
A Software Performance Engineering Tool based on the UML-SPT ∗

Elena Gómez-Mart́ınez and José Merseguer
Dpto. de Informática e Ingenieŕıa de Sistemas.

Universidad de Zaragoza, Spain.
{megomez,jmerse}@unizar.es

1. Introduction

Software performance engineering [13] (SPE) proposes
methods to evaluate performance of software systems
early in the development process. A SPE accepted ap-
proach consists in deriving performance models from
UML specifications, usually annotated according to the
OMG Profile for Schedulability, Performance and Time
Specification [12] (UML-SPT). Performance models use
to be based on simulation environments or a given mod-
elling formalism: (layered) queuing networks, stochastic
Petri nets or stochastic process algebras. Some tools are
being developed under this SPE approach [9, 4, 6, 5].
OMG has defined a framework for SPE tools, which is a
standard for communicating information between tools,
see Figure 1.

Figure 1. Tool architecture (from UML-SPT).

We introduce here a new SPE tool [1] that fits in the
OMG framework and implements most of the features
given in [10, 8]. The tool allows to design UML diagrams
annotated according to the UML-SPT, and automatically
generates a performance model in terms of Generalized
Stochastic Petri nets (GSPN), using the GreatSPN [7]

∗ This work was supported by the project TIC2003-05226 of the
Spanish Ministry of Science and Technology.

file format. The input of the tool constitutes a software
model designed as a set of UML state machines, whose
activities can be modelled using UML activity diagrams.
The class diagram specifies system population and the
deployment diagram models some inter-nodes character-
istics (i.e. network speed).

The tool comprises several performance queries useful
to analyze system properties. Query results are obtained
running the GreatSPN programs and reported back to
the tool.

2. Software Performance Tool

The OMG framework establishes a division of compo-
nents based on its functionality: the Model Editor, the
Model Configurer and the Model Processor. The tool has
been designed as a set of Java modules, that are plugged
into the ArgoUML [2] tool. Each Java module implements
a module of the framework.

Model Editor This functionality is provided by the di-
agram editor of ArgoUML, that assumes the metamod-
els of the 1.3 version of UML. Then it allows to create and
modify the input of the tool (the software model) and to
annotate these diagrams according to the UML-SPT, us-
ing the Tag Value Language (TVL).

TVL, a subset of the Perl language, allows to spec-
ify performance requirements and execution param-
eters. The annotations currently supported by the
tool are summarized in Table 1. As an example,
<<PAstep>>{PAprob=0.8}, could be used to anno-
tate a message with its probability to occur.

UML models are exported into XMI files, allowing the
standard exchange of information with other tools.

Model Configurer Its functionality consists in convert-
ing a UML model, in XMI format, into a configured UML
model using a configuration data file. Then, it substi-
tutes in the XMI file, the tagged values written in TVL
with evaluable expressions, for the equivalent evaluated
expressions, according with the actual values in the con-
figuration file.



Annotation Stereotype Tag Diagram

Act. duration PAstep PArespTime SM, Act

Message PAstep PAprob SM, Act
probability

Message size PAstep PAsize SM

Network speed PAcommu- PAspeed Deploy
nication

Initial number PAclosedLoad PApopula- Class
of objects tion

Initial state PAinitial- PAinitial- SM
Condition State

Resident GRMcode GRMmap- Deploy
classes ping

Table 1. Performance annotations

Model Convertor This module takes as input the con-
figured UML model in XMI format to produce a GSPN
model that represents the behaviour of the modelled sys-
tem. This translation is performed according to [10] for
the state machines and to [8] for the activity diagrams.

The performance annotations in the class and deploy-
ment diagrams are also considered by this module. They
are useful, among others, to obtain the initial marking
of the GSPN model or the firing rates of GSPN tran-
sitions representing messages delivered through the net-
work.

The GSPN model consists of a set of GreatSPN [7]
files, that are available for the tool user. Then s/he can
use them to directly feed the GreatSPN tool and to cal-
culate their own defined metrics (queries).

Model Analyzer This module uses the GSPN model to
invoke a GreatSPN analysis program. It happens when
the user executes one of the predefined performance
queries. Currently, the available queries are:

• Time in a state [in SM diagram]: mean time spent
by an object in a given state. Useful to compute the
time needed to perform a complex activity (carried
out in such state).

• Stay time [in SM diagram]: percentage of time that
the objects spend in each one of its states. Useful to
compute how long a resource is idle.

• Transmission speed [in Deployment]: net-
work connection delay between two physical nodes
of the model.

• Message delay [in SM diagram]: delay of a mes-
sage when travelling through the network. Taking
as starting point its delivering and end point its ac-
knowledge.

Results Convertor The main function of this module
is to convert the results of the analysis (obtained by the
Model Analyzer) back to the Model Editor, in a way that
a software engineer can interpret them.

3. Further work

A number of new features will improve the tool. Some
of them are ongoing development.

• Our SPE method takes into account the sequence di-
agram [3] (SD), but the current version of ArgoUML
does not. We consider to replace the SD with the col-
laboration diagram, supported by ArgoUML.

• The use case diagram, present in our SPE method
and also in ArgoUML, has not been incorporated in
the tool yet.

• New performance and dependability queries have to
be implemented, e.g. execution time or failure time.

• The tool offers support for a subset of the TVL gram-
mar. It has to be extended, then allowing more com-
plex performance expressions.

• To prevent the user to install GreatSPN, it could be
published as a web service. Then, the tool could re-
motely invoke it.

• The tool could be integrated with other Petri nets
analyzers, such as Möbius [11].

Acknowledgments
We would like to thank Juan Pablo López-Grao, Borja
Fernández, Isaac Trigo, Alvaro Iradier and Luis Carlos
Gallego for their work in the development of the tool.

References

[1] ArgoSPE. http://argospe.tigris.org.

[2] ArgoUML project. http://argouml.tigris.org.

[3] S. Bernardi, S. Donatelli, and J. Merseguer. From UML
SDs and SCs to analysable PN models. In ACM WOSP
2002, pages 35–45.

[4] V. Cortellessa, M. Gentile, and M. Pizzuti. XPRIT: An
XML-based tool to translate UML diagrams into EG and
QN. In IEEE QEST 2004, pages 342–343.

[5] S. Distefano, D. Paci, A. Puliafito, and M. Scarpa. UML
design and software performancemodeling. In ISCIS 2004,
pages 564–573.

[6] S. Gilmore and L. Kloul. A unified tool for performance
modelling and predicition. In SAFECOMP’03, pages 179–
192.

[7] GreatSPN tool. http://www.di.unito.it/~greatspn.

[8] J.P.López-Grao,J.Merseguer, andJ.Campos. FromUML
ADs to SPN: Application to SPE. In ACM WOSP 2004,
pages 25–36.

[9] M. Marzolla and S. Balsamo. UML-PSI: the UML Perfor-
mance SImulator. In IEEE QEST 2004, pages 340–341.

[10] J. Merseguer, S. Bernardi, J. Campos, and S. Donatelli.
A compositional semantics for UML SMs aimed at perfor-
mance evaluation. In IEEE WODES 2002, pages 295–302.

[11] The Möbius tool. http://www.mobius.uiuc.edu/.

[12] Object Management Group. UML Profile for Schedula-
bibity, Performance and Time Specification, January 2005.

[13] C. U. Smith. Performance Engineering of Software Sys-
tems. Addison–Wesley, 1990.


