
Performance Analysis of Web Applications

M. Elena Gómez Mart́ınez ∗

May 31, 2005

1 Introduction

Performance evaluation focusses on the analysis of the dynamic behavior of
a system and the prediction of indices or measures such as its throughput,
utilization or response time [17].

Most current practices in performance evaluation of software systems are
based on the well-know fix-it-later approach [32]. That is, the functional design
and the implementation of the system are accomplished and performance tech-
niques are applied only in the last stages of the software lifecycle. Then, when
performance metrics of these systems are poor, the redesign of the software
system turns on to a very expensive task.

Software Performance Engineering (SPE) [32] has been proposed as a sys-
tematic, quantitative approach to construct software systems that meet per-
formance objectives. SPE applied in early stages of the software development
process helps to overcome these mentioned problems.

The growth of the Internet has led the emergence of a wide variety of Web-
based applications, such as e-business, e-commerce, digital libraries or video
on-demand. A Web application can be defined as an application delivered from
a Web server to users over a network, such as the World Wide Web or an
intranet.

A common characteristic of Web applications is that they receive millions of
requests per day, that must be attended in a short term, since they are forced
to provide the satisfaction requirements by their users.

Web applications, in which Web Services are included, are considered among
the most difficult software systems to measure and estimate in general. Since
the software components are distributed across a network without regard to
their physical locations or the characteristics of the communication.

Quality of Service (QoS) can be defined as a set of perceivable character-
istics expressed in an user-friendly language with quantifiable parameters that
may be subjective or objective [37]. Examples of objectives parameters are
startup delay or data sizes. Subjective factors are the overall cost or the factors
of importance of other parameters. Examples of QoS parameters for system

∗This report has been developed for the ”Tecnoloǵıas Middleware” PhD course.

1



resources are jitters, delays, blocking times and size of buffers [28]. The QoS
of Web applications plays a crucial role in attracting and retaining users, and
therefore, in their satisfaction level.

The goal of this work is to present a review of the works in the literature
devoted to the performance evaluation of Web applications. This work will carry
out an special attention about performance issues on two specific models of Web
applications development: CORBA-based applications and Web Services.

The paper is structured as follows: in the next section, very basic concepts
about Web applications are recalled. Section 3 introduces the main performance
evaluation metrics that use to be applied for Web applications measurement.
In Section 4 we summarize the state of the art. A brief introduction to SPE for
Web Application is carried out in Section 5.

2 Web applications

A Web application is similar to a traditional client/server application, but it runs
on a Web site [30]. Keys of their proliferation are the easiness to be updated
and maintained, just by adding new functionalities. These processes use to be
transparent to the user.

In the following, the basic concepts concerning the two keys models studied
are recalled: CORBA-based distributed-object systems and Web Services.

2.1 CORBA-based distributed object systems

Distributed-object technology is the result of merging object-oriented techniques
with distributed systems technology. Distributed systems are composed of sev-
eral computing entities (distributed objects) to run a single task in a transparent
way, so that they appear to users as a single, centralized system [30].

Interoperability between software systems, based on distributed-object tech-
nology, is enabled and supported by communication middleware mechanisms
such as the Common Object Request Broker Architecture (CORBA) [27] stan-
dard, defined by the Object Management Group (OMG) [26]. The middleware
provides a layer of services between the application and the underlying platform
(operating system and network software).

Figure 1 depicts, the OMG’s Object Management Architecture (OMA) that
is composed of four elements [30]:

• Object Request Broker (ORB) is responsible for managing communication
between objects without regard to: object location, implementation and
state, or inter-object communication mechanisms. It is the core of this
architecture. Some aspects of the ORB includes:

– The interface definition language (IDL): declares the interfaces and
types of operations and parameters.

– Language mappings: specifies how the IDL features are mapped to
various programming languages.

2



Figure 1: The OMG Object Management Architecture.

– Client stubs and server skeletons: provide mechanisms for interacting
with the ORB to convert (static) request invocations from the pro-
gramming language into a form for transmission to the server object
and to similarly handle the response.

– Dynamic invocation and dispatch: a generic mechanism for dynamic
request invocations without compile-time knowledge of object inter-
faces.

– Protocols for inter-ORB communication: the mechanism for ORB-
to-ORB handling of request invocations.

• Common Object Services are collections of system-level services packaged
as components with IDL-specified interfaces. They augment and comple-
ment the functionality of the ORB.

• Common Facilities are collections of IDL-defined components that provide
services of direct use to application objects.

• Application Objects are components specific to end-user applications.

2.2 Web Services

The term Web service describes specific business functionality offered by a com-
pany, usually through an Internet connection, for the purpose of providing a
way for another company or software program to use the service [23].

Web Services are universally accessible software components deployed on
the Web, therefore in a Web service architecture clients and services are loosely
coupled and geographically distributed. One important characteristic is the
heterogeneous and architecture-neutral of the computing platform. Therefore,
one of the key ideas is that a Web service’s implementation and deployment
platform are not relevant to the application that is invoking the service [1].

3



A refined definition is supplied by the World Wide Web Consortium
(W3C) [39]: A software system identified by a URI1, whose public interfaces
and bindings are defined and described using XML. Its definition can be dis-
covered by other software systems. These systems may then interact with the
Web service in a manner prescribed by its definition, using XML based messages
conveyed by Internet protocols. [41].

A Web service is a collection of protocols and standards used for exchanging
data between applications. Software applications written in various program-
ming languages and running on various platforms can use Web Services to ex-
change data over computer networks like the Internet, in a manner similar to
inter-process communication on a single computer. This interoperability is due
to the use of open standards such as the following and others:

• The Simple Object Access Protocol (SOAP) [42] is a W3C draft note de-
scribing a way to use XML and HTTP to create information delivery
and remote procedure mechanisms. It is a lightweight protocol for the ex-
change of information decentralized, distributed environment; therefore, it
is a specification that defines a uniform way of passing XML-encoded data.
Examples of transport protocols that may be used are HTTP, SMTP, FTP
or POP3. Currently, the most used is HTTP over port 80, originally re-
served by Web browsers.

• The Web Service Description Language (WSDL) [40] is an XML format
for describing network services as a set of endpoint operating on messages
containing either document-oriented or procedure-oriented information.
WSDL is used to describe what services does, where they resides and how
to invoke them.

• The Universal Description Discovery and Integration (UDDI) [36] spec-
ifications define a way to publish and discover information about Web
Services. It consists of several related documents and an XML schema
that defines a SOAP-based programming protocol for registering and dis-
covering Web Services. UDDI is a framework for Web Services integration.
From a performance perspective, the discovery process involves the time
to look up the service in the Web Services directory using UDDI. It is
possible to assume a more simplistic approach, where the client has prior
knowledge of the service addressed.

An advantage of Web Services is a disadvantage at the same time. By
utilizing HTTP (over TCP port 80), Web Services can work through many
common firewall security measures without requiring changes to the filtering
rules; since port 80 is always open, because it is used for Web browsers. However,
this means that Web Services can evade existing firewall security measures whose
rules are intended to block or audit communication between programs on either
side of the firewall.

1Uniform Resource Identifier

4



3 Characterizing Performance and QoS of Web
applications

The most Web environments are complex software systems. They are composed
of firewalls, dynamic services or security techniques. Therefore, a myriad of op-
tions should be taken into account in order to carry out their performance analy-
sis: kind of Web application (distributed object-oriented vs service-oriented),
implementation technologies used in their development(e.g. Enterprise Java
Beans or ActiveX controls) or design patterns used in their conception. All of
these choices directly affect their performance as well as their QoS attributes.

The Service-level agreements [23] (SLAs) are defined as legally binding con-
tracts that establish bounds on various QoS metrics. Performance metrics are
matched against the SLAs to determine if the capacity of the system is ade-
quate. In other words, the values of SLAs determine the level of acceptable
service from users perspective.

The most important performance parameters commonly used to measure
Web applications are the following [23]:

Response time is the time a system takes to respond to various types of re-
quests. It is a function of load intensity, which can be measured in terms
of arrival rates (such as request per second) or number of concurrent re-
quests. QoS uses to take into account not only the average response time,
but also the percentile of the response time.

Throughput is the rate at which a system or service can process requests, i.e.
the request is completely processed by a computer system. It is measured
in number of operations by unit of time. The throughput is a function of
the load assigned to a system and of the maximum capacity of the system
to process work.

Availability is the fraction of time that a system is operating and available
to its customers. The two main reasons for systems to be unavailable are
failures and overloads.

Cost is usually associated with some measure of performance, i.e. response
time or throughput, as a price-performance ratio.

The performance perception of the users of the Web applications differs
from the providers perception. In the case of the users, it has to do with fast
response time or not connections refused. Service providers also concern about
high throughput and high availability.

Web applications have some unique characteristics that distinguish them
from traditional distributed systems. Some of these characteristics have a pro-
found impact on its performance. First, the number of users can be constantly
increasing. On the other hand, the randomness associated with the way that
users visit sites makes the problem of workload forecasting and capacity plan-
ning very difficult.

5



The QoS of a Web application uses to be indicated by a combination of the
parameters and qualities previously defined. Besides of the above-mentioned
performance metrics, there are qualities or properties that characterize QoS,
such as [23, 19, 21, 24]:

Security properties include the existence and type of authentication mecha-
nisms; confidentiality and data integrity of messages exchanged; non -
repudiation of requests or messages, and resilience to denial-of-service at-
tacks.

Reliability of a system is the probability that it works properly and contin-
uously over a fixed period of time. When the time period during which
the reliability is computed becomes very large, the reliability tends to the
availability.

Scalability of a system is defined when its performance does not degrade sig-
nificantly as the number of users, or equivalently, the load on the system
increases.

Extensibility is the property of a system to easily evolve to cope with new
functional and performance requirements.

3.1 Performance Issues in CORBA-based distributed ob-
ject systems

Concerning CORBA-based distributed object systems and focussing on the per-
formance characteristics of the ORB, there are two main issues: those that do
not need to be explicitly modeled and those that do [33].

Aspects of the ORB that do not require explicit modeling include: IDL,
language mappings, client stubs and server skeletons, dynamic invocation and
dispatch and protocols for inter-ORB communication, such as Internet-ORB
protocol (IIOP). These features affect the overall performance of the system,
they are modeled implicitly by measuring their resource requirements and in-
cluding them as processing overhead for each invocation of a server object. This
overhead, that includes delays due to CORBA-based process coordination, is a
significant portion of the total end-to-end time to process an operation [33].

However, there are five aspects of the ORB that have to be explicitly modeled
in order to calculate performance measures: object location, process composi-
tion, request scheduling, request dispatching and coordination mechanisms. Ob-
ject location and process composition determine the processing steps assigned
to each performance scenario. Request scheduling and request dispatching are
partially determined by contention for called processes which is determined by
the coordination mechanism and other processing requirements of performance
scenarios.

6



3.2 Performance Issues in Web Services

When a Web service is measured a number of topics have to be taken into
account. In the following, the most important are remarked [10, 4, 5]:

• Discovering the Web Service. This involves the time to look up the service
in the Web service directory using UDDI. It can include the authentication
process of the users.

• Transporting SOAP messages. They are independent of the transport
protocol, but they introduces a great overhead.

• Extracting the XML-defined Web service request from SOAP envelope
(conversely, at the client side this involves packing the XML request in
the SOAP envelope).

• Parsing the XML document. Due to SOAP messages must be parsed and
interpreted before they can be invoked, it is necessary a XML parser, such
as DOM or SAX. Different implementations of the parsers may also have
an impact.

• Usually, Web Services lure users with contents, such as graphics, audio
and video, which alter the distribution patterns of network traffic. They
affect negatively the Web performance [23].

• Composing Web Services. Dynamic composition of Web services and its
corresponding invocation method provides new functionalities, but it mod-
ifies the performance study [6, 21, 20]

• Web applications, and specially Web Services, exhibit high variability in
workload characterization. This means that the workload seems to be well
modeled by a distribution with infinite variance. Such distributions are
called heavy-tailed [23, 7].

As a conclusion, it could be stated that the flexibility and interoperability of
the XML based protocol has been achieved partly at the expense of performance.

4 Performance Works about Web applications
measurements

In the last years, a vast literature has arisen related to performance studies of
Web applications and the platforms where they are developed and executed.

In this section, a number of these studies are revised in order to offer a com-
prehensive and up-to-date background about the techniques, models, methods,
problems and challenges reported in them and currently present in this area.
Since these great number of works has been accomplished using different tech-
niques and methods, then in the following two classifications, based on what and
how to measure, are established. The classification will be useful to conduct the
rest of the section and it is summarized in the Table 1.

7



Architecture and Software
communication protocols SPE Others

No formal models [13, 14, 2, 3, 7, 8, 35, 10, 25, 43, 15, 12] [6]
Formal models [22, 31, 23, 19, 4, 11, 24, 21, 20] [33, 34, 38, 5] [18]

Table 1: Works concerning Web measurement

• What to measure:

– Architecture and communication protocols: These works measure
different aspects of middleware technologies (mainly CORBA) and
communications protocols (such as IIOP or SOAP).

– Software systems: They try to measure specific Web applications
considering the overload introduced by the architecture and the com-
munication protocols. A few of them follow the techniques proposed
by the SPE [32].

• How to measure:

– No model is used: Usually, they directly measure the system and/or
use benchmarks over the network.

– A model is used: They model the system (or part of it) and/or the
execution platform. The model is said formal when a modeling for-
malism is chosen as target specification. Among relevant formalisms
are Queueing Networks (QN), Layered Queueing Networks (LQN),
Stochastic Petri Nets (SPN) and Stochastic Process Algebra (SPA).

4.1 Evaluation of architecture and communication proto-
cols without modeling techniques

The works of Crovella et al.[2, 3, 7, 8] study the Web workload characteriza-
tion, just as its implications in performance. They conclude that most of the
Web workloads exhibit high variability. They can be well modeled by a distri-
bution with infinite variance, called heavy-tailored in contrast to distributions
commonly encountered in computer and telecommunication systems modelling.
The obtained results are compared with empiric values measured over the net-
work, showing the validity of these approaches.

The next works are focussed on different implementation and improvements
of the CORBA from a performance point of view. A methodology for improv-
ing the performance of an implementation of the Internet Inter-ORB Protocol
(IIOP) is described by Gokhale and Schmidt in [13]. The same authors in [14]
measure the performance of CORBA in High-Speed Networks. Also, they study
the performance on dependable CORBA middleware [12]. Testbed environ-
ments are used to model Web behavior and in order to measure performance in
all of these approaches.

8



A benchmarking methodology for evaluating performance of CORBA mid-
dleware is presented by Tuma and Buble [35]. They compare different imple-
mentations of CORBA and their performance over the network.

Mishra and Shi [25] propose techniques to improve the performance of dis-
tributed CORBA applications. They design and implement a middleware sys-
tem, called CORBA-as-needed that provides all necessary CORBA functionality
except interoperability. The proposed implementation uses TCP for communi-
cation instead of CORBA communication methods. Using this technique the
performance extra overhead in interoperability is decreased.

Elfwing et al. [10] compare SOAP performance to CORBA from the part of
the communication between the provider and the consumer of a Web service.
Taking into account the SOAP protocol characteristics, they propose improve-
ments in its implementation, such as usage of SOAP over HTTP 1.0 or 1.1. The
main conclusion from this work is that SOAP is significantly slower compared
to CORBA.

The approach of Zou et al. [43] investigates the overhead of real-time CORBA
invocations against TCP/IP socket programs and end-to-end predictability or
real-time CORBA. For this aim, they configure a testbed environment in order
to measure the throughput and latency of CORBA invocations.

Harkema et al. [15] focus on the development of a quantitative performance
model for CORBA-based method invocations. They observe that the model
features such as a finite thread pool and deterministic service times prohibit a
straightforward application of analytic techniques, such as LQN. So, they model
by means of simulation over a test lab environment.

4.2 Evaluation of architecture and communication proto-
cols with modeling techniques

Menascé and Almeida [22, 23, 24] study the factors that affect the Web per-
formance and Web services, between them the workload to attain the optimum
capacity planning. The Web services are modeled by using the QN formalism.
Also, Menascé study both the response time analysis of composite of Web ser-
vice and their QoS issues in [21, 20] and [19]. The interest of these approaches
consist in the modeling of the workload and the entire software system.

Petriu et al. [31] apply the LQN model to predict middleware performance of
CORBA-based applications. They base the study on the middleware interaction
architectures; i.e., the way a request from the client is routed to the server.

Brodo et al. [4] model a Web Service by using PEPA nets to analyze the dy-
namic behavior and to predict performance indices such as throughput, response
time or utilization.

The approach of Fernandes et al. [11] evaluate Message-Oriented Middleware
protocols, more specifically an implementation called WebSphere [16], through
Generalized-SPN (GSPN) and their impact in the performance. Moreover, they
present an alternative model in order to improve the overall behavior. Based
on these models, numerical results are obtained by a simulation tool.

9



4.3 Evaluation of software systems without modeling
techniques

From the best of our knowledge, only one work [6] focusses on this category.
Chandrasekaran et al. They discuss techniques for process execution time analy-
sis that can be used to evaluate the performance of individual Web services and
how to integrate them in composition. Taking into account these techniques,
they implement a tool which automatically generates an execution code. This
tool is integrated in a Java-based simulation and animation environment that
supports several features to simulate Web processes.

4.4 Evaluation of software systems with modeling tech-
niques

Among these approaches, the most relevant works are those proposed by Smith
and Williams [33, 34]. They establish the main guidelines to apply SPE tech-
niques in the Web applications development process by means of extensions of
the proper SPE. Due to the importance of the proposed modelling guidelines, a
more detailed explanation is shown in the next section.

Liu et al. [18] propose an approach to predict performance metrics for a
middleware-hosted application. They produce a QN model, in order to predict
the performance values.

Catley et al. present in [5] a case study of Web services applying SPE
techniques and based on the UML Profile for Schedulability, Performance and
Time (UML-SPT) [29]. The performance analysis is made by using LQN.

Verdickt et al. [38] propose an Model Driven Architecture (MDA) model
transformation for Platform Specific Model (PSM), including middleware per-
formance details. It is based on SPE and the UML-SPT profile. The transfor-
mation process is made by an automatic tool which generates LQN performance
models.

5 SPE for Web applications

The process of constructing software systems that meet performance objectives
is called Software Performance Engineering (SPE). For this reason, the SPE
techniques should be integrated into the early stages of the software development
life cycle for evaluating performance metrics before constructing them.

The SPE techniques for Web applications [34] are similar to those that used
for CORBA-based distributed-object systems [33]. Web applications use differ-
ent implementation technologies than other distributed systems, but implemen-
tation details do not affect the SPE models during their life cycle.

The first step in the SPE process is to establish the performance objectives,
i.e. the quantitative criteria for evaluating the performance characteristics of the
system under development. Performance objectives should avoid vague state-
ments such as the system response time should be satisfactory to end users, they

10



should be stated in a precise manner, such as the response time of the patient
information system should not exceed one second for local users.

The next step is to identify important Uses Cases, i.e., those that are critical
to the operation of the system or which are important to responsiveness as
seen by the user. Next, it is necessary to select a set of performance scenarios
that represent the important (Web) application interactions, those which are
executed frequently or those which are critical to the perceived performance of
the system. They also include the important functions that must perform well
if the application is to meet its business objectives. After that, an end -to -end
performance scenario is created that represents (at a high level) the processing
steps in each of the performance scenarios. Extended UML sequence diagrams
are used to represent the system interactions.

After representing the overall flow, the processing steps that have the great-
est impact on performance are identified and detailed. The next step, it is to
convert the sequence diagram into a software execution model, add performance
specifications, and solve the software execution model to determine the end-to-
end response time (without contention delays). The software execution model
often identifies problems with Web applications, particularly when they need to
transfer large amounts of data over relatively slow communication lines.

Due to the Web execution environment is typically complex, at the archi-
tectural level of design, first we will use deliberately simple models of software
processing that are easily constructed and solved to provide feedback. After
correcting any problems, the delays to interact with another scenarios in the
model are introduced.

The model solutions are iterative, since the solution of each independent
performance scenario quantifies its processing time, which serves as the delay
for system interactions in the subsequent model.

References

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web
Services. Concepts, Architectures and Applications. Springer, 2004.

[2] Paul Barford and Mark Crovella. Generating Representative Web Work-
loads for Network and Server Performance Evaluation. In Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’98 / PERFORMANCE ’98. Performance Evaluation Re-
view 26(1), pages 151–160, Madison, Wisconsin, USA, June 22-26 1998.

[3] Paul Barford and Mark Crovella. Measuring Web performance in the wide
area. SIGMETRICS Performance Evaluation Review, 27(2):37–48, 1999.

[4] Linda Brodo, Pierpaolo Degano, Stephen Gilmore, Jane Hillston, and Cor-
rado Priami. Performance Evaluation for Global Computation. In Corrado
Priami, editor, Global Computing, volume 2874 of Lecture Notes in Com-
puter Science, pages 229–253. Springer, 2003.

11



[5] Christina Catley, Dorina C. Petriu, and Monique Frize. Software Per-
formance Engineering of a Web service-based Clinical Decision Support
infrastructure. In Dujmovic et al. [9], pages 130–138.

[6] Senthilanand Chandrasekaran, John A. Miller, Gregory S. Silver, Ismail-
cem Budak Arpinar, and Amit P. Sheth. Performance Analysis and Simu-
lation of Composite Web Services. Electronic Markets, 13(2), 2003.

[7] Mark Crovella. Performance Characteristics of the World Wide Web. In
Günter Haring, Christoph Lindemann, and Martin Reiser, editors, Per-
formance Evaluation, volume 1769 of Lecture Notes in Computer Science,
pages 219–232. Springer, 2000.

[8] Mark Crovella. Performance Evaluation with Heavy Tailed Distributions.
In Boudewijn R. Haverkort, Henrik C. Bohnenkamp, and Connie U. Smith,
editors, Computer Performance Evaluation / TOOLS, volume 1786 of Lec-
ture Notes in Computer Science, pages 1–9. Springer, 2000.

[9] Jozo J. Dujmovic, Virǵılio A. F. Almeida, and Doug Lea, editors. Pro-
ceedings of the Fourth International Workshop on Software and Perfor-
mance, WOSP 2004, Redwood Shores, California, USA, January 14-16,
2004. ACM, 2004.

[10] Robert Elfwing, Ulf Paulsson, and Lars Lundberg. Performance of SOAP
in Web Service Environment Compared to CORBA. In APSEC, pages 84–.
IEEE Computer Society, 2002.

[11] Stênio F. L. Fernandes, Wellington J. Silva, Mauro J. C. Silva, Nelson S.
Rosa, Paulo R. M. Maciel, and Djamel F. H. Sadok. On the Generalised
Stochastic Petri Net Modelling of Message-Oriented Middleware Systems.
In IPCCC. IEEE, 2004.

[12] Aniruddha S. Gokhale, Balachandran Natarajan, Douglas C. Schmidt, and
Joseph K. Cross. Towards Real-Time Fault-Tolerant CORBA Middleware.
Cluster Computing, 7(4):331–346, 2004.

[13] Aniruddha S. Gokhale and Douglas C. Schmidt. Measuring the perfor-
mance of communication middleware on high-speed networks. In SIG-
COMM, pages 306–317, 1996.

[14] Aniruddha S. Gokhale and Douglas C. Schmidt. Principles for Optimizing
CORBA Internet Inter-ORB Protocol Performance. In HICSS ’98: Pro-
ceedings of the Thirty-First Annual Hawaii International Conference on
System Sciences-Volume 7, page 376, Washington, DC, USA, 1998. IEEE
Computer Society.

[15] Marcel Harkema, Bart M.M. Gijsen, Robert D. van der Mei, and Y. Hoek-
stra. Middleware Performance: A Quantitative Modeling Approach. In

12



Proc. of the international Symposium of Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS), San Jose, USA, July
2004.

[16] IBM, http://www-306.ibm.com/software/websphere/. WebSphere, May
2005.

[17] E.D. Lazowska, J. Zahorjan, G. Scott, and K.C. Sevcik. Quantitative Sys-
tem Performance: Computer System Analysis Using Queueing Network
Models. Prentice-Hall, 1984.

[18] Yan Liu, Alan Fekete, and Ian Gorton. Predicting the performance of
middleware-based applications at the design level. In Dujmovic et al. [9],
pages 166–170.

[19] Daniel A. Menascé. QoS Issues in Web Services. IEEE Internet Computing,
6(6):72–75, 2002.

[20] Daniel A. Menascé. Composing Web Services: A QoS View. IEEE Internet
Computing, 8(6):88–90, 2004.

[21] Daniel A. Menascé. Response-Time Analysis of Composite Web Services.
IEEE Internet Computing, 8(1):90–92, 2004.

[22] Daniel A. Menascé and Virgilio A. F. Almeida. Capacity planning for Web
performance: metrics, models, and methods. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1998.

[23] Daniel A. Menascé and Virgilio A. F. Almeida. Capacity Planning for Web
Services: metrics, models, and methods. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2001.

[24] Daniel A. Menascé, Virgilio A. F. Almeida, and Lawrence W. Dowdy. Per-
formance by Design: Computer Capacity Planning By Example. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004.

[25] Shivakant Mishra and Nija Shi. Improving the performance of distributed
corba applications. In IPDPS. IEEE Computer Society, 2002.

[26] Object Management Group, http:/www.omg.org.

[27] Object Management Group, http:/www.omg.org. The Common Object
Request Broker: Architecture and Specification, December 2002. version
1.0.

[28] Object Management Group, http:/www.omg.org. UML Profile for Mod-
eling Quality of Service and Fault Tolerance Characteristics and Mecha-
nisms., September 2004. version 1.0.

[29] Object Management Group, http:/www.omg.org. UML Profile for Schedu-
labibity, Performance and Time Specification, January 2005. version 1.1.

13



[30] Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential Distributed
Objects Survival Guide. John Wiley, 1996.

[31] Dorina C. Petriu, Hoda Amer, Shikharesh Majumdar, and Istabrak Abdul-
Fatah. Using analytic models predicting middleware performance. In
M. Woodside, H. Gomaa, and D. Menascé, editors, Workshop on Soft-
ware and Performance, pages 189–194, Ottawa, Canada, September 17-20
2000. ACM.

[32] Connie U. Smith. Performance Engineering of Software Systems. The Sei
Series in Software Engineering. Addison–Wesley, 1990.

[33] Connie U. Smith and Lloyd G. Williams. Performance Engineering Models
of CORBA-based Distributed-Object Systems. In Int. CMG Conference,
pages 886–898. Computer Measurement Group, 1998.

[34] Connie U. Smith and Lloyd G. Williams. Building Responsive and Scalable
Web Applications. In Int. CMG Conference, pages 127–138. Computer
Measurement Group, 2000.

[35] Petr Tuma and Adam Buble. Overview of the CORBA Performance. In
Proc. of the International Symposium of Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS), Orlando, USA, July
2001.

[36] Universal Description, Discovery, and Integration of Business for the Web
(UDDI), http://www.uddi.org.

[37] Nalini Venkatasubramanian and Klara Nahrstedt. An integrated metric
for video QoS. In MULTIMEDIA ’97: Proceedings of the fifth ACM inter-
national conference on Multimedia, pages 371–380, New York, NY, USA,
1997. ACM Press.

[38] Tom Verdickt, Bart Dhoedt, and Frank Gielen. Incorporating SPE into
MDA: including middleware performance details into system models. In
Dujmovic et al. [9], pages 120–124.

[39] World Wide Web Consortium (W3C), http://www.w3.org.

[40] World Wide Web Consortium (W3C), http://www.w3.org/TR/wsdl. Web
Services Description Language (WSDL), March 2001.

[41] World Wide Web Consortium (W3C), http://www.w3.org/TR/wsa-reqs.
Web Services Architecture Requirements, October 2002.

[42] World Wide Web Consortium (W3C), http://www.w3.org/TR/soap. Sim-
ple Object Access Protocol (SOAP), June 2003.

14



[43] Jianfan Zou, David Levy, and Anna Liu. Evaluating Overhead and Pre-
dictability of a Real-Time CORBA System. In HICSS ’04: Proceedings
of the Proceedings of the 37th Annual Hawaii International Conference on
System Sciences (HICSS’04) - Track 9, page 90276.1, Washington, DC,
USA, 2004. IEEE Computer Society.

15


