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Abstract. In this paper we present a scalable, distributed architecture
that allocates idle CPUs for task execution, where any node may request
the execution of a group of tasks by other ones. A fast, scalable dis-
covery protocol is an essential component. Also, up to date information
about free nodes is efficiently managed in each node by an availability
protocol. Both protocols exploit a tree-based peer-to-peer network that
adds fault-tolerant capabilities. Results from experiments and simulation
tests, using a simple allocation method, show discovery and allocation
costs scaling logarithmically with the number of nodes, even with low
communication overhead and little, bounded state in each node.

1 Introduction

One of the most recent solutions in large scale computing, primarily oriented to
embarrassingly parallel and computing-intensive problems, is the use of thou-
sands or even millions of unreliable personal computers connected to the Inter-
net. Projects like SETIQHome [1] and distributed.net [2] established a milestone
in the field of Distributed Computing by harnessing the idle cycles of personal
computers donated by volunteers to solve problems that could be split into inde-
pendent parts. Each computer executes the processes associated to one or more
parts, receiving the input data and returning the output results. Much work
around this idea has been developed covering efficiency, throughput, fairness
and security aspects, but the general structure still maintains some intrinsic dis-
advantages: only one entity in the network generates the workload, and the rest
consume it, leading to centralized management and scheduling that negatively
affect the scalability and fault-tolerance of the system.

To solve this problem, we propose an architecture where any participant of
the network may need idle cycles to complete its tasks. When a node does not
have enough computing power to finish its work in a certain amount of time, it
may divide it into n independent tasks and query the network for n more idle
machines that can each execute one of them. This is not a new idea, but there
is little work covering this approximation. Projects with best results have been
those who use peer-to-peer (P2P) networks and distributed protocols; with them,
problems concerning scalability and fault-tolerance are drastically reduced. The



use of an unstructured P2P network is simple and is based on already working
ideas like Gnutella or Freenet, but does not allow the application of constraints
to the idle CPU search.

For this reason we present a peer-to-peer network based on a balanced tree
structure that finds the nearest free CPUs to the one that is demanding the
execution of a number of tasks. At any time, any node of the network may
request the execution of n tasks; this request is routed by neighbour nodes to
those available ones that are closer to the originating client with a fast discovery
protocol. The information about existing free nodes is dynamically managed by
an availability protocol. These functionalities are obtained with little state in
nodes, and low communication and CPU overhead. A simple allocation policy
has been designed and implemented to evaluate the architecture behavior.

This paper takes some steps into a complete distributed computing solution,
thus we will impose some restrictions to the environment: We assume that nodes
execute batch tasks that do not communicate between them, so we won’t be
addressing the issues that arise from having dependencies. Also, we will suppose
that there is low churn, that is, joins and leavings are not frequent. And finally,
we will only consider a weak concept of fairness in the allocation of free nodes.

The rest of the article will be structured as follows: In Sect. 2 we will expose
an overview of the system architecture and its behavior, and in Sects. 3 and
4 we will detail the protocols that allow the fast and scalable discovery of free
nodes. Following, we will briefly present the hierarchical overlay topology and
its management in Sect. 5. Finally, in Sect. 6 we will show the experimental
results and in Sects. 7 and 8 we will explain what other work has been presented
concerning distributed computing in peer-to-peer networks and the conclusions
of this investigation.

2 System Architecture

The system has a three layer architecture:

— The first one defines the connectivity protocol that maintains the overlay
links in the network. It conforms a tree-based network overlay, derived from
the B-Tree [3], thus it is a balanced tree where each node can have between
m and 2m children and the height is always a logarithm of the number of
nodes N. The protocol states how nodes join and leave the network, how the
tree is kept balanced, and how node failures are dealt with to rebuild the
structure.

— The second layer is described by the availability protocol, that distributes
information relative to the number of free nodes and computing power each
time it changes. Every node of the network stores the global state of the
branch that hangs below it, and communicates updates to its parent so it
can recompute the state of its own branch. This protocol uses a number of
techniques that prevent the upper levels of the tree from being flooded with
update notifications, while maintaining the information accurate enough to



maximize the network use. Also, the conservative approach of notification
updates yields to a more stable behavior of this protocol.

— Finally, the discovery protocol uses the information stored by each branch
to route free nodes requests up and down the tree. It tries to find those free
nodes that meet a trade-off between proximity to the client and computing
power by distributing the requests among the appropriate branches at each
level. Therefore the search is performed in a number of network hops that
depends only on the height of the tree and, consequently, on the logarithm
of the number of nodes of the network.

3 Discovery of Free CPUs

As it has been said, when a node has a number of tasks to be done, it requests
the network to find that number of idle machines. This service is accomplished
with the discovery protocol, that works as follows. By applying heuristic rules,
it will try to allocate the fastest and nearest free nodes, so that tasks execution
is efficiently done. To find them, the tree structure is exploited. Each inner node
stores information about its descendants; not exhaustive information, but more
general information about the branch as a whole. To be concrete, it knows the
number of free CPUs of the branch, the maximum computing power and the
minimum number of hops to a free node. This way, the management of this
information becomes scalable as it does not depend directly on the number of
nodes. How it is exactly managed will be explained in Sect. 4.

A node that receives a message with n pending tasks will first check if itself
is ready to execute a new one. If so, it takes one of the tasks from the message.
Then it distributes the remaining tasks between its child nodes according to the
number of free nodes each branch has, calculated with the availability protocol,
giving priority to the branches having more computing power or less hops to a
free node. If it is not enough with the children branches to cope with all the
tasks, then a new message with the last tasks will be sent to the father so that
it can reach more distant branches. When the message arrives at the root of the
tree and it cannot be sent to another branch, it is returned to the originating
node meaning that there are no free nodes left in the network.

The worst case would be that of a leaf node that needs to allocate every node
of the net. The request would have to go up to the root and then down to the rest
of the tree; that is the longest path a request would traverse. As discovery of idle
nodes is done concurrently in every branch, that would be the same as reaching
one idle leaf node in the opposite side of the tree. This is done in O(log,, N)
hops, being m the minimum number of children per node in the balanced tree
and N the number of nodes in the network, thus making the discovery protocol
highly scalable.

This is a best effort network. That is, the intermediate nodes make its best
to route the message to the most suitable free nodes, but the reception is not
guaranteed. In fact, the failure of nodes is frequent in a peer-to-peer network.
For this reason, both the originating node and the allocated ones must avoid



problems in the discovery phase and when sending the actual work to execute
using timeout mechanisms, acknowledge messages and retransmissions.

4 CPU Availability Management

The information each node stores about its branch must be communicated to
its parent so that it can efficiently route requests to the idle nodes it has under
itself. Therefore, each node not only has information about its branch, but also
about each of its sub-branches. The way this information propagates is critical,
because it must be kept up to date without flooding the network with notifica-
tion messages, specially near the root where there are less nodes per level. This
propagation is performed by the availability protocol. Basically, when a node
receives a notification of change from one of its child nodes, it must decide if
it has to inform its parent, too. With the maximum computing power and the
minimum number of hops to a free node, the process is simple. The inner node
has to calculate the new maximum and minimum values, respectively, between
its child nodes and itself, and if it changes, route the new information to its
parent immediately. Note that when a notification goes up one level there is less
probability of being the maximum or minimum of the greater number of nodes
of that branch, so the traffic is self-limited and is unlikely that it reaches the top
levels.

The problems arise with the number of free nodes, because when a node
gets ready (busy), the number of free nodes of each of its ancestors increases
(decreases) by one. If the notification were sent with every change, the root would
get informed of all of them, what leads to an unacceptably high traffic in the top
levels. For this reason, we have designed a technique that delays the notification
of the number of free nodes at each level of the tree, reducing the traffic routed
up to the root. The basis of this method lies on sending a notification when the
change is ”important” enough. Actually, this means that the most significant bit
set to one changes; that is, the number of free nodes crosses a boundary of power
of two. For example, a notification would be sent if this value changes from 7 to
8 (111b and 1000b in binary) or from 32 to 31 (100000b and 11111b), but not
when it changes from 23 to 24 (10111b and 11000b). Although this yields to a
precision lack, there are three main reasons for using this technique:

1. Trying to provide optimality based on exact information is senseless when
we are dealing with millions of nodes that are continually and concurrently
changing state.

2. The traffic of notifications in the top levels is reduced because as a notifi-
cation goes up the tree it is less probable of being routed to the next level.
This depends also on the number of free nodes, as a high number has also
less probabilities of being routed.

3. When the number of free nodes is low, the precision of this value is better.
This is most relevant as the nodes of the network get busy, because they are
correctly well-spent when there last only a few free nodes.



There are two policies deciding what availability value to take as reference
for a branch when a child node notifies a change to its father: optimistic and
conservative. An optimistic policy would use the same value sent by the child.
On one hand, it has the advantage of having better precision in the information
each node stores about its branch, but on the other hand the real number of free
nodes of a branch could decrease and be less than the number its father is using,
making top level nodes route requests to branches that cannot cope with them.
A conservative policy would store a lower value, for example the higher power
of two less than or equal to the notified value. With such a policy, the system
has a better behavior against situations when there last very few free nodes, as
it delays too big requests, although it does not make the most of the network.

We have decided to adopt a conservative approach. It forces a stabilization
mechanism in the value of free CPUs each node contains, providing a gradual
convergence in the occupation of the network.

5 B-Tree Based Topology

The overlay network topology is a hierarchy where every node of the network
is mapped to a node of the tree. In our approximation we use a B-Tree [3]
variant; it maintains the balance in every join and departure and allows more
than two child nodes, thus reducing the tree height. But the main objective of
the tree is grouping nearby nodes in the same branch. However, the concept of
locality usually depends on many variables, so it is actually an approximation.
We have decided to use the simple yet effective way of organizing the nodes in
the tree by their physical address, their IP address actually. Based on the sub-
net partitioning of the IP address space and the studies on geographic locality of
IP addresses [4], this method allows a fast and easy decision of where to insert
a node in the tree when it joins the network, while maintaining good metrics
between nodes of the same branch, specially near the leaves.

Our tree has some differences with the original B-Tree model. Each node
holds only one value (its IP address) and forms part of a group of siblings;
therefore, every node of the network participates in the management of the tree.
There exist a constant m so that every node not being the root of the hierarchy
always has between m and 2m siblings. If these limits are exceeded, the tree must
be rebalanced by splitting or joining groups. Also, every node that is not a leaf
has a pair of values that represent the interval of addresses of its descendants,
including itself. These intervals are used to route messages along the tree, mainly
in the operations of insertion and deletion of nodes.

Concerning fault-tolerance, every node knows the address of the k predeces-
sors and k successors at the same level (they can be ”brothers” or ”cousins”).
When a node fails, the tree structure can be repaired by its neighbours using
these references, because they allow the communication between a node and the
brother of its dead father. The value of k is an trade-off between fault-tolerance
and an overload in the management of the tree.



5.1 Joining and Leaving the Network

The connectivity protocol consists in two operations that affect the structure of
the network: joining and leaving. Joining is usually easier: when a node requests
an insertion, the request message is routed up the hierarchy looking for a node
whose interval contains the address of the new node, and then it goes down until
it reaches the node with the nearest address to the new node’s address. Finally
they become brothers and the new node updates its references to its neighbours.
Then the father node is notified, and it may request a group split to re-balance
the tree if the number of its child nodes is greater than 2m. When a node is
added to the group of the root and it already has 2k nodes, a new root node will
be created.

By leaving the network we assume, usually, a voluntary action, so the leaving
node will supply its neighbours with the necessary information to maintain the
network connectivity. First of all, a leaving node must check if it has any child. If
so, it looks for a leaf node that becomes the new father of all of them, similarly
to the creation of a new root node. Once done, or if it had no child nodes, it
notifies its siblings and its father that it is going to leave and then they update
their reference lists. Similarly to the joining, when the father node is notified of
the node leaving, it must check if the number of child nodes is less than m. In
that case, it will ask its predecessor or successor to send it child nodes, or to join
into only one branch. One special case is when the father is the only one node
in the root group. Then it will check if it has less than 2k child nodes, and if it
has so, it will insert itself at the leafs, leaving its children as the new root group.
In some cases nodes can fail and leave the network without notification. In this
case, the fault-tolerance strategy presented above is applied.

6 Experimental Results

This architecture has been implemented as a simulated system with the OM-
NeT++ simulation framework. The allocation policy used in the tests has been
a simple one, where as soon as nodes are discovered they are allocated.

Tests have been done aimed to measure free nodes discovery time, control
messages traffic and CPU load. Every test has been issued with variations in
the number of nodes, IV, and the B-Tree parameter, m, to study the impact of
the size and structure of the network in the performance of the protocols. The
simulations have been performed with up to 50000 nodes and values of m from
6 to 10. Variations on the duration of the tasks and the size of the data have
also been applied to recreate more realistic situations. There are three constants,
though: the latency of the network connections has been established to 200 ms,
the mean continental value for Internet, to simulate a very wide area network; 1
Mbps has been taken for the bandwidth, a conservative value for a home Internet
connection; and the mean computing power of the nodes has been set to 2000
MIPS.

Time tests show that both the number of nodes and the number of child
nodes per parent affect the discovery of free nodes. Just as expected, the last



free node of the n requested is reached in O(log,, n) hops. For this reason, a
network with a higher value of m performs better, while an increasing value of n
is hardly appreciated. The results of the free nodes discovery time tests can be
seen in Fig. 1 as a logarithmic growth. We can extrapolate the results to higher
values of n. For example, we calculate that, for the test network, requesting
the execution of 100,000 tasks would discover 100,000 free nodes in 2 seconds,
1,000,000 in 2.4 seconds, 10,000,000 in 2.8 seconds, and so on.
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Fig. 1. Discovery time for as many free nodes as requested tasks. The test network has
50000 nodes and m = 10. One network hop is 200 ms.

Control traffic (traffic of non-data messages) and CPU load tests have been
done under two situations: participants have a normal and high activity. Normal
activity means that there are frequent requests from randomly chosen nodes,
but the network does not get completely busy. On the other hand, under high
activity, every node is busy and continuously receiving new requests, so we expect
this to be the worst case. Traffic has been measured in bytes per second. CPU
load is more difficult to measure in a simulation, but as every message is managed
in constant time we have decided to express it in terms of messages per second.
Tables 1 and 2 show the results of the normal and high-activity behavior. They
present the value of m, the tree height and the mean and maximum values of
CPU load and control traffic for the root and leaves of a network of 50000 nodes.

While the discovery protocol was positively affected by the value of m, the
overall system load suffers when the tree is lower, thus a trade-off is needed
between them. Looking at each network variant it can be seen that, by using
the availability protocol, under normal behavior both control traffic and CPU
load is heavier at the leaves than at the root nodes. Also, control traffic hardly
reaches 1KBps, what represents less than 1% of the total bandwidth. However,
under high activity rate the root suffers waves of very high CPU load and control
traffic.

Results are promising. As we can see in Tables 1 and 2, control overhead is
very low. Under normal activity, the control traffic is only 1485 Bps and the CPU



Table 1. CPU load and control traffic under normal activity. The net has 50000 nodes,
with m = 10 and a bandwidth of 1Mbps.

Root Leaves
Tree |Load (msg/s)| Traffic (Bps) |Load (msg/s)| Traffic (Bps)
m height /mean max |mean max |mean max | mean max

4 7 0.08 2.87 [24.10 519.98 | 3.56 4.21 |1235.89 1343.51
6 6 0.09 5.64 [24.98 1005.69| 3.71  4.33 |1293.18 1405.28
8 5 0.09 5.64 |25.28 1005.35| 3.85 4.56 |1330.41 1436.15
10 5 0.09 5.62 [25.43 999.48 | 4.12  5.77 |1435.08 1485.60

Table 2. CPU load and control traffic under high activity. The net has also 50000
nodes, with m = 10 and a bandwidth of 1Mbps.

Root Leaves
Tree |Load (msg/s)| Traffic (Bps) |Load (msg/s) Traffic (Bps)
m height |mean max |mean max |mean max | mean max

4 7 0.13  28.20 [38.19 4980.56 |39.68 41.62 |14359.74 16031.69
6 6 0.13 28.46 [39.53 5021.05|44.20 50.55 |15198.24 16205.83
8 5 0.14 27.65 [39.75 4526.82|54.15 59.85 |17417.23 19256.67
10 5 0.14 28.44 [40.05 5018.49|63.72 65.29 |19566.90 21947.28

load only reaches 5.77 messages per second, in the worst case. And under heavy
activity, the control traffic is 21947 Bps and the CPU load is 65.29 messages per
second.

7 Related Work

As it has been pointed out in the introduction, the main approximation until now
to a highly scalable distributed computing environment is one entity harnessing
the idle cycles of personal computers donated by volunteers, as in SETI@Home
project, the BOINC generic framework [5] and distributed.net. Those projects
use the traditional client/server paradigm to schedule tasks and return results,
what soon leads to scalability problems. For that reason, more elaborated net-
work structures and distributed algorithms have been adopted. One example is
Javelin++ [6], which extends the concepts of Javelin [7] replacing the broker
that scheduled the tasks with a network of brokers. Recently, more strict peer-
to-peer networks have been used to select the nodes which would execute the
tasks. BOINC and similar projects adopt an application-driven perspective, in
which the existence of an element that is generating all the workload determines
the structure of the network and the management algorithms. Following a more
general view, another family of projects, in which this paper is included, have
proposed an architecture where every participant can generate the workload,
which is better suited for this peer-to-peer philosophy, as every node is equal to
the other ones.



CompuP2P [8] is one of the first works to use a decentralized peer-to-peer
network to manage processor cycles as a shared resource. It arranges all the
nodes in a Chord [9] ring and organizes them into 'compute markets’, where
idle cycles are traded with. However, it presents a scalability problem because
it has no mechanism to limit the number of nodes in a market or to balance
load between markets. G2-P2P [10] uses an object-oriented approach. It uses
Pastry [11] to create a Distributed Hash Table (DHT) where computation objects
are stored. Each object is assigned a random ID and stored in the Pastry node
closer to that number. Using an uniform hashing function they claim to achieve
a good load-balancing property, but there is no other criterion to select the most
appropriate free node. In [12] the Pastry DHT is also used, but exploiting its
locality awareness to discover near idle nodes. It then announces availability with
controlled message floodings, what leads to inefficiency as a node surrounded by
busy neighbours won’t find a free node which is more distant than the maximum
number of hops that a request is allowed to make. On the other hand, in [13] it
is proposed the use of an unstructured overlay network, as it is easier to manage,
and traverse it with random walks. Even though, that is also inefficient because
there is no way of knowing if the next node of the walk is free or not.

For the overlay topology, other authors have proposed the use of a virtual tree
on top of a DHT, where each node store only part of a tree index, mainly oriented
to range queries. Examples of this are P-Tree [14], P-Grid [15] and VBI-Tree [16].
However, they rely on a uniform distribution of the shared resource; for example,
using a uniform hashing function for the DHT. For that reason, BATON [17]
uses a balanced binary tree where each node of the network maintains one node
of the tree. This type of organization is better suited for a non-uniform resource
distribution because the tree gets balanced automatically when the insertions or
deletions occur within the same zone. We adopt these ideas but with more than
two children per node.

8 Conclusions and Future Work

In this paper, we have presented a network architecture that discovers the pres-
ence of idle machines with a scalable (O(log,, N)) and fast (1.8 seconds for 10000
requested tasks) method. It organizes the nodes in a balanced tree structure to
efficiently distribute information about free nodes in a per-branch basis, that
is eventually used to route the request from a client to the appropriate idle
CPUs. The connectivity protocol, discovery protocol and availability protocol
are all three designed in a totally distributed way, that provide high scalabil-
ity and fault-tolerance. Moreover, the experimental simulation results show low
overhead in the control traffic and CPU load.

We envision to validate these results with a real prototype to be implemented
over the PlanetLab testbed. We believe this can be a valuable step to develop
system support for high performance computing applications.
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