponding ODES.  

 

y

u

r

x1

–+

k

x2
x3

y

u

r

x1

–+

k

x2
x3

 

 

dx1/dt = 3a·(r–y–x1) 
dx2/dt = 3a·(x1–x2) 
dx3/dt = 3a·(x2–x3) 
dy /dt = x3 

Figure 12. DF modelling a system of storage with 
information delay, and its equivalent ODES. 

 This ODES becomes unstable when the delay grows, 
and then negative states appear. However the state variable, 
which represents stored elements, has a positive nature. 
Then the system must be constrained to nonnegative states 
(y��� WR REWDLQ D FRUUHFW PRGHO� 7KLV 2'(6 �RU )'� ZLWK

nonnegative constraint have the same behaviour as the 
ISSCPN model, which is shown in Figure 13. 
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Figure 13. PN modelling a thirst order delay. 

 



 Figure 14 shows simultaneously, as Figure 7 did in the 
last example, the evolution of the constrained system (PNs 
and FD with explicit constraints) and the non-restricted one 
(ODES and FD without explicit constraints). Both 
behaviours are again similar from the initial state to the first 
intersection with the horizontal axis (point a in the graphic). 
With PNs, by a change of the reference, an evolution 
similar to the one of the non-restricted system can be 
simulated from the initial point to the intersection with any 
axis parallel to the horizontal axis. And this parallel axis 
can be as negative as we want. This is interesting from the 
point of view of the expressive power of ISSCPNs. 
However, PNs have positive nature, and then their 
application field are positive systems, or systems that could 
be transformed into an equivalent positive system with a 
physical meaning. 

 
Figure 14. Thirst order delay system evolution 

in constrained and non-constrained models. 

5 Conclusions 
 A relaxed continuous view of discrete event systems, 
continuous Petri nets, have been considered together with 
Forrester Diagrams and linear ordinary differential equation 
systems (mainly positive systems). They have been 
compared in order to obtain a deeper knowledge of the 
expressiveness of the continuous relaxation of PNs under 
infinite server semantics. 

 Continuous Petri nets under infinite server semantics 
lead piecewise linear systems provided with nonnegative 
state and outputs (they have an internal or implicit 
constraint of non-negativity).  

 Control arcs weighted with factor k are an abbreviation 
in infinite server semantics continuous PNs, and allow to 
simulate bounded positive linear systems (eventually under 
certain transformations). But the behaviour and expressive 
power of infinite server semantics continuous PNs are not 
restricted to bounded linear positive systems. In fact, any 
bounded linear system (positive or not) can be shifted to the 
positive reals and therefore modelled by a infinite server 
semantics continuous PN. In particular pure oscillatory 

behaviours can be modelled with infinite server semantics 
continuous PNs. 

 Ideal control arcs constitute an extension for infinite 
server semantics continuous PNs (are the control arcs k 
weighted with factor ��� :LWK WKHP LWV H[SUHVVLYH SRZHU

increases because they permit to simulate any positive 
linear system (bounded or not) or any one that can be 
transformed into a positive system.  
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