
OO-METHOD: An OO Software Production Environment
Combining Conventional and Formal Methods

Oscar Pastor, Emilio Insfrán, Vicente Pelechano, José Romero, José Merseguer
Departament de Sistemes Informàtics i Computació

Universitat Politècnica de València
Camí de Vera s/n

46071 Valencia (Spain)
{opastoreinsfranpelejmersejromero}#dsic.upv.es

Abstract

OO-Method is an OO Methodology that blends the use of formal specification
systems with conventional OO methodologies based on practice. In contrast to other
approaches in this field ([Jun95,Esd93]), a set of graphical models provided by the
methodology allows analysts to introduce the relevant system information to obtain the
conceptual model through a requirements collection phase, so that an OO formal specification
in Oasis ([Pas92, Pas95-1]), can be generated at any time. This formal specification acts as
a high-level system repository. Furthermore, a software prototype which is functionally
equivalent to the Oasis specification is also generated in an automated way. This is achieved
by defining an execution model which gives the pattern for obtaining a concrete
implementation in a declarative or an imperative software development environment
(depending on the user choice). The methodology is supported by a CASE workbench.

1. Introduction

In the context of the object paradigm, several OO methodologies have
emerged to deal with the set of OO methods to be used to model and correctly
implement an information system. Two main approaches can be distinguished:

• what could be called conventional OO methodologies, that come from
practical use in industrial software production environments, which do not have a
formal basis and which often use classical structured concepts together with the
introduction of OO features ([Wir90],[Rum91],[Jac92], [Boo94],[Col94]). Recent
proposals are trying to create a unified framework for dealing with all the existing
methods (UML [BRJ96]), with the implicit danger of providing users with an
excessive set of methods that have an overlapping semantics.

• use of OO formal specification languages (Oblog [Ser87,Esd93], Troll
[Jun91,Har94], Albert [Dub94], Oasis), which have a solid mathematical background
and deducible formal properties such as terms of soundness and completeness.

Our contribution to this state of the art is based on the idea that these two
approaches can be mixed. This mixing offers some advantages: the use of such OO
formal languages can help designers to detect and eliminate ambiguities and
elements of dubious utility. The use of conventional OO methodologies permits us to
take advantage of the accumulative experience coming from the industrial context.
The research work developed at the DSIC-UPV has been directed towards designing
and implementing an OO software production environment that aims to combine the
pragmatic aspects attached to the so called conventional methods, with the good
formal properties of the OO specification languages.

In contrast to other works in this area ([Wie93,Kus95]), our approach is to
use this combination of approaches in a graphic, OO conceptual modeling
environment which collects the system properties considered relevant for building a
formal, textual OO specification in an automated way. This formal OO specification
constitutes a high-level system repository. Furthermore, the definition of a concise
execution model and the mapping between the specification language and the
execution model notions, makes it possible to build an operational implementation of
a software production environment allowing for real automated prototyping, by
generating a complete system prototype (including statics and dynamics) in the
target software development environment. A CASE workbench which supports this
working environment in a unified way is currently available for prototyping
purposes.

This blend has produced the OO-Method methodology presented in this
paper and is based on OASIS as a formal OO specification language. Our intention
is to give a clear description of the most relevant features of the approach,
introducing the basic ideas on OO conceptual modeling that are in the basis of the
work in section 2, and explaining the main OO-Method features as a methodological
approach in section 3. The methods used to capture the system properties in order to
produce what we will call a conceptual model will be shown. Subsequently we will
show how to represent this model in a particular software development environment
according to an abstract execution model, which will fix the operational steps to
follow when we want to give a concrete system implementation. A software
prototype which is functionally equivalent to a system specification can be obtained
in the context of the methodology. We will describe the code generation strategy
used. Finally, a view of the CASE tool that has been built to support the
methodology will also be introduced.

2. The OO-Method Approach

Nowadays, it is considered mandatory for an OO methodology to cover the
following aspects:

◆ Classes and objects
◆ Abstraction
◆ Encapsulation
◆ Inheritance and Aggregation to deal with complex classes
◆ Interobjectual Communication

However, the current proposals share a common weakness: the value of the
conceptual modeling efforts when the development step is reached is unclear, mainly
because it is not possible to produce an accurate code which is functionally
equivalent to the system requirements specification. We should be able to produce
code in an interactive way from the very beginning of the requirements specification
step, and not generate only static templates for the component system classes as most
OO CASE tools already do. We should be able to generate a complete programming
environment including statics and dynamics. This kind of functional rapid
prototyping would allow analysts to show the users a comprehensive image of the
application state at any given moment, making it possible to detect analysis errors or
misunderstandings as soon as they are originated. Furthermore, system designers

would have a validated starting point for their development tasks, avoiding having to
start from scratch.

If we work in a declarative environment, the programs generated are
theories of a given logic where the three concepts of machine computation, logic
deduction and satisfaction in a theory’s standard model are equivalent. In this case, a
final software product which is formally equivalent to the system specification can be
obtained using declarative programming languages with a well-defined declarative
and operational semantics and with equivalent results between them.

If the target environment is imperative, we lose the quoted declarative
properties. However, we can generate a prototype which is functionally equivalent to
the requirements specification, if we clearly define a mapping between the
conceptual and the execution model. This automated prototyping policy (introduced
as a code generation strategy later on in this paper) constitutes an important
improvement with respect to the current state of the art of the field.

In summary, all these ideas lead us to the OO-Method proposal. OO-Method
is an OO methodology, which is intended to overcome these problems and whose
contribution is based on the following basic principles:

1. to give support to the OO conceptual modeling notions,
2. to join OO formal method concepts with practical and widely used OO

methodologies,
3. to provide an automated prototyping environment, including complete

code generation (data and behaviour) in both declarative and imperative
programming environments.

3. The Methodology

OO-Method is an Object-Oriented Software Production Methodology whose
phases are shown in Figure 1. Basically, we can distinguish two components: the
conceptual model and the execution model.

When facing the conceptual modeling step of a given Information System,
we have to determine the components of the object society without being worried
about any implementation considerations. The problem at this level is to obtain a
precise system definition, and this is the conceptual model.

Once we have an appropriate system description, a well-defined execution
model will fix the characteristics of the final software product, in terms of user
interface, access control, service activation, etc., in short, all the implementation-
dependent properties.

In this context, we start with an Analysis step where three models are
generated: the Object Model, the Dynamic Model and the Functional Model. They
describe the Object Society from three complementary points of view within a well-
defined OO framework. For these models we have preserved the names used in many
other well-known and widely-used OO methodologies, even if the similarities are
purely syntactic as can be seen throughout this paper.

From these analysis models, a corresponding formal and OO Oasis
specification (the OO-Method design tool) can be obtained in an automated way.

This is done through an automatic translation process. The resultant Oasis
specification acts as a complete system repository, where all the relevant properties
of the component classes are included.

According to the execution model, a prototype which is functionally
equivalent to the specification is built in an automated way. This may be done in
both declarative (Prolog-based) [Can95] and imperative environments (specially
those visual OO programming environments that are widely used nowadays). The
code generation strategy is independent of any concrete target development
environment, even if at the moment our selected environment for automated code
generation are Visual C++, Delphi, Java, Visual Basic and PowerBuilder.

Object Model

Dynamic Model Functional Model

 OASIS

Automated Translation

 PowerBuilder
RDB

 Delphi
RDB

 Visual C++
RDB

Conceptual
Model

 Execution

Model

OO-Method

 Java
RDB

Automated Translation

Fig. 1. Phases of OO-Method.

Next, we explain the characteristics of the three models (object, dynamic
and functional) that constitute the conceptual model, introduce the execution model
features and explain the conversion strategy from the former to the latter.

3.1Conceptual model

Object Model

The Object Model is represented by means of a Class Configuration
Diagram (CCD), a graphic model where system classes are declared, including their
attributes and services. Aggregation and inheritance hierarchies are also graphically
depicted representing class relationships. Additionally, agents are introduced to
specify who can activate each class service. Classes are the basic modeling units. A
class is represented by a rectangle with three areas:

• a header with the class name.
• a static component where attributes are declared.
• a dynamic component where services are introduced, distinguishing

among new and destroy events, and among private and shared events.

Shared events are connected by solid lines in the CCD. Client classes
(agents) of a given service are represented by dotted lines joining every potential

client class with the corresponding server class, capturing the client system view in
an easy and intuitive way.

OO-Method deals with complexity by introducing aggregation and
inheritance hierarchies.

We represent the aggregation relationship between two classes including its
cardinality (minimum and maximum) to determine how many components can be
attached to a given container and how many containers a component class can be
associated with. See Figure 2.

 Fig. 2. Aggregation relationship.
 Fig. 3. Inheritance relationship.

Inheritance is graphically depicted as an arrow from a given subclass to its
superclass. This arrow can be labeled with a condition of specialization, or with the
events that activate/cancel the child role, respectively. See Figure 31.

Next, the CCD corresponding to a classical Library Information System is
shown in the Figure 4. As a basic explanation (for reasons of brevity), we assume
that as usual in such a System, there are readers, books and loans relating a book to
the reader who orders it. Readers can ‘play the role’ of unreliable readers, if their
return dates expire. Librarian and reader instances are declared as active objects.

1 This is how inheritance is dealt with in Oasis, distinguishing between permanent
and temporal specialization. The permanent case refers to child instances created
when the ancestor instance is created, and they need a condition which is built on
constant attributes. Temporal specialization (role) appears when a superclass event
happens or a condition built on variable attributes holds.

new / destroy condition

 Base
 Class

Generalized
 Class

Specialized
 Class

Base2
 Class

Base1
 Class

Specialized
 Class

Specialization Generalization

Class
C

Class
B

Class
A

Min:Max

Min:Max Min:Max

Min:Max

Fig. 4. CCD that represents the Object Model of the Library Information System.

Dynamic Model
The Dynamic Model is used to specify valid object lives and interobjectual

interaction. To describe valid object lives, we use State Transition Diagrams (STDs,
one for each class). To deal with object interaction, we introduce an Object
Interaction Diagram (OID), one for the whole System.

State Transition Diagram

STDs are used to describe correct behaviour by establishing valid object
lives. By valid life, we mean a right sequence of states that characterizes the correct
behaviour of the objects for every class. In this context states denote the different
available situations for class objects, and are depicted using a circle labeled with the
state name.

When an object does not exist, a blank circle represents this “state” of non
existence, and will be the source of initial transition labeled by the corresponding
new event. A bull’s eye is used to represent the post-mortem state.

LIB:new_reader

READER0

LIB:loan

LIB:return when book_count=1

LIB:destroy_reader if book_count=0

READER1

LIB:return when
book_count>1

LIB:loan if book_count< 10

Fig.5 STD for a READER.

Transitions represent valid changes of state that can be constrained by
introducing conditions. They follow the syntax shown below:

book code

new_book

destroy_book
return

Book

title
author

loan

reader code

new_reader

destroy_reader

return

Reader

name

book number

punish
loan

loan code

loan

return

Loan

date

0:1 0:M

1:1

1:1

Librarian

new_librarian

destroy_librarian

punish/forgive

Unreliable reader

forgive

age

punish

librarian_name

event | action | transaction [if precondition] [when control condition]

where precondition is a condition defined on the object attributes that must hold for a
service to occur and a control condition is a condition that avoids the possible non-
determinism for a given action. An example of STD can be seen in Figure 5.

Object Interaction Diagram

The object interactions are represented by diagrams of this kind. We declare
two basic interactions:

• triggers, which are services of objects which are activated in an
automated way when a condition is satisfied by an object of the same or
another class.

• global interactions, which are transactions involving services of
different objects. With these global interactions, interobjectual
transactions can be declared. Formally, they can be seen as a local
service of the aggregation among the classes providing the services that
constitute the global interaction.

Basically, we represent classes in the OID as boxes with a header including
the class name. Class services are declared as smaller boxes inside the corresponding
class box. The class service boxes are connected when one of the previous types of
interactions is defined. Triggers are introduced by starting the corresponding solid
line in the header of the class and ending it in the triggered action, and global
interactions are introduced by connecting the involved services with a common
global interaction identifier (GIid). The general model for an OID can be seen in
Figure 6 and 7.

Class1

event1

self::(condition)
Class2

event2

oid::(condition)
Class3

event3

class::(condition)

Fig. 6. Trigger Relationships

Class1

event1 GI id

Class2

event2

Class3

event3

GI id

Fig. 7. Global Interaction

Functional Model

After declaring object attributes and services in the Object Model and valid
life cycles and object interactions in the Dynamic Model, the aim of the Functional
Model is to capture semantics attached to any change of state in an easy and an

intuitive way. This model specifies the effect of an event on its relevant attributes
through an interactive dialogue. The value of every attribute is modified depending
on the action that has been activated, the involved event arguments and the current
object state.

The specification of an action effect should be made declaratively, as
proposed in Oasis. However, a good specification requires a solid formal basis for
any analyst. To solve this situation, the OO-Method provides a model where the
Analyst only has to categorize every attribute among a predefined set of three
categories and introduce the relevant information depending on the corresponding
selected category.

This classification of attributes [Pas96-2] is a contribution of this method
and gives a clear and simple strategy for dealing with the task of generating the
Execution Model. At the same time, it opens the door to being able to include this
information in an Oasis specification in an automated way.

There are three types of attributes: push-pop, state-independent and
discrete-domain based attributes.

 Push-pop attributes are those whose relevant events increase or decrease
their value by a given quantity. Events that reset the attribute to a given value can
also exist.

An example of this category is the book_number of the reader class, with
REA:loan as increasing action and REA:return as decreasing one (REA is a variable
of type reader).

Attribute : book_number Category : push-pop
Action Type Action Effect Evaluation Condition

Incr. REA:loan +1
Decr. REA:return -1

 Fig. 8. Push-pop attribute book_number of the reader class.

State-independent attributes have a value that depends only on the latest
action that has occurred. Once a relevant action is activated, the new attribute value
of the object involved is independent of the previous one. In such a case, we consider
that the attribute remains in a given state, having a certain value for the
corresponding attribute. We can introduce the attribute bookshelf of the book class as
an example. A book has a bookshelf assigned when the event locate(B) is activated.
When this event occurs, bookshelf takes the argument value independently of any
previous value.

Attribute : bookshelf Category : state-independent
Carrier Action Action Effect Evaluation Condition
LIB:locate(B) =B

Fig. 9. State-independent attribute bookshelf of the book class.

Discrete-domain valued attributes take their values from a limited domain.
The different values of this domain model the valid situations that are possible for
objects of the class. Through the activation of carrier actions (that assign a given
domain value to the attribute) the object reaches a specific situation. The object
abandons this situation when another event occurs (a “liberator” event). As an
example, let’s consider the available attribute of the book class. The available value
tells us what the current book situation is. The carrier event (loan) lets the object into

a situation where available has the value false. The situation is abandoned when the
event return is activated.

Attribute : available Category : discrete-domain valued
Actual Value Action New Value Evaluation Condition

TRUE REA:loan FALSE
FALSE REA:return TRUE

 Fig. 10. Discrete-valued attribute available in the book class.

All this information, which constitutes the system description, has a textual
representation in Oasis. The specification is obtained at any moment by executing an
automated process of translation that converts the collected graphic information into
a textual OO specification that constitutes a complete, formal System Repository.

3.2 Execution Model
Once all the relevant system information in the specification that we have

called conceptual model is collected , the execution model has to accurately state the
implementation-dependent features associated to the selected object society machine
representation. More precisely, we have to explain the pattern to be used to
implement object properties in any target software development environment.

Our idea at this point is to give an abstract view of an execution model that
will set the programming pattern to follow when dealing with the problem of
implementing the conceptual model. This execution model has three main steps:

1. access control: first, as users are also objects, the object logging in the
system has to be identified as a member of the corresponding object society.

2. object system view: once the user is connected, he must have a clear
representation of which classes he can access. In other words, his object
society view must be clearly stated, precising the set of object attributes and
services he will be allowed to see or activate, respectively.

3. service activation: finally, after being connected and having a clear object
system view, the object will be able to activate any available service in the
user’s world view. Among these services, we will have event or transaction
activation served by other objects, or system observations (object queries).

Any service execution is characterized as the following sequence of actions:

1. object identification: as a first step, the object acting as server has to be
identified. This object existence is an implicit condition for executing
any service, except if we are dealing with a new2 event. At this moment,
their values (those that characterize its current state) are retrieved.

2. introduction of event arguments: the rest of the arguments of the event
being activated must be introduced.

3. state transition correctness: we have to verify in the STD that a valid
state transition exists for the selected service in the current object state.

2 Formally, a new event is a service of a metaobject representing the class, which
acts as object factory for creating individual class instances. This metaobject (one
for every class) has as main properties the class population attribute, the next oid
and the quoted new event.

4. precondition satisfaction: the precondition associated to the service that
is going to be executed must hold. If not, an exception will arise,
informing that the service cannot be activated because its precondition
has been violated.

5. valuation fulfilment: once the precondition has been verified, the
induced event modifications are effective in the selected persistent
object system.

6. integrity constraint checking in the new state: to assure that the service
activation leads the object to a valid state, we must verify that the (static
and dynamic) integrity constraints hold in this final resulting state.

7. trigger relationships test: after a valid change of state, and as a final
action, the set of rules condition-action that represent the internal system
activity have to be verified. If any of them holds, the corresponding
service activation will be triggered. It is the analyst’s responsibility to
assure the termination and confluence of such triggers.

The previous steps guide the implementation of any program to assure the
functional equivalence among the object system description collected in the
conceptual model and its reification in a software programming environment
according to the execution model.

Next, we are going to present the code generation strategy used in the
implementation of the previous execution model in a well-known Windows95
environment, which opens up the possibility of creating a CASE tool that, starting
from a set of graphical OO models obtained during the conceptual modeling step
(according to OO-Method) can generate a functional software prototype at any time.

3.3 Code generation strategy

Once an abstract execution model has been introduced, we will have
different concrete implementations of this execution model for different software
development environments. In this paper, we focus on the implementation of the
execution model in a Windows95 context, but it must be noted that other concrete
and alternative implementations are currently being been developed emphasizing one
using Java in an intranet environment. It is important to note that the representation
of the conceptual model in the selected execution model is done according to the
principles introduced above, thus generating a prototype in an automated way by
adapting the code generation strategy that we present to the particularities of the
target development environment.

The execution model implementation selected for a Windows95
environment keeps in mind the main principles attached to such a environment.
Basically, this means that we have:

• to reproduce the user’s mental image of the system, within an OO world view.
Users generally expect an application to operate in accordance with its nature,
and the OO paradigm provides an operational framework to properly represent a
system as a society of interacting objects, where every individual object can
access other system component objects and can activate those services it is
allowed to. To ensure this consistency, the interfaces built have to resemble the
user’s environment. They also have to be consistent, complying with the
standards in presentation (what the user sees), behaviour (how the application

reacts), sequencing (how the dialogs are sequenced) and functionalities (how
actions are carried out). Finally they have to be transparent, meaning that the
purely technical application mechanisms must be completely transparent to the
user.

• to give control to the user. It is the user who must control the application and not
the contrary.

To properly implement the set of system classes in a standard Windows95
software development environment, we have to deal with a static and a dynamic
point of view. The static one will fix the relational database schema corresponding to
the system specification. This automated relational generation is out of the scope of
this presentation and is explained in depth in [Pas95-2]. In short, every class is
converted into a relation, having the attribute information included in the class
specification. Aggregation and inheritance are treated by defining the corresponding
foreign keys according to the collected complex class properties. Next, we are going
to focus on dynamics explaining the appearence of the prototype which is
automatically generated.

The code generation process creates four types of windows as we can see in
Figure 11:

Access Control
Window

Main Window

Event
Window

Observations
Window

Fig.11 Overview of the generated code structure.

• Access Control Window: this is the log-in window, where the
corresponding active user has to be identified. This is done by
introducing its object identifier, class name and password. The
identification is verified on the database to ensure that the object exists.
Once the object is incorporated to the system, it will see the available
system class services through menu items of the main menu.

 Fig.12 Access Control Window

• Main Window; it characterizes the system view that the connected object
has. All the services of the classes are requested through it. It has the
following options:

◊ the typical File item option of Windows applications.

◊ for every class, a pull-down menu including an item for
observations (queries), a section with its descendent classes (if
any) and a last section with the available class services.

◊ an interactions item, which allows for the activation of global
interactions.

 Fig.13 Main Window.

• Event window, where the corresponding arguments are introduced and
the induced actions are executed through the OK control button.

• Observations window; this screen is intended to be a Query By Example
pattern where the user can see the results of any query done over the
current object state.

Finally, we will give a quick look at the OO-Method CASE tool.

4. The OO-Method CASE Tool

The OO-Method CASE Tool [Pas96-1] provides an operational
environment that supports all the methodological aspects of OO-Method. It
simplifies the analysis, design and implementation of Information Systems from an
object-oriented perspective, providing a comfortable and friendly interface for
elaborating the OO-Method models taking advantages of Windows95. The CASE
Tool is being used at this moment in the resolution of real complex systems, in the
context of a R&D project carried out jointly by the Valencia University of
Technology and Consoft S.A.

The most interesting contribution of this CASE environment is its ability to
generate code in well-known industrial software development environments from the
system specification, what constitutes an operational approach of the ideas of the
automated programming paradigm: analysts collect information, and can generate a
formal OO system specification, and a complete (including statics and dynamics)
software prototype which is functionally equivalent to the quoted system
specification whenever the analysts want.

When the CASE Tool is executed, we are placed on a blank blackboard that
represents the CCD where we can draw classes and their properties. By selecting one
of the classes on the CCD the user can change to the STD dynamic model. The OID
completes the dynamic model. In addition to these static and dynamic points of view
the user has to fill the functional model information through friendly and interactive
dialogs.

The Figure 14 shows a picture of the CASE Tool. The main menu of the
tool has the typical items of an editing tool and also allows the user to enter in
textual mode the OO-Method models. Two remarkable items are the Project item
that includes the options for the Analysis (object, dynamic and functional models),
Design (Oasis code, generated in an automated way) and Implementation (Visual
C++, Delphi,... code) steps, and the View item which allows the user to manage the
complexity of the graphic diagrams.

Fig. 14 OO-Method CASE Tool

5. Conclusions

The main aspects of the presented work are the following:

1. A complete OO methodology for dealing with all the Software Production
Process phases has been introduced. This methodology uses a formal OO
specification language (Oasis) as a central, well-defined repository, from which
executable application prototypes can be obtained at any given moment.

2. A CASE tool for Rapid Prototyping is provided. It is embedded in the
methodological OO context of OO-Method, having as basic property that the
collection of system requirements generates a prototype to be run by final users in
order to validate this process of requirements engineering.

3. On the basis of our approach, we find an operational environment blending
classical, widely-used OO methods with formal specification languages,
complementing their different backgrounds: software development practice on
the one hand, and a mathematical theory background on the other hand.

References

[Boo94] Booch,G. OO Analysis and Design with Applications. Addison-Wesley,
1994.

[BRJ96] Booch,G.,Rumbaugh,J.,Jacobson,I. Unified Modeling Language. Version
0.91. Rational Software Corporation.

[Can95] Canós,J.H.;Penadés,M.C.Ramos,I. A Knowledge-Based Arquitecture for
Object Societies. Proc. of DEXA-95 (Workshop), pags: 18-25, London,
1995

[Col94] Coleman,D.;Arnold,P.;Bodoff,S.;Dollin,S.;Gilchrist,H.;Hayes,F.;Jeremes,P.
Object-Oriented Development; The Fusion Method. Prentice-Hall 1994

[Dub94] Dubois,E.;Du Bois,Ph.;Petit,M.;Wu,S. ALBERT:A Formal Agent-Oriented
Requirements Language for Distributed Composite Systems. In Proc.
CAiSE’94 Workshop on Formal Methods for Information System
Dynamics, pags: 25-39, University of Twente, Technical Report 1994.

[Esd93] ESDI S.A., Lisboa. OBLOG CASE V1.0- User’s Guide
[Har94] Hartmann T.,Saake,G.,Jungclaus,R.,Hartel,P.,Kusch,J. Revised Version of

the Modeling Language Troll (Troll version 2.0). Technische Universitat
Braunschweig, Informatik-Berichte, 94-03 April 1994.

[Jac92] Jacobson I.,Christerson M.,Jonsson P.,Overgaard G. OO Software
Engineering , a Use Case Driven Approach. Reading, Massachusetts.
Addison -Wesley.

[Jun91] Jungclaus, R., Saake, G., Sernadas, C. Formal Specification of Object
Systems. Eds. S. Abramsky and T. Mibaum Proceedings of the TapSoft´s 91,
Brighton. Lncs. 494, Springer Verlag 1991, pags. 60-82.

[Kus95] Kusch,J.; Hartel,P.;Hartmann,T.;Saake,G. Gaining a Uniform View of
Different Integration Aspects in a Prototyping Environment. Proc of
DEXA-95, pags. 35-42, LNCS 978, Springer-Verlag, 1995

[Pas92] Pastor, O.;Hayes,F.;Bear,S. OASIS:An OO Specification Language. Proc. of
CAiSE-92 Conference, Lncs (593), Springer-Verlag 1992, pags: 348-363.

[Pas95-1] Pastor,O., Ramos, I. Oasis 2.1.1: A Class-Definition Language to Model
Information Systems Using an Object-Oriented Approach, October 95 (3
ed).

[Pas95-2] Pastor,O.;Garcia,R.;Cuevas,J. Implementation of an OO Design in an
Oracle7 Development Environment. Proc. of the European Oracle Users
Group Conference, EOUG-95. Vol.4 pags: 35-47, Firenze (Italy).

[Pas96-1] Pastor,O., Barberá, J.M., Merseguer, J., Romero, J., Insfrán, E.: The CASE
OO-METHOD graphic environment description. Tech. Report, ITI-DT-96.

[Pas96-2] Pastor,O., Pelechano V., Bonet B., Ramos I. : An OO Methodological
Approach for Making Automated Prototyping Feasible. Proceedings of
DEXA96, Springer-Verlag, September 1996.

[Ser87] Sernadas,A.;Sernadas,C.;Ehrich,H.D. OO Specification of Databases: An
Algebraic Approach. In P.M.Stocker, W.Kent eds., Proc. of VLDB87, pags:
107-116, Morgan Kauffmann, 1987.

[Rum91] Rumbaugh J.,Blaha M., Permerlani W., Eddy F.,Lorensen W. Object
Oriented Modeling and Design. Englewood Cliffs, Nj. Prentice-Hall.

[Wir90] Wirfs-Brock R., Wilkerson B., Wiener L., Designing Object Oriented
Software. Englewood Cliffs, Nj. Prentice-Hall.

[Wie93] Wieringa, R.J., Jungclaus, R., Hartel, P., Hartmann, T., Saake, G.,
OMTROLL Object Modeling in TROLL. Proc. of the International
Workshop on Information Systems - Correctness and Reusability (IS-
CORE’93). Hannover, September 1993. Udo W. Lipeck, G.Koschorrek
(eds.).

