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Abstract. Continuous Petri Nets is a subclass of hybrid models repre-
senting relaxed views of discrete events systems, in which timing may
adopt different semantics. Even if no semantics is strictly superior, we
proved in [1] that for an important subclass of models infinite servers
semantics provides always a better approximation of the of the underly-
ing discrete model than finite servers. This paper then concentrates on
controllability under this semantics. First we propose a notion of con-
trollability over subsets of the reachable polytope, and provide a neces-
sary and sufficient condition for markings with no null elements (interior
points); later the transformation of an arbitrary initial marking into an
interior one is done. The technically more involved part of the paper is
the extension of those results to the case in which some transitions are
non controllable. An interesting point is that all characterisations are
structural (i.e., depend only on the structure and firing speeds of the
timed continuous net).

1 Introduction

Petri Nets constitute a well-known paradigm useful to model discrete event sys-
tems. In many practical cases, an enumeration approach has to be used to verify
some properties of net models. Unfortunately, for highly marked systems, even
for bounded, the reachability graph can be so large that many properties cannot
be analyzed. This problem is known as the state explosion problem. Systems
that frequently appear in practice, for instance in manufacturing, telecommu-
nications, traffic or logistic, lead to Petri net models with many states. So, to
analyze such systems fluidification has been proposed.

Fluidification constitutes a relaxation technique to study discrete systems
through a ”similar” but continuous model. Using fluid models, more analytical
techniques can be used for the analysis of some interesting properties. In Petri
Nets, fluidification has been introduced from different perspectives ([2, 3]). Here
we consider the approach adopted in [4]. In this work, timed continuous Petri net
(TCPN) models under infinite server semantics are considered. The continuous
model thus obtained is piecewise linear with bounded and nonnegative inputs.
? This work was partially supported by project CICYT and FEDER DPI2006-15390.
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In recent years, a lot of research has been done on controllability of switched
linear systems. For instance, [5] and [6] give sufficient and necessary conditions
for controllability of 3-dimensional systems and single switching sequence sys-
tems, respectively, but always under the assumption of unconstrained inputs.
Classic works ([7]) and [8] deal with controllability on linear systems (non piece-
wise) with bounded and nonnegative inputs, respectively. Camlibel [9] has ex-
tended the results of Brammer to a particular class of piecewise linear systems
known as linear complementary systems. In [10] optimal control of switched
piecewise affine autonomous systems is studied, assuming that the decision vari-
ables are the switching instants and the sequence of operating modes.

However, in timed continuous Petri net (TCPN) systems switching is not
controllable. Moreover, in [11] it is shown that these systems are not controllable
in the classical sense. In [12] it is proven that for Join Free Timed Continuous
Petri Nets there exists an invariant set, named Controllability Space (CS), in
which the system exhibits the controllability property, i.e. any state of CS is
reachable from any other state of CSİn that work, the set CS is characterized.

Here the study of controllability and reachability properties for general timed
continuous Petri nets under infinite server semantics is addressed. A controlla-
bility notion is presented for TCPN systems. It deals with the possibility that
the state evolves from any state, of a given set, to another; so it is an appropriate
adaptation of the classical controllability concept of linear continuous systems
(see [13]). Based on this controllability definition, the particular structure of
TCPN systems allows to obtain a structural characterization of TCPN exhibit-
ing this property. It is worth to remark that this property does not depend on
the initial marking, but on the structure and timing of the net as it is proved in
the sequel.

This work is organized as follows: in Section 2 an overview of continuous
and timed continuous Petri nets is presented, while in Section 3, a concept of
controllability is formally introduced. In Section 4, necessary and sufficient con-
ditions for controllability are given, under the hypothesis that all transitions are
controllable, while the controllability of systems with uncontrollable transitions
is studied in Section 5. Finally, some conclusions are presented in Section 6.

2 Basic concepts

The structure N = 〈P, T,Pre,Post〉 of continuous Petri nets is the same as the
structure of discrete PN. That is, P is a finite set of places, T is a finite set of
transitions with P ∩ T = ∅, Pre and Post are |P | × |T | sized, natural valued,
pre- and post- incidence matrices. The main difference is in the evolution rule,
since in continuous PN firing is not restricted to be done in integer amounts,
and so the marking is not forced to be integer. More precisely, a transition
t is enabled at m iff for every p ∈ •t, m[p] > 0, and its enabling degree is
enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t in a certain amount α ≤
enab(t,m) leads to a new marking m′ = m+α ·C[P, t], where C = Post−Pre
is the token-flow matrix. Right and left rational annullers of C are called T-
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and P-flows, respectively. If there exists y > 0 (x > 0) such that y · C = 0
(C ·x = 0), the net is said to be conservative (consistent). A set of places Σ is a
siphon iff •Σ ⊆ Σ• (the set of input transitions is contained in the set of output
transitions). For reachability, as in [14], the limit concept is used, and a marking
reached in the limit of an infinitely long sequence is considered reachable.

For the timing interpretation we will use a first order (or deterministic) ap-
proximation of the discrete case ([4]). Hence, a Timed Continuous Petri Net
(TCPN) is a continuous PN together with a vector λ ∈ R|T |>0. Here infinite
server semantics is considered, thus the flow through a timed transition t is
the product of the speed, λ[t], and enab(t,m), the instantaneous enabling, i.e.,
f(m)[t] = λ[t] · enab(t,m) = λ[t] · minp∈•t{m[p]/Pre[p, t]}. For the flow to be
well defined, every transition must have at least one input place, hence in the
following we will assume ∀t ∈ T, |•t| ≥ 1. The “min” in the definition leads to
the concept of configurations: a configuration assigns to a transition one place
that for some markings will control its firing rate (i.e. it is constraining that
transition). A good upper bound for the number of configurations is

∏
t∈T |•t|.

The flow through the transitions can be written in a vectorial form as f(m) =
ΛΠ(m)m (see [11]), where Λ is a diagonal matrix whose elements are those of
λ, and Π(m) is the configuration operator matrix, defined by elements as

Π(m)[i, j] =
{ 1

Pre[pj ,ti]
if pj is constrainting ti

0 otherwise

If more than one place is constrainting the flow of a transition at a given marking,
any of them can be used, but only one is taken.

Control action may only be a reduction of the flow through the transitions.
Transitions in which a control action can be applied are called controllable. The
effective flow through a controllable transition can be represented as: fi(τ) =
λ(ti) · enab(τ) [ti]− u(τ)[ti], where 0 ≤ u(τ)[ti] ≤ λ(ti) · enab(τ)[ti].

The control vector u ∈ R|T | is defined such that ui represents the control
action on ti. If ti is not controllable then ui = 0. The set of all controllable
transitions is denoted by Tc, and the set of uncontrollable transitions is denoted
by Tnc. Then, Tc ∩ Tnc = ∅ and Tc ∪ Tnc = T .

The behavior of a TCPN forced system is described by the state equation:

•
m = CΛΠ(m)m−Cu

0 ≤ u ≤ ΛΠ(m)m
(1)

Given a marking trajectory, an input u(m) (as a function of m) such that
0 ≤ u(m) ≤ ΛΠ(m)m, and ∀ti ∈ Tnc ui = 0 along the marking trajectory, is
called suitably bounded. Notice that if an input is not suitably bounded for a
marking trajectory, then it cannot be applied in this. A marking m for which ∃u
suitably bounded such that C[ΛΠ(m)m−u] = 0 is called equilibrium marking.

Marking m2 is said to be reachable from m1 if there exists an input u that
transfers the marking from m1 to m2 in either finite or infinite time (lim-
reachable) and it is suitably bounded. A marking reachable from the initial
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one is simply called reachable. The set of reachable markings can be defined
for autonomous continuous PN and TCPN systems [14]. In the sequel, the term
reachability always refer to timed systems.

3 Controllability definition

Whenever a TCPN system has P-flows, linear dependencies between marking
variables appear, introducing state invariants. So, systems with P-flows are not
controllable in the classical sense [11]. However, we are interested in the study of
controllability “over” this invariant. In the sequel, we refer to this state invariant
as Class(m0), since it is the equivalence class of m0 under the relation β defined
as: m1βm2 iff By

T m1 = By
T m2, where By is a basis of P-flows.

Notice that, for a general TCPN system, every reachable marking belongs to
Class(m0). The set Class(m0) can be divided into subsets of markings asso-
ciated to the same configuration, which are named regions and are denoted by
<i = {m ∈ Class(m0)|Π(m) = Πi}. Notice that such regions are convex sets,
and inside each one, the state equation (1) is linear (Π(m) is constant). In the
sequel, let us denote by int(Class(m0)) (int(<i)) the set of interior markings of
Class(m0) (<i) considering the space generated by the columns of C.

Next, linear systems controllability definition is recalled [13].

Definition 1. A state equation is fully controllable if there exists an input such
that for any two states x1 and x2 of the state space, it is possible to transfer the
state from x1 to x2 in finite time.

Notice that this definition cannot be applied to TCPN systems because the
set of reachable markings never compose a vector space, as it is inside Class(m0).
Moreover, in TCPN systems the input must be suitably bounded (i.e. 0 ≤ u ≤
ΛΠ(m)m, ui = 0,∀ti ∈ Tnc). Therefore, the following adaptation of the classical
controllability definition is proposed.

Definition 2. The TCPN system 〈N , λ,m0〉 is controllable with bounded input
(BIC) over S ⊆ Class(m0) if for any two markings m1,m2 ∈ S there exists an
input u12 that transfers the system from m1 to m2 in finite or infinite time, and
it is suitably bounded (i.e. 0 ≤ u12 ≤ ΛΠ(m)m, and ∀ti ∈ Tnc ui = 0 along the
marking trajectory).

Besides, if S = Class(m0) then the system is said to be fully controllable
with bounded input (BIFC).

It is important to remark that controllability is a structural property. Even
when, under this definition, it is said that a system is controllable over some sub-
set of Class(m0), is the dynamical behavior of the system, which is determined
by the structure and timing, that makes the system be controllable or not.
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4 The case where all transitions are controllable

In [14] reachability is studied for untimed continuous Petri net systems. An
important result introduced in that paper is that a marking m is reachable iff
∃σ ≥ 0 such that m = m0 + Cσ ≥ 0 and the transitions in the support of σ
are fireable. This result can be extended for TCPN in the following way:

Proposition 1. Let 〈N ,λ,m0〉 be a TCPN system in which Tc = T . A marking
m1 ∈ Class(m0) is reachable from m0 ∈ int(Class(m0)) iff ∃σ ≥ 0 such that
Cσ = (m1 −m0).

The following proposition gives a necessary and sufficient condition for con-
trollability over the interior of Class(m0).

Proposition 2. Let 〈N ,λ,m0〉 be a TCPN system, and let S be defined as
S = {m ∈ Class(m0)|m > 0}. The system 〈N ,λ,m0〉 is BIC over S iff the net
is consistent.

Proof. In [11] a reachability theorem is introduced, according to which, if the
net is consistent then the system is BIC over S. Now, for the other implication,
consider any vector d ∈ span(C) and a marking m1 ∈ S. Then, there exists a
scalar β > 0 such that m1 +βd ≥ 0. Let m2 = m1 +βd, then m2 ∈ Class(m0).
Since the system is BIC over the interior of Class(m0), m2 is a particular
solution of the fundamental equation, so (m2 −m1) = βd = Cσ, where σ ≥ 0.
Therefore, ∀d ∈ span(C), ∃σ such that Cσ = d. Besides, this property implies
that ∃x > 0 such that Cx = 0, i.e. the net is consistent. ut

Notice that the condition for controllability (consistency) is purely structural.
Actually, the TCPN is BIC over the interior of Class(m0) iff the TCPN is BIC
over the interior of Class(m1), for every m1 ≥ 0. Next proposition gives a
condition to transfer the marking from the border of Class(m0) to its interior.

Proposition 3. Let 〈N , λ,m0〉 be a TCPN system. An input u, such that every
enabled transition is always fired, transfers the marking from m0 to some mf ,
where mf has not null elements, iff there are not empty siphons at m0.

Proof. Suppose that m0 has null elements. Let us define an input u such that
for any enabled transition tj , uj < [ΛΠ(m)m]j . So, a transition tj is such that
[ΛΠ(m)m− u]j = 0 iff there is an input place to tj , named pi, without tokens.
In the same way, pi cannot win tokens iff there exist unmarked input places at
all the input transitions of pi. So, a place pi has not tokens at time τ and remains
without tokens for future time, iff for every input transition to that place there
exists an input place without tokens for all time. Repeating this reasoning to
these new input places, it can be seen that pi remains unmarked iff it belongs
to an unmarked siphon. ut

The following theorem introduces necessary and sufficient conditions for con-
trollability over Class(m0). The proof is immediate from previous propositions.
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(a) (b)

Fig. 1. (a) TCPN that is not BIFC. (b) A BIFC TCPN system.

Theorem 1. The TCPN system 〈N , λ,m0〉 is BIFC iff N is consistent and
there do not exist empty siphons at any marking in Class(m0).

Example 1. Consider the TCPN systems of Figure 1, where m0 = [1, 2, 3, 1]T ,
m1 = [2, 1, 3, 1]T and m2 = [1, 2, 1, 3]T . Since both systems have 2 P-semiflows,
only the marking of two places (in this example, places p1 and p3) are needed
to represent the whole state.

Given the system in Figure 1(a), since there exists a vector σ ≥ 0 such that
Cσ = (m1 −m0), according to Proposition 1, m1 is reachable. On the other
hand, since @σ ≥ 0 such that Cσ = (m2 −m0), then m2 is not reachable.
Therefore it is not BIFC. The same conclusion (i.e. the system is not BIFC) can
be obtained using Theorem 1. The shadowed area in Figure 1(a) corresponds to
the set of reachable markings, notice that it is the convex defined by vectors C1

and C2, which represent the columns of C restricted to p1 and p3.
Now, consider the system of Figure 1(b). This system is consistent, so, accord-

ing to Proposition 2, it is BIC over the interior of Class(m0). Therefore m1 and
m2 are reachable from m0. Besides, since at the border markings of Class(m0)
there are not unmarked siphons, according to Theorem 1, the system is BIFC.

5 Controllability with uncontrollable transitions

The study of controllability with uncontrollable transitions is more complicated
than previous case. In this, consistency is no longer sufficient to guarantee con-
trollability over the interior of Class(m0). Actually, due to the boundedness
of the input, a system with uncontrollable transitions is never controllable over



On controllability of timed continuous Petri nets 7

Class(m0). So, in this case, it is first necessary to define a suitable set of mark-
ings, and then, study the controllability over it. In this work only sets of equilib-
rium markings are considered, because they represent the ”stationary operating
points” of the modeled system.

The set of all equilibrium markings is defined as:

EqS = {m ∈ Class(m0)|∃u suitably bounded such that C(ΛΠ(m)m−u) = 0}

Notice that if all transitions are controllable then EqS = Class(m0). The set of
all equilibrium markings in the i-th region is defined as Ei = {m|m ∈ EqS∩<i}.

In the sequel, the following notation is adopted. Let mq ∈ EqS. An equilib-
rium input for mq is a vector uq such that C(ΛΠ(mq)mq − uq) = 0 and it is
suitably bounded. The equilibrium flow through the transitions for mq and uq

is denoted as wq, i.e. wq = ΛΠ(mq)mq − uq.

Fig. 2. The set EqS, and subsets Ei, E
+
i and E∗

i .

Example 2. Consider the system of figure 2 where Λ = I and Tc = {t1, t2}.
There exist two possible configurations: the configuration in which transition
t2 is constrained by place p2, denoted by C1, and the configuration where t2 is
constrained by p3, denoted by C2. <1 and <2 are the regions related to C1 and
C2, respectively. The whole triangle with all its edges and vertices corresponds to
E1. Actually, in this example E1 = EqS. Since none of the equilibrium markings
belongs to the second configuration, then E2 = ∅.

Since the system is linear inside each region, we will first investigate the
controllability over each Ei. For that, it is necessary to represent a given Ei in
a matrix form. The following definition introduces this representation.
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Definition 3. Let 〈N , λ,m0〉 be a TCPN system. A Generator of Ei 6= ∅ is
a full column rank matrix Gi, of order |P | × q (where q is a suitable natural
number), such that:

1. ∀m1,m2 ∈ Ei, the vector (m1 −m2) is in the range of Gi (i.e. it is a linear
combination of the columns of Gi).

2. Gi is minimal, i.e. if one of its columns is removed then (1) is no longer true.

Notice that Gi is a kind of basis for Ei, but, formally speaking, Ei is not a
vector space, then, it does not have a basis.

Coming back to the system of figure 2, a generator of E1 is given by

G1 =
[

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 −0.5

]T

The restriction of the columns of G1 to the places p1 and p3 are represented in
figure 2 by vectors d1 and d2.

In order to deal with the variable boundedness of the input, controllability
is studied through the reachability over neighborhoods of equilibrium markings,
because the bounds of the input are almost constant in these. Let us detail this
idea. Consider again the system of figure 2. Let m1 be a marking in the interior
E1. The evolution of the system, seen from m1, is described by:

•
(m−m1) = CΛΠ(m−m1)−C(u− u1)

where (u − u1) is the new input. Since u1 is such that [ΛΠm1]j > u1j > 0 for
every tj ∈ Tc (m1 is in the interior of E1), then the entries of (u−u1), related to
the controllable transitions, can be settled as either negative or positive values, at
least at the markings in a small enough neighborhood of m1. So, the reachability
in such neighborhood can be studied through the classical Kalman’s reachability
condition (see [13]). However, the Kalman’s condition cannot be directly applied
for all equilibrium markings. Consider the marking mq, depicted in figure 2,
instead m1. The equilibrium input for this marking is uq = 0, so, the entries
of the input (u − uq) can only be settled as nonnegative values (to apply the
Kalman’s condition it is necessary that the input could take either positive or
negative values). Therefore, it is important to know at which markings and
at which entries the input can take negative values. For that, the following
definitions are introduced.

Definition 4. Let Tc be the set of controllable transitions. A transition tj ∈ Tc is
said to be fully controllable at Ei if there exists an equilibrium marking mq ∈ Ei

with an equilibrium input uq such that [ΛΠimq]j > uq
j > 0. In other case, tj is

said to be partially controllable. The set of fully (partially) controllable transitions
at Ei is denoted as T i

cf (T i
cp).

Definition 5. The subset of Ei, in which the equilibrium flow can be positive,
is defined as

E+
i = {mq ∈ Ei|∃uq such that wq > 0}
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The subset of Ei, in which the equilibrium flow can be positive and the entries
of the input related to transitions T i

cf are positive, is defined as

E∗
i = {mq ∈ E+

i |∃uq such that uq
j > 0, ∀tj ∈ T i

cf}

Notice that ∀mq ∈ E+
i ∃uq such that uq

j < [ΛΠimq]j , ∀tj ∈ Tc. For all
marking mq ∈ E∗

i the input u, at a neighbor marking m, can be increased or
decreased with respect to uq, at those entries related to the transitions in T i

cf

(i.e. fully controllable transitions). On the other hand, the entries of u related
to the transitions in T i

cp can only be increased with respect to uq (i.e. partially
controllable). For instance, the interior of the triangle in figure 2 corresponds to
E∗

1 , while the union of E∗
1 and the edges e1 and e2 (without the circled points)

corresponds to E+
1 . Besides, T 1

cf = Tc and T 1
cp = ∅. Therefore, for any marking

in the interior of the triangle (i.e. for any m1 ∈ E∗
1 ) the input of the system

expressed from it (i.e. (u−u1)), can be settled as either a positive or a negative
value at those entries related to the transitions {t1, t2} (i.e. T 1

cf ).

Remark 1. E∗
i , E+

i , Ei are convex sets, and E∗
i ⊆ E+

i ⊆ Ei. The markings of
{E+

i −E∗
i } are limit points, not interiors, of E∗

i (in the space generated by Gi).

In the sequel, let us denote as Cc, Ci
cf and Ci

cp the matrices built with
the columns of C related to the transitions that belong to Tc, T i

cf and T i
cp,

respectively. In the same way, denote with uc, ui
cf and ui

cp the vectors built
with the entries of u related to the transitions that belong to Tc, T i

cf and T i
cp,

respectively. In this way

Cu = Ccuc =
[
Ci

cf Ci
cp

] [
ui

cf

ui
cp

]

Now, we are ready to introduce the following theorem, which gives a sufficient
and necessary condition for controllability over a set E+

i .

Theorem 2. Let 〈N ,λ,m0〉 be a TCPN system. Consider E+
i such that E+

i ∩
int(<i) 6= ∅ and let Gi be a generator of it.

The system is BIC over E+
i , considering all marking trajectories in <i, iff

there exist an index k and a matrix b ≥ 0 such that

Contk
(
CΛΠi,

[−Ci
cf Ci

cf −Ci
cp

]) · b =
[
Gi −Gi

]

where the matrix function Contk(A,B) =
[
B AB . . . AkB

]
.

Proof. The proof is large and to improve readability it is shown in the appendix.

This theorem also includes the result introduced in previous section, in which
consistency is sufficient to guarantee controllability over int(Class(m0)), where
Tc = T . This is easy to see noting that matrix

[−Ci
cf Ci

cf −Ci
cp

]
includes all

columns of the incidende matrix, and since the net is consistent, there always
exists b ≥ 0 that fulfills the condition (consider k = 0).
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The condition of previous theorem could be difficult to check, since there is
no bound for the index k. Next corollary separates this condition into a necessary
and a sufficient conditions that can be checked in polynomial time.

Corollary 1. Let 〈N , λ,m0〉 be a TCPN system. Consider some E+
i such that

E+
i ∩ int(<i) 6= ∅, as previously defined, and let Gi be a generator of it. Then:

1. If ∃b such that Cont|P |−1(CΛΠi,−Ci
cf ) · b = Gi, then the system is con-

trollable over E+
i . Besides, if T i

cf = Tc then it is also a necessary condition
for controllability over E+

i , considering all the marking trajectories in <i.
2. If @b such that Cont|P |−1(CΛΠi,−Cc) · b = Gi, then the system is not

controllable over E+
i , considering all marking trajectories in <i.

Proof. Statement 1). Suppose that ∃b such that Cont|P |−1(CΛΠi,−Ci
cf ) · b =

Gi. Then, ∃b′ ≥ 0 such that Cont|P |−1(CΛΠi, [−Ci
cf ,Ci

cf ])·b′ = [Gi,−Gi]. So,
according to Theorem 2, the system is BIC over E+

i . On the other hand, suppose
that Tc = T i

cf , so Ccf = Cc. If Gi is not in the range of Cont|P |−1(CΛΠi,−Ci
cf )

then it is not in the range of Cont|P |−1(CΛΠi,−Ci
c). This condition is equal to

that of statement 2).
Statement 2). Suppose that @b such that Cont|P |−1(CΛΠi,−Cc) · b = Gi,

then Gi is not in the range of Contk(CΛΠi, [−Ci
cf , Ci

cf , −Ci
cp]), for k = |P |−1,

and according to the Calley-Hamilton’s theorem, Gi is not in the range for any
index k, so, the system is not BIC over E+

i (Theorem 2). ut
Notice that previous corollary does not consider all possible cases, for that,

next proposition introduces an equivalent condition to that of Theorem 2. The
proof of this proposition is presented in the appendix.

Proposition 4. Suppose that all the coefficients of the characteristic polynomial
of a matrix A are nonnegative.

There exist k and Xk ≤ 0 such that Contk(A,B) ·Xk = Y iff ∃X2n−1 ≤ 0
such that Cont2n−1(A,B) ·X2n−1 = Y, where n is the order of A.

Example 3. Consider the system of figure 3 with Tc = {t4}, λ1 = λ2 = λ3 = 1
and λ4 = 2. Four configurations are realizable in the net, those are characterized
by: C1 = {(t2, p2), (t3, p4)}, C2 = {(t2, p3), (t3, p4)}, C3 = {(t2, p2), (t3, p5)} and
C4 = {(t2, p3), (t3, p5)}, (the arcs (t1, p1) and (t4, p6) are also present in all the
configurations). Moreover, given the initial marking of this system, C2 cannot
occur (p3 and p4 cannot constraint its respective output transitions at the same
time). The lines inside the polytope correspond to set EqS. The markings in the
segment [m1,m2] correspond to E1, the markings in [m2,m3] correspond to E3

and the markings in [m3,m4] correspond to E4. For this system we have that
T 1

cf = T 3
cf = T 4

cf = {t4}, and

G1 = [ 0 0 0 0 −1/2 1/2 ]T

G3 = [ 0 0 −1 1 0 0 ]T

G4 = [ −1/3 1/3 −1/3 1/3 −1/3 1/3 ]T
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Fig. 3. TCPN system with its EqS. Transition t4 is the only controllable one

Since T i
cf = Tc for the three configurations, we can check for the condition

of Corollary 1 to investigate the controllability over each E+
i , i.e. for every E+

i

investigate if Gi is in the range of Cont5(CΛΠi,−Ci
cf ). In this case the system

fulfills that condition for the three E+
i , so, it is BIC over each one.

Now, consider the same system but with Λ = I. In this case, the sets E3 and
E4 remain unchanged, and so G3 and G4, but E1 = {m2}. Also, T 3

cf = ∅ and
T 4

cf = t4. Checking for the condition of Corollary 1 (a), it can be concluded that
the system is BIC over E4. However, since T 3

cf = ∅, we cannot apply the same
corollary for E3 (the system does not fulfill the condition of neither statement
a) nor b)). In such case, since the coefficients of the characteristic polynomial
of CΛΠ3 are nonnegative, we can use Proposition 4 to investigate if the system
fulfills the condition of Theorem 2 (i.e. the system is BIC over E+

3 iff ∃b ≥ 0
such that Cont2|P |−1(CΛΠ3,−C3

cp) ·b = [G3, −G3]). Since there does not exist
a nonnegative solution b, we can concluded that the system is not BIC over E+

3 .

Finally, next proposition introduces sufficient conditions for controllability
over the union of sets of equilibrium markings of different regions.

Proposition 5. Let 〈N , λ,m0〉 be a TCPN system. Consider some equilibrium
sets E+

1 , E+
2 ,..., E+

j as defined above. If the system is BIC over each one and
their union (i.e.

⋃j
i=1 E+

i ) is connected, then the system is BIC over the union.

Proof. Consider two of those sets E+
1 , E+

2 such that E+
1 ∩E+

2 6= ∅. Let mq be a
marking such that mq ∈ E+

1 ∩E+
2 . Since the system is controllable over E+

1 and
E+

2 , there exists a marking m2 ∈ E+
2 −E+

1 that is reachable, in finite time, from
another marking in m1 ∈ E+

1 −E+
2 , due to the fact that both are reachable from

mq, in finite time, and to the continuity of the flow function. Then, any marking
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of E+
2 is reachable from any marking of E+

1 , via m1 and m2. Following a similar
reasoning, it can be concluded that the system is controllable over

⋃j
i=1 E+

i . ut
Example 4. Consider the system of figure 3, where Tc = {t4}, λ1 = λ2 = λ3 = 1
and λ4 = 2. In the previous example it was shown that the system is controllable
over each E+

i . Now, since the union of E+
1 , E+

3 and E+
4 is connected, then,

according to Proposition 5, the system is BIC over E+
1 ∪E+

3 ∪E+
4 . Notice that,

the union of those sets is equal to EqS−{m4}, i.e. the set of all the equilibrium
markings inside the interior of Class(m0).

6 Conclusions

This work addresses the controllability of timed continuous Petri Nets (TCPN)
from a structural point of view. The main contributions of this work are focused
in defining the controllability property and its characterization. The definition of
controllability for TCPN systems is introduced as an adaptation of that defined
for linear continuous systems. For the case where all transitions are controllable,
a polynomial characterization of controllable TCPN systems is presented. For
systems with uncontrollable transitions, sufficient and necessary conditions for
controllability, over subsets of equilibrium markings, are introduced, and suffi-
cient conditions for controllability, over the union of those subsets, are given.
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Additional proofs

Proof (of Theorem 2). This proof is presented as follows: first, the state equation
is rewritten, next, considering the solution of this new equation, it is proved that
all equilibrium markings in a neighborhood of any marking of E∗

i ∩ int(<i) are
reachable iff the condition is fulfilled, and so, since this set can be covered by
these reachable neighborhoods then the system is BIC over E∗

i ∩ int(<i) iff the
condition is fulfilled. Finally, it is proven that the system is controllable over
E∗

i ∩ int(<i) iff it is controllable over E+
i .

If E∗
i = ∅ then consider the set E+

i instead of E∗
i .

Consider an equilibrium marking (mq,uq), where mq ∈ E∗
i ∩ int(<i). The

state equation for any marking in <i can be expressed as:

•
m =

•
(m−mq) = CΛΠi(m−mq)−C(u− uq)

The solution of this state equation is given by:

m(τ)−mq = eCΛΠiτ (m0 −mq)−
∫ τ

0

eCΛΠiζC (u(τ − ζ)− uq) dζ (2)

Now, let us analyze the boundedness of the input. By definition of T i
cf , T i

cp

and mq, the input uq is such that [ΛΠimq]j > uq
j > 0 ∀tj ∈ T i

cf , uq
j = 0 ∀tj ∈

T i
cp, and uj = 0 ∀tj ∈ Tnc. Then, at any marking of a small enough neighborhood

of mq the value of (u(τ − ζ)− uq)j can be settled as either positive or negative
∀tj ∈ T i

cf , as nonnegative ∀tj ∈ T i
cp, and zero ∀tj ∈ Tnc. Besides, since mq ∈ E∗

i ∩
int(<i), it can be demonstrated that mq is an interior point of this neighborhood,
considering the space generated by the columns of Contk (CΛΠi,Cc). Therefore,
considering the notation previously introduced, we can define column vectors u+

and u− such that Ci
cf

(
ui

cf − uqi
cf

)
=

[
Ci

cf −Ci
cf

]
·[u+ u−]T where u+,u− ≥ 0.

Then Cu =
[
Ci

cf −Ci
cf Ci

cp

]
u∗ where u∗ = [u+ u−

(
ui

cp − uqi
cp

)
]T ≥ 0 at

any marking in a neighborhood of mq.
Considering m0 = mq and substituting previous equation into (2), we obtain:

m(τ)−mq = −
∫ τ

0

eCΛΠiζ
[
Ci

cf −Ci
cf Ci

cp

]
u∗(τ − ζ)dζ
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Expanding the exponential matrix and taking the constant elements out of the
integral, we obtain

m(τ)−mq =
[
I (CΛΠi) (CΛΠi)2 ...

] ·

[−Ci
cf Ci

cf −Ci
cp

]



∫ τ

0
u∗(τ − ζ)dζ∫ τ

0
ζu∗(τ − ζ)dζ∫ τ

0
ζ2

2 u∗(τ − ζ)dζ
:




(3)

Notice that the entries of the right side vector are linearly independent and non-
negative functions, for a small enough neighborhood of mq. Moreover, previous
equation constitutes a necessary and sufficient condition for reachability.

If the condition of this theorem is fulfilled then, by definition of Gi, for any
equilibrium marking mr in <i there exists br ≥ 0 such that

mr −mq =
[
I (CΛΠi) (CΛΠi)2 . . .

] · [−Ci
cf Ci

cf −Ci
cp

]
br

The entries of br ≥ 0 could be as small as desired (just considering mr close
enough to mq), so, comparing this equation with (3), it can be concluded that
mr is reachable from mq. Then, there exists a neighborhood of mq in which
all equilibrium markings are reachable from mq. Finally, since E∗

i ∩ int(<i) is a
convex set and ∀mq ∈ E∗

i ∩ int(<i) there exists such reachable neighborhood,
in which mq is an interior point, then the set E∗

i ∩ int(<i) is covered by these
reachable neighborhoods and the system is BIC over E∗

i ∩ int(<i).
On the other hand, notice that at any marking in <i the input is such that

u∗ ≥ 0. So, if the condition asked for the theorem is not fulfilled, then ∃mr for
which @br ≥ 0 that fulfills previous equation, and according to equation (3),
there does not exist a marking trajectory from mq to mr in <i in which u∗ ≥ 0,
therefore, mr is not reachable from mq, considering all the marking trajectories
in <i and so, the system is not BIC over E∗

i .
Now, let us demonstrate that controllability over E∗

i ∩ int(<i) implies con-
trollability over E+

i . For this, suppose that the system is controllable over E∗
i ∩

int(<i). Consider any marking mr ∈ E+
i − (E∗

i ∩ int(<i)) and the markings
mq,mr′,mq′ ∈ E∗

i ∩int(<i), such that (mr−mq) = α(mr′−mq′) with α ∈ R>0.
Since the system is BIC over E∗

i ∩ int(<i), then ∃u′ that transfers the state
from mr′ to mq′. So, by linearly, an input u such that (u − uq) = α(u′ − uq′)
transfers the state from mr to mq (this is easy to prove by using equation (2)).
Actually, (m(τ) −mq) = α(m′(τ) −mq′), where m(τ) (m′(τ)) is the marking
at time τ if m0 = mq (m0 = mq′) and u (u′) is applied. So, choosing a suitable
trajectory for m′(τ) in E∗

i ∩ int(<i), we can make m(τ) stay always inside <i.
Then, mq is reachable from mr if u is suitably bounded.

Analyzing the boundedness of the input, since 0 ≤ u′ ≤ ΛΠim′ then
−αuq′ ≤ α (u′ − uq′) ≤ α(ΛΠim′ − uq′). Now, substituting u′ and m′ and
arranging the terms, we obtain: (uq −αuq′) ≤ u ≤ ΛΠim− (wq −αwq′). Since
wq > 0 and (uq′

j > 0 ⇒ uq
j > 0), then ∃α > 0 small enough such that uq ≥ αuq′
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and wq ≥ αwq′, so, 0 ≤ u ≤ ΛΠim, i.e. u is suitably bounded (by definition of
u, ∀tj ∈ Tnc uj = 0).

Therefore, for any marking mr ∈ E+
i − (E∗

i ∩ int(<i)) there exists a marking
mq ∈ E∗

i ∩ int(<i) reachable from mr. Besides, notice that the points of E+
i −

(E∗
i ∩ int(<i)) are limit points of E+

i ∩ int(<i), so, every marking in E+
i −

(E∗
i ∩ int(<i)) can be reached (at least in infinite time) from any marking in

E∗
i ∩int(<i), following a trajectory in E∗

i ∩int(<i). So, the system is controllable
over E+

i if it is controllable over E∗
i ∩ int(<i).

Finally, by definition, if the system is not controllable over E∗
i ∩ int(<i),

considering all marking trajectories in <i, then it is not BIC over E+
i . ut

Proof (of Proposition 4). Let m be the number of columns of B.
(Sufficiency) Suppose that there exists X2n−1 ≤ 0 such that Cont2n−1(A,B)·

X2n−1 = Y. So, consider k as 2n− 1.
(Necessity) First, let us introduce some useful equalities.
According to the Calley-Hamilton’s theorem Iα0 + Aα1 + ... + Anαn = 0

where {α0, α1, ..., αn} are the coefficients of the characteristic polynomial of
A. Without lost of generality, suppose that αn = 1. Now, post-multiplying this
equation by B and arranging the terms, we obtain

[
B AB · · · An−1B

]



Iα0

Iα1

...
Iαn−1


 = −AnB

where I is the unity matrix of order m (the number of columns of B).
Define â =

[
Iα0 Iα1 ... Iαn−1

]T , and let 0km×m be a null matrix of order
km×m. So, according to the previous equation

−An+kB = Ak
[
B AB ... An−1B

]
â = Contn+k−1

[
0km×m

â

]
(4)

Now, every solution Xk for

Contk(A,B) ·Xk = Y (5)

has the form: Xk = Xp
k+ker

{
Contk(A,B)

}
γ, where Xp

k is a particular solution
and ker

{
Contk(A,B)

}
γ is an element in the kernel of Contk(A,B). In this way,

it is easy to prove, using equation (4), that any solution Xk has the form

Xk =




Xn−1

0
...
0
0




+




Iα0 0 · · · 0
Iα1 Iα0 · · · 0
...

...
...

Iαn−1 Iαn−2 0
−I Iαn−1 · · · 0
0 −I · · · Iα0

...
...

...
0 0 · · · −I







γn

...
γk
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where Xn−1 is a solution of equation (5) for k = n − 1. So, the first term
of this equation is a particular solution, while the second is an element of
ker(Contk(A,B)). It can be separated into two simultaneous equations:

X1
k = [Xn−1] +




Iα0 0 · · · 0
Iα1 Iα0 · · · 0
...

...
...

Iαn−1 Iαn−2 · · · Iα0







γn

...
γ2n−1


 (6)

X2
k =




−I Iαn−1 · · · Iα0 0 · · · 0

0 −I Iαn−1 · · · Iα0 · · ·
...

...
...

0 · · · · · · · · · · · · 0 −I







γn

...
γk


 (7)

where Xk =
[
X1

k X2
k

]T . Therefore, for any solution Xk of equation (5) there

must exist Xn−1 and
[
γn . . . γk

]T that fulfill equations (6) and (7).
Now, suppose that ∃Xk that fulfills equation (5) for k = 2n−1, but Xk � 0.

(it is easy to demonstrate, via Calley-Hamilton’s theorem, that if there does not
exist such solution, then there does not exist any solution Xk for any index k 6=
2n−1). Proceeding by contradiction, suppose also that for some k > 2n−1 there
exists X′

k ≤ 0 that fulfills equation (5) (if there exists a solution for k < 2n− 1,
then there also exists a solution for any k ≥ 2n−1, so, we only consider the case in
which there exist solution for k > 2n−1). So, there exist X′

n−1 and
[
γ′n · · · γ′k

]T

that fulfill equations (6) and (7). Moreover, according to equation (7), it is easy
to see, considering that â ≥ 0, X′

k ≤ 0 and following a backward substitution
reasoning, that

[
γ′n · · · γ′k

]T ≥ 0. But, by the contradiction hypothesis, there

do not exist [Xn−1] and
[
γn · · · γ2n−1

]T such that

[Xn−1] +




Iα0 0 · · · 0
Iα1 Iα0 · · · 0
...

...
...

Iαn−1 Iαn−2 · · · Iα0







γn

...
γ2n−1


 ≤ 0




−I Iαn−1 · · · Iα1

0 −I · · · Iα2

...
...

...
0 · · · · · · −I







γn

...
γ2n−1


 ≤ 0

This is a contradiction, since the previous values of X′
n−1 and

[
γ′n · · · γ′2n−1

]T ≥
0 clearly fulfill these last inequalities. ut


