ON IFAG

International Federation of Automatic Control

... SOFTWARE FOR
COMPUTER

CONTROL

Preprints of the 3"
IFAC / IFIP Symposium
Madrid, Spain

5 - 8 October 1982

Editors

G. Ferraté
Barcelona, Spain

E.A. Puente
Madrid, Spain.

BRERRINGES

SOFTWARE FOR
COMPUTER CONTROL

Preprints of the 3" IFAC | IFIP Symposium.
Madrid, Spain
5 - 8 October 1982

Editors
G. FERRATE

Barcelona, Spain.

E.A. PUENTE
Madrid, Spain.

Published for the

INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

Copyright © IFAC 1982

All Rights Reserved, No part of this publication
may be reproduced, stored in a retrieval system
or transmitted in any form or by any means:
electronic electrostatic, magnetic tape, mechanical,
photogopying, recording or otherwise, without
permission in writing from the copyright holders.

First edition 1982

Printed in Spain by Graficas Rublan, Sevilla

Deposito Legal: SE-334-1982.

379 |FAC/IFIP SYMPOSIUM ON SOFTWARE FOR
COMPUTER CONTROL

Sponsored by

IF AC Techmcal Commutee on Applications
tF AC Technicat Commitee on Computers
IF AC Techmicat Commiiee on Education

Co-Sponsored by
1F1P Techmcal Commitee on Computer Apphications in Technology

Organized by

Comité Espaiiol de ta IFAC

Departamento de Ingenieria de Sistemas y Automatica de I3
Universidad Politécnica de Madrid

Internatianal Program Commitee (1PC)
G Ferraté, € {(Chairman)
P Albertos, £

A. Buzo, MEX

C.M. Doolittle, USA
P.Etzer D.

D .G Fisher, CON

J Gertler, H

R. isermann, D

P.M. Larsen, DK

M. Mansour, CH

J.S. Meditch, USA

R. Mezencev, F

M. Novak, CS

E. A Puente, E

V Streic, CS

8. Tamm, SU

€ A Trakhtengerts, SU
JD N VanWyk ZA
T.J Williams, USA

National Organizing Commitee (NOC/
£ A Puente (Chairman)
M. Ahque

R Arac!

A.J. Avello

L. Basafiez

E. Bauusta

J.G. Bernatdo de Quirds
E.F. Camacho

M. Collado

J.M. Coronado

R. Huber

J.A. Martin-Pereda

M. Meltado

P. de Miguet

J.A. de la Puente

R. Puigjaner

A. Rodriguez

o
t

PROGRAMMABLE LOGIC CONTROLLERS AND PETRI NETS:
A COMPARATIVE STUDY

M. Sitva & S. Velilia

Depar

de Au tica, Escuela Superior de Ingenieros Industriales.
Universidad de Zaragoza.

Abstract. In a Petri Net (PN) model of a system, a small subset of transition
can usually be fired. Therefore several special Programmable Logic Control-
lers (PLCs) have been proposed looking for more performant simulation sche-
mas. Some of them are general purpose microcomputer-based. Others are
constructed using specialised microprocessors (microprogrammed or not).

This paper presents a conceptual framework to systematize concepts introdu-
ced in different PLCs specifically designed for safe (1-bounded) PN simula-
tion. To compare their “conceptual” performances, basic proposed schemas

(and other new ones) were programmed on a same microcomputer (M 6801). The
technique used for comparison of performances consists of: (1) building dif
ferent data structures to represent PN and its marking and (2) building per
formance models using a small set of parameters that caracterizes the com-

plexity of PN-models.

It is shown that there is no "optimum" schema.

of the net to be realjsed‘

Keywords.
programming language;

nets.
INTRODUCTION

The advantages of proarammed logic make pos-
sible the growing interest in a special class
of computers for system control named Proqra
mmable Logic Controllers (PLC). On the other
hand, the complexity of modern logic control
systems contributes to the increasing use of
Petri Nets (PN) as a modelling tool. In this
paper safe (1-bounded) PN and special PLCs
are considered.

PLCs are a very simple class of computers

that work cyclically (a cycle is named a Treat-
ment Cycle, TC). In classical PLCs, the si-
mulation of logical automatisms modeled with
PN can be done in a very easy way: program-
ming all transitions of the net in such a man
ner that every logic equation will be execu-
ted in each TC.

In a PN model of a system, only a small

set of transitions can usually be fired.
Therefore, several special PtCs were propo-
sed to make the simulation more performant.

sub

Proposed systems vary from general purpose
based computers [[Silva & David, 1979; Cho-
crén, 1980)) to special purpose based compu-
ters [microprogrammed as in (Daclin, 1976) or
in (Tafazzoli, 1979), or not microprogrammed
as in (Defrenne, 1979) or in (Silva & Veli-
1a, 1980).

29

The "best" one is a function

Computer control; machine oriented lanquages; microprocessors;
proarammable logic controllers;

performances; Petri

This paper focusses on the two main design
problems for PN based PLCs: (1) the defini-
tion of PN simple specification languaqes
and (2) the choice of an adequate PN inter-
nal representation (data structure) and an
algorithm to interprete the data structure in
a correct and efficient manner.

The choice mentioned in the last point re-
lates directly to memory ocupation and exe-
cution time of a TC. A conceptual frame-
work is presented (1) to systematize concepts
introduced in different PLCs speciafically
designed for safe PN simulation, and (2) to
“compare" their respective "conceptual per-
formances”. All presented simuylation sche-
mas{and others) have been programmed on a

M 6801.

It will be assumed that readers are familiar
with basic PN terminoloqy (Daclin, 1976;
Peterson, 1981).

PETRI NETS MODELS ESPECIFICATION
LANGUAGE

To simplify the programming of PN models,the
language should be non-procedural (non-algo-
rithmic : the lexicoaraphic order in wich
the system is specified is not important).

30 M. Silva and

a2,ad/t

Fig. 1 A safe PN model ({A,B,C.D,F.’F) are in-

put variables and {a2,ad,ab} actions}.

The main advantages of this decision are:(1)
direct specification (there is not transla-
tion by the designer), (2) programming hazards
need not be solved by the designer (they must
be solved by the PLC system), (3) specifica-
tion may be validated (Martinez & Silva,1982)
and (4) it is very easy to give a redundant
specification to avoid errors in the data in
put process.

Languages may be on a “"fill-in-the blank"
level, or on a higher one. There PN model
structure and interpretation may be specified
separated or mixed. We will speak about two
different cases.

Fill-in-the-blank and separated . The struc
ture of the PN is specified by givina, for
each transition; (1) its input and output
places and (2) the associated event. The in-
terpretation is specified by defining (1)
events and (2) actions associated with places.
The initial marking is defined after the
structure specification.

TABLE 1 A specification of Fig.1 PN model

STRUCTURE

t0:p1/p2,p4 $ e0;
t2:p4/p5 $ e2;
t4:p5/p6 § ed;

INITIAL MARKING
EVENTS
e0:=A; el:=B-C; e2:=D; ed:=E+D §
ACTIONS
p2:al;

tl:p2/p3 § el;
t3:p3,p5/pl;
t5:p6/p5 $ €2 §

pl §

p4:a2,a3d; p6:a2,ad/t $

Table 1 shows a specification of the Fig.1 PN
model. If it is judged interesting to make
the data input process redundant, the struc-
ture should be defined place by place, givina
its input and output transitions.

For the Fig.l PN we may write (it is possible
to fuse this phase with the ACTIONS phase):

S. Velilla
pl: t3/t0; p2:t0/tl;
p3: t1/t3; p4:t0/t2;

pS: t2,t5/t3,t4; p6:ta/ts §

"Higher level” and mixed. With this kind of
Tanquages it is possible to use symbolic na-
mes for places and transitions. The structu
re is usually defined transition by transi-
tion with its actions and events. Actions
associated with places are defined place by
place as before.

Some other important facilities to consider

here are the specifications of Macroplaces,

Macrotransitions, Subprograms, ... (Martinez
8Si1va.1982).

From the translation point of view, the kind
of language to be selected is a function of
the implementation method to be used.

SOME PREVIOUS CONSIDERATIONS ABOUT IMPLEMEN-
TATIONS.

To implement specialized on safe PN simula-
tion PLCs, there is a wide range of freedom.
That will be briefly considered. The con-
ditions under which different realizations
will be compared are also defined.

PLC simulation power. There are several PLC
systems in wich events are only a variable
(complemented or not) and actions are only
unconditionnaly associated with places. At
the other extreme there are PLC systems in
which events and conditions may be specified
by any boolean function of external and in-
ternal variables. Conditional actions can be
employed.

In the following paragraphs we will consider
any boolean function as defining events but
only inconditional actions as being associa-
ted with places and/or transitions. With
this restriction, Fig. 2 shows how it is pos
sible to consider that actions are only asso
ciated with transitions. This is a very im-

A A/*SET (al,a2})
al,a2

B = B/*RESET (a2)
al

C C/*RESET (al)

Fig. 2 Inconditional actions associated to pla-

ces can be represented around transitions

portant decision for the simplification of

TC, because most PLCs that permit conditional
actions work in two phases: (1) marking evo-
lution and generation of actions associated

to transitions and (2) conditional action
generation. Only one special PLC (Silva & Da-
vid, 1979) works with conditional actions in a
single nhase. It is based on a slightly more
complicated but more oerformant simulation
schema.

Computer Support. Some PLCs work on special

Programmable Logic Controllers and Petri Nets 31

hardware. For example ,COLERES (Dacl1in,1976)is
constructed around a microprogramming sequen
cer (INTEL 3000). Defrenne (1979) has built
a special hardware using a specialized micro
processor (MOTOROLA 14500 B) and external
hardware. Other PLCs use general purpose mi-
crocomputers and are specialized by software
only. For this type there are several dif-
ferences because some systems execute, after
a macroexpansion process, the code of the sup
port microcomputer. At the other extreme an
interpreter or simulator reads a data structu-
re representing the PN and its interpretation.

To compare the conceptual performances of spe-
cial PLCs, the basic proposed schemas will be
considered by using a general purpose microcom
puter with interpreters (each reading a data
structure) or executing directly code (in one
case, a hardware SCANNER will be added to the
system).

Synchronous or_non-synchronous interpretation.
Most proposed PLCs take inputs when a TC star
ts. This is done to avoid hazards due to va
lue changes during a cycle. The evolution of
some systems is defined as synchronous if PN
marking evolues globally at the TC end or
Just before conditional action calculations.
A PLC is synchronous even if there is no real
time clock to start the next TC.

Non-synchronous simulation schema can cause
probiems. for example, the Fig. 3 PN simula
tion will give a non-safe intermediate marking
if t] is treated before t;. Also, it is in-
teresting to note that with non-synchronous
evolutions the final marking depends on the
order in which transitions are considered by
the interpreter. Synchronous interpretation
is always longer than non-synchronous inter-
pretation.

Internal representation. Data structure repre
senting the PN may use matrices or lists.Lists
may be organized in different fashions aswill
be seen later on.

Basic schemas will be compared in the follo-
wing paragraphs.

Fig. 3 A PN model that is
safe due to the in-
terpretation.

MATRIX REPRESENTATION OF PETRI NETS

In this paragraph we present a data structure
and a driving algorithm to simulate PN. The ba
sic schema will be complicated a little more
in order to obtain faster TC.

A Hatrix-Based Basic Schema. PN stryctyre
will be represented by two matrices{1) pre-
matrix, E {n is the number of places and
m the num of transitions) and (2) flow-
-matrix, anm. They are defined as:

® IF p. is an input place of t. THEN F,. = |
—F i ij _
Ed -0
LR
® iy =o+p | where:
1F P, is an inout place of t. THEN «= 1
J ESE&= 0
IF p. is an output place of t. THEN f =-1
J J ESES- 0
Let us represent the markina by the boolean
vector M x1° and let us define AJ the j-th
column of*hatrix A. With this notation it is

easy to show that:

(a) t; is enabled by M iff 2PN (1)

(b) If tj is fired, the new marking, Mt
is: MY =M+ Fl) (2)
Now: [E%oM] = [E%-m = €] = [ed.F = 0] (3)

Then t, is enable iff Ej-M = 0. Now let hs
definedmatrix 9 by:

IF Fij # 0 THEN aij =1 ELSE aij =0

Since M* and M are boolean, eq. (2) may be

rewritten as (& = exclusive-OR):
W=Hepd o W -fegal

In conclusion, all operations are boolean vecto-

rized, and thus PN simulation may be performant

in most general purpose microcomputers.

A faster Matrix-Based-Schema.To accelerate
the simulation it is possibie to think of
executing iterations only for enabled tran
sitions (they drive the simulation process).
Since a transition may have several input
places, it takes a long time to obtain the
transition enabled boolean vector, €*.

To reduce the enabling concept to a boolean
one, each transition will be “represented" by
one of its input-places (Silva & David, 1979),

To enable t., represented by P> it is ne
cessary (but nBt sufficient) that p. be mar-

ked. Let us define the boolean veclor ani

as: “@.= 1 iff the place (pi) that represents
tj is Marked [M(i)=1}".

In the above presented conditions, when a
transition is fired it is very easy to ob-
tain the new vector, €.

Let us define the boolean matrices Anxm and
Brym where: (1) A;.= 1 iff t; is represented

by a t; output-pldde. (2) B, = 1 iff it is
also rgpresented by the placé that represen--
ts t..

J

KWhen tj is fired, it is easy to see that

32 M Silva

e -e oales
To simplify calculations and reduce memory
occupation we will use only matrix D, where

D= ad @ BJ and then & *= &€ DI, Table 2
shows the new simulation algorithm.

Performances between basic and faster schemas
will be shown later. The faster schema has
=~ 5% more memory occupation (matrix D and
vectors @ and €,,,) and its execution time is
~60%

To reduce memory occupation,list representa-
tions may be used because E, F and D are usva
11y sparse-matrices.

LIST-BASED REPRESENTATIONS OF PETRI NETS

The memory occupation of matrix representa-
tions is mainly proportional to nxm., With
list-based representations,memory occupation
will usually be linear on m and n.

List-Based Basic Schema. The PN structure is
represented by a transition list. Each ele-

ment list describes: (1) its input and output
places; and (2) associated events and actions

The marking is represented by a boolean vec-
tor, M (for synchronous simulation a My, vec
tor may be used). Net simulation is done by
considering transition by transition. The
simulation algorithm is very simple, but exe-
cution time will be very important because it
is necessary to test all the PN transitions.
This schema has been adopted by Tafazzoli
(1979) to simulate Capacity PN. He has deve-
loped a special microprogrammed computer.Some
faster list-bases schemas will be considered
betow.

P-T List and Marking Driven Simulation schemas.
To avoid the non-performant simulation schema
presented in the preceding subparagraph, transi
tions to be tested will be restricted to those
for which their representing place is marked.

Figure 4a shows a data structure associated
. 3
P | Minput-places ~ 1| (A)
- T ;k_ l_np_:t:p'l_azes_ Tist. ~]
minus Dy
event associated to ty
next transition pointer ty
Noutput-places I
t, output places list

and S. Velilla

TABLE 2 Control algorithm for matrix repre-
sented PN using the faster schema

--l TO m DQ
(_gs} on a boolean variable}
LE M-E
THEN ca]culate event, e;;
IF e;
THE& [égnerate t,-actlgns.

Maux = Maux @ 0

= @

9BUX aux

(3) M := M ;@ =
(4) Act10ns output H

Baux 3

with each place. It consists of a represen
ted transition list. The data structure as-
sociated with p. will be inspected only if
p. is marked. this case only a subset
(dsually small) of transitions will be consi
dered.

In a first schema,it is possible to assume
that marked olaces are selected by scanning

a marking vector. This scanninqg may be done:
(1) by the microprocessor (by serializing it
with the selected-places treatment)or (2) by
a simple SCANNER-processor {Daclin, 1976; Sil-
va & Velilla, 1980).

An alternative to scanning techniques (Siiva &
David, 1979) is to use a pointer for each place
that represents at least one transition._Each
place having an output transition not represen
ted by the place will be implemented in a mar-
king boolean subvector {usually very small).
These places will be named synchronization
nlaces{they will be considered as software

ags To avoid redundant implementations
of the narking of any place (a place may simui-
taneouslty serve the function of representa-
tion and synchronization),it is interesting
to choose two disjointed subsets (P U P, P,
P n P p).

This condition is usually verified, but when
this is not so, for a given PN, then there

(B)
p.: [Mask to calculate |enabling
' |condition I

event associated to ty

joms Next transition pointer
sk to nctkugnljle synchronization
aces mar

noutput-places ty

L _
k output places
list

4

(Hote: If next transition pointer = §@PP, there is no more transition represented by 01)
Fiq. 4 Two piace-transition 1ists PN structure representation.

Programmable Logic Controllers and Petri Nets 33

are always equivalent nets for which the con
dition holds (see Fig. 5).

Fiaure 4b shows another form to represent

PN structures. The simulation algorithm ta-
kes pointers corresponding to representing
marked places from a list (normally a stack)
and builds the list (stack) for the next TC.
When the TC ends,the r8le of the two lists is
changed: the built list becomes the treatment
list while the older list is forgotten and a
new one will be built.

As a general comment, it is interesting to
point out that partitions between representa-
tion and synchronization places allow better
performances, but regularity in place repre-
sentation and treatment is lost.

T-List and Enabled Transition Driven Simula-
tion Schemas.” This Jast schema may be viewed
as an improvement of the "List Basic Schema"
because only data structure associated with
enabled transitions will be considered in a
TC. Then as in the former schema, execution-
time will be reduced.

Jo make a performant simulation, a counter
will always be associated to each transition
(Chocron, 1980). This will count the number
of input places that are not marked. Obvious
ly t. is enabled iff C.= 0. Figure 5 shows
the data structure ass jated to a transition.
The simulation algorithm proceeds as follows:
(1) When an enabled (possibly fired) transi-
tion treatment is finished, then another
one is looked for.
(2) When a transition t, is fired, then:(a)
C, is set to the nuhber of t, input pla-
c§s (this is correct because only safe
PNs are considered);(b) counters associa-
ted with the other output transitions of
the fired transition input places will be
incremented (because the firing of t, in
crements the number of their non-marked
input places); and {c) counters associated
with the output transitions of the output
places of tk will be decremented.

s event associated to t,

H—

Ninput-places

fcount. to inc.

[~ " Counters to be incremented
when 1t fires

o

-

k

“count. to dec.]

[~ ~ Counters ¢ be decremenfed” ~ ~
when t, fires J

Fig. 5 A transition list definition for re-
presenting PN structure.

As when the simulation schema is ®arking-dri
ven, an enabled transition may be searched —
for: (1) by scanning the counter vector (;
and (2) by using two lists (stacks). An im-
portant difference between the latter schema
and the representing synchronization marking
driven schema is that vector C can not be e-
liminated, because it is essential to know
when a transition reaches or leaves the ena-
bled state. “t."-pointer,or its transition
number, will be ddded to the enabled transi-
tion 1ist when decrementation of Cj gives

.= 0.
J

Finally.it is interesting to note that,in
fact,vector C defines indirectly the marking
of the PN. In the schemas defined in this
subparagraph, markina does not appear direc-
tly. It will state an important problem
when conditional actions are associated with
places. 1In this case a double marking re-
presentation is normally used: (1) marking
vector M; and (2) counter vector C.Obvious
1y this redundant schema will reduce perfor-
mances .

PERFORMANCE COMPARISON

The approach used to make performance compa-
rison consists in building some simple eva-
luation models using a small set of parame-
ters. These parameters should characterize
the implementation complexity of the safe PN.
The approach to the construction of the per-
formance models is presented in (Silva, 1979).
In this paper,we will only analyze results
obtained for the six PLC classes studied be-
low (the six columns in Table 3). In fact,
ten different special PLSCs have been program
med on a M6801.

To avoid long formula manipulations, compari-
son will be made by using four test cases(in
table 3 rows). The six parameters used to de
fine “"the complexity" of a PN are: (1) the
number of places, n, and transitions, m;{2)
the mean number of input places of a transi-
tion, nj¢ , and of input transitions of a
place, m; ; and (3) for a given TC, the num
ber (a mdimum estimation) of marked places,
Ny, and of fired transitions, mg¢.

Table 3 shows performance estimation. Inthis
table only PN structure and marking are consi-
dered (i.e.: event calculation and action ge-
neration are not considered at all).. It may
be easily seen that matrix-based methods are
not performant. They may be of some interest
for very small PN (n<16, m< 16) {memory oc-
cupation and execution-time grows mainly as

Kl n.m + K2 n + K3 m + K4]

When comparing only list-based methods it is
clear that stack-driven simulatioﬂ schemas are
better, except when a hardware scanner isused.
It may also be seen that, in case 2 and for
data structure interpretation, the “T-list &
stack" method is slightly more performant than
marking-driven solutions. It should be easily
understood because case 2 PN is a Marked Graph
(dual of a State Machine). As a general com-

34 M. Silva and 5. Velilla

TABLE 3 Execution time in machine cycles {M6801) and memory ocupation estimation

T ki 1
Data Structure Matrix P-T List & T List &
etation
Interer Executable Codel gasic faster fScanning| Stacks | Scanning| Stacks
(+Hardware Scanner)
Iy
STATE 23, m=32, nyg-1 | 1720 1172 71 36 587 71
1 eraen mip=1.4, ng=3, my=2 — — (108) 180 — 315
WARKED n=32, m23, nig=1.4 | 1577 1030 5 135 425 37
2 GRAPH Mjp=1, ng=4, my=1.5 — — (128) 187 — 249
N 3z, neld Z147 1211 832 1 436 609 387
3 mjp=1.4, ny=4, my=2 — — {138) 210{ —] 333
on n=m=100, n;;-1.4 17295 8860 2585 1249 1829 1339
4 myp=1.4, np=12, mg=6 - — (363) 530 —| 872
Comparative performances 9.45 5.9 3.7 ‘ 2 2.8 2.26
over a (1),(2) and (3) mix - — 0,54§ @ — 1.55
: . 10.0 12.0 10.5
Memory ocupation {bytes) — — 1.5
per transitions in list-repres. 15.5 26.5 . 31

ment, it may also be stated that "usually"
marking-driven simulation schemas are more
performant than transition-driven ones. In
this manner, when a "T-1ist & stack" schema
is used, before every push or after every
pull of a transition pointer a zero test on
the corresponding counter-vector element is
needed {operations will be realised only if
the transition is enabled).

For list-based schemas, memory occupation is
“mainly" linear with m (see Table 3,last row).
At this point, it may be stated, for examole,
that the "P-T list & Stacks" execution code
version is twice as fast than the interpreted
one, but consumes about 2,65 times more memo-
ry space.

CONCLUSIONS

We will concentrate on the extensibility of
the list-based representation principles for
realising: non-safe PN, PN based"self-testing’,
conditional actions and translation from spe
cification language.

Transition-based presented schemas can not be
extended for non-safe PN when the counter-vec
tor is used. Self-testing techniques {usua-—
11y marking-based) and conditional actions
associated to places are difficult to realize
because we have not a direct representation
of the marking. Translation is easy.

Place-based presented schemas may be easily
extended for non-safe PN and conditional ac-
tions associated to places. The stack-based
method is difficult for self-testing PN-based
procedures. These reasons together with per-
fomance results, make place-based schemas "be
tter" in most cases. The Stack-based method
needs a more complicated translation process.

Note that for list represented methods, table
3 gives performances for non-synchronous evo-
tutions. Stack-based methods will maintain them

for synchronous evolutions,but scanning based
methods will be slower. At this point,it is
interesting to note that the use of micropro
cessors with autoincrement addressing or two
stack pointers will make stack-based schemas
much more performant. For that reason,the
study is being partially remade by using
M6809, LSI-11 or similar microprocessors.

Finally, it is important to recall that event
calculations and action generation (a usually
very important part of each TC) will lend con
siderable uniformity to the performances ren
dered by most of the considered methods.

REFERENCES

Chocron, D.{1980). Un Systéme de Programma-
tion par RdP de Controleurs Industriels.

Master Comg.Sc.,Montr?al.) .

paclin, €. & M.Blanchard (1976). Synthese
des Systdmes Logigues. Ed. Cepadues.
TouTouse. pp 201-214.

Defrenne, J. & co-workers (1979). Gestion Ra
pide des RdP par P monobit. MIMI 79,
Zirich, pp.62-66.

Martinez, J. & M. Silva (1982). A package for
computer design of concurrent logic con-
trol systems. S0C0C0-82, Madrid.

Peterson, J.L. {198T). Petri Net Theory and

the Modelling of Sﬁstems. Prentice-HalTl,
Englewood 1ffs,

Silva, M. & R. David (1§7§). Synthdse progra
mée des automatismes logiques décrits par

RAP. RAIRO-Automatique, vol. 13, n°4,
pp 369-393.

Silva, M. {1979). Evaluation des performan-
ces des applications temps réel de type
logique. MIMI 79, Zurich, pp 152-157.

Silva, M. & S."Velilla (1980). Sistema es-
pecializado en la simulacién de redes de
Petri sanas. I Simp. Nacional sobre Mode-
lado y Simulacién (IFAC) . Sevilla.pp 81788.

Tafazzoli, M.E. {1979). Realisation d'un in
terpreteur matériel de réseau de Pétri.
These 3eme. Cycle.Nice.

