
Performance Analysis of Mobile Agents Tracking∗

Elena Gómez-Martı́nez, Sergio Ilarri, José Merseguer
Dpto. de Inform ática e Ingenier ı́a de Sistemas, Universidad de Zaragoza

Zaragoza, Spain
e-mail{megomez,silarri,jmerse}@unizar.es

ABSTRACT
Mobile agents have arisen as an interesting paradigm to
build distributed applications, due to the unparalleled ad-
vantages they offer. However, along with the advantages
they also present new challenges. One of the most rele-
vant is that it is not easy to ensure efficient communication
among agents that move continually from one computer to
another.

In this paper, we apply SPE techniques to model and an-
alyze how a mobile agent tracking approach addresses the
highly dynamic movement problem in a distributed comput-
ing environment.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement tech-
niques; C.4 [Performance of Systems]: Modelling
techniques; D.2.1 [Software Engineering]: Require-
ment/Specification; D.2.2 [Software Engineering]: Petri
nets; D.2.8 [Software Engineering]: Metrics

General Terms
Performance, Design, Experimentation

Keywords
Mobile agents tracking, Software Performance Engineering
(SPE), PUMA, Generalized Stochastic Petri Nets (GSPN)

1. INTRODUCTION
Mobile agents [14] have stirred up a lot of interest and

research efforts. They are programs that can autonomously
travel from computer to computer, and present a range of

∗This work was supported by the projects DPI2006-15390
and TIN2004-07999-C02-02 of the Spanish Ministry of Sci-
ence and Technology and IBE2005-TEC-10 of the University
of Zaragoza.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP’07, February 5–8, 2007, Buenos Aires, Argentina.
Copyright 2007 ACM 1-59593-297-6/07/0002 ...$5.00.

unique advantages, such as autonomy, flexibility, and effec-
tive usage of network bandwidth [11]. Due to their features,
the use of mobile agent technology is very attractive in wire-
less [22], pervasive, and distributed computing in general.

One of the main challenges in applications based on mo-
bile agents is how to keep track of the current locations of the
agents in order to allow an efficient communication among
them. If the location of an agent cannot be obtained in a
short time, the agent can move to another computer before
such location data is used for communication purposes; this
situation may occur indefinitely, leading to livelock problems
from the point of view of the agents that want to communi-
cate with the agent.

The vital importance of designing efficient communica-
tion and tracking schemes for mobile agents have been high-
lighted in many works, such as [10, 3]. Moreover, according
to the experiments in [9], this is a key issue to ensure the
scalability of a mobile agent platform, especially in highly
dynamic contexts.

Several models for tracking agents are conceivable; thus,
the work in [3] suggests three methods to locate agents
(brute force, logging, and redirection), and in [15] were pro-
posed four (updating at the home node, registering, search-
ing, and forwarding). A new mobile agent platform, called
SPRINGS [9] (Scalable PlatfoRm for movING Software)
proposes a new tracking approach; in [9] has been experi-
mentally shown to be highly scalable and how it outperforms
other popular platforms, especially in environments with a
high number of mobile agents.

In this paper, we analyze the performance of the
SPRINGS tracking approach. Instead of an experimental
approach, we follow the SPE principles [21] and concretely
the model-based PUMA approach developed in [23]. Our
analysis allows us to validate the experimental results previ-
ously obtained [9], and to evaluate the platform in a variety
of other hypothetical situations without the burden of real
experimentation.

The structure of this paper is as follows. In Section 2, we
introduce basic aspects of mobile agent technology, which is
important for this work. In Section 3, we describe and model
the SPRINGS architecture for tracking mobile agents. In
Section 4, the latter model is annotated with performance
information. In Section 5, the PUMA approach is applied in
order to get the performance models corresponding to the
modeled architecture. Section 6 exploits the performance
models to deal with the proposed analysis goals. Section 7
revises the related literature. Finally, in Section 8 conclu-
sions are given.

2. MOBILE AGENT TECHNOLOGY
In the traditional client/server architecture, a server at a

certain computer offers a set of services to interested parties.
Then, three steps take place: 1) a client located at another
computer requests the execution of a service by interacting
with the server, 2) the server performs the requested service,
and 3) the server returns the result to the client. As opposed
to this classical approach, a mobile agent [14] is a software
component that can move autonomously among computers,
and so it can decide itself when and where to move in order
to perform its tasks.

Thanks to their mobility, mobile agents offer many inter-
esting benefits [11]. For example, in a distributed informa-
tion system a mobile agent can travel where the data are
stored and process them locally, avoiding the need to com-
municate all the data over the network. Furthermore, in
certain contexts they also exhibit a good performance com-
pared with the traditional client/server approach [22, 12].

So how can an agent move to another computer and re-
sume its execution there? Mobile agents need a specific ex-
ecution environment, which we call context1 . Thus, for an
agent to travel to another computer, a context must be avail-
able there: an agent needs a context in the same way that a
web page request needs a web server. Contexts are provided
by a specific mobile agent platform [20], from which sev-
eral alternatives are available (e.g., Aglets, Grasshopper or
SPRINGS), and provides them with different services, such
as communication and mobility. The two mentioned services
are interrelated. Particularly, mobile agents must be able to
communicate among themselves, via remote method invoca-
tion or message passing, even if they move across computers.

2.1 Contexts and Regions
The architecture of an agent platform is usually made of

agents, contexts and regions, see Figure 1.

Region 1

Region k

Region n

Agent4 calling a
method of Agent3

Agent1 requesting moveTo
from Context1 to Context3

RNS

Updater
Proxy

Updater
Proxy

RNS RNS

Updater
Proxy

NodeRNS k

Proxy
Updater

Agent2

Agent4

Agent6

Context4Context3

Node 4

Agent3
Agent7

Context2

Node 3

NodeRNS 1 NodeRNS n

Agent1

Context1

Agent5

Node 2

Figure 1: Architecture for mobile agent platforms.

• Contexts (called places in Grasshopper) are the envi-
ronment where agents execute: a computer can host
several contexts, each one assigned to a different com-
munication port and execution process. A context pro-
vides agents with services such as a call routing ser-
vice irrespective of the target agents’ locations2 , and a
transportation service to move to other contexts.

1In the literature of mobile agents, the term place is fre-
quently used instead.
2Not all the existing platforms feature this property.

• A region is a set of related contexts. In SPRINGS,
for example, the functionality of a region is provided
through a remote object called Region Name Server
(RNS), which can be located on any computer in the
network. An RNS has several functions, such as ensur-
ing the uniqueness of agent/context names, mapping
from context names to context addresses, and assign-
ing tracking responsibilities to contexts.

3. MODELING TRACKING
A key functionality of a mobile agent platform is to offer

a communication service that allows an agent to communi-
cate with another without the need of knowing its current
location. Most agent platforms use the idea of proxy as an
abstraction to communicate with an agent (if an agent a1
wants to communicate with another agent a2, it must first
obtain a proxy to a2); location transparency means that the
proxy routes the message to its corresponding agent effi-
ciently, wherever it is. SPRINGS hides the proxies to the
programmer and stores them in the contexts3: an agent can
communicate with another one by just specifying the name
of the target agent, without the need of using proxies ex-
plicitly.

An agent proxy stores the (remote) reference to that
agent: its name and current context. If the agent moves
to another context, the information contained in the proxy
becomes invalid. In SPRINGS, dynamic proxies are consid-
ered: when an agent arrives at a new context, the remote
proxies to that agent (i.e., held by other contexts) are up-
dated to reflect the new agent location. These proxies are
updated before resuming the agent’s execution in order to
maximize the probability that another interested agent suc-
ceeds in communicating with it. In each context, a Proxy
Updater thread is in charge of updating the remote proxies
to the incoming agents efficiently (see [9] for more details).

Regarding agent mobility, two important related concepts
are considered:

• Location servers. A location server of an agent a is a
context that stores a dynamic proxy to a because it
has been assigned by the RNS to do so.

• Observer contexts. A context c is an observer of a
certain agent a when it is interested in knowing the
current location of a, which happens when: 1) a local
agent has communicated recently with a, which means
to include a in its ProxyList, or 2) it is a location
server for a. An observer of an agent a always stores
a dynamic proxy to the agent.

Following the concepts given so far, the sequence diagram
in Figure 2(a) describes the scenario of how an agent changes
its context and how the platform keeps track of it. Firstly,
an agent a1 requests to its current context c1 to travel to a
new one c2. The origin context unregistries the agent. Just
before traveling, the agent prepares its departure and when
it has finished, the current context sends it to c2. When
it arrives, a new instance a2 of the agent is created; mean-
while the old instance a1 at origin ends its departure and
it is completely removed from the origin context. Assuming

3All the agents in a context that want to communicate with
another one use a shared proxy that points to that agent.

<<PAresource>>
a :Agent

<<PAresource>>
c :Context

<<PAresource>>
c :Context

<<PAresource>>
a :Agent

1 1 2

2

2

1

1

2 2

2

RequestMove(c)

UnregistryAgent(a)

preDeparture

SendAgent(a)

postDeparture
CreateAgent

preArrival

RegistryAgent(a)

UpdateProxies(a ,c)

postArrival

1RemoveAgent(a)delete

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(3.86,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(13.14’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(20.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(3.86,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(46.3,’ms’)),

PAextOp=(’network’,1,’ms’)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(43.82,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.1,’ms’))}

sd moveTo

(a) For agents movement.

<<PAresource>>
a :Agent

<<PAresource>>
ls :Context

<<PAresource>>
r:RNS

<<PAresource>>
c :Context

<<PAresource>>
a :Agent1 1 2 2

RequestCall(a)

callAgent

AskLocation(a)

UpdateProxyList(a ,proxy)

FindProxy(a)

return(proxy)

return(ls)

2

2

2

2

2

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(20,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(32,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.0,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(9.3,’ms’))}

<<PAstep>>
{PAextOp=(’network’,1,’ms’)}

<<PAstep>>
{PAextOp=(’network’,0.1,’ms’)}

sd callTo

opt locationTransparency

[$prob=0.04]

(b) For agents communication.

Figure 2: Annotated sequence diagrams.

that the agent has successfully arrived, it prepares its ar-
rival and then it is registered. Afterwards, its proxies have
to be updated, so the Proxy Updater thread, embedded in
the Context component, informs all observer contexts of the
agent to update its dynamic proxy. After this, the arrival
has finished.

The sequence diagram in Figure 2(b) models how agents
communicate. Let us assume that an agent a1 executing on
context c1 wants to communicate with another agent a2 on
context c2. If any agent on c1 has recently communicated
with a2, a dynamic proxy to a2 will be locally available (c1

is an observer of a2); in this case, the callAgent will be
directly routed through that proxy, without executing the
locationTransparency fragment. Otherwise, c1 must find a2

in the following way: 1) c1 obtains from its RNS a location
server for a2; 2) c1 obtains a proxy to a2 from that location
server (ls2), which registers c1 as a new observer for a2

(UpdateProxyList task); and 3) the retrieved proxy is used
to route the call to a2, and it is stored by c1 (so the RNS
will not need to be contacted the next time).

Information about agents not located in the region would
be requested by the local RNS to other RNS. In that case,
the sequence diagram in Figure 2(b) must be augmented
with a lifeline representing the RNS which knows a location
server for the called agent.

Finally, the modeling of the physical structure in Figure 1
is provided using a UML deployment diagram (DD), see
Figure 3, which describes resources on the system connected
through a network. The DD depicts the system architecture
for one only region; new regions with their contexts can be
incorporated by duplicating this structure. Since a node
may host several contexts and each of them provides services
to a number of agents, there may exist several instances of
both agents and contexts on each node.

4. SYSTEM PERFORMANCE VIEW
In this section, we present the performance view of the

proposed mobile agents tracking approach. We use the UML
Profile for Schedulability, Performance and Time Specifi-
cation (UML-SPT) [17] to annotate both the performance

metrics, that characterize the goals of our performance anal-
ysis, and the performance parameters of the system.

4.1 Performance metrics
The first analysis goal is to validate the analytical results

obtained from the UML-SPT models against those experi-
mentally obtained in [9]. The valid performance models will
be used to determine the platform optimal configuration. Fi-
nally, this configuration will allow to perform a sensitivity
analysis, i.e., to study system response time when the agents
size increases or the system is running on slow networks.

The experiments in [9] present a configuration composed
of a single region with 5 contexts residing on 5 computers,
one of them executing also the RNS and a variable number
of agents ranging from 1 to 1500, each one assigned to a
context thread. These five computers were Pentium IV 1.7
GHz with Linux RedHat 2.4.18 and 256 MBytes RAM.

The analytical experiments, Section 6, consider the same
number of agents and regions as in [9], but a variable num-
ber of context threads running on separate processors, as
expressed in the DD annotations, see Fig. 3.

The interaction overview diagram (IOD) in Figure 4 de-
picts the performance scenario, where the analysis goals will
be studied. Considering this IOD, an agent will change its
current context (moveTo) and immediately will perform a
method invocation to another agent (callTo).

The proposed analysis goals will be studied using as per-
formance metric the one defined in the IOD, i.e. the scenario
response time.

4.2 Performance parameters
The performance information concerning the actions du-

ration and the messages delay has been taken from [9], they
correspond to the experiment described in Section 4.1 when
only one agent was executing the platform.

The actions are represented by the stereotype
<<PAstep>>, where the PAdemand tag specifies its
corresponding execution or delay time as an exponentially
distributed random variable. Table 1 summarizes the
mean execution times that have been annotated along the
sequence diagrams. By mean execution time we mean that

<<PAhost>>
Node_i Processor

<<PAresource>> Intranet

Agent Context

<<PAhost>>
Node_j Processor

Agent Context

<<PAhost>>
RNS Processor

RNS

<<PApopulation>>
{PAclosedLoad=$NAgents}

<<PApopulation>>
{PAclosedLoad=$NContexts}

ProxyUpdaterProxyUpdater

Figure 3: Deployment diagram of the SPRINGS architecture.

ref

callTo

ref

moveTo

<<PAstep>>
{PArespTime=(’pred’,$RT}

<<PAcontext>>

performance scenario

Figure 4: IOD of the performance scenario.

these processing times have been measured by running the
system repeating 50 iterations per agent. Experiments in
[9] were developed in this way to ensure accuracy in the
experimental tests.

Another parameter that may impact the system perfor-
mance is the probability of executing the optional fragment
LocationTransparency in Fig. 2(b). Values close to 0 mean
that the ProxyList of context c1 owns knowledge enough to
solve most of the RequestCall messages. Then, values close
to 1 are supposed to penalize system performance.

The network is indirectly specified by the PAextOp tagged
value, see SendAgent message in the sequence diagram of
Fig. 2(a). The <<PAresource>> stereotype annotated in
the lifeline of each object defines them as software compo-
nents.

5. APPLYING THE PUMA APPROACH
Once, the performance scenario and its performance pa-

rameters have been defined, we apply the PUMA approach
to get the performance models where to evaluate the pro-
posed performance metric.

PUMA [23] is a framework that aims at extracting from
a design model (UML or Use Case Maps) an intermediate
model, called Core Scenario Model (CSM) [18]. PUMA de-
scribes how to translate the CSM into a target performance
model, such as (layered) queueing networks or stochastic

Mean Execution
Operation Time (ms)

preDeparture 0.1
postDeparture 0.1
preArrival 0.1
postArrival 0.1
CreateAgent 43.82
RemoveAgent 3.86
SendAgent 46.3
RegistryAgent 13.14
UnregistryAgent 3.86
UpdateProxies 20.2
RequestCall 0.1
CallAgent 9.3
AskLocation 20
FindProxy 32
UpdateProxyList 1.0

Table 1: System basic operations.

Petri nets. Concretely, we will use the translation given to
obtain a Generalized Stochastic Petri Net (GSPN) [2].

5.1 Building the CSMs
The CSM is focussed on describing performance

Scenarios. A scenario, is a sequence of Steps, linked by Con-
nectors. A step is a sequential piece of execution. Connec-
tors can include branches, merges, and forks and joins. The
scenario has a Start and an End points, where it begins and
finishes. Start points are associated with Workload, which
defines arrivals and customers, and may be open or closed.
There exist two kind of Resources: Active, which execute
steps, and Passive, which are acquired and released during
scenarios by special ResAcquire and ResRelease steps. Steps
are executed by (software) Components which are passive re-
sources. A primitive step has a single host processor, which
is connected through its component.

According to PUMA, each sequence diagram in the IOD
of Fig. 4 has been translated into a CSM scenario. So,
Figs. 5(a) and 5(b) illustrate the CSMs that represent the
UML sequence diagrams in Figs. 2(a) and 2(b).

In order to make clear how PUMA proposes to generate
the CSMs, a piece of execution is explained. See the Re-
questMove message in the sequence diagram of Fig. 2(a), it
is straightforward to check that it has its corresponding step
in the CSM of Fig. 5(a). Furthermore, before executing it,

Network

ExtOp

a Agent

Component

Node CPU

Processing
Resource

 c Context

Component

c Context

Component

a Agent

Component

Start

ResAcq

RequestMove

preDeparture

SendAgent

ResRel

UnregistryAgent

ResAcq

Fork

ResAcq

CreateAgent

ResAcq

preArrival

ResRel

ResRel

postArrival

UpdateProxies

registryAgent

ResRel

End

ResRel

postDeparture

ResRel

ResAcq

removeAgent

End

Node CPU

Processing
Resource

1

1

2

1

2

2

ResAcq

(a) For moving an agent among contexts.

a Agent

Component

Node CPU

Processing
Resource

c Context

Component

End

RNS

Component

ResAcq

callAgent

ls Context

Component

ResRel

ResRel

a Agent

Component

ResRel

Node CPU

Processing
Resource

ResRel

ResAcq

AskLocation

FindProxy

UpdateProxyList

ResAcq

ResRel

Start

ResAcq

ResAcq

RequestCall
RNS_CPU

Processing
Resource

Network

ExtOp

1

1

1
2

2

2

Fork

Join

(b) For the communication between two agents.

Figure 5: Core Scenario Models.

it is necessary to acquire the agent a1 and the context c1

software components, which run on the CPU Node1.
Each element in a CSM (e.g., steps, components or re-

sources) has attributes concerning the performance informa-
tion annotated in the sequence diagram. For example, the
RequestMove step has a demand attribute, its value is taken
from the <<PAstep>> annotation in the sequence diagram.
However, we have not shown these performance attributes
in our CSM scenarios due to lack of space, but they will be
used when parameterizing the performance model.

5.2 Building the performance models
The next step is to translate the CSMs into GSPNs follow-

ing the translation process given by PUMA. Figs. 6 and 7
depict the GSPNs that represent the CSMs in Figs. 5(a)
and 5(b).

Just to outline the translation, see the UnregistryAgent
step in the CSM of Fig. 5(a), it is mapped into a timed
transition, see Fig. 6, being its delay defined as the demand
attribute of the step. Previously, the agent a1 and the con-
text c1 have been acquired, see transition t c1 1. Places
representing resources, such as CPUs or software compo-
nents, are marked with the amount of tokens specified by
the corresponding PAclosedLoad tag.

Finally, the GSPNs in Figs. 6 and 7 are composed in order
to obtain a performance model, i.e., a new GSPN that mod-
els the performance scenario in Fig. 4. GSPN composition
is based on merging the net places that represent common
elements in the CSMs, such as resources or components.

a1

c1

c2

CPU2

CPU1

t_c1_1

preDeparture

postDeparture

r_a1

t_c1_2

r_CPU1_2

RequestMove

UnregistryAgent

r_c1_1

RemoveAgent

t_a2

CreateAgent

r_c2

UpdateProxies

r_c2_2

preArrival

t_c2_2

postArrival

RegistryAgent

SendAgent

r_CPU2

t_CPU1_1

r_a2

r_CPU1_1

t_CPU1_2

r_c1

t_CPU2t_c2

a2

Figure 6: GSPN for agents movement.

6. PERFORMANCE RESULTS
Once the performance model has been built, we use

TimeNET [1] to compute the given metric in it by means
of simulation techniques. Then, in the next sections we ac-
complish the analysis goals proposed in Section 4.1.

6.1 Validation of experimental results
Fig. 8 depicts the response times given by the experimen-

tal test in [9] and the performance model. The configuration
for each one was described in Section 4.1. As it can be ob-
served, the results are very similar, and in both cases the
response time increases linearly.

In [9], linear scalability was considered acceptable, since
the experiments were carried out to test the platform in a
stressful scenario for highly mobile agents [16]. Moreover,
for a platform to support 1500 agents in such scenario is a
real challenge. Mobile agents platforms can get lower re-
sponse times when agents do not move and communicate
so frequently. In the following we describe the stressful sce-
nario.

The goal is to make agents stay on a context for a very
short time and continually calling among themselves. To
do so, in the experimental configuration described in Sec-
tion 4.1, each agent has a communication peer and performs
the following steps: 1) calls its peer; 2) moves randomly to
another context; and 3) steps 1 and 2 are repeated with-
out delay until reaching 50 iterations. While the number of
agents increases up to 1500, the performance of agent com-
munication decreases; thus, a target agent could move to
another context before a message reaches it. So, the scala-
bility of the platform is studied in terms of the time that an
agent needs to perform one iteration (callTo + moveTo) as
the number of agents increases.

6.2 Optimal configuration and sensitivity
analysis

Optimal configuration for a platform means to minimize
the number of context threads needed to execute the agents
while keeping the response time.

The analytical experiment in Fig. 8 was very relaxed in
this sense and it considered up to 1500 threads, i.e., a thread
per agent. However, in a new experiment, depicted in Fig. 9,
we drastically reduced the number of threads, in a range
from 50 to only 1, while keeping the rest of the parameters.
The response time grows exponentially with values under 10
threads. Finally, Fig. 10 enlarges Fig. 9 in the range from
50 to 15 threads. Now, we can observe that the response
times obtained in Fig. 8 are preserved only for the range
from 50 to 40 threads. Therefore, 40 threads is the optimal
configuration for the agent platform, beacause values lower
than 40 cause response times greater than 6sec. with 1500
agents.

The network speed may also affect the performance of the
platform, influencing the time spent by agents traveling to
another context, which is captured by the SendAgent task.

Using the optimal configuration with 1500 agents and con-
sidering that the SendAgent message size is 2KBytes, Fig. 11
illustrates the system response time when the delay of the
SendAgent message varies. Be aware that a send delay of
10 ms corresponds with a network speed of 200 KBytes per
second, while 250 ms corresponds with 8 KBytes per second.
The system is sensitive to the network speed; although from
33 KBytes per second (60 ms), it does not perform better.

a1

c1

RNS
a2

ls2

CPU1
CPU_RNS

CPU2

t_c1

RequestCall

acq_RNS

UpdateProxyList

t_ls2

r_CPU_RNSt_a2

rel_a2

rel_c1

rel_ls2

FindProxy

CallAgent

AskLocation

first

rest

t_CPU1

r_CPU1

t_CPU2

r_CPU2

t_CPU_RNS

r_RNS

t_CPU2_ls

r_CPU2_ls

Figure 7: GSPN for agents communication.

0

1

2

3

4

5

6

7

8

1 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Number of agents

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Analytical

Experimental

Analytical0,16 0,39 0,77 1,15 1,54 1,92 2,32 2,71 3,09 3,46 3,87 4,25 4,63 5,01 5,42 5,77
Experimental0,16 0,53 0,94 1,37 1,81 2,24 2,69 3,13 3,54 4,01 4,58 4,97 5,52 5,89 6,58 7,04

Figure 8: System response times.

1

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1

1
0

2
0

3
0

4
0

5
0

0

20

40

60

80

100

120

140

160

180

200

220

240

R
e

sp
o

n
se

 t
im

e
 (

se
c
)

Number of agents
Number o

f th
reads

Figure 9: Response times when multithreading con-
texts.

1

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R
e

sp
o

n
se

 t
im

e
 (

se
c
)

Number of agents

Number o
f th

reads

Figure 10: Detail of Fig. 9.

0

2

4

6

8

10

12

14

1030507090110130150170190210230250

Sending Time (ms)

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Figure 11: Sensitivity analysis.

7. RELATED WORK
To the best of our knowledge, there is no other work that

analyzes the performance of mobile agent tracking strategies
using a model-based approach; an experimental analysis can
be found in [9]. In the following, we study the most relevant
works related with the modeling of mobility with perfor-
mance analysis purposes.

Currently, there is no standard way for modeling mobil-
ity, although different proposals exist, some of them based
on UML [5, 4, 7, 6], while others such as [8] follow some
formalism, in this case PEPA nets.

The work in [5] presents an extension of the UML class,
sequence and activity diagrams to model mobile systems
and performance and security characteristics, but they do
not explain how to get any performance model or how to
compute metrics. In [7], a non-standard UML profile for
modeling mobile systems using activity, deployment and
state machine diagrams is proposed, as well as an exten-
sion for collecting performance information according to the
UML-SPT. The models are automatically translated into
queueing networks to analyze performance. [4] describes a
UML-based methodology for modeling and evaluating the
performance of mobile systems using use case, activity and
deployment diagrams augmented with the UML-SPT. They
use simulation techniques to compute metrics. [6] proposes a
framework to model performability for mobile software sys-
tems using use case, sequence, collaboration and deployment
diagrams, from which Stochastic Activity Networks (SANs)
are obtained.

Finally, it is worth noticing some works that use Petri
nets for mobility and performance. In [19], the perfor-
mance of different communication paradigms is compared
using stochastic Petri nets. [13] compares the performance
of two software retrieval systems applying SPE techniques
using high-level Petri nets.

8. CONCLUSION
In this paper we have analyzed the performance of the

SPRINGS tracking approach.
The most interesting conclusion for SPE is that it has

been possible to analyze one of the key aspects concerning
performance of mobile agent platforms without tailoring an
SPE methodology for this purpose. Therefore, the paper
shows that the PUMA approach is powerful enough to deal
with complex performance problems in the mobile agents
software domain.

Taking our models and results as a background, we believe
that interested practitioners can use PUMA to test their mo-
bile agent platforms in hypothetical conditions, ands they
can address other performance problems in this domain fol-
lowing PUMA.

9. REFERENCES
[1] The TimeNET tool.

http://pdv.cs.tu-berlin.de/~timenet/.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. John Wiley Series in Parallel
Computing - Chichester, 1995.

[3] Y. Aridor and M. Oshima. Infrastructure for Mobile
Agents: Requirements and Design. In Second

International Workshop on Mobile Agents (MA’98),
Stuttgart, Germany, pages 38–49. Springer, 1999.

[4] S. Balsamo and M. Marzolla. Towards performance
evaluation of mobile systems in UML. In Proc. of
ESMc’03, The European Simulation and Modelling
Conference, pages 61–68, Naples, Italy, 2003.
EUROSIS-ETI.

[5] H. Baumeister, N. Koch, P. Kosiuczenko, P. Stevens,
and M. Wirsing. UML for Global Computing. In
Global Computing. Programming Environments,
Languages, Security, and Analysis of Systems,
IST/FET International Workshop, GC 2003,
Rovereto, Italy, February 9-14, 2003, Revised Papers,
volume 2874 of Lecture Notes in Computer Science,
pages 1–24. Springer Verlag, 2003.

[6] P. Bracchi, B. Cukic, and V. Cortellessa.
Performability Modeling of Mobile Software Systems.
In 15th International Symposium on Software
Reliability Engineering (ISSRE 2004), 2-5 November
2004, Saint-Malo, Bretagne, France, pages 77–88.
IEEE Computer Society, 2004.

[7] V. Grassi, R. Mirandola, and A. Sabetta. UML based
modeling and performance analysis of mobile systems.
In Proceedings of the 7th International Symposium on
Modeling Analysis and Simulation of Wireless and
Mobile Systems, MSWiM 2004, Venice, Italy, October
4-6, 2004, pages 95–104. ACM, 2004.

[8] J. Hillston and M. Ribaudo. Modelling mobility with
pepa nets. In ISCIS, volume 3280 of Lecture Notes in
Computer Science, pages 513–522. Springer, 2004.

[9] S. Ilarri, R. Trillo, and E. Mena. SPRINGS: A
Scalable Platform for Highly Mobile Agents in
Distributed Computing Environments. In 4th
International WoWMoM 2006 workshop on Mobile
Distributed Computing (MDC’06), Buffalo, New York
(USA). IEEE Computer Society, ISBN 0-7695-2593-8,
June 2006.

[10] G. Kastidou, E. Pitoura, and G. Samaras. A Scalable
Hash-Based Mobile Agent Location Management
Mechanism. In Proceedings of the 1st International
Workshop on Mobile Distributed Computing
(MDC’03), pages 472–478, May 2003.

[11] D. Lange and M. Oshima. Seven good reasons for
mobile agents. Communications of the ACM,
42:88–89, 1999.

[12] E. Mena, J.A. Royo, A. Illarramendi, and A. Goñi.
Adaptable Software Retrieval Service for Wireless
Environments Based on Mobile Agents. In
International Conference on Wireless Networks
(ICWN’02), Las Vegas, Nevada, USA, pages 116–124.
CSREA Press, 2002.

[13] J. Merseguer, J. Campos, and E. Mena. Analysing
Internet Software Retrieval Systems: Modeling and
Performance Comparison. Wireless Networks: The
Journal of Mobile Communication, Computation and
Information, 9(3):223–238, May 2003.

[14] D. Milojicic, F. Douglis, and R. Wheeler. Mobility:
processes, computers, and agents. ACM
Press/Addison-Wesley Publishing Co., 1999.

[15] D. Milojicic, W. LaForge, and D. Chauhan. Mobile
Objects and Agents (MOA). In Fourth USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS98), Santa Fe, New Mexico, USA.
USENIX, 1998.

[16] Amy L. Murphy and Gian Pietro Picco. Reliable
communication for highly mobile agents. Autonomous
Agents and Multi-Agent Systems, 5(1):81–100, 2002.

[17] Object Management Group. UML Profile for
Schedulabibity, Performance and Time Specification,
January 2005. Version 1.1. http://www.uml.org.

[18] D.B. Petriu and M. Woodside. An intermediate
metamodel with scenarios and resources for generating
performance models from UML designs. Software and
Systems Modeling, 5(4), August 2006. DOI -
10.1007/s10270-006-0026-8.

[19] M. Scarpa, M. Villari, A. Zaia, and A. Puliafito. From
client/server to mobile agents: an in-depth analysis of
the related performance aspects. In Proceedings of the
Seventh IEEE Symposium on Computers and
Communications (ISCC 2002), 1-4 July 2002,
Taormina, Italy, pages 768–773. IEEE Computer
Society, 2002.

[20] A. R. Silva, A. Romão, D. Deugo, and M. M. Da
Silva. Towards a Reference Model for Surveying
Mobile Agent Systems. Autonomous Agents and
Multi-Agent Systems, 4(3):187–231, 2001.

[21] C.U. Smith and L.G. Williams. Performance
Solutions. Addison–Wesley, 2001.

[22] C. Spyrou, G. Samaras, E. Pitoura, and P. Evripidou.
Mobile agents for wireless computing: the convergence
of wireless computational models with mobile-agent
technologies. Mobile Networks and Applications,
9(5):517–528, 2004.

[23] M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen,
T. Israr, and J. Merseguer. Performance by unified
model analysis (PUMA). In Proceedings of the Fifth
International Workshop on Software and
Performance, WOSP 2005, Palma, Illes Balears,
Spain, July 12-14, 2005, pages 1–12. ACM, 2005.

