
Abstract— Timed continuous PNs have been used as relaxed 
models to evaluate ‘approximately’ the performance of the 
underlying discrete systems. Moreover, the control of the 
continuized systems can approximate the scheduling of the 
(discrete) PNs. This paper analyses the controllability of 
conservative and consistent join free net systems under infinite 
server semantics. They are positive systems in which classic 
control theory is not directly applicable: in this domain input 
actions are non-negative and dynamically bounded, leading to 
polytope constrained state space instead of a vectorial space. 
Thus a new concept of controllability is proposed. The 
‘controllability space’ (CS), included in this polytope, is studied 
depending on the set of controlled transitions. The full state 
space is ‘controllable’ iff all the transitions are controlled. On 
the other hand, a given state can always be ‘controlled’ 
(reached and maintained) without using all transitions. The CS 
obtained by controlling just one transition is a straight 
segment, and the CS obtained with several transitions includes 
the convex of the CS obtained independently with every 
transition. If additionally the system is choice-free the state 
space is a partition of the CS obtained with the entire set of 
transitions except one. Nevertheless borders belong to all 
neighbour regions. 

I. INTRODUCTION

ETRI Nets (PNs) constitute a well-known formal 
paradigm for the modelling, analysis, synthesis and 

implementation of systems that ‘can be seen’ as discrete.  
One of the possible ways to overcome the classical state 
explosion problem is to continuize the system [1], [2]. 
Therefore, classical concepts of the control of continuous 
dynamic systems, like observability [3] and controllability, 
among others, are analysed here under Infinite Server 
Semantics (ISS). These continuous PNs are piecewise linear 
systems whose switches are triggered by internal events. 
Their special characteristics, mainly the non negativity 
condition on markings and flows, oblige to apply different 
control techniques. This fact provokes the control actions to 
be dynamically bounded by the enabling degree. 
Additionally, the reachability set in conservative PNs is a 
polytope instead of a vectorial space. In this paper the 
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controllability of continuous PNs without synchronizations, 
i. e., join-free (JF), is studied. They are positive linear 
dynamic systems [4]. 

Continuous PNs are presented in section 2. Firstly they 
are shown under untimed interpretation, afterwards ISS 
timing interpretation is introduced, and finally an analysis of 
their properties when they are JF, conservative, and 
consistent is carried out. In section 3, the bases of the 
control of PNs with actions associated to the transitions are 
laid, and their particularities with respect to traditional 
control theory are explained. Controllability properties of 
the conservative and consistent JF nets are shown in section 
4. Finally, the main conclusions are sketched in section 5.

II. UNFORCED CONTINUOUS PNS

A. Untimed systems 

Let N= P,T,Pre,Post  be a PN, where P and T are the 
places and transitions, and Pre and Post are matrices that 
represent the static structure of the net. The state (or 
fundamental) equation is described by: m=m0+C  , where
C=Post–Pre is the so called incidence (or more properly 
token flow) matrix, |T| is the characteristic vector 
associated to the firing sequence , and m, m0

|P|, are the 
marking and the initial marking, respectively. The reachable 
set (RS) is composed of all the markings that can be reached 
from m0 by means of a firing sequence. Non-expert readers 
can review, for instance, [5], [6], [1].  

Continuous PNs [1], [2], [7] constitute a relaxation of the 
discrete ones over the non negative real numbers, i. e., with 
m, m0

+|P|, +|T| and m, m0,  0.  In a continuous net 
system, each transition, ti, can be partially fired by i,
0 i e[ti], where e[ti] is the enabling degree of ti, e[ti]=
min p ti{m[p]/Pre[p, ti]}. The resulting marking after the 
firing is m=m0+ i·C[P, ti]. Given that the continuous PNs 
that we are considering are consistent JF and every 
transition is fireable, the set of reachable markings is equal 
to the solutions of the state equation, RS={m | m0+C· ,

+} [8]. 
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B. Timed Systems: Infinite Server Semantics 
Deriving with respect to time the fundamental equation of 

timed continuous PN, m=C·f is obtained, where f= is the 
flow through the transitions. There are several ways 
(semantics) to define f [1], [9]. ISS (variable speed in [1]) is 
considered in this paper; under this semantics, the flow of 
transitions is defined as follows: 

            f( )[ti] = [ti] e( )[ti]
            with  e( )[ti] = min p ti {m( )[p]/Pre[p,ti]}          (1) 

where e( )[ti] is the enabling degree of ti, which represents 
the number of active servers in the station (transition) in the 
instant , and [ti] is the rate associated to ti, with f( ), ,
e( ) +|T|. In consequence, the continuized model is a 
piecewise linear differential equation system [2]. For the 
sake of convenience, fi, ei, i are going to be used to denote 
f( )[ti], e( )[ti], [ti], respectively. The matrix  is defined as 

= I +|T| x +|T|, where I is the identity matrix of 
dimension |T|.     

C. Conservative and Consistent Timed Join-Free Systems  
Let N be a strongly connected, JF, conservative, and 

consistent net. Conservativeness indicates that there is a 
positive left annuller of C (p-semiflow) that covers all the 
places ( Y>0 such that Y·C=0), what leads to the 
conservation law (Y·m =Y·m0). If the net is consistent, there 
is a positive right annuller of C (t-semiflow) that affects all 
transitions ( X>0 such that C·X=0) [6]. JF nets are systems 
that satisfy | ti|=1 i [0... |T|], where x denotes the set of 
input transitions/places of the place/transition x. If choice-
free (CF) PNs (|p i|=1 i [0...|P|]) are also considered, some 
results can be improved (x  denotes the set of output 
transitions/places of the place/transition x).

Conservative JF nets are mono-p-semiflow, that is to say, 
they have just one left annuller of C linearly independent 
[10]. By duality, consistent CF nets are mono-t-semiflow. 
Moreover unforced JF PNs can be converted into equivalent 
CF-JF nets [11], as it is shown in the example in Figure 1. 
Strongly connected CF-JF nets have |P|=|T|, thus Pre, Post
and C are square matrices. 
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Fig. 1: (a) Example of non-CF-JF continuous PN with ISS. (b) Its CF-JF 
equivalent in evolution net. 

Let us define matrix W +|T|× +|P| such that 
wij=1/Pre[pj,ti] if an arc from pi to tj exists, wij=0 otherwise. 
Note that if the JF PN is also CF, and places and transitions 

are appropriately numbered (pi= ti pi |P|), then W=Pre–1;
this will be considered henceforth, without losing generality.  
Consequently, from (1) the following equation can be 
deduced: 

m  = C f = C e = C W m      (2) 

Since C, and W are constant matrices, (2) corresponds 
to an unforced (without control inputs) linear dynamic 
system. Now let us show some properties about positiveness 
and stability. 

Proposition 1: Every conservative and consistent JF net 
is a positive linear system with a (Frobenius) dominant 
eigenvalue lf=0 that is unique. 

Proof: The system defined in (2) is positive because a JF 
net can be converted into a CF-JF net with a diagonal Pre
matrix; Post, Pre 0, and then C is a Metzler matrix (its non-
diagonal elements are non-negative) and so is A
(A=C W); this is a sufficient and necessary condition to 
positiveness in linear systems [4]. On the other hand, the 
solution of the homogeneous linear equation (2) is 
m( )=eA m0. The system is bounded because it is 
conservative, and then the eigenvalues are non-positive; as 
C is singular so is A, and therefore it has a null eigenvalue, 
which must be dominant. And the dominant eigenvalue of a 
positive linear system is real and unique by Frobenius’ 
theorem [4]. 

These systems are known as marginally stable systems or 
systems with simple stability, in positive linear system 
theory. 

Proposition 2: Conservative and consistent JF nets tend 
exponentially to its equilibrium marking, me, which for an 
initial marking m0 is described by the system: 

C · W me = 0
Y · me = Y · m0 ,     (3) 

where Y is the conservative component of the net.   
Proof: me must satisfy both equations because it is an 

equilibrium point and verifies the conservation law. Since a 
JF net can be reduced into a CF-JF net, that is, a mono-t-
semiflow net, then the markings satisfying C· W me=0
represent a one dimensional space. The intersection of that 
space with Y·me =Y·m0 yields the only marking the system 
can evolve to.

It is important to note that if the conservative net is not 
JF, then a bounded input-bounded output system can 
oscillate without damping around the equilibrium marking, 
me, which is never reached. An example is shown in [12]. 

Let us consider the system in Figure 1(a). It is a 
homogeneous linear system m=C W m, described by:  
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This system has a p-semiflow ([1 1 1]) and two t-
semiflows ([1 0 1 0], [0 1 1 1]). Its evolution tends 
exponentially to the equilibrium marking. For an initial 
marking that verifies Y·m0=1, that position is 
me=(2 3 4+2 1 4+ 2 3+ 2 4)–1 · [2· 3 4;2· 1 4+ 2 4

; 2 3]. Figure 2 shows the evolution of the system when 
=1 and m0=[1 0 0], first with respect to time, and 

afterwards in the state space for several initial markings. 
Note that the state is determined with the marking of only 
two places, due to the conservative component, which 
provides the marking of the third place. 

Fig. 2: Evolution of the marking of the system in fig. 1a when =1. (a) 
Temporal evolution for m0=[1 0 0]; (b) Evolution in the state space for 
several initial markings.  

III. FORCED CONTINUOUS PETRI NETS

A. Controlling the Flow of Transitions  
Let us suppose that it is possible to apply certain control 

action to the transitions that permits to decrease their flow. 
This ‘slowing down’ action can be included in the flow 
equation with an additional term, u.

Definition 1: A control action u( )[ti] of a transition ti is a 
time-dependent variable that represents the reduction of the 
enabling in the flow of the transition. The transition in 
which there exists the possibility to apply a control action is 
called controlled transition, and its flow is f( )[ti]= [ti]

(e( )[ti]–u( )[ti]). Using again ui instead of u( )[ti], for the 
sake of convenience, with Wi=W[ti, ti]:       

   fi = i  (ei – ui) = i  (Wi · mi – ui)
0  ui  ei = Wi · mi                            (4) 

Note that actions ui are defined as a ‘reduction’ of the 
enabling degree. Then ui 0 and they have to be smaller than 
or equal to the enabling so that flows are non negative, ui ei.

A control vector u |T| can be defined, such that each 
component ui represents the action on the transition ti
(therefore ui=0 for any uncontrolled transition).  
Accordingly:

m  = C  ( W m – u )       (5) 
0 u e = W m                       

Let us define the residual enabling as the enabling after 
decreasing the control action, i.e., eR=W m–u. Thus (5) is 
rewritten as:    

               m= C er                            
0 er W m (6)

The equation (5) represents a linear time-invariant system, 
(Figure 3). But it must be considered that 0 u e, i.e., er( )
cannot be negative, as it is shown in discontinuous line in 
Figure 3. For that reason, controllability in continuous PN, 
which will be considered in the next section, differs from its 
presentation in classical control theory of linear systems.  

+
m( )

0 u( ) e( )

m( )
C·

W

–
eR( )

e( )

u( )

+
m( )

0 u( ) e( )

m( )
C·

W

–
eR( )

e( )

u( )

Fig. 3: Block diagram representation of JF continuous PNs, as linear time-
invariant systems.  

Note that according to (5) the equations of a JF net with 
control actions on the transitions, when constraints on the 
actions are not considered, do not ‘strictly’ correspond to a 
positive system: the input matrix B = –C  does not satisfy 
the non-negativity condition [4]. Nevertheless, the marking 
of the net is always non-negative, due to the upper bound 
constraints on the control action u.

In general, forced JF nets cannot be converted into CF-JF 
nets, as seen with unforced nets. For instance, when the 
transitions of the system of Fig. 1a are controlled, the 
weights in the arcs from t12 to p2 and p3 in Figure 1(b) must 
be respectively

–m1· 2 /2+ 2·u2
–m1( 1+ 2)+ 1·u1+2· 2·u2

–m1· 2 /2+ 2·u2
–m1( 1+ 2)+ 1·u1+2· 2·u2

–m1( 1+ 2 /2)+ 1·u1+ 2·u2
–m1( 1+ 2)+ 1·u1+2· 2·u2

–m1( 1+ 2 /2)+ 1·u1+ 2·u2
–m1( 1+ 2)+ 1·u1+2· 2·u2

in order to get equivalence with the system in Figure 1(a).
These weights depend on the marking; then a structural 
transformation cannot be made from one net to the other 
one.

7647



B. On Controllability in Petri Nets with Control Actions 
on the Transitions  
Classical control theory defines that a system is 

controllable in an instant t0 if it is possible to drive the state 
from an initial value x( 0) to any other state by means of an 
unconstrained control vector, in a finite time interval [13], 
[14]. 

That classic definition cannot be directly applied to 
conservative continuous PNs because of two facts: 
– The dynamic constraints of the actions required for the 
positiveness of the markings, flows, and actions. 
– The reachable marking limitation to a polytope (in contrast 
to the vectorial space analysis, unsatisfactory for PN based 
works [15]). 

This limitation to the reachablility space is caused by the 
existence of the conservation laws ( Y>0 Y·C=0), which 
means that A is not a full rank matrix.  

In classical system theory a ‘controllable’ state (reachable 
and maintainable) can be reached in finite time. However in 
PNs, due to the constraints on the actions, the time required 
to reach some markings (if emptying places) may be infinite.  

Thus, the classical definitions have to be adapted as 
follows: 

Definition 2: A marking mf is said to be controllable
from an initial state m0 by controlling transitions Tc T
when there exists a control action u( ) on Tc able to drive 
the marking from m0 to m (m0

u mf), in finite or infinite 
time, and maintains this marking (if m=mf, then m(u)=0).

Definition 3: A state mf is said to be temporarily 
controllable from an initial state m0 with control on a set of 
transitions Tc T iff by means of control actions u on Tc the 
marking mf can be reached from any m0 RS.

From the above, the following spaces can be defined:  
Definition 4: Given an initial marking m0 and a set of 

controlled transitions Tc T, the Controllability Space (CS) 
is defined as the set of all the controllable markings, i.e., 
CS={mf | u( ) such that m0

u mf; when m=mf then 
m(u)=0}. In the same way, the Temporarily Controllability 
Space (TCS) is the set of the temporarily controllable 
markings. 
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Fig. 4: Example of a CF-JF net interpreted with control on its transitions. 

From previous definitions, it can be deduced that CS is an 
‘attractor’ of every marking, i.e., from every state the system 
evolves towards CS sooner or later.  TCS is also an attractor 
(since CS TCS) but additionally once the state has reached 
the TSC, it can never be taken out of it.  

Let us consider for instance the PN in Figure 4, with 
Y·m0=1 and =1, whose CS and TCS are shown in Figure 5. 
Each space is obtained as the convex defined by the lines 
shown in Table 1, as a function of the controlled transitions 
ti Tc.

TABLE 1
CONTROLLABILITY SPACES AND TEMPORARILY CONTROLLABILITY SPACES 

IN THE CF-JF NET SYSTEM SHOWN IN FIGURE 4 (AND 5). 
 t1 t2 t3 t1,t2 t2,t3 t3,t1 t1,t2,t3
CS 4 5 6 3-4-5 1-5-6 2-4-6 1-2-3
TCS 9-10 7-8 6 3-8-10 1-6-7 2-6-9 1-2-3

Fig. 5: Controllability spaces and temporarily controllability spaces in the 
PN shown in Figure 4 

IV. CONTROLLABILITY OF JOIN-FREE PETRI NETS

This section shows the main controllability properties of a 
connected conservative and consistent JF continuous net 
systems, with  initial marking m0, rates i and controlled 
transitions Tc T, which can be controlled with actions ui.
Let us remember that 0 ui ei and ui=0 ti Tc.

Figure 6: Controllability Spaces of the non-CF-JF net system in Figure 1a.
The CS are the convex spaces generated by me and mti ti Tc, and if 
t1,t2 Tc then m(t1-t2) must be also included. 

The properties have been divided into three types, 
regarding controllability spaces, controlled transitions, and 
control actions. Most of them can be deduced from (5), 
bearing in mind that a marking is controllable when m=0,
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so (W m–u) must be a non-negative right annuller of C.
Consequently:

X =  ( W m – u )
u = W m – –1 X               (7) 
W m = –1 X + u                  (8) 

The CF-JF net in Figure 4, whose control zones are 
represented in Figure 5, and the non-CF-JF net system in 
Figure 1(a), whose CS regions are represented in Figure 6, 
will be used to exemplify the properties.

A. On the Controllability Spaces 
Let us analyse properties of the different CS obtained by 

controlling transitions. 
Proposition 3: CS is a convex space.
Proof: Let m1, m2  CS and u1, u2 their associated 

control actions.  Due to the linearity of (8) the control action 
·u1 +(1– )·u2 with 0 1 fulfils the constraints in (5), and 

drives the system to marking m( ·u1+(1– )·u2)=m1

· +m2·(1– ). Thus any point between m1 and m2 belongs to 
CS.

Moreover:  
- The CS corresponding to a PN system in which every 
transition is controlled, i. e., Tc=T, is a polytope that 
coincides with the RS of the untimed continuous PN. 
- Due to the adopted ISS, it can be observed that it is not 
possible to drive the marking to the CS border in finite time. 

Let us consider three different system behaviours when 
|Tc|=1. Let us assume that ti is the only controlled transition 
and that a maximum control action is applied to it, i. e., ti is 
blocked (ui=ei). Let us also denote pi= ti. The net system 
always evolves to one of the following types of stable 
markings, depending on the structure of the net:  
a) If |pi |=1, then the system evolves to a state with all the 
places empty but pi, whose marking is Y·m0/Yi, where Y is a 
conservative component of the PN and Yi is the component 
of Y which corresponds to pi. That state is a vertex of the CS 
(for instance mt3 and mt4 in Figure 6).
b) If |pi |>1, but pj ti  such that | pj|=1, then the system 
evolves to a marking that is null at least in the places pj,
which corresponds to a marking in the CS border (mt2 in 
Figure 6). 
c) If |pi |>1 and pj ti | pj|>1, then the system evolves to a 
marking inside the CS, with no empty places (mt1 in Fig. 6).

If the system is CF, case (a) is the only possible one (Fig. 5).
In any of the previous cases the reached marking is 

known as marking with blocked ti and it is denoted as mti.
Given (8) and provided that CS is a convex space, the set 

of controllable markings is just a segment if only one 
transition is controlled. 

Proposition 4: If Tc={ti}, the CS of the system is a 
(rectilinear) segment between the equilibrium marking 
without actions, me, and the marking obtained with blocked 
ti, mti.

Proposition 5: If various transitions are controlled, the 
CS of the system is a polytope that includes the convex 
generated by the CS corresponding to each transition. If the 
system is also CF, the region is exactly equal to the convex. 

Proof: The first statement of the proposition follows 
directly from the fact that CS is convex. Additionally, in CF 
nets, the control actions applied to the transitions satisfy 

ki·ui ki·ui,max i such that ti Tc, where ui,max represents 
the maximum control action that can be applied to transition 
i for any marking in CS. Thus no marking out of the convex 
can be controllable. 

For instance, the CS with t1 and t2 in Figure 6 (region 1-2-
7-9) is bigger than the convex of the CS corresponding to t1
and t2 independently (me-mt1-mt2).

Considering proposition 4 and 5 for CF nets, and bearing 
in mind that in those cases mti are vertices of the CS, the 
following result is obtained: 

Proposition 6: If the system is CF and Tc=T, then the CS 
of the system is a polytope defined by the union of all the 
CS formed by controlling all the transitions with the 
exception of one. Moreover the intersections between 
neighbour sets are only the borders. That is to say, if CST is 
the CS for T=Tc and CSTi is the CS for Ti=Tc–{ti}, then i

CSTi = CST and CSTi  CSTj = Fij i j, where the geometric 
dimension of the border Fij (between RCTi and RCTj) is 
dim(Fij)= dim(Ti)–1.

This proposition can be exemplified in Figure 5, where 
the whole CS, region 1-2-3, can be divided into the three 
regions 1-5-6, 2-6-4, 3-4-5, which constitute a partition. 

From previous definitions it can be observed that if a set 
of transitions Tc is controlled, the CS is a polytope with
dimension d min{|Tc|, |P|–1}. If the system is also CF then
d=min{|Tc|, |P|–1}.

B. On the Controlled Transitions  
The basic objective in this subsection is to determine 

which is the set of transitions that are needed in order to 
control (to reach and maintain) a certain state of the system.

Proposition 7: The only way to control a pure JF net
system on the whole RS is to control all the transitions. 
However, given any particular (reachable) marking mf, it is 
always controllable with a set of controlled transitions Tc 
such that |Tc|<|T|.

Proof: If a place has several output transitions, all of them 
must be controlled ‘to fill’ completely the place. Therefore, 
all transitions are needed. On the other hand, from (7) vector 
X can be defined large enough that at least one component 
of u decreases just to zero. These components correspond to 
the transitions that do not need to be controlled. 

Considering the directions from the non-forced 
equilibrium marking, me, to the markings obtained by 
blocking every transition, mti, it can be observed that a 
necessary condition so that a marking mf can be maintained 
with a subset of controlled transitions Tc is the existence of 
constants ki 0 such that
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mf–me =
Tc

1i
etii )·(k mm

From previous propositions, it can be deduced that the 
minimum set of transitions required to control a marking do 
not need to be unique. Nevertheless, if the system is CF the 
solution is unique.  

Proposition 8: Given a marking m and a subset of 
controlled transitions Tc T, m is controllable iff it belongs 
to the convex formed by the equilibrium marking, me, and 
the markings with tc blocked, mti, for every subset of 
transitions tq Tc, mtq.

If the net is CF, given a state m and a subset of controlled 
transitions Tc, the system can be maintained at m iff it 
belongs to the convex formed by the CS of each ti Tc.

Proof: From the linearity of markings and actions, it can 
be deduced that the border of the CS would only be reached 
when the applied actions are maximum. Then, when all the 
combinations of the maximum actions are applied to the 
controlled transitions, all the vertices of the polytope CS are 
covered, and its convex is the complete CS. 

C. On the Control Actions.  
The main goal in this subsection is to know the control 

actions that must be applied to control (to reach and 
maintain) a certain state. 

Proposition 9: Given a constant control action uf there is 
a unique controllable marking associated to it. Nevertheless, 
given a marking mf>0, there are several control actions that 
can maintain it. 
Proof: From (8) and due to the conservation law, it is 
immediate to observe that there is a unique equilibrium 
marking. Furthermore, the second statement is deduced  
from (8) and bearing in mind that X can be formed by any 
linear combination of its components. 

Additionally, if the action ui( )=min{ufi, ei( )} is applied 
to every transition, then the systems evolves to mf. Since 
ISS is being used, this evolution is asymptotic.  

For instance, in the PN of Figure 1(a), the marking to 
which the system will evolve is, depending on u:

mf1 = 2·k1 3 4 + 2·u2

mf2  = 2·k1 1 4 + k1 2 4 – ( 1/ 3)·u1 + (2 1/ 3)·u2 + u3

mf3  = k1 2 3 + u4

with   k1= (mo + ( 1/ 3)·u1 – (2+2 1/ 3)·u2 – u3 – u4) / 
                 (2 3 4 + 2 1 4 + 2 3 + 2 4)

And the actions u are shown below as well as the 
constraints existing for the parameters k0 and k1.

u1 = mf1 – k0
u2 = mf1/2 – k1
u3 = mf2 – k0 – k1
u4 = mf3 – k1

0  k0  mf1/ 3

0  k1  mf1/(2 3 4)
k0 1+ k1 2 4  mf2

k1  mf3/ 2 3

V. CONCLUDING REMARKS

Continuous PNs are the result of dropping the integrality 
constraint in the firing of transitions in ‘classical’ discrete 
PNs. This relaxation aims to avoid the state explosion 
problem and to offer a more satisfactory treatment of highly 
populated systems. This paper concentrates on 
controllability in the framework of continuous JF nets under 
infinite server semantics. Results from system theory cannot 
be directly applied here for two reasons: 1) The state space 
is constrained to a polytope 2) The control actions are 
dynamically bounded. 

The CS is a convex space that in the case of a system with 
just one controlled transition is a straight segment. In the 
case of a system with several controlled transitions, the CS 
includes the convex of the CS obtained independently with 
every transition. Moreover, if the system is choice-free the 
state space is a partition of the CS obtained with the entire 
transitions except one. It has been shown that the full state 
space of the net system is ‘controllable’ iff all the transitions 
are controlled. Furthermore, any state is controllable without 
using all transitions.  
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