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Simona Bernardi, José Merseguer and Dorina Petriu

Technical Report, number RR-08-05

Registered in Departamento de Informática e Ingenierı́a de Sistemas,
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Abstract

In this document we define the Dependability Analysis Modelling profile, namely DAM profile. The process

of deriving a DAM profile has been going through several steps. First of all, an in depth analysis of the literature

has been carried out, in order to collect in a checklist the information requirements for the profile. Then a two-step

approach for the profile definition has been followed. In the first step, a Dependability Analysis (DA) domain

model is defined, in terms of a structured set of UML Class Diagrams, where the basic concepts supporting

dependability analysis are represented. The domain model is assessed with respect to the works in the literature

considered before passing to the second step. In the second step, the DAM profile is defined considering the

domain model. The DAM profile is then assessed with respect to the checklist of information requirements.

I. APPROACH OVERVIEW

The process of deriving an UML profile for dependability analysis of software systems has been characterized

by several tasks that can be summarized as follows:

complete?[no]
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Fig. 1. Definition of the DAM profile

• Study of literature 1) The existing standard UML profiles for the analysis of non functional properties of

software systems have been analyzed, in particular the SPT profile [27], the QoS&FT profile [28] and

the MARTE profile [29]. None of them provides a comprehensive support for the dependability analysis,

especially from the quantitative point of view (for SPT and QoS&FT, see the comparative work [7]). This

lack of standard dependability analysis support has been the main motivation of this proposal. 2) We have

also investigated the literature on the dependability main concepts and taxonomy (e.g.,Laprie et al. [3],

Leveson [23]) as well as on standard methods used for the quantitative assessment of dependability (e.g.,

IEC standard [10]). 3) We have made a survey of the works in the literature proposing dependability

modelling and analysis of UML system specifications (about 19 works). The output of this preliminary

step is a a checklist of requirements that a UML profile for dependability analysis should satisfy.
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• Definition of conceptual Dependability Analysis (DA) model We have defined a conceptual DA model to

represent the main dependability concepts from the literature (2,3). The DA model consists of several

UML class diagrams, organized in packages. The construction of the DA model goes to several refinement

steps to consider all the works of the survey (3). The final DA model is described in detail in section III.

• Completeness assessment of the DA model The assessment of the DA domain model consists in verifying

that all the concepts considered in the work survey (3) have been included. If a concept has not been

considered, we either repeat the refinement step or we provide a motivation of its exclusion from the DA

model. The assessment has been detailed in sub-section III-A.

• Definition of the Dependability Analysis Modelling (DAM) profile Using the DA model we define 1) the

DA extensions, that is stereotypes and tags, and the 2) DAM library. The objective is to introduce a small

set of stereotypes, that can be easily used by the software analyst, so there is not a one-to-one mapping

between the conceptual classes of the DA model and the DAM stereotypes. The DAM library has been

defined by importing the MARTE library and it consists of complex DA types, mapped from some DA

model classes, and of basic DA types. The DAM profile is presented in section IV.

• DAM profile assessment using the requirement checklist The assessment of the DAM profile consists in

verifying whether the requirements of the checklist are satisfied. If a requirement is not met by the DAM

profile, we go back to the previous step in order to refine the latter. In subsection IV-C the DAM profile

assessment is detailed.

II. STUDY OF LITERATURE

Several approaches have been proposed, in the last few years, aimed at extending UML to support depend-

ability modeling and analysis of software systems. In particular, UML profiles for safety critical systems are

proposed in the works [34], [35], which have different goals with respect to ours.

In [35] a UML profile is defined for the elicitation of safety requirements of aerospace software systems,

in order to improve the communication among the system stake holders as well as to generate automatically

certification-related information from UML models. In [34] a UML profile is proposed, instead, for the modeling

of safety-critical embedded real-time control systems and stereotypes are used to incorporate PEARL and

Function Blocks constructs.

The recent survey [20] defines an interesting framework for the comparison of reliability/availability analysis

methods in the literature for software architectures. Some of the mentioned works, address the issue of deriving

dependability models from UML-based specification and will be considered in this section.

In the following, we focus on the works that aim at providing a support for the quantitative dependability

analysis of UML based design. The study is carried out from a critical perspective, with the purpose of building

on them our proposal of a common profile for the quantitative prediction of software system dependability.

We will then present the related work with the support of the following checklist of information requirements

for a dependability profile, that we have drawn up considering the literature on dependability modeling and

analysis:

(IR1) Identification of the dependability analysis context, in particular the types of non functional require-

ments to be assessed, i.e., reliability, availability, safety.
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(IR2) Specification of dependability requirements in terms of upper/lower bounds, like the maximum (min-

imum) system or component reliability required, the minimum availability or safety level required.

(IR3) Specification of dependability measures to be estimated during the analysis. The set of supported

measures should include, at least, the reliability/unreliability probability distribution functions, the

system failure probability, MTTF, the time to repair distribution function, MTTR, the instantaneous

and the steady state availability, the safe mission time, the risk factor associated to a failure/hazard.

(IR4) Specification of the dependability input parameters that are needed by the standard techniques for the

quantitative evaluation of the system dependability. The dependability input parameters characterize,

from a quantitative point of view:

(IP1) The processes leading to service failures and accidents. In particular, the threats of depend-

ability that may affect both hardware and software resources (e.g., the probability of fault

occurrence, the error latency, the probability of failure, the hazard severity).

(IP2) The repair/reconfiguration processes, in case of repairable systems/components, that remove

basic or derived failures from the system (e.g., repair and restoration rates).

(IR5) Specification of different fault behaviors depending on their timing persistence (i.e., permanent, tran-

sient and intermittent) and of fault occurrence assumptions (e.g., single fault assumption).

(IR6) Specification of the error propagation between system components that interact with each others.

(IR7) Specification of the system failure modes with respect to different point of views: the domain,

i.e, content, (early, late) timing failures, halting or erratic failures (Dom); the detectability, i.e.,

signaled or unsignaled failures (Det); the consistency, i.e., consistent or unconsistent failures (Con);

the consequences, i.e., minor, marginal, critical and catastrophic failures (Cons); and, when multiple

failure are considered, the failure dependency, i.e., independent or dependent failures (Dep).

(IR8) Specification of the hazards leading to accidents, in terms of their basic components (such as the

severity, the likelihood of hazard occurring, the duration, the accident likelihood and the risk).

(IR9) Specification of (uncorrect) behavior of system components affected by threats as well as the recon-

figuration activities that restore the system component states. In particular, identification of erroneous/

failure/ hazardous states, threat events, recovery triggers and actions.

(IR10)Specification of redundant hardware and software components. In particular, the number of copies

existing in a redundant structure, the minimum number of components required in a redundant structure

for a dependable system, and the type of spare redundancy.

Considering the analysis context (IR1), the works [1], [2], [4]–[6], [31] aim at supporting “generic” depend-

ability analysis of UML software system specification, without emphasis on specific dependability attributes.

Most of the works we examined, focus on reliability analysis of UML system specifications [9], [11], [13],

[14], [17], [18], [21], [26], [30], only few of them [9], [13], [26], [30] provide a support also for availability

analysis. Finally, few efforts have been devoted to safety analysis of UML-based models [16], [19], [22], [32].

Table I summarizes the contributions of the mentioned works to the information requirements checklist.

Pataricza [31] extends the General Resource Modeling package of the SPT profile, where the basic concepts

of quality of service (QoS) characteristic and value are introduced, with the notion of faults and errors to support
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IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8 IR9 IR10

IP1 IP2 Dom Det Con Cons Dep

Pataricza [31] X X X X

Addouche et al. [1], [2] X X X X

Bernardi et al. [4], [5] X X X X X X X

Bernardi-Merseguer [6] X X X X X

Bondavalli et al. [9], [26] R,A X X X X X X X X

DalCin [13] R,A X

Pai-Dugan [30] R,A X X X X X X

D’Ambrogio et al. [14] R X

Cortellessa-Pompei [11] R X

Grassi et al. [17], [18] R X

Jürjens et al. [21], [22] R,S X X X X X

Pataricza et al. [32] S X X

Goseva et al. [16] S X X X

Hassan et al. [19] S X X X

Legend IR1: R=reliability, A=availability, S=safety.

TABLE I

CONTRIBUTIONS TO THE DEPENDABILITY INFORMATION REQUIREMENTS OF THE MENTIONED WORKS

the analysis of the effect of local faults to the system dependability. The work emphasizes the importance of

including two phenomena in the system model: permanent and transient faults in the resources (IR5) and error

propagation across the system to estimate which fault may lead to a failure (IR6). Moreover, it suggests the

usage of QoS values to characterize the domain of system failures (IR7-Dom). Explicit fault injection behavioral

models are also proposed to represent faults as special virtual clients that request service to components and

that have higher priority than the other actual clients. Fault injectors can be used also to model constraints on

fault occurrence, e.g., single fault assumption (IR5). The effect of their request causes a change of state of the

server (that is the hardware component affected by the fault occurrence) which moves from normal states (state

in which the system is well-functioning) to faulty ones, and to normal states again in case of transient faults

(IR9).

Addouche et al. [1], [2] define a profile for dependability analysis of real-time systems that is compliant with

General Resource Modeling package of the SPT profile. The UML extensions are used to annotate UML models

with QoS characteristics and to derive probabilistic time automata for the verification of dependability properties

via temporal logic formulas. Dependability input parameters of system resources (i.e., reliability, maintainability)

are specified as tags (IR4). A pair of stereotypes is also defined to include probabilistic aspects of functioning

and malfunctioning. The static model of the system is enriched with new stereotyped classes that are associated

with each class representing a resource. The Indicator classes are characterized by attributes related to the

state machines of the resource classes associated with, and their values represent the degraded or failure state

of the resource classes. The Cause classes are characterized by attributes representing logical expressions of

failure occurrence in the resource classes associated with (IR9). This mechanism can be used by the analyst

to specify components state-based conditional failures (IR7-Dep). The negative aspect of the approach is that
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new classes need to be defined and introduced in the system model, beside the classes representing the actual

system components, for dependability analysis purposes.

Bernardi et al. [4], [5] propose a set of UML Class Diagrams (CD) structured in packages, to collect

dependability and real-time requirements and properties of automated embedded systems with the use of

COTS FT mechanisms. The approach provides support for a semi-automatic derivation of dependability analysis

models, such as Stochastic Petri Nets and temporal logic models. Three stereotypes are defined for class attributes

in order to discriminate input parameters (IR2), including the component and functions failure criticality level

(IR7-Cons), metrics (IR3) and upper/lower bound requirements (IR4-IP1). The classifications of dependability

threats [3] are represented as CDs. In particular, fault classes include attributes that characterize the fault timing

persistency (IR5), and failure are classified according to their impact on the automation system in halting,

degrading and repairing failures (IR7-Dom). The most interesting class diagrams are the “FEF chains”, that

define the causal relationships among faults, errors and failures, the relationships between the dependability

threats and the affected system components, and the error propagation relationship (IR6).

In [6] we devise a method to assess Quality of Service (QoS) of fault tolerant (FT) distributed systems

via derivation of performability models from SPT annotated UML behavioral and deployment diagrams. The

objective of the analysis is to evaluate the QoS of the FT strategy implemented in the system under late-timing

failure assumption (IR7-Dom). The QoS is defined as a function of two non functional properties: one is

strictly related to the FT effectiveness (i.e., the time to detect a failure) and the other is related to the cost

of the FT (i.e., communication overhead). State machines are proposed for the quantitative characterization of

faults as well as for the behavioral specification of different type of fault w.r.t. their timing persistency (IR5).

UML extensions have been explicitly introduced, since the SPT profile does not support the specification of

dependability parameters, such as fault frequencies and latencies. Nevertheless, the SPT compliance provides

an easy solution for the discrimination of the type of usage of each attribute, i.e., requirement (IR2), metric

(IR3) or input parameter (IR4-IP1).

The most comprehensive approach for reliability and availability analysis of UML specifications has been

proposed by Bondavalli et al. [9], [26]. The authors use UML standard extension mechanisms (i.e., stereotypes

and tags) for annotating dependability properties of software systems on UML design models. Through a model

transformation process, Timed Petri Net models are then derived via an intermediate model, that captures the

relevant dependability information from the annotated UML models. The proposed approach is compliant

with the taxonomy and basic concepts defined in [3]. Although no support is given for the specification

of dependability requirements to be assessed, several dependability parameters are defined and they can be

associated to both hardware and software components. The set of input parameters (IR4) includes the fault

timing occurrence, the percentage of permanent faults (IR5), the error latency for components with an internal

state, and repair delay. The set of metrics (IR3) includes the reliability probability distribution function, MTTF,

the steady state and the immediate availability.

The approach supports the specification of error propagation between components (IR6) by assigning a

probability to the model elements representing either relationships (e.g., associations) or interactions between

such components (e.g., communication paths, messages). Concerning the type of failures with respect to their

dependency, both independent and dependent failures can be specified (IR7-Dep). In particular, it is possible
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to assign common failure mode occurrence tags to redundant components belonging to complex FT structures

(IR10). Extensions for states and events of state machines representing the behavior of redundancy manager

components are introduced, in order to discriminate normal and failure states and events (IR9). Such extensions

are used to analyze the failure conditions of the FT structures. The main drawback of the UML extensions

proposed by Bondavalli et al., is the introduction of unnecessary redundant information in the UML system

model, since the specification of some parameters requires the joint use of more than one stereotype. For

example, a node, that models a hardware component in UML, must be stereotyped as hardware and stateful to

specify the error latency.

DalCin [13] proposes a UML profile for specifying dependability mechanisms, that is hardware/software

components to be implemented or integrated in the real-time system to ensure fault tolerance. The proposed

profile is aimed at supporting the quantitative evaluation of the effectiveness of the FT strategy adopted and it

provides facilities for capturing stochastic reliability and availability requirements of such mechanisms (IR2).

However, the profile lacks of a support to the modeling of the interactions among dependability mechanisms

and the system components.

Pai-Dugan [30] present a method to derive dynamic fault tree from UML system models. A set of stereotypes

and tags are introduced to enrich UML system models with information needed for the reliability and availability

analysis. In particular, tags are used to define input parameters, such as the failure rate of system components,

the coverage factors, restoration rates, the error propagation (IR4, IR6). The method supports the modeling

and analysis of dependent failures, such as sequence failure dependencies (IR7-Dep), redundancies and re-

configuration activities. Several stereotypes are defined to represent different kinds of dependencies between

system components and to model the type of spare components, e.g., hot, cold and warm spares (IR10). State

machines, without specific UML extensions, are used to model reconfiguration activities (IR9).

The works [11], [14], [17], [18] address specifically the reliability analysis of UML-based design.

D’Ambrogio et al. [14] define a transformation of UML models (Sequence and Deployment diagrams) into

fault tree models to predict the reliability of component-based software. Although no UML extension standard

mechanisms are used, several UML model elements whose failure (basic events in fault tree models) can lead

to the system failure (top-event in fault tree models) are identified. In particular, the basic events considered

are the failure of nodes and communication paths and the failure of call actions, operations and return actions

(IR4-IP1).

Cortellessa and Pompei [11] propose a UML annotation for the reliability analysis of component-based

systems, within the frameworks of the SPT and QoS&FT profiles. Their work is built on the approach in [12],

where Bayesian models are derived from UML annotated models to compute the system failure probability.

Although no specific extensions are used for the annotation of the reliability requirements and metrics, a set

of stereotypes and related tags are proposed for the specification of reliability input parameters (IR4-IP1).

Such stereotypes are specialization of stereotypes defined in the General Resource Modeling package of the

SPT profile. The most interesting input parameters considered are the atomic failure probabilities of software

components (REcomponent) or (logical/physical) links (RE connector), that is the probability that a component,

or connector, fails in a single invocation of it. There are no explicit annotations for the failure probability of

hardware components.
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The annotations defined in [11] are used by Grassi et al. [17], [18], that propose a model-driven transformation

framework for the performance and reliability analysis of component-based systems. Similarly to [9], [26], Grassi

et al. build an intermediate model that acts as bridge between the annotated UML models and the analysis-

oriented models. In particular, discrete time Markov process models can be derived for the computation of the

service reliability. Despite of [11], Grassi et al. associate failure input parameters to both hardware and software

components and consider both atomic failures and failure probability distribution functions (IR4-IP1).

Jürjens et al. define a safety [22] and reliability [21] check list, based on UML extension standard mechanisms,

to support the analyst in the identification of failure-prone components in the software design. The works [21],

[22] propose a similar approach, although they address distinct dependability attributes, i.e., safety and reliability,

respectively. Most of the UML extensions are used to specify requirements on communication, such as the

stereotype guarantees whose tag goal is of complex type and can express either a maximum duration allowed

for data transmission, or a probability that eventually a data is delivered or a maximum probability of message

loss. Several stereotypes can be applied to specify guarantees at subsystem level. An interesting aspect considered

by Jürjens et al., is the possibility of specifying both requirements, via the guarantees stereotype (IR2), and

failure/hazards assumptions, via the risk, crash/performance, value stereotypes (IR4-IP1, IR8), according to

the failure domain, that is timing failure or content failure (IR7-Dom). Some extensions are also proposed

for the specification of FT structures, such as the types of voting algorithms implemented within redundancy

strategies (IR10).

The approaches [16], [19], [32] support the safety analysis of UML-based system models.

Pataricza et al. [32] use UML stereotypes to identify erroneous states and error correcting transitions in

state machine diagrams (IR4-IP2). The approach proposes to integrate the normal and the faulty behavior of

a system component in a single state machine (IR9). The enriched behavioral models can be used then in the

analysis to evaluate the effect of local faults to system service, in particular, to identify the error propagation

paths that lead to catastrophic failures.

Goseva et al. [16] devise a methodology for the risk assessment of UML models at architectural level. A

Markov model is constructed to estimate the scenario risk factors from risk factors associated to software com-

ponents and connectors. Although no explicit UML extensions are provided, several safety related parameters

are introduced as: metrics obtained directly from UML models, e.g., dynamic complexity of a component,

dynamic coupling of a connector (IR3), properties estimated via safety analysis techniques like FMEA, e.g.,

severity indices associated to components and connectors (IR3, IR7-Cons, IR8), and composite metrics defined

as function of basic ones, e.g., risk factors associated to components, connectors, failure scenarios, use cases

and the overall systems (IR3, IR8).

Hassan et al. [19] introduce a methodology for the severity analysis of software systems modeled with UML.

The work integrates different hazard analysis techniques (FFA, FMEA and FTA) to identify system level and

component/connector level hazards and to evaluate the cost of failure of system execution scenarios, software

components and connectors (IR7-Cons). Like in [16], no UML extensions are provided but several safety

parameters are introduced to calculate the desired safety metrics (IR3,IR8). The results of the hazard analysis

are reported in UML models with the use of notes.

Tables X and XI, in the appendix A, detail the contribution of the mentioned works to the information
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Fig. 2. Top-level package (L0), System Core package (L1)

requirements checklist drawn up at the beginning of this section. The Bondavalli et al.’s approach is the one

that satisfies most of the information requirements of the checklist. In general, we can observe that more

efforts have been devoted to support the reliability analysis of UML-based models. Concerning the works that

focus on reliability and safety, we can deduce that the concepts of failures and of hazards are often used as

synonymous. We can also notice that none of the works provide extensions to discriminate failure modes w.r.t.

their detectability and consistency. Finally, only three proposals address the specification of dependent failures:

Addouche et al. consider component state-based conditional failures. The contribution of Bondavalli et al. is

limited to the special class of common cause of failures affecting redundant components, while in [30] non

trivial dependent failures can be modelled, such as sequence dependent failures.

III. DEPENDABILITY ANALYSIS (DA) DOMAIN MODEL

The aim of this domain model is to give support for dependability analysis of UML-based specifications and

to provide the basis for adding a Dependability Profile to MARTE. The top-level package includes (Figure 2):

• System Core: represents the system to be analyzed, it is a component-based view of the system, according to

[3] and [24]. Additional concepts are introduced for representing redundancy structures that are considered

as part of the system structure that address (some) fault tolerant solutions. We do not aim at providing

modelling support for fault tolerant architectures (this issue has been addressed in the UML QoS&FT

profile [28]), rather we include redundancy concepts to provide a support for the dependability analysis in

case of fault tolerance systems.

• Threats: introduces the concepts that represent the threat process that may affect the system. Such concepts

are related to the system core (both the core concepts and the redundancy structure). Observe that modeling

threats is necessary to carry out reliability and safety analysis. The adopted terminology, is slighly different

in reliability domain and in safety domain. We have then added the abstract concept of impairment that

can be refined for the specific analysis to be carried out.

• Maintenance: introduces those concepts that are necessary for availability analysis, basically the repair

process from anomalous states. In [3] the term “maintenance” is introduced to indicate not only repairs

but also modifications of the system that take place during its usage. So we can include also concepts
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related to system reconfiguration (topic dealt by Pay-Dugan in [30]). The concepts are related to the system

core. Observe that modeling threat and maintenance is necessary to carry out availability analysis.

The Core model of the System Core Package (Figure 3) is a component-based description of the system to

be analyzed, according to Laprie et al. [3] and [24]. This model will be useful at the next step of the definition

of the DAM profile, for the identification of the UML model elements to be extended with dependability

characteristics. There are several classes that can be considered as specialization of the General Quantitative

Analysis Modeling package of MARTE: so this package could help MARTE people to integrate the dependability

profile in MARTE.

TABLE II: Core model description.

Component We consider both HW and SW components that may be affected by threats.

A components provides and requests basic services and interact with the other

components through connectors. A component must either provide or request at

least one basic service (see OCL constraint between the two associations connecting

Component and Service). A component may consist of a set of other components

(which depends on the modeling abstraction level used).

Attributes

stateful (true) Faulty stateful components can be characterized by an error latency, so they

can be restored before failure. (false) Faulty stateless components are considered as

failed [9], [26].

origin Discriminates between hardware and software components [9], [26].

isActive (true) The component can perform its behavior autonomously and trigger behavior

of other components [11].

Continued on next page
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TABLE II – continued from previous page

failureCoverage Percentage of failure coverage [30].

/percPermFault Percentage of permanent faults [9], [26]. It can be derived from the association

between Component and Fault (Threats package), and from the persistency attribute

of the Fault class.

/ssAvail Steady state availability (percentage) [4], [5]. The steady state avail-

ability can be defined as: MTTF/MTBF or MTTF/(MTTF+MTTR) or

MTTF/(MTTF+recoveryDuration) [33]. It can be derived then from associations

connecting Component with Failure, Repair (or Recovery) classes, and from the

homonym attributes defined in the latter.

unreliability Unreliability, that is the probability that the time to failure random variable is less

or equal than time t (time dependent) [33].

/reliability Reliability, that is the probability that the time to failure random variable is greater

than time t (time dependent) or, in other words, that the component is functioning

correctly during the time interval (0, t] [33]. It is defined as 1-unreliability. It is a

survival function [15].

missionTime Time interval in which the component unreliability is lower than a preassigned

threshold. It is the inverse function of unreliability.

availLevel Availability level associated to the nines of availability. E.g., very high corresponds

to 99,9% of ssAvail, etc.

reliabLevel Reliability level.

safetyLevel Safety level.

complexity Complexity metric [4], [5], [16], [21], [22]. There are many complexity metrics in

the literature (e.g., Halstead’s Software Metric, McCabe’s Cyclomatic Complexity).

This attribute provides a quantitative characterization of the component complexity

which is related to the component failure proneness.

Connector We consider logical connectors that represent either potential or actual communi-

cations between components. Such connectors carri the error propagation between

components.

Attribute

coupling Coupling metric [16]. It is related with error propagation proneness.

Dependability

Analysis Context

This concept corresponds to one used in the GQAM of MARTE to declare the model

parameters.

Attribute

contextParams Set of global variables for the given context.

Continued on next page
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TABLE II – continued from previous page

Service Service provided by the system to the users. A service consists of a set of basic

services provided/required by the system components. A service is fulfilled through

a sequence of steps.

Attributes

execProb Service execution probability [11], [16], [19].

/ssAvail Steady state availability (percentage) [4], [5], [9], [26]. The steady state

availability can be defined as: MTTF/MTBF or MTTF/(MTTF+MTTR) or

MTTF/(MTTF+recoveryDuration) [33]. It can be derived then from associations

connecting Service with Failure, Repair (or Recovery) classes, and from the

homonym attributes defined in the latter.

instAvail probability that the provided service at time t is correct (time dependent) [33]. Used

in [9], [26].

unreliability Unreliability, that is the probability that the time to failure random variable is less

or equal than time t (time dependent) [33].

/reliability Reliability [9], [26], that is the probability that the time to failure random variable is

greater than time t (time dependent) or, in other words, that the service provided to

the user is correct during the time interval (0, t] [33]. It is defined as 1-unreliability.

It is a survival function [15].

missionTime Time interval in which the service unreliability is lower than a preassigned threshold.

It is the inverse function of unreliability.

availLevel Availability level associated to the nines of availability. E.g., high corresponds to

99% of ssAvail, etc.

reliabLevel Reliability level.

safetyLevel Safety level.

complexity Complexity metric [4], [5], [16], [21], [22]. There are many complexity metrics in the

literature (e.g., Halstead’s Software Metric, McCabe’s Cyclomatic Complexity). This

attribute provides a quantitative characterization of the service complexity which is

related to the service failure proneness.

ServiceRequest The user that requests one or more services to the system.

Attributes

accessProb Probability that the user accesses to the system [11].

serviceProb Probability that the user, once accessed to the system, requires a certain service [11].

It is a vector of real values ordered according to the list of services requests requested

by the user.

Step Step of a system component that is necessary to carry out a service.
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Fig. 4. System redundancy model

The System Redundancy model of the System Core Package (Figure 4) represents the redundancy structures

that may characterize a system. Software and hardware redundancy are the typical means used to add fault

tolerance capabilities to software systems (by eliminating single points of failure). In dependability analysis

of fault tolerant systems is important to identify and evaluate the system under multiple dependent failure

assumption (i.e., common mode failures).

TABLE III: System redundancy model description.

Adjudicator, Controller, Variant The three terms come from the software FT concept of “recovery

block” [25]. These concepts are used in [9], [26].

(Adjudicator) Attribute

errorDetecCoverage It is the error detection coverage associated to the adjudicators (e.g.,

a tester that checks the results produced by the variants). Used in [9],

[26].

(Variant) Attribute

multiplicity Number of variant copies (required or assumed)

FT Component Abstract concept that indicates a component belonging to a redundant

structure.

Spare This term is mainly referred to HW components, however there is not

a common agreement (i.e., can be also used for SW components). A

spare may substitute for one or more components. This concept is

used in [30].

Attribute

Continued on next page
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TABLE III – continued from previous page

dormancyFactor Ratio between failure rate in standby mode and failure rate in oper-

ational mode. Its value is also used to discriminate the type of spare

(i.e., hot, cold, warm). Used in [30].

multiplicity Number of spare copies (required or assumed)

Redundant Structure It is a container of FT components (at least two). This concept has been

introduced to specify impairments that may affect (simultaneously) a

set of components belonging to the redundant structure.

The Threats model of the Threats package (Figure 5) represents the threats that may affect the system that is

faults, errors and failures [3], and hazards [23]. The model represents also the cause-effect relationships between

the threats: the fault is the original cause of errors and affects system components. A fault generator concept

is added to represent a mechanism, used for example in Petri net dependability models, to inject faults in the

system as well as to specify the max number of concurrent faults to be tolerated by the system or to be assumed

in the system for analysis purposes. Errors are related to component anomalous states and can be propagated

among component states. In particular, when an error affects an external state of a component (that is, affects

the service interface of that component), then the propagation may occur between system components, via their

connectors. Finally, errors may cause impairments, that is failures/hazards at different system level: 1) at service

step level, when the service provided by the component becomes not correct, then leading to failure/hazard

steps; 2) at component/connector level, when the component/connector is not able to provide any basic service;

3) at system level, when the failure is perceived by the system users. The abstract concept of impairment has

been introduced: it may refer to either failure or hazard, depending of the dependability analysis domain (i.e.,

reliability/availability or safety). Observe that also redundancy structures can be affected by impairments: in

this case, the impairment affects all the FT component belonging to the redundant structure.

TABLE IV: Threats model description.

Error Error descriptor.

Attributes

latency The time elapsed between the error occurrence and the error detection [4],

[5].

probability Probability of an error occurrence [4], [5].

Error Propagation Error propagation relation between interacting components (represents the

concept of external error propagation). It is characterized by a direction [4],

[5], [9], [26].

Attribute

Continued on next page
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TABLE IV – continued from previous page

probability Error propagation probability [4], [5], [9], [26].

Error Propagation Rela-

tion

The relation is defined over the set of error propagation relations to express

non trivial relationships among the latter, including sequence dependencies

(“order” constraint attached to the aggregation relation).

Attribute

propagationExpr It is a logical expression that models non trivial error propagation relation-

ships. It is introduced to support the approach [30] based on the derivation

of dynamic fault trees.

Error Step An erroneous state/action.

Failure Failure descriptor.

Attributes

occurrenceRate Failure occurrence rate, i.e., number of failures per unit time. Used as either

input parameter [14], [17], [18], [30] or requirement [4], [5].

MTTF Mean Time To Failure. It can be either a requirement, or metric or input

parameter (see comments for “occurrenceDist”) [4], [5], [9], [26].

MTBF Mean Time Between Failures. It can be either a requirement, or metric or

input parameter (see comments for “occurrenceDist”) [4], [5].

occurrenceDist Failure occurrence distribution (time dependent). Depending on the affected

system level, it can be either a requirement, or metric (e.g., top-level

service unreliability [9], [26]) or an input parameter (e.g., component failure

assumption [14], [17], [18], [30]).

domain Failure domain [3], i.e., content, early timing, late timing, halt or erratic.

Used in [4]–[6], [21], [22], [31].

detectability Failure detectability [3], i.e., signaled or unsignaled.

consistency Failure consistency [3], i.e., consistent or inconsistent.

consequence Failure consequence [3], i.e., minor, marginal, major, or catastrophic. Used

in [4], [5], [16], [19].

condition Logical condition that leads to the failure. Used to express relationships

among component failure states [1], [2], [8].

Failure Step It has various meanings, that is: state/activity affected by failure [17], [18],

state reached after failure occurrence [6], [9], [26], failure event/transition/call

that leads to a failure state [9], [14], [26], [30].

Fault Fault descriptor.

Attributes

occurrenceRate Fault occurrence rate, e.g. number of faults per year [6], [9], [26].

Continued on next page
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TABLE IV – continued from previous page

latency Fault latency is the time elapsing between a fault occurrence and the instant

in which it is perceived by the component(s) [6].

occurrenceProb Probability of a fault occurrence (time independent) [11].

occurrenceDist Probability of a fault occurrence within time t (time dependent). E.g., it can

be specified as negative exponential distribution with input parameter the

occurrenceRate attribute.

persistency Indicates the type of fault w.r.t. persistency [3], that is either transient or

permanent [6], [31].

duration Fault duration (from its occurrence). This attribute can be used to discriminate

the fault persistency [4], [5].

Fault Generator Fault injector. This concept can be modeled, for example, by a UML state

machine that represents the behavior of the injected fault(s) [6], [31].

Attribute

numberOfFaults Minimum number of faults (with the characterization given by the fault

association end) to be tolerated by the system or maximum number of faults

that affect simultaneously the system (for analysis purposes) [31].

Hazard Hazard descriptor [23].

Attribute

origin Depending on the factors that provoked it, it can be classified as endogenous

(due to factors inherent in the system) or exogenous (due to external

phenomena).

severity Worst possible accident that could result from the hazard given the environ-

ment in its most unfavorable state.

likelihood Likelihood of hazard occurring (qualitative).

/level Derived attribute: it is a combination of severity and likelihood.

latency Duration from its occurrence to an accident.

accidentLikelihood Likelihood of hazard leading to an accident.

guideword Guideword that describes the hazard [19], e.g., applied in FFA.

accident Accident on the system environment that may be provoked by the hazard.

Hazard Step Similar meaning of failure step but referred to hazard.

Impairment Abstract concept that may correspond concretely to either failure or hazard.

Attribute

occurrenceProb Occurrence probability of the impairment (time independent). When applied

to failures, it has been used as either requirement [4], [5], or as metric [19].

Continued on next page
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TABLE IV – continued from previous page

/risk Risk factor [16]. It is a derived attribute, when applied to failure is a

combination of (failure) occurrence probability and of failure consequence.

When applied to hazards, is a combination of (hazard) latency and accident-

Likelihood.

cost Cost of the impairment (accepted measure of consequences) [19].

The Maintenance model of the Maintenance package (Figure 6) concerns repairable systems and represents

the maintenance actions undertaken to restore the system affected by threats. According to [3], we distinguish

repair actions, that involve the participation of external agents (e.g., repairman, test equipment, etc) and recovery

actions, usually carried out in fault tolerant systems, that aim at transforming the system anomalous states into

correct states. This package includes concepts that are necessary to support the evaluation of system availability.

TABLE V: Maintenance model description.

External Agent repairman, test equipment, remote reloading software, etc. that undertakes repair actions

on system component affected by threats. This class represents an external actor (out

of the system border).

Maintenance

Action

Abstract concept that includes both repair and recovery actions.

Attribute

rate Rate of the maintenance action.

distribution Probability distribution associated to the maintenance action, that is time to re-

pair/recover (time dependent) [6].

Reallocation

Step

Reconfiguration step in which an ordered set of sw components are reallocated onto an

ordered collection of hw spare components [30] (to model the mapping, the set and the

collection should have the same size).

Reconfiguration

Step

Abstract concept that represents a step in which a reconfiguration technique is carried

out. The latter consists of either switching in spare components or reallocating sw

components among non failed hw components [3].

Recovery Recovery descriptor. A recovery activity/action is usually carried out by the system

itself as a part of an implemented fault tolerance strategy [3].

Attribute

duration recovery duration.

coverageFactor probability of recovery given that a fault is occurred in the system.

Continued on next page
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TABLE V – continued from previous page

Repair Repair descriptor. A repair activity/action is carried out on system components by

external agents.

Attribute

MTTR Mean Time To Repair [4]–[6], [9], [26].

Replacement

Step

Reconfiguration step in which an ordered set of failed components are replaced with an

ordered set of spare components [30] (to model the mapping, the two sets should have

the same size).

A. DA model assessment

The assessment aims at verifying whether the concepts proposed in the literature (limited to the proposals

we considered) are represented in the DA domain model.

X Pataricza [31]: QoSvalues added to critical resources and steps to support qualitative analysis. Our DAM

profile aims at supporting quantitative evaluation of dependability (that is dependability metric estimation),

so the above concept is considered not relevant for DAM purposes.

X Addouche et al. [1], [2]: the reliability and maintainability QoS characteristics have been defined as

attributes of Service (reliability), Recovery (recoveryDist) and Repair (repairDist) classes. QoS character-

istics related to activity durations/deadlines have not been considered since they are specifically related

to timing constraints (the MARTE schedulability sub-profile can be used for this purpose). The concept

related to Indicator and Cause classes, used to represent conditional component failures, are captured by

the condition attribute of the Failure class.

X Bernardi et al. [4], [5]: all relevant concepts included.

X Bernardi-Merseguer [6]: a fault step is missing. Fault step refers to the behavior of the fault generator

(outside the system border). Maybe is not necesary to include it (to avoid confusions).

X Bondavalli et al. [9], [26]: normal (response) step, that is an event representing a normal response of an

object toward the client. Not included explicitly, can be considered as a state (step) in the domain model

(see Core model).

X Dal Cin [13]: the reliability and availability requirements can be captured by the correspondent attributes

of Service and Component classes. We do not include instead concepts to support the specification of

dependability mechanisms and fault tolerant architectures (this is addressed by the QoS&FT profile).

X D’Ambrogio et al. [14]: all the concepts included.

X Pay-Dugan [30]: 1) hot,warm,cold to discriminate spare components. We use the dormancyFactor attribute

to discriminate them, as suggested, also, by Pay-Dugan. 2) Error propagation relation from hw to software

components. 3) error propagation relation between components related with a ”use-service-of” relation. The

latter two are not explicity represented, they can be seen as a refinement of the external error propagation

relation (see Threat Chain model).
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X Cortellessa-Pompei [11]: 1) REbp, that is the number of invocation associated to components, and REnummsg,

that is number of invocation of a connector. They are strictly related to the method of derivation of the

target dependability model, and, actually, they can be calculated using the information in the UML diagrams

(without profile extensions). 2) REindexHost associated to Execution Host to represent the list of host names

physically connected to the current one. As before. The REconnector concept has a correspondence with

the concept of FailureStep in the domain model.

X Grassi et al. [17], [18]: all the concepts included.

X Jurjens [21], [22]: the type of failures considered are covered by the concepts associated to the Failure

class. The redundancy concepts introduced by Jurjens are misleading w.r.t. the terminology included by

Laprie et al. Indeed, they indicate different fault masking policies (e.g., replication with majority voting)

rather than redundancy characteristics. In the domain model spatial redundancy is represented.

X Pataricza et al. [32]: faulty behavior and error propagation concepts are addressed by the FailureStep and

ErrorPropagation classes.

X Goseva et al. [16]: all the concepts included. In particular, the failure severity and risk concepts are

captured by the consequence and risk attributes of Failure class. Complexity and coupling concepts have

been associated to Component/Service and Connector classes, respectively.

X Hassan et al. [19]: failure modes are captured by several Failure attributes. The concept of failure/hazard

cost has been addressed by the cost attribute defined in the Failure and Hazard classes. Hazard guidewords

are captured by the guideword attribute of Hazard class. Finally, the scenario execution probability is

represented by the execProb attribute of Service class.

IV. DEPENDABILITY ANALYSIS MODELING (DAM) PROFILE

<<profile>>
DAM

DAM_UML_Extensions

<<modelLibrary>>
DAM_Library

<<import>>

<<profile>>
MARTE::GQAM

<<import>> <<modelLibrary>>
DAM::DAM_Library

Complex_DA_Types

Basic_DA_Types

<<import>>

<<modelLibrary>>
MARTE::MARTE_Library::

BasicNFP_Types

<<profile>>
MARTE::NFPs

<<import>>

<<apply>>

(a) (b)

<<profile>>
MARTE::VSL::DataType

<<apply>>

Fig. 7. DAM profile overview

The DAM Profile, in Figure 7(a), includes a set of UML extensions, that is stereotypes, their attributes and

constraints, together with a model library that provides the necessary dependability data-types for the definition

of stereotype attributes. The DAM Profile specializes UML extensions of the General Quantitative Analysis
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Modeling profile of MARTE. The UML extensions are defined in the following, considering the DA domain

model of the previous section and are described using a tabular format.

A. DAM UML extensions

The domain classes that are mapped into stereotypes are depicted as dotted classes in Figures 3,4,5 and 6.

The stereotype names are prefixed by Da, namely Dependability analysis, and for each stereotype (first

column of Table VI):

• An explicit reference is given to the domain class represented by the stereotype. Then, the semantics

associated to the stereotype is the one of the mapped domain class.

• A stereotype may extend UML(v.2) meta-classes or specialize a MARTE stereotype.

• A stereotype can be generalized by another stereotype, that is it inherits all the properties of the super-

stereotype. In particular, the generalization relationship (direct and indirect) between stereotypes maps a

generalization relationship between the corresponding mapped domain classes of the domain model.

• A stereotype attribute can map either an attribute of the (mapped) domain class, in this case we maintain

the same attribute name (and the same semantics), or an association end of a domain association between

the (mapped) domain class and another domain class. In the latter case, the name (and the semantics) of

the stereotype attribute is the name (and the semantics) of the association end. The stereotype attributes

are characterized by attribute types. For the stereotype attributes, that map domain class attributes, we

use primitive types, like Boolean, and the basic NFP types of MARTE library when possible (they are

prefixed as NFP ). New basic dependability types are also used and they will be described in IV-B2. For

the stereotypes attributes that map association ends, we define new complex dependability types (that will

be described in sub-section IV-B1).

• Constraints can be assigned to stereotypes and represent constraints for the use of the profile by the

end-users (e.g., software analysts that use the profile to annotate their UML models).

TABLE VI: Stereotypes description.

DaComponent maps the SystemCore::Core::Component domain class

Extensions

Generalization MARTE::GRM::Resource

Attributes

stateful Boolean[0..1]

origin Origin[0..1]

isActive Boolean[0..1] - Inherited from Resource

failureCoverage NFP Percentage[*]

percPermFault NFP Percentage[*]

ssAvail NFP Percentage[*]

unreliability NFP CommonType[*]

Continued on next page
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TABLE VI – continued from previous page

reliability NFP CommonType[*]

missionTime NFP CommonType[*]

availLevel DaLevel[*] - Application specific

reliabLevel DaLevel[*] - Application specific

safetyLevel DaLevel[*] - Application specific

complexity NFP Real[*]

fault DaFault[*] - Faults affecting the component

error DaError[*] - Error affecting the component

failure DaFailure[*] - Failures affecting the component

hazard DaHazard[*] - Hazards affecting the component

repair DaRepair[*] - Repairs undergone by the component

DaConnector maps the SystemCore::Core::Connector domain class

Extensions Association, CommunicationPath, Deployment, Connec-

tor, InvocationAction, Dependency (e.g., Usage), Mes-

sage, Extend, Include

Generalization none

Attributes

coupling NFP Real[*]

errorProp DaErrorPropagation[*] - Error propagations carried by

the connector

failure DaHazard[*] - Failures affecting the connector

hazard DaHazard[*] - Hazards affecting the connector

DaService maps the SystemCore::Core::Service domain class

Generalization MARTE::GQAM::GaScenario

Attributes

execProb NFP Real[*]

ssAvail NFP Percentage[*]

instAvail NFP CommonType[*]

unreliability NFP CommonType[*]

reliability NFP CommonType[*]

missionTime NFP CommonType[*]

availLevel DaLevel[*] - Application specific

reliabLevel DaLevel[*] - Application specific

safetyLevel DaLevel[*] - Application specific

complexity NFP Real[*]

failure DaFailure[*] - Failures affecting the service

Continued on next page
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TABLE VI – continued from previous page

hazard DaHazard[*] - Hazards affecting the service

recovery DaRecovery[*] - Recovery actions undertaken on the

service

DaServiceRequest maps the SystemCore::Core::ServiceRequest domain class

Extensions Classifier (e.g. Actor), Lifeline, Interaction, Instance-

Specification

Generalization none

Attributes

accessProb NFP Real[*]

serviceProb NFP Real[*]{ordered}

requests DaService[*]{ordered}

Constraints the order of serviceProb corresponds to the order of

requests.

DaStep maps the SystemCore::Core::Step domain class

Generalization MARTE::GQAM::GaStep

Attributes

kind StepKind - Enumeration indicating the type of step

error DaError[*] - Errors affected by the step

failure DaFailure[*] - Failures affected by the step

hazard DaHazard[*] - Hazards affected by the step

recovery DaRecovery[*] - Recovery actions undertaken in the step

DaAdjudicator maps the SystemCore::SystemRedundancy::Adjudicator domain class

Extensions none

Generalization DaComponent

Attributes

errorDetecCoverage NFP Percentage[*]

Constraints origin = sw

DaRedundant

Structure

maps the SystemCore::SystemRedundancy::RedundantStructure domain class

Extensions Package

Generalization none

Attributes

commonModeFailure DaFailure[*]

commonModeHazard DaHazard[*]

Continued on next page
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TABLE VI – continued from previous page

Constraints It is a property related to two or more FT com-

ponents (controllers, variants, adjudicators,spares). The

stereotyped model-element is a package containing the

redundant components affected by the common mode

failure/hazard.

DaController maps the SystemCore::SystemRedundancy::Controller domain class

Extensions none

Generalization DaComponent

Attributes none

DaSpare maps the SystemCore::SystemRedundancy::Spare domain class

Extensions none

Generalization DaComponent

Attributes

multiplicity NFP Integer[*]

dormancyFactor NFP Real[*]

substitutesFor String[1..*] - Component names (to be) substituted by

the spare

Constraints The components to be substituted must be DaCompo-

nents.

DaVariant maps the SystemCore::SystemRedundancy::Variant domain class

Extensions none

Generalization DaComponent

Attribute

multiplicity NFP Integer[*]

DaErrorProp Rela-

tion

maps the Threats::ErrorPropagationRelation domain class

Extensions Constraint

Generalization none

Attributes

propagationExpr PropExpression - logical expression with errorProp

terms

errorProp DaErrorPropagation[2..*]{ordered} - Error propagation

terms

Constraints the error propagation terms are ordered to support the

specification of sequence dependencies.

DaFaultGenerator maps the Threats::FaultGenerator domain class

Continued on next page
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TABLE VI – continued from previous page

Generalization MARTE::GQAM::GaWorkloadGenerator

Attributes

numberOfFaults NFP Integer[*] = 1 - Number of faults to be tolerated

or number of system components concurrently affected.

Default is one. Redefine the GaWorkloadGenerator con-

cept pop.

fault DaFault - Characterization of the generated faults

Constraints multiple faults (that is when numberOfFaults is greater

than one) have the same characterization given by the

complex value associated to fault attribute.

DaReplacementStep maps the Maintenance::ReplacementStep domain class

Extensions none

Generalization DaStep

Attributes

replace String[1..*]{ordered} - Failed component to be replaced

with String[1..*]{ordered} - Component that replaces the

failed one

Constraints 1) the failed components to be replaced is are DaCom-

ponent 2) the components that replace the failed ones

are a DaSpare, 3) the order of replace corresponds to

the order of with.

DaReallocationStep maps the Maintenance::ReallocationStep domain class

Extensions none

Generalization DaStep

Attributes

map String[1..*]{ordered} - The component to be reallocated

onto String[1..*]{ordered} - The spare component that hosts

the reallocated component

Constraints 1) The reallocated components are DaComponent, with

origin=sw, 2) the components that host the reallocated

ones are DaSpare, with origin=hw, 3) the order of map

corresponds to the order of onto.

The DAM profile provides support to the specification of non trivial threat assumptions. In particular, the

(sequence) dependencies of error propagation between components, state-based failure conditions and common

mode failures of a set of redundant components.
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a) Error propagation dependencies: The DaErrorPropagation stereotype that can be used to specify,

via constraints, non trivial relationships on a set of error propagations between system components. This is

achieved by assigning proper values to the attributes propagationExpr (PropExpression type) and errorProp

(DaErrorPropagation type). The value of the former is a logical expression on a set of error propagation terms

(variables) while the value of the latter represents the (ordered) set of error propagation terms, at least two (the

variable declaration and initialization). The syntax used for the specification of error propagation dependencies

is given in Table VII.

propagationExpr-value ::= term logical-op term | ‘(’ propagationExpr-value ‘)’ logical-op term

| ‘not’ ‘(’ term ‘)’ | ‘not’ ‘(’ propagationExpr-value ‘)’

| ‘ordered’ ‘(’ setOfTerms ‘)’

logical-op ::= ‘and’ | ‘or’ | ‘xor’ | ‘implies’

setOfterms ::= term ‘,’ term | setOfterms ‘,’ term

term ::= ‘$’ variable-name

errorProp-value ::= ‘(’ errorProp-body ‘)’

errorProp-body ::= term ‘=’ errorProp-term [‘;’ errorProp-body ]

errorProp-term ::= ‘(’ ‘probability’ ‘=’ prob ‘,’ ‘from’ ‘=’ component-source ‘,’

‘to’ ‘=’ component-target ‘)’

prob ::= NFP_Real

component-source ::= string

component-target ::= string

TABLE VII

BNF SYNTAX FOR THE SPECIFICATION OF ERROR PROPAGATION DEPENDENCIES

b) State-based failure conditions: State-based failure conditions can be specified for either components or

services, by assigning a value to the condition attribute (FailureExpression type) of the complex NFP failure

(DaFailure type). The value is actually a logical expression on a set of state-failure terms. The syntax used to

specify a state-based failure conditions is given in Table VIII.

condition-value ::= ‘(’ failure-body ‘)’

failure-body ::= fail-term | ‘not’ fail-term | ‘not’ ‘(’ failure-body ‘)’ |

failure-body logical-op fail-term

logical-op ::= ‘and’ | ‘or’ | ‘xor’ | ‘implies’

fail-term ::= ‘(’ ‘component’ ‘=’ component, ‘state’ ‘=’state)

component ::= string

state ::= string

TABLE VIII

BNF SYNTAX FOR THE SPECIFICATION OF STATE-BASED FAILURE CONDITIONS

Let us assume that the failure of component A depends on the state of component B. In particular, when

component B is either in state degraded of failed. Then, we can stereotype both the components as DaComponent

and annotate the following property on component A:
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failure = (condition =

(component = B, state=degraded) or (component=B, state=failed))

c) Common mode failures/hazards: The stereotype DaRedundantStructure is used to characterize the

impairments affecting simultaneously the set of FT components belonging to a redundant structure (that is

components stereotyped as either variant, or controller, or adjudicator or spare). For example, the common

mode failure probability. The annotation at model specification level is carried out by including the set of FT

components into a package stereotyped as DaRedundantStructure and then specifying the value of the attribute

commonModeFailure as a package property.

B. DAM model library

The DAM library contains complex and basic dependability types as depicted in Figure 7(b). We use MARTE

profile, in particular:

• Basic NFPs types from MARTE library are imported in order to reuse them (both in the definition of

complex and basic dependability types)

• The MARTE sub-profile NFPs is applied to the definition of new basic dependability types.

• The MARTE sub-profile VSL is applied to the definition of complex dependability types.

1) Complex dependability types: Complex dependability types are MARTE tupleTypes characterized by

basic NFPs, from MARTE library, and/or basic dependability types. They map the domain classes depicted

with diagonal stripes in Figures 5 and 6. As for stereotypes, a complex dependability type is prefixed by Da

and an attribute of a complex dependability type (e.g., DaErrorPropagation) can map either an attribute of the

(mapped) domain class (e.g., probability) or an association end of a domain association between the mapped

domain class and another domain class (e.g., from). In both cases we use the same names (and semantics) of

the mapped domain elements.

TABLE IX: Complex dependability types description.

DaError maps the Threats::Error domain class

Attribute

latency NFP Duration[*]

probability NFP Real[*]

DaError Propaga-

tion

maps the Threats::ExternalErrorPropagation domain class

Attribute

probability NFP Real[*]

from String[0..1] - name of the source of error propagation

to String[0..1] - name of the destination of error propagation

Continued on next page
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TABLE IX – continued from previous page

Constraints the names of the source and destination are names of

DaComponent elements connected by a DaConnector.

DaFailure maps the Threats::Failure domain class

Attribute

occurrenceRate DaFrequency[*]

MTTF NFP Duration[*]

MTBF NFP Duration[*]

occurrenceProb NFP Real[*]

occurrenceDist NFP CommonType[*]

domain Domain[0..1]

detectability Detectability[0..1]

consistency Consistency[0..1]

consequence DaCriticalLevel[*]

risk NFP Real[*]

cost DaCurrency[*]

condition FailureExpression[0..1] - logical expression with failstate

terms, i.e., failstate = (component = String, state = String),

where the component string is the name of a DaComponent

and the state string is a state of the DaComponent.

DaFault maps the Threats::Fault domain class

Attribute

occurrenceRate DaFrequency[*]

latency NFP Duration[*]

occurrenceProb NFP Real[*]

occurrenceDist NFP CommonType[*]

persistency Persistency[0..1]

duration NFP Duration[*]

DaHazard maps the Threats::Hazard domain class

Attribute

origin FactorOrigin[0..1]

severity DaCriticalLevel[*]

occurrenceProb NFP Real[*]

likelihood DaLikelihood[*]

level NFP Real[*]

latency NFP Duration[*]

accidentLikelihood DaLikelihood[*]

Continued on next page
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TABLE IX – continued from previous page

risk NFP Real[*]

cost DaCurrency[*]

guideword Guideword[*]

accident String[*]

DaRecovery maps the Maintenance::Recovery domain class

Attribute

rate DaFrequency[*]

duration NFP Duration[*]

distribution NFP CommonType[*]

coverageFactor NFP Real[*]

DaRepair maps the Maintenance::Repair domain class

Attribute

rate DaFrequency[*]

MTTR NFP Duration[*]

distribution NFP CommonType[*]

2) Basic dependability types: Basic dependability types, represented in Figure 8, can be either simple

enumeration types (Origin, Detectability, Persistency, CriticalLevel, Likelihood, Level, Consistency, Domain,

FactorOrigin, Guideword, StepKind, DaCurrencyUnitKind and DaFrequencyUnitKind) or data-types.

In particular, the latter include new NFP types obtained by specializing the NFP CommonType and NFP Real

concepts of MARTE library (DaFrequency, DaCurrency, DaLevel, DaCriticalityLevel). The imported NFP types

are shown in grey in the Figure. Such new types inherit from super-types several properties, that are:

• expr: expressions in MARTE Value Specification Language (VSL),

• source: origin of the specification, such as estimated (e.g., a metric to be estimated) and required (e.g., a

requirement to be satisfied),

• statQ: type of statistical measure (e.g., maximum, minimum, mean),

• dir: type of the quality order relation in the allowed value domain of the NFP, for comparative analysis

purposes.

C. DAM Profile assessment

The assessment aims at verifying whether the concepts listed in the check list of information requirements

for a dependability profile (reported below) are represented in the DAM profile.

X (IR1) Identification of the dependability analysis context, in particular the types of non functional require-

ments to be assessed, i.e., reliability (R), availability (A), safety (S).

The dependability analysis context has been identified via the set of introduced stereotypes. There is not an

explicit representation of R/S/A analysis contexts (maybe is not necessary, since during evaluation both reliability
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<<modelLibrary>>
DAM::DAM_Library::Basic_DA_Types

Domain

content
earlyTiming
lateTiming
halt 
erratic

Consistency

consistent
inconsistent

Persistency

transient
permanent

<<enumeration>>

<<enumeration>>

<<enumeration>>

DaFrequencyUnitKind

<<unit>> ft/s
<<unit>> ft/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> ft/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> ft/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> ft/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> ft/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> ft/yr {baseUnit=ft/month,convFactor=1/12}
<<unit>> fail/s
<<unit>> fail/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> fail/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> fail/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> fail/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> fail/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> fail/yr {baseUnit=ft/month,convFactor=1/12}
<<unit>> repair/s
<<unit>> repair/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> repair/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> repair/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> repair/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> repair/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> repair/yr {baseUnit=ft/month,convFactor=1/12}
<<unit>> rec/s
<<unit>> rec/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> rec/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> rec/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> rec/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> rec/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> rec/yr {baseUnit=ft/month,convFactor=1/12}

<<enumeration>>

CriticalLevel

minor
marginal
major
catastrophic

<<enumeration>>

Likelihood

frequent
moderate
occasional
remote
unlikely
impossible

<<enumeration>>

Guideword

value
omission
commission
...

<<enumeration>>

DaCriticalLevel

<<dataType>> 
<<nfpType>>

value: CriticalLevel

{valueAttr=value}

DaLevel

<<dataType>> 
<<nfpType>>

value: Level

{valueAttr=value}

DaLikelihood

<<dataType>> 
<<nfpType>>

value: Likelihood

{valueAttr=value}

<<enumeration>>

FactorOrigin

endogenous
exogenous

<<enumeration>>

StepKind

error
failure
hazard
reallocation
replacement

NFP_CommonType

<<dataType>> 
<<nfpType>>

expr:VSL_Expression
source: Source
statQ:StatisticalQualifierKind
dir:DirectionKind

{exprAttr=expr}

Detectability

signaled
unsignaled

<<enumeration>>

<<enumeration>>

Level

very high
high
medium
low

DaCurrency

<<dataType>> 
<<nfpType>>

unit: DaCurrUnitKind

{valueAttr=unit}

NFP_Real

<<dataType>> 
<<nfpType>>

value:Real

{valueAttr=value}

DaFrequency

<<dataType>> 
<<nfpType>>

unit: DaFrequencyUnitKind
precision:Real

{unitAttr=unit}

<<enumeration>>

Origin

hw
sw

DaCurrUnitKind

euro
dollar
real

<<enumeration>>

Fig. 8. DAM basic types

and availability metrics could be calculated using the same context).

X (IR2) Specification of dependability requirements in terms of upper/lower bounds, like the maximum

(minimum) system or component unreliability (reliability) required, the minimum availability or safety

level required.

The characteristics of interest are defined as attributes of NFP or dependability basic types (see e.g., attributes

associated to DaComponent and DaService), so they can represent requirements - by setting the source property

to the required value, during the model annotation - and they can be expressed in terms of upper/lower bounds

- either via expr property or via statQ properties. For example, considering a DaService we can define the

following requirements1:

1) reliability = (expr= R(50,hrs) >= 0.9, source=req)

1We use the extended VSL notation, in the examples
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2) unreliability = (expr= U($t) < 0.1, source=req)

3) ssAvail = (value=99%, statQ=min, source=req)

3) safetyLevel = (value=high, statQ=min, source=req)

that is: 1) The service reliability, during 50 hours of provisioning, should be at least 0.9. 2) The service

unreliability, during t hours of provisioning, should be less than 0.1. 3) The minimum service steady state

availability should be 99%. 4) The minimum service safety level should be high.

X (IR3) Specification of dependability measures to be estimated during the analysis. The set of supported

measures should include, at least, the reliability/unreliability PdFs, the system failure probability, MTTF,

the maintainability PdF, MTTR, the instantaneous and the steady state availability, the safe mission time,

the safety risk factor.

The dependability metrics are defined as attributes of NFP or basic dependability types, so it is sufficient to

set the source property to estimated value, during the model annotation to represent a metric to be evaluated

during the analysis. For example, considering a DaService we can define the following metrics representing the

required set:

1) reliability = (expr= R(50,hrs), source=est)

2) unreliability = (expr= U($t), source=est)

3) failure = (occurrenceProb= (value = $FP, source=est))

4) failure = (MTTF = (value = $mttf, source=est))

5) repair = (repairDist = (expr= M($t), source=est))

6) repair = (MTTR = (value = $mttr, source=est))

7) instAvail = (expr = A($t), source=est)

8) ssAvail = (value=$avail, source=est)

9) missionTime = (expr=MT(0.1), source=est)

10) failure = (risk= (value=$risk, source = est))

X (IR4) Specification of the dependability input parameters that are needed by the standard techniques for

the quantitative evaluation of the system dependability. The dependability input parameters characterize,

from a quantitative point of view:

– (IP1) The processes leading to service failures and accidents. In particular, the threats of dependability

that may affect both hardware and software resources (e.g., the probability of fault occurrence, the

error latency, the probability of failure, the hazard severity).

– (IP2) The repair/reconfiguration processes, in case of repairable systems/components, that remove

basic or derived failures from the system (e.g., repair and restoration rates).

The dependability threats have been represented as complex dependability types: DaFailure,DaError,DaFault,

DaHazard (IP1). Maintenance concepts are represented by complex dependability types: DaRepair and DaRe-

covery (IP2). Each type consists of a set of attributes (of NFP or basic dependability type) that can be used

to give a quantitative characterization of faults, errors, failures, hazards and of repair/recovery. For example,

considering a DaComponent we can define the following input parameters:



TECHNICAL REPORT NUM. RR-08-05 33

1) fault = (occurrenceProb= (value = 0.4))

2) repair = (repairRate = (value = (5,repair/day)))

that is 1) a fault has an occurrence probability of 0.4, and 3) the repair rate is of 5 repairs per day. Considering

a DaService we can define the following input parameter:

recovery = (recoveryRate = (value = (5,rec/min) ))

Error latency is specified instead using the DaStep stereotype:

error = (latency= (value = (10,ms) ))

Failure and hazard input parameters can be specified for both DaComponent and DaService:

1) failure =

(occurrenceDist = (expr= weibull($t,shape=0.9,scale=(5,hrs))))

2) hazard = (severity = (value= minor))

that is , 1) the failure probability (time dependent) is given by the Weibull PdF, and 2) the hazard severity level

is minor.

X (IR5) Specification of different fault behaviors depending on their timing persistence (i.e., permanent,

transient and intermittent) and of fault occurrence assumptions (e.g., single fault assumption).

DaFault complex dependability type includes the persistency attribute, of enumeration type, that is used to

discriminate permanent and transient faults. Intermittent fault concepts, has not been mentioned since in [3]

intermittent concepts is not considered. Fault occurrence assumption can be specified using DaFaultGenerator

stereotype, via numberOfFault attribute.

X (IR6) Specification of the error propagation between system components that interact with each others.

Addressed by the DaConnector stereotype, via the errProp attribute. Non trivial error propagation relationships,

such as sequence dependencies, can be specified via the DaErrorPropRelation stereotyped note symbols, for

example:

propagationExpr = ordered($term1, $term2)

errorProp = ($term_1 = (probability=0.3,from=A,to=B);

$term_2 = (probability=0.2,from=B,to=C))

where the two error propagation terms, specifying the error propagation probability from component A to

component B and from component B to component C, respectively, are related with the implies logical connector.

X (IR7) Specification of the system failure modes with respect to different point of views: the domain,

i.e, content and timing failures (Dom); the detectability, i.e., signaled or unsignaled failures (Det); the

consistency, i.e., consistent or unconsistent failures (Con); the consequences, i.e., minor, marginal, critical

and catastrophic failures (Cons); and, when multiple failure are considered, the failure dependency, i.e.,

independent or dependent failures (Dep).
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DaFailure complex dependability type includes the domain, detectability, consistency, consequence attributes

that can be used for specifying failure modes w.r.t. the firsts four points of view. Concerning failure dependency,

the DaRedundantStructure stereotype can be used to specify the common mode failures/hazards of a set of FT

components by packaging them and stereotyping the package. The conditional (component) failures are specified

via the condition constraint associated to the Failure class. For example, assuming a failure dependency of

component A with respect to the state of components B and C, then we can specify the failure probability of

A given the states of B and C, by stereotyping the components as DaComponent and for A specifying:

failure =

(occurrenceProb = (value = 0.3),

condition= ( (component=B, state=degraded) or (component=C,state=failed))

)

Independent failures are specified via the DaFailure complex dependability type.

X (IR8) Specification of the hazards leading to accidents, in terms of their basic components (such as the

severity, the likelihood of hazard occurring, the duration, the accident likelihood and the risk).

Addressed by the DaHazard complex dependability type, that can be associated to both system components

and services. In particular, it consists of a set of attributes that are used to characterize the hazard (e.g., severity,

likelihood of hazard occurring and of hazard leading to an accident, duration and risk).

X (IR9) Specification of (uncorrect) behavior of system components affected by threats as well as the

reconfiguration activities that restore the system component states. In particular, identification of erroneous/

failure states, threat events, recovery triggers and actions.

DaStep stereotype is used to specify erroneous/failed/hazardous states/events/transitions as well as actions/activities

affected by faults. DaReplacement and DaReallocation stereotypes are used to specify reconfiguration states/events/activities,

etc.

X (IR10) Specification of redundant hardware and software components. In particular, the number of vari-

ant/spare copies existing in a redundant structure, the minimum number of components required in a

redundant structure for a dependable system, and the type of spare redundancy.

DaAdjudicator, DaController, DaVariant and DaSpare stereotypes are used to specify redundant components.

The first two properties are addressed by the multiplicity attribute of DaVariant and DaSpare stereotypes. The

type of spare is specified via the dormancyFactor attribute of DaSpare stereotype.
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APPENDIX A

CONTRIBUTIONS TO THE INFORMATION REQUIREMENTS CHECKLIST

TABLE X: Summary of contributions to IR1-IR6

Approach IR1 IR2 IR3 IR4-IP1 IR4-IP2 IR5 IR6

Pataricza [31] Dep. No UML extensions

used. Emphasizes the

importance of discrim-

inating permanent and

transient faults. It sug-

gests the introduction

of fault injector SM

models that can be

used to specify con-

straints on fault occur-

rences.

No UML extensions

used. Emphasizes the

importance of repre-

senting error propaga-

tion across the system.

Addouche

[1], [2]

Dep. Resource reliability is

specified as � qos�

tagged value. State-

conditional component

failure probability

specified using

� Indicator � and

�Cause� classes.

Resource

maintainability is

specified as �qos�

tagged value.

Continued on next page
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TABLE X – continued from previous page

Approach IR1 IR2 IR3 IR4-IP1 IR4-IP2 IR5 IR6

Bernardi

[4], [5]

Dep. Requirements (e.g.,

MTTF, MTTR, steady

state availability) are

specified as upper or

lower bounds using

� Input/Output �

attributes.

Metrics to be estimated

(e.g., fault dormancy,

error latency) are spec-

ified using �Output�

attributes.

Input parameters

(e.g., fault duration

and occurrence,

component criticality

and complexity level)

are specified using

�Input� attributes.

Fault classification

of [3] is represented

with a class diagram.

Class attributes are

used to specify timing

characteristics of

faults according to

their persistency.

Error propagation be-

tween system compo-

nents is represented in

the FEF chain Class

Diagram.

Bernardi-

Merseguer

[6]

Dep. Requirements specifi-

cation (e.g., max time

to detect a failure) is

compliant to the SPT

profile.

Metrics specification

(e.g., time to detect a

failure) is compliant to

the SPT profile.

Fault occurrence and

latency are specified

for �FTstep� transi-

tions and do-activities.

SM are used to model

different types of

faults w.r.t. their

timing persistency.

Bondavalli

[9], [26]

Rel.,

avail.

Metrics (e.g., reliabil-

ity, MTTF, steady state

and immediate avail-

ability) are specified in

use case diagrams us-

ing measure of interest

tag.

Input parameters (e.g.,

fault occurrence, per-

centage of permanent

faults, error latency, er-

ror propagation proba-

bility) are specified by

using different combi-

nations of stereotypes.

Repair delays are

specified by using

different combination

of stereotypes.

Permanent faults

can be quantified

via the percentage

of permanent faults

tagged value of

� hardware �

stereotype.

Error propagation

probability is

specified via the

� propagation �

stereotype.

Continued on next page
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TABLE X – continued from previous page

Approach IR1 IR2 IR3 IR4-IP1 IR4-IP2 IR5 IR6

DalCin [13] Rel.,

avail.

� requirements �

note symbols, specify-

ing, e.g., max relia-

bility and steady state

availability are written

using an ad-hoc lan-

guage.

D’Ambrogio

[14]

Rel. No UML extensions

used. Input parameters

of the fault-tree model

derived from UML

design are MTTF of

nodes, communication

paths, call and return

actions and operations.

Pai-

Dugan [30]

Rel.,

avail.

Input parameters, e.g.,

failure rate, coverage

factor, error propaga-

tion, are specified by

using �hardware �

and � software �

classes.

Restoration rates are

specified by using �

hardware� and �

software� classes.

Error propagation

probability due to

hw faults is specified

via � propagates

error to �

associations.

Continued on next page
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TABLE X – continued from previous page

Approach IR1 IR2 IR3 IR4-IP1 IR4-IP2 IR5 IR6

Cortellessa-

Pompei [11]

Rel. Input parameters

(e.g., atomic failure

probabilities of

software components

and logical links)

are specified using

stereotypes that

specialize concepts

introduced in the

General Resource

Modeling package of

the SPT profile.

Grassi [17],

[18]

Rel. Extend the usage

of [11]’s annotations to

hardware components

and consider both

atomic failures and

failure PdFs.

Continued on next page
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TABLE X – continued from previous page

Approach IR1 IR2 IR3 IR4-IP1 IR4-IP2 IR5 IR6

Jürjens

[21], [22]

Rel.,

safety

Reliable/safe

communication reqs.

(e.g., max duration

for data transmission,

max probability

of message loss,

probability of eventual

data delivery). They

are specified using

the � guarantee �

stereotype.

Communication failure

assumptions (on nodes

and links) are specified

using the � risk �

stereotype.

Pataricza [32] Safety SM transitions that

model error correction

are stereotyped �

ErrorCorrecting�.

Goseva [16] Safety No UML extensions

used. Metrics are either

derived from the UML

model (e.g., component

complexity, connector

coupling) or estimated

via safety analysis

techniques (e.g.,

severity). Composite

metrics (risk factors)

are defined as functions

of the basic ones.

Continued on next page
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TABLE X – continued from previous page

Approach IR1 IR2 IR3 IR4-IP1 IR4-IP2 IR5 IR6

Hassan [19] Safety No UML extensions

used. Metrics/ proper-

ties are estimated via

safety analysis tech-

niques (e.g., cost of

hazard, failure proba-

bilities, hazard guide-

words).
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TABLE XI: Summary of contributions to IR7-IR10

Approach IR7-Dom IR7-Det IP7-Con IR7-Cons IR7-Dep IR8 IR9 IR10

Pataricza [31] Usage of QoS val-

ues to qualify the

failure domain, e.g.,

early/late timing fail-

ure.

Components move

from normal to

faulty states as

effect of a fault

injector request.

Addouche

[1], [2]

Use of SM states and

guards to specify

component state-

based conditional

failures

� Indicator �

and � Cause �

classes are

related to the

dynamic aspects

of resources.

The former are

used to specify

degraded/failure

states, while the

latter are used to

specify logical

conditions of

failure occurrence.

Continued on next page
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TABLE XI – continued from previous page

Approach IR7-Dom IR7-Det IP7-Con IR7-Cons IR7-Dep IR8 IR9 IR10

Bernardi [4],

[5]

A class diagram of

failure modes is pre-

sented. Failures are

classified, according

to their impact on

the automation sys-

tem, in halting (pas-

sive and silent), de-

grading and repair-

ing failures.

A criticality level at-

tribute is associated

to system compo-

nents and functions

to specify their fail-

ure criticality.

Bernardi-

Merseguer [6]

No UML extensions

used. The QoS as-

sessment is carried

out under late timing

failure assumption.

Continued on next page
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TABLE XI – continued from previous page

Approach IR7-Dom IR7-Det IP7-Con IR7-Cons IR7-Dep IR8 IR9 IR10

Bondavalli

[9], [26]

Dependent failures

are considered in

case of system

redundancy. A

common mode

failure tag is used

to specify the

common mode

failure occurrences

of components

belonging to a

redundant FT

structure.

Stereotypes are

used in order

to represent

failure and normal

states/events in

SM representing

the behavior

of redundancy

manager

components.

Stereotypes are

used to identify

elements of a

redundant structure

(manager, variant,

adjudicator, tester,

comparator). Tags

can be associated

to a group of

elements to specify

common mode

failures and error

detection coverage.

DalCin [13]

D’Ambrogio

[14]

Pai-

Dugan [30]

Several stereotypes

are defined to model

different kinds

of dependencies

between system

components. The

method supports the

analysis of sequence

failure dependencies.

Reconfiguration ac-

tivities are mod-

elled with SM. No

specific UML ex-

tensions are used

for this purpose.

Stereotypes

are used to

discriminate

the type of spare

components.

Cortellessa-

Pompei [11]

Continued on next page
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Approach IR7-Dom IR7-Det IP7-Con IR7-Cons IR7-Dep IR8 IR9 IR10

Grassi [17],

[18]

Jürjens [21],

[22]

Different stereotypes

are introduced

to specify the

type of failure,

i.e., � crash/

performance �

for timing failures,

� value � for

content failures.

� risk � stereo-

type is introduced

to specify failure

assumptions.

� redundancy �

stereotype is used

to specify the type

of voting model de-

signed within a FT

structure.

Pataricza [32] Normal and faulty

behavior of com-

ponents are inte-

grated in a single

SM. UML stereo-

types are used to

identify erroneous

states and error cor-

recting transitions.

Continued on next page
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Goseva [16] Severity indices are

associated to system

components and con-

nectors to estimate

the risk factors.

Hazard parameters

(e.g, severity,

occurrence

likelihood)

associated to

components

and connectors

are estimated

to quantify the

scenario risk

factor.

Hassan [19] Cost of failure con-

cept is introduced to

estimate the failure

consequences on the

system components,

connectors and sce-

narios. Although no

UML extension is

used, the costs of

failure are annotated

in UML sequence di-

agrams using note

symbols.

Hazard parameters

(e.g., cost,

occurrence

likelihood)

associated to

components and

connectors are

estimated to

quantify the cost of

scenario failures.
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[20] A. Immonen and E. Niemelä. Survey of reliability and availability prediction methods from the viewpoint of software architecture.

Software System Model, (7):49–65, 2008.

[21] J. Jürjens and S. Wagner. Component-based Development of Dependable Systems with UML. In Atkinson et al., editor, Component-

Based Software Development, volume 3778 of LNCS, pages 320–344. Springer-Verlag, 2005.

[22] Jan Jürjens. Developing safety-critical systems with UML. In UML 2003, San Francisco, volume 2863 of LNCS, pages 360–372.

Springer-Verlag, October 2003.

[23] Nancy G. Leveson. Safeware. Addison-Wesley, 1995.

[24] Michael R. Lyu, editor. Handbook of Software Reliability Engineering. IEEE Computer Society Press, 1996.

[25] M.R. Lyu. Software Fault Tolerance. John Wiley & Sons, Ltd., 1995.

[26] I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic Dependability Analysis of System Architecture Based on UML Models. In

R. De Lemos, C. Gacek, and A. Romanovsky, editors, Architecting Dependable Systems, LNCS 2677, Lecture Notes in Computer

Science, pages 219–244. Springer-Verlag, Berlin, Heidelberg, New York, 2003.



TECHNICAL REPORT NUM. RR-08-05 47

[27] Object Management Group. UML Profile for Schedulabibity, Performance and Time Specification, January 2005. Version 1.1,

formal/05-01-02.

[28] Object Management Group. UML Profile for Modeling Quality of Service and Fault Tolerant Characteristics and Mechanisms, May

2006. Version 1.0, formal/06-05-02.

[29] OMG. A UML profile for Modeling and Analysis of Real Time Embedded Systems (MARTE), 2007. Working document, ptc/07-08-04.

[30] G. J. Pai and J.B. Dugan. Automatic synthesis of dynamic fault trees from uml system models. In In Proc. of 13th International

Symposium on Software Reliability Engineering (ISSRE-02), pages 243–256, Annapolis, MD, USA, November 2002. IEEE Computer

Society.

[31] A. Pataricza. From the General Resource Model to a General Fault Modelling Paradigm ? Workshop on Critical Systems, held within

UML’2000, 2000.

[32] A. Pataricza, I. Majzik, G. Huszerl, and V‘arnay G. UML-based design and formal analysis of a safety-critical railway control

software module. In G. Tarnai and E. Schnieder, editors, In Proc. of Symposium Formal Methods for Railway Operation and Control

Systems (FORMS03), pages 125–132, Budapest (Hungary), May 2003.

[33] R.A. Sahner, K.S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of Computer Systems: An Example-Based Approach

Using the SHARPE Software Package. Kluwer Academic Publishers, 1996.

[34] L. Shourong and A.H. Wolfgang. A UML Profile to model safety-critical embedded real-time control systems. In Studies in

Computational Intelligence (SCI), volume 42, pages 197–218. Springer-Verlag Berlin Heidelberg, 2007.

[35] G. Zoughbi, L. Briand, and Y. Labiche. A UML Profile for Developing Airworthiness-Compliant (RTCA DO-178B), Safety-Critical

Software. In G. Engels, editor, Proceedings of Models 2007, volume 4735 of LNCS, pages 574–588. Springer-Verlag Berlin Heidelberg,

2007.


