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ABSTRACT 

Evaluation of non-functional properties of a design (such as 
performance, dependability, security, etc.) can be enabled by 
design annotations specific to the property to be evaluated. 
Performance properties, for instance, can be annotated on UML 
designs by using the "UML Profile for Schedulability, 
Performance and Time (SPT)".  However the communication 
between the design description in UML and the tools used for 
non-functional properties evaluation requires support, 
particularly for performance where there are many alternative 
performance analysis tools that might be applied. This paper 
describes a tool architecture called PUMA, which provides a 
unified interface between different kinds of design information 
and different kinds of performance models, for example Markov 
models, stochastic Petri nets and process algebras, queues and 
layered queues.  

The paper concentrates on the creation of performance models. 
The unified interface of PUMA is centered on an intermediate 
model called Core Scenario Model (CSM), which is extracted 
from the annotated design model. Experience shows that CSM is 
also necessary for cleaning and auditing the design information, 
and providing default interpretations in case it is incomplete, 
before creating a performance model.  

Keywords 
Software performance engineering, performance models, UML, 
scenarios, model building. 

1. INTRODUCTION 
Considerable emphasis has been placed on developing an ability 
to evaluate software and system designs for non-functional 
properties such as performance, reliability, and security. One 
approach to enabling this evaluation is to attach suitable 
additional information as annotations to the design. This has 
been addressed for performance and schedulability in the 

standard "UML Profile for Schedulability, Performance and 
Time" (SPT) [13]. The SPT profile defines stereotypes and 
tagged values that can be attached to design model elements, 
particularly in the behaviour and deployment specifications.  

Translations from UML into different kinds of performance 
models have been described, for example: 

• into queueing models, by Smith [19] 
• into layered queueing models [14][16] 
• into stochastic Petri nets [3][6][11] 
• into stochastic process algebra models [4] 
• directly into simulation models [2] 

The model translation can be somewhat intricate, and the 
approaches these authors have taken to interpreting the UML are 
affected by the target performance semantics. Further, each 
contribution addresses one kind of UML diagrams, such as 
sequence diagrams, activity diagrams and state machines, which 
do not express behaviour in the same way. 

A software group would prefer to have access to several kinds of 
performance model and tools, from their preferred software 
design tools.  Also, design notations provide many ways to 
model a system (e.g, within UML, scenarios can be described 
either by interaction or by activity diagrams) and different 
versions of UML have different metamodels and semantics. 
Thus we have a kind of N-by-M problem to translate N design 
notation types into M performance model types. 

N-by-M problems are best addressed by a common intermediate 
format, such as the Core Scenario Model (CSM) described 
below. It captures the essence of performance specification and 
estimation as expressed in the SPT Profile, and strips away the 
design detail which is irrelevant to that analysis. It is suited to 
the production of performance models of several kinds, as 
demonstrated here by layered and regular queuing networks, and 
stochastic Petri nets. It is equally suited to different UML 
diagrams, as it is derived directly from the SPT profile. It can be 
used with non-UML software specifications as well, such as Use 
Case Maps. Other intermediate performance models have been 
described, such as Execution Graphs (Smith [18] and 
Cortellessa [5]). CSM is proposed as a standard for these ideas, 
compatible with the standard UML SPT profile. 

CSM is not only a common format, but it is much closer to all 
the target performance models, than the XMI encoding of UML. 
The information in CSM is filtered and verified; only the 
performance-related model elements are included.  
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1.1 PUMA architecture 

The PUMA architecture is a framework into which different 
kinds of software design tools (first and foremost, UML tools) 
can be plugged as sources, and different kinds of performance 
tools can be plugged as targets. The complete tool architecture is 
indicated in Figure 1, including not just evaluation, but also 
exploration of the performance properties of the design, and 
feedback to the design domain. 

For UML tools, the input to the CSM translator is the XML 
format (XMI). Other specification languages must either 
generate XMI, or (as in the case of Use Case Maps) have a 
customized translator. The CSM is expressed in CSML, with its 
own meta-model [15], and from CSML each performance model 
type has its own translator. 
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Figure 1 The PUMA Architecture 

We will describe transformations into CSM from UML1.4 
(Activity and Deployment diagrams), fromUML2 (Interaction 
and Deployment diagrams), and from CSM into Layered 
Queueing Networks (LQN), Petri Nets (PN), and Queueing 
Networks (QN). 

1.2 Running Example 

This paper will present the PUMA tools through a running 
example, which has been used earlier to explain the use of the 
SPT profile [17]. It is a Building Security System (BSS), with a 
part that stores video frames from surveillance cameras, and a 
part that manages keyed-number access controls to doors in the 
building. The discussion here will only address the video 
scenario, because of space limitations. 

The Profile is based on scenarios (that is, realizations of Use 
Cases given as behaviour diagrams), and deployment. Figure 2 
shows the deployment of the software on two processors on a 
LAN, with SPT stereotypes <<PAhost>> to indicate that they 
are host processors to the software components shown for each. 

It is expected that this diagram indicates how are deployed those 
software components that are participating in the scenarios 
considered for the generation of the performance model. 
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Figure 2 Deployment and software components in the Building 
Security System (BSS) 

A buffer pool indicated as Buffer in the VideoAcqui-
sition component is a storage resource, stereotyped as 
<<PAresource>>; it is referenced in the video scenario. It 
has a multiplicity parameter $NBuf, which is the number of 
buffers in the pool. 

Activity Diagram 

Figure 3 shows a UML1.4 Activity Diagram for the behaviour of 
the video acquisition scenario. There are $N cameras to be 
polled in a cycle, giving frames which are buffered and then 
stored in the Database. Steps in the scenario represent the 
workload of operations, and may be stereotyped on the message 
which initiates the operation, or on the execution occurence  or 
activity that executes it. In Fig. 3 <<PAstep>> stereotypes are 
attached to activities by notes. 

The first Step, cycleInit, is executed only once per cycle 
and has attached to it two stereotypes; one for its own resource 
demands, such as CPU time, and another for the Workload of 
the whole scenario. Here the workload consists of a single 
initiator or token, which repeatedly (without any inserted delay) 
triggers camera scanning cycles. The workload stereotype 
<<PAclosedLoad>> also defines the end-to-end perfor-
mance requirements as an interval constraint of 1 second 
between successive repetitions of the cycle, in 95% of cycles. 
Finally it also defines a variable name $Cycle for the actual 
95% delay, which will be obtained from the analysis of the 
performance model. The Step cycleInit is followed by a 
loop with $N repetitions, which is represented at the top of Fig 3 
by a composite activity procOneImage (for one cycle), with a 
repetition count of $N. The refinement of procOneImage is 
given in the lower part of the figure.  
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Figure 3 UML1.4 Activity Diagram for the Acquire/Store Video Scenario for the building security system 

 

Fig. 3 uses swimlanes (the vertical strips) to represent behaviour 
of concurrent software components. Each swimlane is associated 
with a component name; this is a UML 2.0 feature, but we also 
used it with UML 1.4 as a PUMA convention. If the component 
corresponding to a swimlane is stereotyped 
<<PAresource>>, this indicates that the component runs 
within a process that must be obtained before execution 
commences (i.e., request messages are queued before being 
accepted and executed). If such a component has a 

{PACapacity} parameter, it indicates a multi-threaded 
process. The sequence of activities (which become CSM Steps) 
is clearly established from the connectors between activities, 
including forking and joining at the horizontal bars. The 
allocBuffer step by the BufferManager process 
involves a second stereotype <<GRMAcquire>>, because this 
step acquires a buffer resource able to contain one video frame. 
If no buffer is available (indicating buffer starvation which may 
limit performance), then the requesting thread is blocked. The 



use of the <<GRMacquire>> stereotype (and its counterpart 
<<GRMrelease>>) for logical resources such as a buffer 
pool is suggested in the SPT Profile but not fully defined, and 
the use of a parameter to identify the resource (by name) is our 
own extension of the Profile. This extension appears to be 
necessary for resources other than processes and nodes, which 
are implicit. 

The terms “active” and “passive” are used differently in UML 
and in the SPT Profile (and consequently CSM). The SPT 

Profile distinguishes active resources that can initiate events 
(typically hardware, such as processors) and passive resources 
that only respond to events (e.g., processes and buffers). UML 
in general recognizes active and passive software components, 
where a process is active, while a regular object is passive. Thus, 
in SPT and CSM processes and buffers are both passive 
resources, while in UML a process is an active component and a 
buffer is a passive component. 
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Figure 4. A UML2 Interaction Diagram for the Acquire/Store Video scenario for the Building Security System from [15] 

 

Figure 4 shows a UML 2.0 Interaction Diagram for the same 
scenario. For some steps the use of UML notes to attach the 
stereotypes is illustrated here. Notes may be useful with some 
tools which do not produce XMI output for stereotypes. 

The scenario definitions include a pipeline effect in which 
AcquireProc passes the buffer to StoreProc, which 
handles storage in the database, while AcquireProc returns 
to poll the next camera in the cycle. 

2. THE CORE SCENARIO MODEL 
The Core Scenario Model was presented in [14] and is based 
closely on the domain model of the SPT profile. A Scenario is a 
sequence of Steps, linked by Connectors that include sequence, 
branch/merge (OR fork/join), fork/join (AND fork/join), and 
Start and End points. A Scenario uses Resources, which may be 
Active (including host processors which execute steps) or 
Passive (including logical resources, which are explicitly 
acquired and released by special ResAcquire and ResRelease 



steps). Resources are defined with a discipline (such as FIFO). 
Start points are associated with a Workload that defines arrivals 
and customers, and may be open or closed. Steps are executed 
by Components, (software components) which are passive 
resources in CSM. A Step may include a sub-Scenario as a 
refinement, and a loop is described by a Step with a repetition 
count and a refinement for the loop body. 

 

ResAcq

ResRel

<<Scenario>> Acquire/Store Video Start

Component

Video
Controller

Processing
Resource
Applic
CPU

cycleInit

End

procOneImage rep = $N

 

ResRel

ResAcq

getBuffer

ResAcq

getImage

passImage

ResAcq

storeImage

store

ResAcq

writeImg

ResRel

ResRel

freeBuf

ResAcq

ResRel

ResRel

Component

Acquire
Proc

Component

Buffer
Manager

Component

StoreProc
Component

Database

Processing
Resource

DB CPU

Processing
Resource
Applic
CPU

Fork

<<Scenario>> procOneImage

ExtOp

network

Start

End

End

ExtOp

write
Block

Passive
Resource

Buffer

allocBuf

ResAcq

releaseBuf

ResRel

 

Figure 5 Core Scenario Model for the Video Scenario. 

A Step is a sequential operation using a host processor that is 
identified by the deployment of its Component. It may also 
include External Operations, which are not modeled within the 

UML design, but are known to be required (e.g. file and 
database operations). They are identified by name, frequency 
(mean number of operations during the Step) and delay. 

Figure 5 shows an example CSM representation of the UML 
Acquire-video scenario. The figure contains in fact two CSM 
scenarios: the first one describes the entire video acquisition 
operation as a step, which is repeated for each camera, and the 
second describes the sub-scenario for that step. The resources 
are represented with bold outlines: circles for processing 
resources, squares for components and rounded squares for 
passive resources. The steps are represented as rectangles, and 
the dependencies between steps and resources as dotted arrows. 
A special hollow arrow represents a Sequence path connection 
and its associations with the predecessor and successor steps. 

2.1 From UML1.4 to CSM 

UML tools are supposed to export the annotated model to an 
XML file according to the standard UML-to-XML interchange 
format XMI, which PUMA translators take as input. The 
strategy in translating XMI to CSM is to find the diagrams that 
are to be considered, by searching for SPT Profile stereotypes, 
and then to generate structural CSM elements (Resources and 
Components) from the deployment diagram, and behavioural 
elements (Scenarios, Steps and Path-Connections) from the 
behaviour diagrams. This section describes briefly the 
translation from UML1.4 deployment and activity diagrams to 
CSM (the UML 1.4 interaction diagrams are too restricted, so 
are not described here). The next section will discuss the 
translation of UML 2.0 sequence diagrams, which have been 
enhanced considerably with respect to UML 1.4. 

The translation algorithm begins with the deployment diagram 
(for simplicity, we assume that there is only one such diagram in 
the UML model). A UML Node translates into a CSM Resource 
(specifically into a ProcessingResource if stereotyped as 
<<PAhost>>). A UML Component translates into a CSM 
Component if it is stereotyped with <<PAresource>>, and into a 
CSM PassiveComponent otherwise. An object with stereotype 
<<GRMResource>> translates to a PassiveResource. 

The translation continues with activity diagrams stereotyped as 
<<PAcontext>>. For each one, the Initial pseudostate, which 
is translated to a CSM Start PathConnection and a 
ResourceAcquire step for acquiring the component for the 
respective swimlane. The scenario workload information in a 
Workload stereotype is translated to a CSM Workload element 
attached to the Start PathConnection. (Note that in the SPT 
Profile, the scenario workload information is associated by 
convention with the first step of a scenario, not with its Initial 
PseudoState).  The translation follows the sequence of the 
scenario from start to finish, identifying the Steps and 
PathConnections (representing sequence, branch/merge, and 
fork/join) from the context of the diagram. Each simple activity 
represented by a UML ActionState is translated to a CSM Step, 
whereas a UML CompositeState gives a CSM Step with a nested 
Scenario. 

Each swimlane is associated with a Component through its 
name. A UML Transition that crosses the swimlane boundary 
(named here a “cross-transition”) represents a message or signal 
between the corresponding components that implies releasing 
the sender (which is a Component and also a Resource) and 



acquiring the receiver. Therefore, a cross-transition translates to 
a CSM ResourceRelease step, a Sequence PathConnection and a 
ResourceAcquire step. 

2.2 From UML2.0 Interaction Diagrams to CSM 

UML 2.0 interaction diagrams have better capabilities to model 
scenarios than previous UML sequence diagrams. It is possible 
to express selection among alternate branches, parallel 
execution, loops, etc., by using so-called fragments. A combined 
fragment encapsulates a portion of a sequence diagram 
surrounded by a frame, and contains one or more operand 
regions tiled vertically and separated by horizontal dashed lines. 
An operator shown in the upper-left corner of the frame 
prescribes how the operand regions of the combined fragment 
are handled. For instance, the operators opt and alt are used 
for branch selection, par for parallel execution and loop for 
repetition. Another new feature allows for hierarchical 
decomposition of a scenario step into a more detailed sub-
scenario. This is done by using an interaction occurrence, a 
fragment labeled with the operator ref, which refers to another 
interaction shown in a separate sequence diagram.  

The SPT Profile, which was defined for UML1.4 and has not 
been yet upgraded for UML 2.0, needs to be extended to allow 
for stereotyping of fragment operand regions and interaction 
occurrences with <<PAstep>>. For example, the loop 
fragment shown in Figure 2 is stereotyped as a step with a 
PArep attribute giving the number of repetitions. 

The translation algorithm from UML 2.0 to CSM begins with 
the deployment diagram, similarly with the translation from 
UML1.4. A UML Node is converted into a CSM 
ProcessingResource if stereotyped as <<PAhost>>, and into 
a CSM Resource otherwise. A UML Artifact (a deployable 
entity that “manifests” a component) is converted into a CSM 
PassiveResource if its stereotype is <<PAresource>>, and 
into a CSM passive Component otherwise.   

The translation continues with the scenarios described by 
sequence diagrams stereotyped with <<PAcontext>>. For 
each scenario, a CSM Start PathConnection is generated first, 
and the workload information is attached to it. Each Lifeline 
from a sequence diagram describes the behaviour of a UML 
instance (be it active or passive) and corresponds in turn to a 
CSM Component. We assume that the artifacts for all active 
UML instances are shown on the deployment diagram, so their 
corresponding CSM Components were already generated. 
However, it is possible that the sequence diagram contains 
lifelines for passive objects not shown in the deployment 
diagram. In such a case, the corresponding CSM Passive 
Component is generated, and its host is inferred to be the same 
as that of the active component in whose context it executes. 

The translation follows the message flow of the scenario, 
generating the corresponding Steps and PathConnections. A 
simple Step corresponds to a UML Execution Occurrence, 
which is the effect of receiving a message. Complex CSM Steps 
with a nested scenario correspond to operand regions of UML 
Combined Fragments and Interaction Occurrences. A 
synchronous message will generate a CSM Sequence 
PathConnection between the step sending the message and the 
step executed as an effect. An asynchronous message spawns a 

parallel thread, and thus will generate a Fork PathConnection 
with two outgoing paths:  one follows the sender's activity, and 
the other follows the path of the message. The two paths may 
rejoin later through a Join PathConnection. Fork/join of parallel 
paths may be also generated by a par Combined Fragment. 
Conditional execution of alternate paths is generated by alt 
and opt Combined Fragments. 

Because some CSM Components are also Resources, additional 
resource acquire and release steps may be necessary.  More 
specifically, if the sender of a message is stereotyped as 
<<PAresource>> a ResourceRelease step is generated, and if 
the receiver is stereotyped as <<PAresource>> a 
ResourceAcquire step is generated. 

The translation of UML 1.4 sequence diagrams to scenarios is a 
simple case of the translation discussed above for UML 2.0. In 
UML1.4 there are no combined fragments for expressing 
selections, repetitions and parallel executions, nor interaction 
occurrences for expressing further step refinements. 

3. CHALLENGES IN CSM EXTRACTION 
A UML model contains multiple system views described by 
different types of diagrams. However, only some of the 
information contained in the design specification is relevant to 
performance evaluation. Therefore, one of the challenges for 
CSM extraction is to identify what is necessary for generating a 
performance model and to filter out irrelevant information. 

Another problem is that UML design models may be incomplete 
or inconsistent, especially in the early stages of software 
development. Software design tools are required to support 
incomplete specifications that designers use for documentation 
and discussion of the evolution of the concepts in a system. 
However, the generated CSM should be complete and well-
formed before proceeding to the next step, the generation of 
performance models. Thus, another challenge for CSM 
extraction is dealing with the incompleteness/ inconsistency of 
both the UML model and of its performance annotations. 

3.1 Integration across diagrams 

The information needed to define a performance model is spread 
across multiple diagrams with differences in their semantics. 
The first challenge is to find the diagrams that are relevant, 
especially the behaviour diagrams defining scenarios, which are 
stereotyped <<PAcontext>>. Within these diagrams run-
time instances (components) are referenced directly (e.g., by 
lifelines in a sequence/interaction diagram), or indirectly (e.g., 
as through the labeling of swimlanes in an activity diagram). In 
this work we shall assume that a swimlane contains activities 
executed by a single run-time component whose name is 
referenced by the swimlane label, although this interpretation is 
not necessary in UML. 

Deployment of active components (processes) is determined 
from the deployment diagram (we shall assume there is just one 
such diagram for simplicity). Passive components are taken to 
be deployed on the same host as the active component in whose 
context they execute, as shown by calling patterns in the 
behaviour diagram. 



The active or passive nature of components must be determined. 
This may be found in different ways:  (1) as the attribute 
"isActive" of the class of the instance explicitly set in the UML 
model; (2) from stereotyping of the instance as <<PAresource>> 
in a interaction or deployment diagram; or (3) from associating 
the instance with a swimlane in the activity diagram.  If this 
cannot be determined, the user can be queried, or a default 
interpretation as an active component deployed on a virtual 
processor is taken. 

Multiple diagrams for a system may require reconciliation. A 
stereotype may be applied to an object in one but not another. In 
some cases, one diagram may fill in detail from another (as in a 
compound activity in UML1.4, or an interaction fragment in 
UML2) and the scenario traversal must track from one to 
another and back. 

The value of CSM is in filtering out the mass of UML 
definitions, drawing the performance information together, and 
permitting tests on the CSM for completeness and consistency 
of the performance-related attributes. These are a combination 
of the performance-stereotyped information and the structure 
and attributes of the UML model. 

Also, since UML tools differ, CSM provides a boundary to this 
concern and to UML-tool-specific interpretation. Tools may 
differ in how XMI is produced (or produced for only some 
diagrams), or in how UML features are supported. For instance, 
the optional representation of a branch in UML1.4 by diverging 
message paths is supported in some tools and not others. UML2 
provides a clearer expression for this with its alt construct. 

3.2 Interpretation of the Design model(s) 

We assume that the user indicates what scenarios are to be 
considered for CSM extraction by stereotyping them with 
<<PAcontext>>. If a behaviour diagram describes a 
scenario, its steps can be inferred by following the thread of 
messages and execution occurrences or activities, even if they 
are not stereotyped. This could be a convenience to designers. 
The way of dealing with missing step annotations is discussed in 
the following sections.  

3.3 Completion of the CSM to prepare for analysis 

Ideally, all information required to generate the performance 
model should be completely specified in the design model and 
its annotations. Parameters such as the CPU demands of Steps, 
branching probabilities, loop counts, arrival rates and user 
populations would then appear in the performance model and 
drive its solutions. 

On the other hand, experience with performance tools shows the 
usefulness of providing default values for parameters at the time 
objects are created (e.g. in the GreatSPN Petri net tool [22] or in 
the UCM Navigator [14]). Modelers may forget to define some 
values, or may not know them at first; the default values permit 
semantic checks on the performance solution. In some cases, 
default values may even be acceptable in the absence of 
experimental estimates (e.g., equal probabilities for branching). 

Similarly with missing stereotypes, once an activity diagram is 
stereotyped as <<PAcontext>>, its swimlanes should all 
reference run-time components and its activities should all be 
steps. If a swimlane or a lifeline does not reference an 

identifiable component, by default a component can be created 
for it on a virtual processor. 

Deployment information may be missing in the UML model, 
since deployment is secondary to functional design of software 
objects. An approach to deal with such a case, presented in [14], 
supposed an infinite pool of processors as a default, and 
deployed the software objects on it. In effect, their CPU 
demands become pure delays on these processors, and processor 
contention disappears in the model. Of course this may make it 
more difficult to identify active and passive components; our 
solution is to make components active by default, and to inform 
the user. In fact all defaults and interpretations used should be 
reported by the tool that creates the CSM. 

The SPT Profile allows for one kind of explicit incompleteness. 
If the system uses resources which are not fully described in the 
design, it identifies the usage as an “external operation” 
stereotyped <<PAextOp>>. For example, in a given UML 
model the disk and networks may not be modeled in detail, yet 
the software will require disk and network operations. This is an 
explicit hook for an external performance submodel, and 
requires that the model-building process should interpret the 
name of the external operation correctly (possibly with user 
help). The CSM simply captures these and passes them on, with 
a name and a count for the operations invoked by a Step. 

3.4 Verification of the information provided 

As already mentioned, a design model may be incomplete or 
inconsistent. Many tools have limited or no facilities for 
checking completeness and consistency of a design 
specification. Performance modeling on the other hand makes 
some demands. Model construction requires that scenarios are 
continuously connected, and that all resources acquired should 
be released. Solution environments also require models to 
satisfy certain properties, for example to be deadlock free. An 
important role of the CSM is to support verification, and 
possibly a finalization step to give a satisfactory CSM. 

Liveness or termination, and release of resources, are easy to 
decide for a CSM. It has much simpler execution patterns than a 
general behaviour specification, because it describes a single 
response to a single type of input event (although the type of 
event may be defined to include alternative subtypes, and thus 
be rather general). The only way to loop back or jump is to loop 
within a confined scope (the refinement of a composite step); 
otherwise the execution path never goes back. Thus, termination 
is guaranteed, for a correctly connected set of Steps, and the 
constraints for connecting Steps correctly are simple and few. 
Resource release can be determined by a traversal of the 
scenario, such as is described for LQN model-building below. 

Multiple scenarios may execute concurrently. We assume that 
they are analyzed separately to give separate CSMs, and then a 
model can be created to represent their interaction; they interact 
only through resources (which include logical resources such as 
semaphores or locks). Interaction anomalies, such as deadlocks 
or livelocks, could be carried out by constructing and analyzing 
a transition system for a set of CSMs. It is possible to do this by  
generating a state-transition Petri net as described in Section 5, 
and to carry out the analysis in the Petri net domain with 
existing tools. 



If finalization of the CSM requires queries to a software 
designer they refer to the familiar design document, rather than 
to the unfamiliar performance modeling environment. Thus 
CSM must maintain traceable relations of its objects to the UML 
diagrams. A degree of traceability is maintained by retaining the 
names of UML design elements in the CSM where possible. If 
the UML environment has globally unique identifiers for UML 
elements, they can be retained in the optional “traceability_ref” 
attribute of every CSM element [15]. 

4. FROM CSM TO LQN 
For each target performance modeling tool, a separate translator 
must be created. Within a single model type such as Petri Nets, 
it would be ideal to target a standard language for model 
interchange like the proposed PNML standard [10], or the 
proposed PMIL for queueing networks [20]. Here, we used the 
input languages of each target performance tool. 
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Figure 6. LQN model for the processOneImage scenario 

 

Three model types are considered here, Layered Queueing 
Networks (LQNs), Petri Nets, and Queueing Networks (QNs). 

An algorithm to generate a LQN model from a CSM has been 
based on the algorithm successfully used to generate models 
from Use Case Maps, in [14]. Use Case Maps have scenario 
semantics which are similar to the CSM, as far as workloads, 
sequential scenario structure and resource acquisition/release are 
concerned.  The first phase of the algorithm generates the LQN 
resources by examining the CSM resources. The algorithm 
generates an LQN Processor for each CSM ProcessingResource 
and an LQN Task for each CSM Component. 

The second phase of the algorithm traverses the scenario in 
order to determine the sequencing of the CSM Steps and to 
discover the calling interactions between Components. The 

traversal generates an LQN Activity for each CSM Step it 
encounters. Whenever a calling interaction between two 
Components is detected, an Activity is created in the Task 
corresponding to the caller Component and an LQN Entry is 
created in the Task corresponding to the called Component. This 
Entry serves the request and its workload is defined by the 
ensuing Activities generated from the Steps encountered in the 
new Component. The type of calls is detected by their context, 
that is a message which returns to a Component that previously 
sent a request is considered to be a reply to a synchronous call. 
Any calls that have not generated replies by the time the end of 
the scenario is reached are considered to be asynchronous. As in 
[14], the algorithm creates a stack of unresolved call messages 
and removes them as replies are detected (other interaction 
patterns can also be identified; the reader is referred to [14]). 
This call stack is duplicated at Branch and Fork points, so that 
each ensuing subpath maintains its own message history. The 
separate call stacks are merged at Merge and Join points once 
each incoming subpath has been traversed. 

The in-progress version of the algorithm used here still has some 
limitations. It handles branching and forking but does not yet 
handle merging and joining of the flow. This is sufficient for the 
example system, whose LQN model is shown in Figure 6. The 
logic for creating models with passive resources with finite 
capacity is not yet implemented, so the Buffer capacity $NBuf 
was taken as infinite, and the Buffer Pool resource does not 
appear in the LQN. 

An External Operation by a CSM Step is represented by a LQN 
request from the corresponding Activity to a special Task 
generated to represent it. An option, depending on the tool 
environment, is to have a library of submodels, which can be 
included and connected to the generated model through these 
requests. A CSM ClosedWorkload is transformed into 
parameters for a load-generating Reference Task, while a CSM 
OpenWorkload into a stream of requests. 

The LQN model is represented in an XML syntax called LQML, 
for input to the LQN editor, solver, and simulator. 

4.1 Multiple Scenarios 

One CSM can contain scenarios for several responses, gathered 
from separate behaviour diagrams. If the scenarios are saved in 
the same CSM file then the resources are generated once and 
each scenario is traversed in turn. However if the scenarios are 
saved in different CSM files then the resources are generated 
separately for each scenario traversal and separate LQN 
submodels result. These submodels can later be joined into a 
single model; the tasks and entries which are common across the 
different submodels can be automatically merged, based partly 
on their names and partly on behavioral characteristics. 

4.2 Model Exploitation 

Only limited information to govern the use of the model is 
defined in the SPT Profile. An additional interface is needed to 
define ranges of parameters for sensitivity and scalability 
evaluation, for instance. We are in process of defining such an 
interface. If it can be defined at the CSM level it can be used 
with all the performance tools. However, there are tool-specific 
issues involved in changing parameter values and re-running a 



model in an efficient way. This issue is not resolved, and it is 
not addressed here for other model types. 

5. FROM CSM TO PETRI NETS 
A relatively straightforward translation to Generalized 
Stochastic Petri Nets (GSPNs) (described for instance in [1]) 
can be implemented using Labeled GSPNs (LGSPNs, described 
in [3][11][12]). Fragments of a CSM model have direct 
representations as fragments of LGSPN, with labels that direct 
the composition of the fragments into a full model. Using the 
compositional properties of LGSPN, the fragments are 
composed through several stages until the LGSPN representing 
the whole scenario is generated. For each class in the CSM 
metamodel there is a LGSPN pattern, parameterized by the 
attributes of the CSM class. For example for a Step, the basic 
pattern is a place and a transition as shown in Figure 7(a), where 
the delay of the transition is defined as the demand attribute of 
the Step. If the Step also requires a host resource, the resource 
must also be acquired, as described below. When the Step has a 
probability less than one, then the translation is given in Figure 
7(c) if the Step is preceded by a Branch or in Figure 7(b) if it is 
not. A Step with a repetition (repCount) attribute is shown in 
Figure 7(d), with the probabilities of transitions t2 and t3 
adjusted to give the correct mean count (π1 = 1/(1 + repCount), 
π2 = 1 – π1).   

 

 
Figure 7 LGSPN patterns for a Step 

 
Figure 8 LGSPN patterns for Sequence, and for constructing the 

sequence 

The pattern for a Step in Figure 7 is instantiated into a LGSPN 
subnet with the name of the step as a label on the starting place 
and on the final transition, and labels t_host and r_host 

(take and release “host”, which is the name of the host resource 
for the Step) on the transitions before and after the timed 
transition for the Step.  

The labels on places and transitions are given after the name and 
a vertical bar, as in “name|label”, and these labels are used to 
compose two LGSPN subnets. Other patterns are created for the 
different connectors. In Figure 8 (a) a Sequence Connector gives 
a transition (labeled by the predecessor step name) and a place 
(labeled by the successor step name). To compose it with the 
two Steps, the transition is merged with the output transition of 
the predecessor Step (which has the same label). The labels are 
also merged. The place has the same label as the input place of 
the next Step, and is merged with it, as shown in Figure 8 (b) 
and (c). The pattern for the Branch uses conflicting transitions 
with probabilities given by the successor Step probabilities, as 
illustrated in Figure 9. The patterns for Merge, Fork and Join 
are similar. 
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Figure 9. LGSPN patterns for Branch, and their composition 

 

 
Figure 10. LGSPN patterns for Start and End 

 

 
Figure 11. LGSPN pattern for composition of a logical 

resource. 

The Start and the End patterns in Figure 10 model an applied 
closed workload, and are created with labels that cause all Ends 
to be joined to the Start of the same Scenario. This provides a 



GSPN with a steady state cyclical behaviour. For a closed 
Workload the Start place has tokens equal to the attribute 
population of the workload of the scenario. 

Resources use the pattern in Figure 11, which has: 
- a place for free resources that is initially populated with a 

number of tokens equal to the multiplicity attribute of the 
Resource. 

- an input transition modeling the release of the Resource 
an output transition modeling its acquisition. 

Figure 11 depicts the pattern and its composition with the host 
processor of a Step. The composition with Resource Acquire and 
Resource Release Steps is also shown. Composition is based on 
instantiating the resource pattern for every Acquire/Release pair 
and then merging the resource places based on their label, which 
is the resource name, giving a single place for each resource in 
the model. 

The algorithm for translating a CSM Scenario to GSPN begins 
by translating all the Resources, then the Start of the Scenario, 
and the End Steps. The algorithm continues by translating 
various CSM entities: 

• all the simple Steps, composed with their host resources 

• all the Resource Release/Acquire Steps, composed with 
their Resource subnet 

Then it composes the Start and End subnets into a result net 
called LGSPN, and translates each Connector step, composing it 
into LGSPN with its predecessors and successors.  

The result is a GSPN for the Scenario. Figure 12 shows the Petri 
net that represents the CSM for the Store/Acquire Video and the 
CSM for the Access Control. 

 

 

 
Figure 12. Petri Net produced automatically for the Video Acquisition scenario 

 

6. FROM CSM TO QUEUEING 
NETWORK MODELS 
The translation into ordinary (not extended) queueing networks 
can be carried out by applying the workload reduction technique 
first described by Smith [18], treating the steps in the CSM 
model as steps in Execution Graphs. This has not yet been 
automated, but the principle will be illustrated by a manual 
translation of the example CSM to QN.  

The reduction technique in [18] gives Table 1, showing the 
demands for host processing (for each host) and for each 
External Operation. Then the external operations demands are 
expanded using a model for each of them, to arrive at the host 
demands from Table 1. 

The QN model in Fig. 13 shows the movement of jobs. The 
service times for AppCPU and DB_CPU are given for different 
classes depending on the stage in the scenario. It is simpler to 
use the total demands given in the final row of the Table, in 
solving the QN as described in [18], by using standard queueing 
network techniques as described in [9]. 

Ordinary QNs do not describe simultaneous resource 
possession, so this model ignores logical resources such as 
process threads and buffers and their Resource Acquire/Release 
Steps. The modeling process in [18] does extend to 
simultaneous resources and Extended Queueing Networks, but 
we intend to handle such cases with Layered Queueing.  

When QN creation is automated it is planned to generate the 
PMIL language described in [20], which should make it possible 
to drive the QNAP or the SPEED solvers for QNs, as described 
in that paper. 

 

Table 1 Queueing Network Workload by Step, and by Server 

    Step # Applic 
CPU 

DB CPU LAN Disk 

  ms ms ops of 
1.5 ms 

ops of 
2 ms 

 processImages 1        

 procOneImage  $N  1.8    



 getBuffer  $N  1.5    

 getImage  $N  $P*1.5   $P  

 passImage  $N  0.9    

 storeImage  $N  1.1    

 store  $N  2.0    

 writeImage  $N   $B*0.9   $B 

 freeBuf  $N  0.2    

 releaseBuf  $N  0.5    

 Weighted Sum 

 in ms. 

 $N*8 + 

$N*$P* 

1.5        

$N*$B*0.9 $N*$P* 

1.5 

$N*$B*2 

 Value/cycle, by     
server, for 
$N=100, 
$B=$P=8 

  2000 ms  720 ms  1200 ms  1600 ms 

 

 

 

Reference 
s = 0. 

ApplicCP
U 

LAN 
s = 1.5 ms 

DB_CPU 
 

Disk 
s = 2 ms  

Figure 13.  Queueing Network Model 

 

7. EFFECTIVENESS 
PUMA is targeted particularly to steady state performance 
analysis for specified scenarios. The PUMA processing 
architecture, with its intermediate scenario model CSM, has 
been shown to be effective in two ways: (a) in its power to 
collect and reconcile the relevant performance information from 
the different design sources, and (b) in the flexibility to generate 
different kinds of performance model using different 
formalisms. In PUMA, the term “scenario” includes possible 
variations in the path through branches and merges. 

In UML, performance information for any system is recorded in 
at least two diagrams (behaviour and deployment); there may be 
multiple behaviour diagrams. The CSM creator process can 
search the UML (XMI) file for relevant data, exploiting the 
context of what it has found so far, for instance to include a Step 
by default even if it is not stereotyped, or to find the properties 
of a Component. Since it is phrased in terms very close to the 
SPT Profile there are few ambiguities to resolve, about the 
semantics of the CSM model. 

Model creation has been mostly straightforward, re-using 
previously defined techniques for modeling from scenarios. 
Scenarios are a lingua franca for performance modeling. 

This work has not addressed behaviour that is defined by state 
machines rather than scenarios. However, performance is almost 

always specified as the properties of a set of responses, which 
map to scenarios. Even with state machine definitions, it is 
necessary to project these onto scenarios; in such a case we 
would generate the scenarios into a CSM as a first step. There 
are performance-related properties which are not scenario-based 
in the first instance, such as the mean time to some “bad” 
transition, or the probability of event A occurring before event 
B. It is still to be explored whether these can also be mapped to 
a scenario-based analysis. 

This paper has not addressed the systematic use of models to 
generate design feedback, which makes up the bottom part of 
Fig. 1. This will be the subject of future reports. 

8. CONCLUSIONS 
This paper has presented the PUMA toolset architecture and its 
unified model-building approach, based on a Core Scenario 
Model (CSM). Using an example, it has briefly described how 
the CSM has recently been obtained from different kinds of 
UML diagrams in both UML1.4 and UML2, and how it has 
been translated automatically to Layered Queueing models 
(LQN) and Petri Nets (PN), in a form that can immediately be 
solved by existing tools. Principles to translation to a Queueing 
Network model were also described, for the same example.  

PUMA promises a way out of the maze of possible performance 
evaluation techniques. From the point of view of practical 
adoption, this is of the utmost importance, as the software 
developer is not tied to a performance model whose limitations 
he or she does not understand. Performance modelers are 
similarly freed to generate a wide variety of forms of model, and 
explore their relative capabilities, without having to create the 
(quite difficult) interface to UML. As UML is constantly 
changing, this can also make maintenance of model-building 
easier. 

A limitation that this work does not overcome is the difference 
in the XMI produced by different UML tools. Despite the fact 
that XMI is an OMG standard, experience shows that, at least 
for now, different UML vendors introduce their own extra 
features in the produced XMI. The user of a particular UML 
tool may have to port the CSM generator to that tool. It would 
be interesting to create a self-configuring generator, which is 
sufficiently flexible to navigate these differences.  

The use of non-UML specification techniques is also made 
easier in principle by the CSM; once a translation to CSM is 
made, the model-building machinery can be re-used. 

This paper has explored difficulties encountered in using the 
“unified” model-building approach, particularly in obtaining the 
CSM. Mostly these confirm the wisdom of having an 
intermediate form, which has filtered out the mass of design 
information that is not needed for the performance analysis. 
Perhaps as a result, the experience of creating the models from 
CSM has revealed no serious problems. 

In conclusion, PUMA is an exploration of a unified approach to 
modeling. So far it seems to be very successful. 
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