
Performance by Unified Model Analysis (PUMA)

Murray Woodside, Dorina C. Petriu,
Dorin B. Petriu, Hui Shen, Toqeer Israr

Jose Merseguer

Dept. of Systems and Computer Engineering,
Carleton University, Ottawa, Canada

{cmw | petriu | dorin | hshen | tisrar} @sce.carleton.ca

Dep. de Informatica e Ingenieria de Sistemas,
Universidad de Zaragoza, Zaragoza, Spain

jmerse@unizar.es

ABSTRACT

Evaluation of non-functional properties of a design (such as
performance, dependability, security, etc.) can be enabled by
design annotations specific to the property to be evaluated.
Performance properties, for instance, can be annotated on UML
designs by using the "UML Profile for Schedulability,
Performance and Time (SPT)". However the communication
between the design description in UML and the tools used for
non-functional properties evaluation requires support,
particularly for performance where there are many alternative
performance analysis tools that might be applied. This paper
describes a tool architecture called PUMA, which provides a
unified interface between different kinds of design information
and different kinds of performance models, for example Markov
models, stochastic Petri nets and process algebras, queues and
layered queues.

The paper concentrates on the creation of performance models.
The unified interface of PUMA is centered on an intermediate
model called Core Scenario Model (CSM), which is extracted
from the annotated design model. Experience shows that CSM is
also necessary for cleaning and auditing the design information,
and providing default interpretations in case it is incomplete,
before creating a performance model.

Keywords
Software performance engineering, performance models, UML,
scenarios, model building.

1. INTRODUCTION
Considerable emphasis has been placed on developing an ability
to evaluate software and system designs for non-functional
properties such as performance, reliability, and security. One
approach to enabling this evaluation is to attach suitable
additional information as annotations to the design. This has
been addressed for performance and schedulability in the

standard "UML Profile for Schedulability, Performance and
Time" (SPT) [13]. The SPT profile defines stereotypes and
tagged values that can be attached to design model elements,
particularly in the behaviour and deployment specifications.

Translations from UML into different kinds of performance
models have been described, for example:

• into queueing models, by Smith [19]
• into layered queueing models [14][16]
• into stochastic Petri nets [3][6][11]
• into stochastic process algebra models [4]
• directly into simulation models [2]

The model translation can be somewhat intricate, and the
approaches these authors have taken to interpreting the UML are
affected by the target performance semantics. Further, each
contribution addresses one kind of UML diagrams, such as
sequence diagrams, activity diagrams and state machines, which
do not express behaviour in the same way.

A software group would prefer to have access to several kinds of
performance model and tools, from their preferred software
design tools. Also, design notations provide many ways to
model a system (e.g, within UML, scenarios can be described
either by interaction or by activity diagrams) and different
versions of UML have different metamodels and semantics.
Thus we have a kind of N-by-M problem to translate N design
notation types into M performance model types.

N-by-M problems are best addressed by a common intermediate
format, such as the Core Scenario Model (CSM) described
below. It captures the essence of performance specification and
estimation as expressed in the SPT Profile, and strips away the
design detail which is irrelevant to that analysis. It is suited to
the production of performance models of several kinds, as
demonstrated here by layered and regular queuing networks, and
stochastic Petri nets. It is equally suited to different UML
diagrams, as it is derived directly from the SPT profile. It can be
used with non-UML software specifications as well, such as Use
Case Maps. Other intermediate performance models have been
described, such as Execution Graphs (Smith [18] and
Cortellessa [5]). CSM is proposed as a standard for these ideas,
compatible with the standard UML SPT profile.

CSM is not only a common format, but it is much closer to all
the target performance models, than the XMI encoding of UML.
The information in CSM is filtered and verified; only the
performance-related model elements are included.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP’05, July 11–15, 2005, Palma de Mallorca, Spain.
Copyright 2005 ACM 1-59593-087-6/05/0007 …$5.00.

1.1 PUMA architecture

The PUMA architecture is a framework into which different
kinds of software design tools (first and foremost, UML tools)
can be plugged as sources, and different kinds of performance
tools can be plugged as targets. The complete tool architecture is
indicated in Figure 1, including not just evaluation, but also
exploration of the performance properties of the design, and
feedback to the design domain.

For UML tools, the input to the CSM translator is the XML
format (XMI). Other specification languages must either
generate XMI, or (as in the case of Use Case Maps) have a
customized translator. The CSM is expressed in CSML, with its
own meta-model [15], and from CSML each performance model
type has its own translator.

 Any
design model

with
performance
annotations

Any
performance

model

Core
Scenario
Model
(CSM)

Performance
results and design

advice

Convert CSM to
this performance
model language

Extract CSM
from this

design tool

Explore
solution

space

Feedback

Figure 1 The PUMA Architecture

We will describe transformations into CSM from UML1.4
(Activity and Deployment diagrams), fromUML2 (Interaction
and Deployment diagrams), and from CSM into Layered
Queueing Networks (LQN), Petri Nets (PN), and Queueing
Networks (QN).

1.2 Running Example

This paper will present the PUMA tools through a running
example, which has been used earlier to explain the use of the
SPT profile [17]. It is a Building Security System (BSS), with a
part that stores video frames from surveillance cameras, and a
part that manages keyed-number access controls to doors in the
building. The discussion here will only address the video
scenario, because of space limitations.

The Profile is based on scenarios (that is, realizations of Use
Cases given as behaviour diagrams), and deployment. Figure 2
shows the deployment of the software on two processors on a
LAN, with SPT stereotypes <<PAhost>> to indicate that they
are host processors to the software components shown for each.

It is expected that this diagram indicates how are deployed those
software components that are participating in the scenarios
considered for the generation of the performance model.

<<PAhost>>
ApplicCPU

LAN

VideoAcquisition

<<PAhost>>
DB_CPU

<<PAresource>>
Database

Disk

<<PAresource>>
VideoController

<<PAresource>>
AcquireProc

<<PAresource>>
StoreProc

<<PAresource>>
Buffer Manager

AccessControl

<<PAresource>>
Acces

Controller

<<PAresource>>
Buffer

{PAcapacity=$Nbuf}

Figure 2 Deployment and software components in the Building
Security System (BSS)

A buffer pool indicated as Buffer in the VideoAcqui-
sition component is a storage resource, stereotyped as
<<PAresource>>; it is referenced in the video scenario. It
has a multiplicity parameter $NBuf, which is the number of
buffers in the pool.

Activity Diagram

Figure 3 shows a UML1.4 Activity Diagram for the behaviour of
the video acquisition scenario. There are $N cameras to be
polled in a cycle, giving frames which are buffered and then
stored in the Database. Steps in the scenario represent the
workload of operations, and may be stereotyped on the message
which initiates the operation, or on the execution occurence or
activity that executes it. In Fig. 3 <<PAstep>> stereotypes are
attached to activities by notes.

The first Step, cycleInit, is executed only once per cycle
and has attached to it two stereotypes; one for its own resource
demands, such as CPU time, and another for the Workload of
the whole scenario. Here the workload consists of a single
initiator or token, which repeatedly (without any inserted delay)
triggers camera scanning cycles. The workload stereotype
<<PAclosedLoad>> also defines the end-to-end perfor-
mance requirements as an interval constraint of 1 second
between successive repetitions of the cycle, in 95% of cycles.
Finally it also defines a variable name $Cycle for the actual
95% delay, which will be obtained from the analysis of the
performance model. The Step cycleInit is followed by a
loop with $N repetitions, which is represented at the top of Fig 3
by a composite activity procOneImage (for one cycle), with a
repetition count of $N. The refinement of procOneImage is
given in the lower part of the figure.

<<PAcontext>>

<<PAclosedLoad>>
{PApopulation = 1,
PAinterval=
 ((‘req’,’percentile’, 95, (1,’s’)),
 (‘pred’,’percentile’, $Cycle))}

VideoController

procOneImage
*[N]

cycleInit
<<PAstep>>

{PAdemand= (‘asmd’, ‘mean’,
(1.8, ‘ms))}

<<PAstep>>
{PArep = $N}

wait_SP

getBuffer

<<GRMacquire>>
{GRMresource='Buffer'}

allocBuf

wait_DB

<<GRMrelease>>
{GRMresource='Buffer'}

releaseBuf

AcquireProc StoreProc BufferManager Database

getImage

passImage

store

writeImg

freeBuf

wait_SP

wait_DB

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, 1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
 PAextOp = (network, $P)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’,(0.5, ‘ms’)) }

<<PAstep>>
{PAdemand=(‘asmd’,
 ‘mean’, (0.9, ‘ms’)) }

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’)) }

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, 0.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,

 ‘mean’, ($B * 0.9, ms’)),
 PAextOp=(writeBlock, $B)}

storeImage

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.1, ‘ms’)) }

Figure 3 UML1.4 Activity Diagram for the Acquire/Store Video Scenario for the building security system

Fig. 3 uses swimlanes (the vertical strips) to represent behaviour
of concurrent software components. Each swimlane is associated
with a component name; this is a UML 2.0 feature, but we also
used it with UML 1.4 as a PUMA convention. If the component
corresponding to a swimlane is stereotyped
<<PAresource>>, this indicates that the component runs
within a process that must be obtained before execution
commences (i.e., request messages are queued before being
accepted and executed). If such a component has a

{PACapacity} parameter, it indicates a multi-threaded
process. The sequence of activities (which become CSM Steps)
is clearly established from the connectors between activities,
including forking and joining at the horizontal bars. The
allocBuffer step by the BufferManager process
involves a second stereotype <<GRMAcquire>>, because this
step acquires a buffer resource able to contain one video frame.
If no buffer is available (indicating buffer starvation which may
limit performance), then the requesting thread is blocked. The

use of the <<GRMacquire>> stereotype (and its counterpart
<<GRMrelease>>) for logical resources such as a buffer
pool is suggested in the SPT Profile but not fully defined, and
the use of a parameter to identify the resource (by name) is our
own extension of the Profile. This extension appears to be
necessary for resources other than processes and nodes, which
are implicit.

The terms “active” and “passive” are used differently in UML
and in the SPT Profile (and consequently CSM). The SPT

Profile distinguishes active resources that can initiate events
(typically hardware, such as processors) and passive resources
that only respond to events (e.g., processes and buffers). UML
in general recognizes active and passive software components,
where a process is active, while a regular object is passive. Thus,
in SPT and CSM processes and buffers are both passive
resources, while in UML a process is an active component and a
buffer is a passive component.

sd AcquireVideo

<<PAresource>>
Video

Controller

<<PAresource>>
Database

{PAcapacity=10}

<<PAresource>>
AcquireProc

<<PAresource>>
BufferManager

<<PAresource>>
StoreProc

 procOneImage(i)

<<GRMacquire>>
{GRMresource="Buffer"}

allocBuf (b)

getImage (i, b)

passImage (i, b)

storeImage (i, b)

<<GRMrelease>>
GRMresource="Buffer"}

releaseBuf (b)

freeBuf
(b)

writeImg (i, b)

getBuffer()

store (i, b)

<<PAstep>>
{PAdemand =(‘asmd’,

mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,
($P * 1.5, ‘ms’)), PAextOp =

(network, $P)}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

($B * 0.9, ‘ms’)))),
PAextOp = (network, $B)}}

<<PAclosedLoad>>
{PApopulation = 1, PAinterval =
((‘req’,’percentile’,95, (1, ‘s’)),
 (‘pred’,’percentile’, 95, $Cycle)) }

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))} o

o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

{PAdemand=(‘asmd’,
‘mean’, (1.1, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2,’ms’))}

o

This object manages
the resource Buffer

o

<<PAcontext>>

loop [i=1,$N]

 cycle_Init() <<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))} o

In this loop:
 - i denotes the camera
 - b denotes the buffer

o

Figure 4. A UML2 Interaction Diagram for the Acquire/Store Video scenario for the Building Security System from [15]

Figure 4 shows a UML 2.0 Interaction Diagram for the same
scenario. For some steps the use of UML notes to attach the
stereotypes is illustrated here. Notes may be useful with some
tools which do not produce XMI output for stereotypes.

The scenario definitions include a pipeline effect in which
AcquireProc passes the buffer to StoreProc, which
handles storage in the database, while AcquireProc returns
to poll the next camera in the cycle.

2. THE CORE SCENARIO MODEL
The Core Scenario Model was presented in [14] and is based
closely on the domain model of the SPT profile. A Scenario is a
sequence of Steps, linked by Connectors that include sequence,
branch/merge (OR fork/join), fork/join (AND fork/join), and
Start and End points. A Scenario uses Resources, which may be
Active (including host processors which execute steps) or
Passive (including logical resources, which are explicitly
acquired and released by special ResAcquire and ResRelease

steps). Resources are defined with a discipline (such as FIFO).
Start points are associated with a Workload that defines arrivals
and customers, and may be open or closed. Steps are executed
by Components, (software components) which are passive
resources in CSM. A Step may include a sub-Scenario as a
refinement, and a loop is described by a Step with a repetition
count and a refinement for the loop body.

ResAcq

ResRel

<<Scenario>> Acquire/Store Video Start

Component

Video
Controller

Processing
Resource
Applic
CPU

cycleInit

End

procOneImage rep = $N

ResRel

ResAcq

getBuffer

ResAcq

getImage

passImage

ResAcq

storeImage

store

ResAcq

writeImg

ResRel

ResRel

freeBuf

ResAcq

ResRel

ResRel

Component

Acquire
Proc

Component

Buffer
Manager

Component

StoreProc
Component

Database

Processing
Resource

DB CPU

Processing
Resource
Applic
CPU

Fork

<<Scenario>> procOneImage

ExtOp

network

Start

End

End

ExtOp

write
Block

Passive
Resource

Buffer

allocBuf

ResAcq

releaseBuf

ResRel

Figure 5 Core Scenario Model for the Video Scenario.

A Step is a sequential operation using a host processor that is
identified by the deployment of its Component. It may also
include External Operations, which are not modeled within the

UML design, but are known to be required (e.g. file and
database operations). They are identified by name, frequency
(mean number of operations during the Step) and delay.

Figure 5 shows an example CSM representation of the UML
Acquire-video scenario. The figure contains in fact two CSM
scenarios: the first one describes the entire video acquisition
operation as a step, which is repeated for each camera, and the
second describes the sub-scenario for that step. The resources
are represented with bold outlines: circles for processing
resources, squares for components and rounded squares for
passive resources. The steps are represented as rectangles, and
the dependencies between steps and resources as dotted arrows.
A special hollow arrow represents a Sequence path connection
and its associations with the predecessor and successor steps.

2.1 From UML1.4 to CSM

UML tools are supposed to export the annotated model to an
XML file according to the standard UML-to-XML interchange
format XMI, which PUMA translators take as input. The
strategy in translating XMI to CSM is to find the diagrams that
are to be considered, by searching for SPT Profile stereotypes,
and then to generate structural CSM elements (Resources and
Components) from the deployment diagram, and behavioural
elements (Scenarios, Steps and Path-Connections) from the
behaviour diagrams. This section describes briefly the
translation from UML1.4 deployment and activity diagrams to
CSM (the UML 1.4 interaction diagrams are too restricted, so
are not described here). The next section will discuss the
translation of UML 2.0 sequence diagrams, which have been
enhanced considerably with respect to UML 1.4.

The translation algorithm begins with the deployment diagram
(for simplicity, we assume that there is only one such diagram in
the UML model). A UML Node translates into a CSM Resource
(specifically into a ProcessingResource if stereotyped as
<<PAhost>>). A UML Component translates into a CSM
Component if it is stereotyped with <<PAresource>>, and into a
CSM PassiveComponent otherwise. An object with stereotype
<<GRMResource>> translates to a PassiveResource.

The translation continues with activity diagrams stereotyped as
<<PAcontext>>. For each one, the Initial pseudostate, which
is translated to a CSM Start PathConnection and a
ResourceAcquire step for acquiring the component for the
respective swimlane. The scenario workload information in a
Workload stereotype is translated to a CSM Workload element
attached to the Start PathConnection. (Note that in the SPT
Profile, the scenario workload information is associated by
convention with the first step of a scenario, not with its Initial
PseudoState). The translation follows the sequence of the
scenario from start to finish, identifying the Steps and
PathConnections (representing sequence, branch/merge, and
fork/join) from the context of the diagram. Each simple activity
represented by a UML ActionState is translated to a CSM Step,
whereas a UML CompositeState gives a CSM Step with a nested
Scenario.

Each swimlane is associated with a Component through its
name. A UML Transition that crosses the swimlane boundary
(named here a “cross-transition”) represents a message or signal
between the corresponding components that implies releasing
the sender (which is a Component and also a Resource) and

acquiring the receiver. Therefore, a cross-transition translates to
a CSM ResourceRelease step, a Sequence PathConnection and a
ResourceAcquire step.

2.2 From UML2.0 Interaction Diagrams to CSM

UML 2.0 interaction diagrams have better capabilities to model
scenarios than previous UML sequence diagrams. It is possible
to express selection among alternate branches, parallel
execution, loops, etc., by using so-called fragments. A combined
fragment encapsulates a portion of a sequence diagram
surrounded by a frame, and contains one or more operand
regions tiled vertically and separated by horizontal dashed lines.
An operator shown in the upper-left corner of the frame
prescribes how the operand regions of the combined fragment
are handled. For instance, the operators opt and alt are used
for branch selection, par for parallel execution and loop for
repetition. Another new feature allows for hierarchical
decomposition of a scenario step into a more detailed sub-
scenario. This is done by using an interaction occurrence, a
fragment labeled with the operator ref, which refers to another
interaction shown in a separate sequence diagram.

The SPT Profile, which was defined for UML1.4 and has not
been yet upgraded for UML 2.0, needs to be extended to allow
for stereotyping of fragment operand regions and interaction
occurrences with <<PAstep>>. For example, the loop
fragment shown in Figure 2 is stereotyped as a step with a
PArep attribute giving the number of repetitions.

The translation algorithm from UML 2.0 to CSM begins with
the deployment diagram, similarly with the translation from
UML1.4. A UML Node is converted into a CSM
ProcessingResource if stereotyped as <<PAhost>>, and into
a CSM Resource otherwise. A UML Artifact (a deployable
entity that “manifests” a component) is converted into a CSM
PassiveResource if its stereotype is <<PAresource>>, and
into a CSM passive Component otherwise.

The translation continues with the scenarios described by
sequence diagrams stereotyped with <<PAcontext>>. For
each scenario, a CSM Start PathConnection is generated first,
and the workload information is attached to it. Each Lifeline
from a sequence diagram describes the behaviour of a UML
instance (be it active or passive) and corresponds in turn to a
CSM Component. We assume that the artifacts for all active
UML instances are shown on the deployment diagram, so their
corresponding CSM Components were already generated.
However, it is possible that the sequence diagram contains
lifelines for passive objects not shown in the deployment
diagram. In such a case, the corresponding CSM Passive
Component is generated, and its host is inferred to be the same
as that of the active component in whose context it executes.

The translation follows the message flow of the scenario,
generating the corresponding Steps and PathConnections. A
simple Step corresponds to a UML Execution Occurrence,
which is the effect of receiving a message. Complex CSM Steps
with a nested scenario correspond to operand regions of UML
Combined Fragments and Interaction Occurrences. A
synchronous message will generate a CSM Sequence
PathConnection between the step sending the message and the
step executed as an effect. An asynchronous message spawns a

parallel thread, and thus will generate a Fork PathConnection
with two outgoing paths: one follows the sender's activity, and
the other follows the path of the message. The two paths may
rejoin later through a Join PathConnection. Fork/join of parallel
paths may be also generated by a par Combined Fragment.
Conditional execution of alternate paths is generated by alt
and opt Combined Fragments.

Because some CSM Components are also Resources, additional
resource acquire and release steps may be necessary. More
specifically, if the sender of a message is stereotyped as
<<PAresource>> a ResourceRelease step is generated, and if
the receiver is stereotyped as <<PAresource>> a
ResourceAcquire step is generated.

The translation of UML 1.4 sequence diagrams to scenarios is a
simple case of the translation discussed above for UML 2.0. In
UML1.4 there are no combined fragments for expressing
selections, repetitions and parallel executions, nor interaction
occurrences for expressing further step refinements.

3. CHALLENGES IN CSM EXTRACTION
A UML model contains multiple system views described by
different types of diagrams. However, only some of the
information contained in the design specification is relevant to
performance evaluation. Therefore, one of the challenges for
CSM extraction is to identify what is necessary for generating a
performance model and to filter out irrelevant information.

Another problem is that UML design models may be incomplete
or inconsistent, especially in the early stages of software
development. Software design tools are required to support
incomplete specifications that designers use for documentation
and discussion of the evolution of the concepts in a system.
However, the generated CSM should be complete and well-
formed before proceeding to the next step, the generation of
performance models. Thus, another challenge for CSM
extraction is dealing with the incompleteness/ inconsistency of
both the UML model and of its performance annotations.

3.1 Integration across diagrams

The information needed to define a performance model is spread
across multiple diagrams with differences in their semantics.
The first challenge is to find the diagrams that are relevant,
especially the behaviour diagrams defining scenarios, which are
stereotyped <<PAcontext>>. Within these diagrams run-
time instances (components) are referenced directly (e.g., by
lifelines in a sequence/interaction diagram), or indirectly (e.g.,
as through the labeling of swimlanes in an activity diagram). In
this work we shall assume that a swimlane contains activities
executed by a single run-time component whose name is
referenced by the swimlane label, although this interpretation is
not necessary in UML.

Deployment of active components (processes) is determined
from the deployment diagram (we shall assume there is just one
such diagram for simplicity). Passive components are taken to
be deployed on the same host as the active component in whose
context they execute, as shown by calling patterns in the
behaviour diagram.

The active or passive nature of components must be determined.
This may be found in different ways: (1) as the attribute
"isActive" of the class of the instance explicitly set in the UML
model; (2) from stereotyping of the instance as <<PAresource>>
in a interaction or deployment diagram; or (3) from associating
the instance with a swimlane in the activity diagram. If this
cannot be determined, the user can be queried, or a default
interpretation as an active component deployed on a virtual
processor is taken.

Multiple diagrams for a system may require reconciliation. A
stereotype may be applied to an object in one but not another. In
some cases, one diagram may fill in detail from another (as in a
compound activity in UML1.4, or an interaction fragment in
UML2) and the scenario traversal must track from one to
another and back.

The value of CSM is in filtering out the mass of UML
definitions, drawing the performance information together, and
permitting tests on the CSM for completeness and consistency
of the performance-related attributes. These are a combination
of the performance-stereotyped information and the structure
and attributes of the UML model.

Also, since UML tools differ, CSM provides a boundary to this
concern and to UML-tool-specific interpretation. Tools may
differ in how XMI is produced (or produced for only some
diagrams), or in how UML features are supported. For instance,
the optional representation of a branch in UML1.4 by diverging
message paths is supported in some tools and not others. UML2
provides a clearer expression for this with its alt construct.

3.2 Interpretation of the Design model(s)

We assume that the user indicates what scenarios are to be
considered for CSM extraction by stereotyping them with
<<PAcontext>>. If a behaviour diagram describes a
scenario, its steps can be inferred by following the thread of
messages and execution occurrences or activities, even if they
are not stereotyped. This could be a convenience to designers.
The way of dealing with missing step annotations is discussed in
the following sections.

3.3 Completion of the CSM to prepare for analysis

Ideally, all information required to generate the performance
model should be completely specified in the design model and
its annotations. Parameters such as the CPU demands of Steps,
branching probabilities, loop counts, arrival rates and user
populations would then appear in the performance model and
drive its solutions.

On the other hand, experience with performance tools shows the
usefulness of providing default values for parameters at the time
objects are created (e.g. in the GreatSPN Petri net tool [22] or in
the UCM Navigator [14]). Modelers may forget to define some
values, or may not know them at first; the default values permit
semantic checks on the performance solution. In some cases,
default values may even be acceptable in the absence of
experimental estimates (e.g., equal probabilities for branching).

Similarly with missing stereotypes, once an activity diagram is
stereotyped as <<PAcontext>>, its swimlanes should all
reference run-time components and its activities should all be
steps. If a swimlane or a lifeline does not reference an

identifiable component, by default a component can be created
for it on a virtual processor.

Deployment information may be missing in the UML model,
since deployment is secondary to functional design of software
objects. An approach to deal with such a case, presented in [14],
supposed an infinite pool of processors as a default, and
deployed the software objects on it. In effect, their CPU
demands become pure delays on these processors, and processor
contention disappears in the model. Of course this may make it
more difficult to identify active and passive components; our
solution is to make components active by default, and to inform
the user. In fact all defaults and interpretations used should be
reported by the tool that creates the CSM.

The SPT Profile allows for one kind of explicit incompleteness.
If the system uses resources which are not fully described in the
design, it identifies the usage as an “external operation”
stereotyped <<PAextOp>>. For example, in a given UML
model the disk and networks may not be modeled in detail, yet
the software will require disk and network operations. This is an
explicit hook for an external performance submodel, and
requires that the model-building process should interpret the
name of the external operation correctly (possibly with user
help). The CSM simply captures these and passes them on, with
a name and a count for the operations invoked by a Step.

3.4 Verification of the information provided

As already mentioned, a design model may be incomplete or
inconsistent. Many tools have limited or no facilities for
checking completeness and consistency of a design
specification. Performance modeling on the other hand makes
some demands. Model construction requires that scenarios are
continuously connected, and that all resources acquired should
be released. Solution environments also require models to
satisfy certain properties, for example to be deadlock free. An
important role of the CSM is to support verification, and
possibly a finalization step to give a satisfactory CSM.

Liveness or termination, and release of resources, are easy to
decide for a CSM. It has much simpler execution patterns than a
general behaviour specification, because it describes a single
response to a single type of input event (although the type of
event may be defined to include alternative subtypes, and thus
be rather general). The only way to loop back or jump is to loop
within a confined scope (the refinement of a composite step);
otherwise the execution path never goes back. Thus, termination
is guaranteed, for a correctly connected set of Steps, and the
constraints for connecting Steps correctly are simple and few.
Resource release can be determined by a traversal of the
scenario, such as is described for LQN model-building below.

Multiple scenarios may execute concurrently. We assume that
they are analyzed separately to give separate CSMs, and then a
model can be created to represent their interaction; they interact
only through resources (which include logical resources such as
semaphores or locks). Interaction anomalies, such as deadlocks
or livelocks, could be carried out by constructing and analyzing
a transition system for a set of CSMs. It is possible to do this by
generating a state-transition Petri net as described in Section 5,
and to carry out the analysis in the Petri net domain with
existing tools.

If finalization of the CSM requires queries to a software
designer they refer to the familiar design document, rather than
to the unfamiliar performance modeling environment. Thus
CSM must maintain traceable relations of its objects to the UML
diagrams. A degree of traceability is maintained by retaining the
names of UML design elements in the CSM where possible. If
the UML environment has globally unique identifiers for UML
elements, they can be retained in the optional “traceability_ref”
attribute of every CSM element [15].

4. FROM CSM TO LQN
For each target performance modeling tool, a separate translator
must be created. Within a single model type such as Petri Nets,
it would be ideal to target a standard language for model
interchange like the proposed PNML standard [10], or the
proposed PMIL for queueing networks [20]. Here, we used the
input languages of each target performance tool.

ApplicCPU_r1

InfProc

DB_CPU_r2

RefTask1

call

refE1

StoreProc_r5

store
Image

store free Buf

call call

spE1

BufferManager_r4

allocBuf

GRM
acquire

GRM
release

reply

release
Buf

bmE1 bmE2

reply

AcquireProc_r3

getBuffer

get Image

pass
Image

&

call

reply

call

apE1

Network
ExtOp_r7

netE1

reply

WriteBlock
ExtOp_r8

wbE1

reply

Database_r6

writeImg

dbE1

reply

Figure 6. LQN model for the processOneImage scenario

Three model types are considered here, Layered Queueing
Networks (LQNs), Petri Nets, and Queueing Networks (QNs).

An algorithm to generate a LQN model from a CSM has been
based on the algorithm successfully used to generate models
from Use Case Maps, in [14]. Use Case Maps have scenario
semantics which are similar to the CSM, as far as workloads,
sequential scenario structure and resource acquisition/release are
concerned. The first phase of the algorithm generates the LQN
resources by examining the CSM resources. The algorithm
generates an LQN Processor for each CSM ProcessingResource
and an LQN Task for each CSM Component.

The second phase of the algorithm traverses the scenario in
order to determine the sequencing of the CSM Steps and to
discover the calling interactions between Components. The

traversal generates an LQN Activity for each CSM Step it
encounters. Whenever a calling interaction between two
Components is detected, an Activity is created in the Task
corresponding to the caller Component and an LQN Entry is
created in the Task corresponding to the called Component. This
Entry serves the request and its workload is defined by the
ensuing Activities generated from the Steps encountered in the
new Component. The type of calls is detected by their context,
that is a message which returns to a Component that previously
sent a request is considered to be a reply to a synchronous call.
Any calls that have not generated replies by the time the end of
the scenario is reached are considered to be asynchronous. As in
[14], the algorithm creates a stack of unresolved call messages
and removes them as replies are detected (other interaction
patterns can also be identified; the reader is referred to [14]).
This call stack is duplicated at Branch and Fork points, so that
each ensuing subpath maintains its own message history. The
separate call stacks are merged at Merge and Join points once
each incoming subpath has been traversed.

The in-progress version of the algorithm used here still has some
limitations. It handles branching and forking but does not yet
handle merging and joining of the flow. This is sufficient for the
example system, whose LQN model is shown in Figure 6. The
logic for creating models with passive resources with finite
capacity is not yet implemented, so the Buffer capacity $NBuf
was taken as infinite, and the Buffer Pool resource does not
appear in the LQN.

An External Operation by a CSM Step is represented by a LQN
request from the corresponding Activity to a special Task
generated to represent it. An option, depending on the tool
environment, is to have a library of submodels, which can be
included and connected to the generated model through these
requests. A CSM ClosedWorkload is transformed into
parameters for a load-generating Reference Task, while a CSM
OpenWorkload into a stream of requests.

The LQN model is represented in an XML syntax called LQML,
for input to the LQN editor, solver, and simulator.

4.1 Multiple Scenarios

One CSM can contain scenarios for several responses, gathered
from separate behaviour diagrams. If the scenarios are saved in
the same CSM file then the resources are generated once and
each scenario is traversed in turn. However if the scenarios are
saved in different CSM files then the resources are generated
separately for each scenario traversal and separate LQN
submodels result. These submodels can later be joined into a
single model; the tasks and entries which are common across the
different submodels can be automatically merged, based partly
on their names and partly on behavioral characteristics.

4.2 Model Exploitation

Only limited information to govern the use of the model is
defined in the SPT Profile. An additional interface is needed to
define ranges of parameters for sensitivity and scalability
evaluation, for instance. We are in process of defining such an
interface. If it can be defined at the CSM level it can be used
with all the performance tools. However, there are tool-specific
issues involved in changing parameter values and re-running a

model in an efficient way. This issue is not resolved, and it is
not addressed here for other model types.

5. FROM CSM TO PETRI NETS
A relatively straightforward translation to Generalized
Stochastic Petri Nets (GSPNs) (described for instance in [1])
can be implemented using Labeled GSPNs (LGSPNs, described
in [3][11][12]). Fragments of a CSM model have direct
representations as fragments of LGSPN, with labels that direct
the composition of the fragments into a full model. Using the
compositional properties of LGSPN, the fragments are
composed through several stages until the LGSPN representing
the whole scenario is generated. For each class in the CSM
metamodel there is a LGSPN pattern, parameterized by the
attributes of the CSM class. For example for a Step, the basic
pattern is a place and a transition as shown in Figure 7(a), where
the delay of the transition is defined as the demand attribute of
the Step. If the Step also requires a host resource, the resource
must also be acquired, as described below. When the Step has a
probability less than one, then the translation is given in Figure
7(c) if the Step is preceded by a Branch or in Figure 7(b) if it is
not. A Step with a repetition (repCount) attribute is shown in
Figure 7(d), with the probabilities of transitions t2 and t3
adjusted to give the correct mean count (π1 = 1/(1 + repCount),
π2 = 1 – π1).

Figure 7 LGSPN patterns for a Step

Figure 8 LGSPN patterns for Sequence, and for constructing the

sequence

The pattern for a Step in Figure 7 is instantiated into a LGSPN
subnet with the name of the step as a label on the starting place
and on the final transition, and labels t_host and r_host

(take and release “host”, which is the name of the host resource
for the Step) on the transitions before and after the timed
transition for the Step.

The labels on places and transitions are given after the name and
a vertical bar, as in “name|label”, and these labels are used to
compose two LGSPN subnets. Other patterns are created for the
different connectors. In Figure 8 (a) a Sequence Connector gives
a transition (labeled by the predecessor step name) and a place
(labeled by the successor step name). To compose it with the
two Steps, the transition is merged with the output transition of
the predecessor Step (which has the same label). The labels are
also merged. The place has the same label as the input place of
the next Step, and is merged with it, as shown in Figure 8 (b)
and (c). The pattern for the Branch uses conflicting transitions
with probabilities given by the successor Step probabilities, as
illustrated in Figure 9. The patterns for Merge, Fork and Join
are similar.

_____ ____________________ ____________

Figure 9. LGSPN patterns for Branch, and their composition

Figure 10. LGSPN patterns for Start and End

Figure 11. LGSPN pattern for composition of a logical

resource.

The Start and the End patterns in Figure 10 model an applied
closed workload, and are created with labels that cause all Ends
to be joined to the Start of the same Scenario. This provides a

GSPN with a steady state cyclical behaviour. For a closed
Workload the Start place has tokens equal to the attribute
population of the workload of the scenario.

Resources use the pattern in Figure 11, which has:
- a place for free resources that is initially populated with a

number of tokens equal to the multiplicity attribute of the
Resource.

- an input transition modeling the release of the Resource
an output transition modeling its acquisition.

Figure 11 depicts the pattern and its composition with the host
processor of a Step. The composition with Resource Acquire and
Resource Release Steps is also shown. Composition is based on
instantiating the resource pattern for every Acquire/Release pair
and then merging the resource places based on their label, which
is the resource name, giving a single place for each resource in
the model.

The algorithm for translating a CSM Scenario to GSPN begins
by translating all the Resources, then the Start of the Scenario,
and the End Steps. The algorithm continues by translating
various CSM entities:

• all the simple Steps, composed with their host resources

• all the Resource Release/Acquire Steps, composed with
their Resource subnet

Then it composes the Start and End subnets into a result net
called LGSPN, and translates each Connector step, composing it
into LGSPN with its predecessors and successors.

The result is a GSPN for the Scenario. Figure 12 shows the Petri
net that represents the CSM for the Store/Acquire Video and the
CSM for the Access Control.

Figure 12. Petri Net produced automatically for the Video Acquisition scenario

6. FROM CSM TO QUEUEING
NETWORK MODELS
The translation into ordinary (not extended) queueing networks
can be carried out by applying the workload reduction technique
first described by Smith [18], treating the steps in the CSM
model as steps in Execution Graphs. This has not yet been
automated, but the principle will be illustrated by a manual
translation of the example CSM to QN.

The reduction technique in [18] gives Table 1, showing the
demands for host processing (for each host) and for each
External Operation. Then the external operations demands are
expanded using a model for each of them, to arrive at the host
demands from Table 1.

The QN model in Fig. 13 shows the movement of jobs. The
service times for AppCPU and DB_CPU are given for different
classes depending on the stage in the scenario. It is simpler to
use the total demands given in the final row of the Table, in
solving the QN as described in [18], by using standard queueing
network techniques as described in [9].

Ordinary QNs do not describe simultaneous resource
possession, so this model ignores logical resources such as
process threads and buffers and their Resource Acquire/Release
Steps. The modeling process in [18] does extend to
simultaneous resources and Extended Queueing Networks, but
we intend to handle such cases with Layered Queueing.

When QN creation is automated it is planned to generate the
PMIL language described in [20], which should make it possible
to drive the QNAP or the SPEED solvers for QNs, as described
in that paper.

Table 1 Queueing Network Workload by Step, and by Server

 Step # Applic
CPU

DB CPU LAN Disk

 ms ms ops of
1.5 ms

ops of
2 ms

 processImages 1

 procOneImage $N 1.8

 getBuffer $N 1.5

 getImage $N $P*1.5 $P

 passImage $N 0.9

 storeImage $N 1.1

 store $N 2.0

 writeImage $N $B*0.9 $B

 freeBuf $N 0.2

 releaseBuf $N 0.5

 Weighted Sum

 in ms.

 $N*8 +

$N*$P*

1.5

$N*$B*0.9 $N*$P*

1.5

$N*$B*2

 Value/cycle, by
server, for
$N=100,
$B=$P=8

 2000 ms 720 ms 1200 ms 1600 ms

Reference
s = 0.

ApplicCP
U

LAN
s = 1.5 ms

DB_CPU

Disk
s = 2 ms

Figure 13. Queueing Network Model

7. EFFECTIVENESS
PUMA is targeted particularly to steady state performance
analysis for specified scenarios. The PUMA processing
architecture, with its intermediate scenario model CSM, has
been shown to be effective in two ways: (a) in its power to
collect and reconcile the relevant performance information from
the different design sources, and (b) in the flexibility to generate
different kinds of performance model using different
formalisms. In PUMA, the term “scenario” includes possible
variations in the path through branches and merges.

In UML, performance information for any system is recorded in
at least two diagrams (behaviour and deployment); there may be
multiple behaviour diagrams. The CSM creator process can
search the UML (XMI) file for relevant data, exploiting the
context of what it has found so far, for instance to include a Step
by default even if it is not stereotyped, or to find the properties
of a Component. Since it is phrased in terms very close to the
SPT Profile there are few ambiguities to resolve, about the
semantics of the CSM model.

Model creation has been mostly straightforward, re-using
previously defined techniques for modeling from scenarios.
Scenarios are a lingua franca for performance modeling.

This work has not addressed behaviour that is defined by state
machines rather than scenarios. However, performance is almost

always specified as the properties of a set of responses, which
map to scenarios. Even with state machine definitions, it is
necessary to project these onto scenarios; in such a case we
would generate the scenarios into a CSM as a first step. There
are performance-related properties which are not scenario-based
in the first instance, such as the mean time to some “bad”
transition, or the probability of event A occurring before event
B. It is still to be explored whether these can also be mapped to
a scenario-based analysis.

This paper has not addressed the systematic use of models to
generate design feedback, which makes up the bottom part of
Fig. 1. This will be the subject of future reports.

8. CONCLUSIONS
This paper has presented the PUMA toolset architecture and its
unified model-building approach, based on a Core Scenario
Model (CSM). Using an example, it has briefly described how
the CSM has recently been obtained from different kinds of
UML diagrams in both UML1.4 and UML2, and how it has
been translated automatically to Layered Queueing models
(LQN) and Petri Nets (PN), in a form that can immediately be
solved by existing tools. Principles to translation to a Queueing
Network model were also described, for the same example.

PUMA promises a way out of the maze of possible performance
evaluation techniques. From the point of view of practical
adoption, this is of the utmost importance, as the software
developer is not tied to a performance model whose limitations
he or she does not understand. Performance modelers are
similarly freed to generate a wide variety of forms of model, and
explore their relative capabilities, without having to create the
(quite difficult) interface to UML. As UML is constantly
changing, this can also make maintenance of model-building
easier.

A limitation that this work does not overcome is the difference
in the XMI produced by different UML tools. Despite the fact
that XMI is an OMG standard, experience shows that, at least
for now, different UML vendors introduce their own extra
features in the produced XMI. The user of a particular UML
tool may have to port the CSM generator to that tool. It would
be interesting to create a self-configuring generator, which is
sufficiently flexible to navigate these differences.

The use of non-UML specification techniques is also made
easier in principle by the CSM; once a translation to CSM is
made, the model-building machinery can be re-used.

This paper has explored difficulties encountered in using the
“unified” model-building approach, particularly in obtaining the
CSM. Mostly these confirm the wisdom of having an
intermediate form, which has filtered out the mass of design
information that is not needed for the performance analysis.
Perhaps as a result, the experience of creating the models from
CSM has revealed no serious problems.

In conclusion, PUMA is an exploration of a unified approach to
modeling. So far it seems to be very successful.

ACKNOWLEDGEMENTS
This research was supported by a grant from NSERC, the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and

G. Franceschinis, Modelling with generalized stochastic
Petri nets, John Wiley, 1995

[2] S. Balsamo and M. Marzolla. "Simulation Modeling of
UML Software Architectures", Proc. ESM'03, Nottingham
(UK), June 2003

[3] S. Bernardi, S. Donatelli, and J. Merseguer, "From UML
sequence diagrams and statecharts to analysable Petri net
models," in Proc. 3rd Int. Workshop on Software and
Performance (WOSP02), Rome, July 2002, pp. 35-45.

[4] C. Cavenet, S. Gilmore, J. Hillston, L. Kloul, and P.
Stevens, "Analysing UML 2.0 activity diagrams in the
software performance engineering process," in Proc. 4th
Int. Workshop on Software and Performance (WOSP
2004), Redwood City, CA, Jan 2004, pp. 74-83.

[5] V. Cortellessa and R. Mirandola, "Deriving a Queueing
Network based Performance Model from UML Diagrams,"
in Proc. Second Int. Workshop on Software and
Performance (WOSP2000), Ottawa, Canada, September
17-20, 2000, pp. 58-70.

[6] S. Donatelli and G. Franceschinis, “PSR Methodology:
integrating hardware and software models”, Proc. 17th Int.
Conf. on Application and Theory of Petri Nets (Osaka,
Japan), LNCS vol. 1091, Springer, June 24-28 1996.

[7] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and
M. Woodside, Performance Analysis of Distributed Server
Systems, Proc. Sixth International Conference on Software
Quality (6ICSQ), Ottawa, Canada, 1996, pp. 15-26.

[8] ISO/IEC 15909-1:2004 Software and system engineering -
- High-level Petri nets -- Part 1: Concepts, definitions and
graphical notation, 2004.

[9] R. Jain, The Art of Computer Systems Performance
Analysis. John Wiley & Sons Inc., 1991

[10] Ekkart Kindler High-level Petri Nets, Transfer Syntax,
Proposal for the International Standard ISO/IEC 15909-2,
Draft Version 0.3.0, April 21, 2004, at www.upb.de/cs/
kindler/publications/copies/ISO-IEC-15909-2-
Draft.0.3.0.pdf

[11] J. P. Lo'pez-Grao, J. Merseguer, and J. Campos, "From
UML Activity Diagrams To Stochastic Petri Nets" in
Fourth Int. Workshop on Software and Performance
(WOSP 2004), Redwood City, CA, Jan. 2004, pp. 25-36.

[12] J. Merseguer, Software performance engineering based on
UML and Petri nets, Ph.D. thesis, University of Zaragoza,
Spain, March 2003.

[13] Object Management Group, UML Profile for
Schedulability, Performance, and Time Specification,
OMG Adopted Specification ptc/02-03-02, July 1, 2002.

[14] D.B. Petriu and M. Woodside, “Software Performance
Models from System Scenarios in Use Case Maps”, in
Proc. 12th Int. Conf. on Modelling Tools and Techniques
(TOOLS 2002), London, England, April 2002.

[15] D. B. Petriu and M. Woodside, “A Metamodel for
Generating Performance Models from UML Designs”, in
Proc UML 2004, v. 3273 of Lecture Notes in Computer
Science (LNCS 3273), Lisbon, Oct 2004, pp. 41-53. An
extended version is to appear in the Journal of Software
and Systems in 2005.

[16] D. C. Petriu and H. Shen, "Applying the UML Performance
Profile: Graph Grammar-based derivation of LQN models
from UML specifications," in Proc. 12th Int. Conf. on
Modelling Tools and Techniques for Computer and
Communication System Performance Evaluation, London,
England, 2002.

[17] D. C. Petriu and C. M. Woodside, "Performance Analysis
with UML," in UML for Real., B. Selic, L. Lavagno, and
G. Martin, Eds. Kluwer, 2003, pp. 221-240.

[18] Smith, C.U. Performance Engineering of Software
Systems. Addison-Wesley Publishing Co., New York, NY,
1990.

[19] C. U. Smith and L. G. Williams, Performance Solutions.
Addison-Wesley, 2002.

[20] C.U. Smith, C.M. Lladó, “Performance Model Interchange
Format (PMIF 2.0): XML Definition and Implementation”,
Proc QEST 2004 (First Int. Conf on Quantitative
Evaluation of Systems), Enschede, Sept. 2004

[21] J. Xu, M. Woodside, and D.C. Petriu, "Performance
Analysis of a Software Design using the UML Profile for
Schedulability, Performance and Time," in Proc. 13th Int.
Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS 03), Urbana, USA, Sept.
2003.

[22] The GreatSPN tool, http://www.di.unito.it/˜greatspn

