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Abstract tivities of P/T Petri nets by associating a time interval with

each transition. Interval limits define the earliest and the
Interval time Petri Nets are Petri nets in which time inter- latest firing time of the transition, relative to the instant at
vals are associated to transitions. Their quantitative anal- which it was last enabled.

ysis basically consists in applying enumerative techniques  The same kind of reduction could be applied to the non-
that suffer the well known state space explosion problem.determinism involved in the choice among several conflict-
To overcome this problem several methods have been proing transitions. Let us consider the case of a free-choice
posed in the literature, that either allow to obtain equivalent petween two transitions, andt,. One might specify, as
nets with a reduced state space or avoid the constructionan additional interpretation of the net system, that transi-
of the whole state space. The alternative method proposedion ¢, cannot fire more that; times per each firing of
here consists in computing performance bounds to partially ¢, during a given observation period and vice-versa, that
characterize the quantitative behavior of interval time Petri cannot fire more thah, times per each firing of; during
Nets by exploiting their structural properties and/or by ap- the same observation period. To the best of our knowledge,
plying operational laws. The performance bound computa- this possible interpretation was introduced in [9], with the
tion is not a new technique: it has been proposed for timed purpose of illustration of basic concepts of time interpreta-
Petri nets. In this paper we present the results obtained fromtion of P/T Petri net models, and it has not been elaborated
a preliminary investigation on the applicability of bounding |ater in the literature. We return to that interpretation in
techniques of timed Petri nets to interval time Petri Nets.  this paper, and we give to it the name “TPN with interval
firing frequencies” (TPNF), as a particular case where new
analytical techniques can be derived to compute temporal

1. Introduction properties.
One more step in the reduction of the non-determinism

Place/Transition (P/T) Petri nets [17] have been extendedin the duration of activities, in addition to the time interval
in the literature with suitable time interpretations for the approach proposed by Merlin an.d Faper_, IS to mtrodgce a
modelling and analysis of real-time systems or with a per- stochasuq measure for the durguon W|tr_1|n the given inter-
formance evaluation perspective. Giving a time interpreta- t]/al' Ir: this Slenfi' ;Elxten%ed Tlrkr:e Petr(lj Nets (X.TPNbS) of
tion consists in specifying the behaviour in time in such a uano'e etal. [11, o ] re upet € non- eterminism Y as-
way that [9]: (1) the new model is compatible with the orig- s_o_matl_ng a probability density function to ea_ch_ trans_ltlon
inal P/T model, (2) part of the non-determinism present in f!r!ng _t|me that takes a non_—r_1u|| value only within a given
the P/T model is reduced in order to take the timing con- firing interval for each tranS|t|on._ o )
straints into account, and (3) the behaviour of the system is  Usually, TPNs are used to validate timing requirements,
specified precisely enough to be able to check or computehile the stochastic reduction of the non-determinism in-
the temporal properties under study. troduced in XTPNs as an extension of TPNs, allows to ver-

Time Petri Nets (TPNs), as defined by Merlin and Faber ify performance requirements. The quantitative analysis of

in [16], reduce the non-determinism in the duration of ac- Such kind of nets basically consists in applying enumera-

tive techniques, i.e., based on the construction of the graph
*This work has been developed within the following projects: the of the state class [3, 4] or of the discrete reachability graph

Italian-Spanish bilateral project IT1173 (Spanish ref.HI-2002-0064), the ;

project TIC-2003-05226 of the Spanish Ministry of Science and Technol- [18] for TPNs and of the randomized state graph [21] Tor

ogy and the project PERF of the Italian Ministry of Education, University X 1 PNS, that suffer the well known state space explosion

and Research. problem even in case of bounded nets. To tackle this prob-




lem, alternative methods have been proposed in the litera-enabled, so that if has been last enabled at timethen
ture such as reduction methods [23] that allow to obtain netsit may not fire beforer + a[t] and it must fire before or
with a reduced state space in which the timing and concur-at 7 + b[t] unless it is disabled before then by the firing
rency properties are preserved or parametric descriptions obf a conflicting transition. Firing itself is immediate. A
transition firing sequences [19] that avoid the construction state of a TPN is defined as a péir= (M, I;) where M
of the whole state space. is the marking function and;, is a firing interval function

In this paper, we consider interval Time Petri Nets (i.e., that associates to each transition the time (dynamic) interval
TPNs, TPNFs, XTPNs) and structural subclasses of them,a4([t], b4[t] in which the transition is allowed to fire. Firing
and we propose an efficient method to compute perfor- of a transitiort at timef from a state5 = (M, ;) leads to a
mance bounds for the throughput of transitions and for the stateS” = (M’, I);) whereM’ = M + F(t,-) — B(t,-) and
mean marking of places by means of the solution of lin- the new firing interval functiod, assigns to each transition
ear programming problems derived from the structure of the concurrent with its remaining firing time interval, to each
net, the initial marking, and the time interpretation. newly enabled transition its static firing time interval and to

The analysis method proposed here can be considereeach disabled transition a null firing time interval.
as a generalization of the existing well established perfor-  |n absence of multiple enabledness the memory policy
mance bound computation techniques for timed Petri netsassociated to transitions of a TPN corresponds to the en-
(in the sense of Ramchandani [20]) and stochastic Petri netspling policy [15] defined for Stochastic Petri Nets since
[7, 6, 8, 10, 14], since the Petri nets that we consider now pnly transitions concurrent withtake into account of their
preserve a higher level of non-determinism both in the du- enabling time from their last enabling instant. In presence
ration of activities (interval time specification) and conflict of multiple enabledness, we will assume that éxéended
resolution (interval firing frequencies). firing rule with non-deterministic strategf?] is adopted:

The paper is organized as follows. In Section 2, ba- the transitions of a TPN are then characterized by an in-
sic definitions and notations for interval Time Petri Nets finite server semantics and their memory policy is still of
are given. Operational definitions of throughput of transi- type enabling.
t!ons gnd mean mark'”g of places are also r.ecalled. Sec- A TPN with interval firing frequencies (TPNF) is a TPN
tion 3 includes the technique for the computation of bounds , \yhich an interval of firing frequencies is associated to
for interval Time Petri Nets by presenting a set of lin- 501, yransition in extended free-choice conflict. In a TPNF
ear equations and inequalities that are used as constrainty,e eyiended free-choice conflicts are still not determinis-
of linear programming problems stated to compute Upper e vt the non-determinism is reduced by assuring that, for
and lower bounds for the defined performance indices. N g5 hair of conflicting transitions, the ratio between their

Section 4, specific techniques for the computation of per-y,,5hnuts during an observation period falls into a finite
formance bounds for structurally defined subclasses, likejtaryal. Formally a TPNF is defined &F = (7, R)

marked graphs or free choice nets, are introduced. An, .o .7 is the underlying TPN model anel : T/ C T —

example of _applic_ation to a comm_unication protO(_:oI with Q" x @7 is the interval frequency function thatg\ssigns an

ACK and with a time-out mechanism for controlling the interval (r*[t], r*[t]), 7*[t] < r*[t] to each transition € 1",

message loss is presented in Section 5. Concluding remarka,hereT/ = U, ECS; is the union of the equal conflict
= U, f

are summarized in Section 6. sets. For each equal conflict 9e€’'S;, there exists a transi-
o _ tiont’ € ECS; such thau[t'] < minicpcs,{b[t]} where
2. Definition and notation R(t") = (1,1).
Extended Time Petri Net (XTPN) is the stochastic ex-
Time Petri Net (TPN) is a tupl& = (P, T, B, F, My, I) tension of TPN; formally, a XTPN is defined as a pair

whereP is the set of placed] is the set of transitiond3 : XT = (T,F,), where7 is the underlying TPN model

T x P — N is the backward incidence functios; : T x and Fy is a functional that assigns to each transition T

P — N is the forward incidence function. The input sets an initial firing probability density function defined over its
of p € P andt € T will be denoted agp = {t € T : static firing time intervall (¢). The state of a XTPN is a
F(t,p) > 1}and*t = {p € P: B(t,p) > 1} respectively;  triplet S = (M, Iy, F,;), where(M, I;) is the state of the

the output set op € P will be denoted ap® = {t € T : associated TPN modé and F,; is a functional that de-

B(t,p) > 1}. My : P — Nis the initial marking function,  fines the firing probability density function to each transi-
I:T—Qf x @F Uco) is the static interval function that  tion with non-empty firing interval. A transitiohy enabled

assigns to each transitiort € T a time intervall(t) = in marking M, can fire at time/ if it is firable in the un-
(alt], b[t]), at] < b[t], wherea][t] is thestatic earliest firing ~ derlying TPN and its probability of firing before or étis
time and b[¢] is the static latest firing time «a[t] and b]t] not zero. The new state reached by the firing f a state

are relative to the instant at which the transitiowas last S’ = (M’, 1}, F}), where(M’, I})) is the state reached in



the underlying TPN and"”; is a functional that defines the  3.1. Structural constraints

new probability density functions of the transitions enabled

in marking M’ according to the enabling memory policy. Structural constraints are based on the net structure and,
Concretely,F; associates to the newly enabled transitions at most, on the initial marking. A first set of constraints
their initial probability density functions and to transitions is derived by considering that for all markings reachable

concurrent witht it assigns the probability density functions
of their remaining times to fire.

at instantr € (0,T"), denoted in vectorial form a¥1, (1),
we have thatM, (1) = Mg + (F — B)T o,(7), where

Let us introduce the basic quantities that can be collectedo,(7) is a feasible firing count vector until instantM, is

during the period0,T'),T' € R™ by observing the behavior
of an interval Time Petri Nét

sl = [ Mpl(rir M

the average marking of € P, where M|[p|() is the
number of tokens ip at timer € (0,T);

)

the average enabling degree af € T, where
elt](r) = mi@pe.t{]‘gg’;)} is the number of instances of
t enabled at time € (0,T);

I
;11] = / &5 t)(r)dr

the enabling time for the j-th instance of transitibduring
the experiment interval, wheeg [¢](7) is the characteristic

3

the initial marking vector andF — B)™ is the incidence
matrix. The average marking vectdd during the time
interval (0,T") has to satisfy the linear equality:

M =M, + (F-B)'s (5)

whereo is the average firing count vector during the exper-
iment interval.

Proof. From definition (1) written in vectorial form and
from the reachability equation:

_ 1 (T
M = f/o M, (7)dr =
1 T
f/ Mo + (F —B)T o, (1)dr =
r 0
1 r
M, + (F — B)T— / or(T)dT
r 0
takingo = & fOF or(7)dr the equality (5) follows. ©

A second set of constraints is derived from the token

function that evaluates to 1 iff the j-th instance is enabled at flow relations for places:

timer € (0,T) (i.e.,e[t](T) > j);

(4)

the throughput of € T'in (0,T"), whered®|t] is the number
of firing of ¢ during the experiment interval®[t] can be
expressed a®|t] = >°7° | @;[t] where®;[t] is the number
of firing of the j-th instance of in (0,T").

3. Bounds for interval Time Petri Nets

Given an interval Time Petri net, let]t] and M[p] be
the throughput of transitione 7" and the average marking
of placep € P, respectively, during an observation inter-
val (0,T'),T € R*. The upper and lower bounds foft*|
of a given transitiont* (or for M[p*] of a given placep*)

> altlF(tp) = Y «lfB(t.p),
te*p tep®
that become equalities i is bounded. Obviously, the
average marking vector, the average firing count vector and
the transition throughputs are always non negative values:

M,oc >0, z[t] >0 VteT (7

Vpe P (6)

3.2. Enabling operational law constraints

This set of constraints is derived from the enabling
operational law applied on Petri Nets (aofilization law
with classical queueing systems terminology [13]); they
take into account of the timing information of the net, that
is the static interval functiod. A first constraint is given
by the following inequality:

can be computed by solving a linear programming problem Throughput upper bound inequality

(max-LP problem for the upper bound and min-LP prob-

lem for the lower bound) in which the objective function is

x[t*] (or M [p*]) and subjects to a set of constraints that are
derived from the Petri net structure and from the enabling

operational law.

M{p]
alt]B(t, p)

for all experiment interval§0, I'), T € R™.
Proof. Let us consider a transition € T wherealt]

Ve TandVp e ®t: zft] <

170 simplify the notation we omit the dependence of the basic quanti- IS the earliest static firing time. Then, assuming the j-th

ties onI.

instance becomes enabled at the instart (0,T"), where



I € RT, it cannot fire befora[t] + 7: this means that the
minimum firing waiting time isz[¢]. Then maximum num-
ber of firing of the j-th instance of during the experiment
interval is given by{ 6,1t] J so that:

| =

alt]
0,t]
X < pmazr — J
2;lt) < @7l = |
Then summing over all the instancest@fnd dividing byl"
the first and the last member we obtain:
L0t
2] < 2371 il 1

T alf
Replacing 6;[t] with its definition and exchanging the
integral and the sum signs we get'

fo j= oej (T)dr 1
r alt]
Now considering that the equalities[t](t) =
3% 0eiltl(r) and eft(r) = minpee {22} hold
for all 7, we obtain:
Jo MIp)(r)dr — M[p) .
W= B = aBey P e

Note that constraint (8) can be applied to transitions that

are either persistent, i.e., once enabled they eventually fire,

or in conflict. In casea[t] = 0 the inequality still holds:
x[t] < oo.

The following constraints hold, instead, only for persis-
tent transitions:

Throughput lower bound inequalities Let us consider
an observation intervdD, I'),T" € R either large enough

or such thatM [p|(I') = 0and lett € T': *t = {p}. Then:
M(p] - B(t,p) +1
x[t]b[t] > Bt.p) 9)
If 7 € (0,T) : M[p](r) < NIp] we have the further con-
straint: i) — kB(t.p)
- t,p)+1
Rl i T
wherek € N : kB(t,p) < N[p] < (k+ 1)B(t,p).
Considering transitions with two input places,
t €T :°* = {p,pe}, if ¥r € (0,T) : M[p1](7) <
Np1], M[pz](7) < N[p2] andN[p1] < N{p2], then:
z[t]b[t] B(t,p1) > M[p1] — B(t,p1) + 1 — N[p1]fa (11)

wheref, = (1 — % Finally, a generaliza-

tion of the inequality (11) is the following:
a[t]b[t)B(t,p1) > Mlpi] - B(t,p1) +1
—Nipi] maz {15}

(12)

where*t = {p1,....px}, Vj = 1,..,k, V7 € (0,T) :
M[p;|(r) < N{p;], N[p:] < N{p,], and
_ M]p;] — B(t,pj) +1
fi = <1_ N[Pj]—B(tan)Jrl)'

Proof. The above constraints are derived from the ones
proved in [10] by considering that:

e being ¢ persistent, for each j-th instance ofonce
enabled at time instant;; eventually fires at a time
instant always less than or equalt@+ b[t] so that its
firing waiting timessS;; < b[t], Vi;
the enabling time for the j-th instance bfluring the
observation interval0, I") can be written as:

®;[t]

)= Sj+38; < &[tlblt] +;

i=1
whereS;; represents the firing waiting time of the j-th
instance enabled at a time instant: 7; + b[t] < T,
andd; € [0,b[t]) represents a possible not complete
firing waiting time because of the choice Iof

If T is chosen such a8/[p] = 0 forap € °t or
I' — oo thend; = 0,V; and the following relation
holds for the mean service time bin (0,T'):
—de L0t
5t ZE 0 <y,
2 =1 B[]

In case of XTPNs the enabling law constraints given in
this sub-section can be replaced with the ones defined in
[10] for Stochastic Petri Nets where the mean service time
S[t] of transitiont is the expected value of the firing time

distribution associated toi.e., S[t] = fb[t] z fi(z)dx

<

3.3. Routing constraints

Routing constraints for transitions that are in structural
extended free-choice conflict can be defined only for
TPNFs and, under certain restrictions, for XTPNs. Let
us consider the equal conflict relation [24); EQ t; iff
B(t;,-) = B(tj,-) # 0; itis an equivalence relation and
let ECS be an equal conflict set. Given an observation
interval (0,T),T € RT, for each pair of transitions
tj,t € ECS of a TPNF such that[t;], alt;] < aLFT,
whereaLFT = minic pos{b[t]} we have:

rltlelte] < rolte]alty], v ltelalt;] < roltlelts]. (13)

Proof. From definition of TPNF, the following inequalities

hold for the number of firings of € ECS,a[t] < aLFT

during (0,T"):
rift]@lto] < ®[t] < r*[1]®[to]

where to € ECS a[t()] < aLFT, R(to) = (].7 1)

Dividing by T" we obtain the same inequalities for the

throughput. Theriyt € ECS, a[t] < aLFT:



ri[t] < =l <7r°[t] and ! < 2lto] < .1
x[to] re[t] T x[t] T rit] t 2 n
Considering that: ()=(a1b)] 1@2)=[a2b2] | 1(m)=[anbn]
lty] _ x[t;] xfto]
x[tr]  x[to] x[tk] al FT = min (bk), k=1,...n
it is trivial to obtain inequalities (13). o I :faLaLFTF,TkEi'i ''''' .L,n

Let us consider now a XTPN and denote Asy) the

initial firing probability density function oft € ECS. pL+L prv
If 1) no other transitiont’ ¢ ECS can become en- l(t01):[0’0]t01 tolL(m):[o,o]
abled concurrently witt € ECS and 2) there exists L+ cee [Jw
p € *t: Mp)(t) < B(t,p),¥r € (0,T") then the probabil- P pL I(tL+1)=[al +1bL+1) (m)=ten ool
ity that ¢ fires first is marking and time independent, and it o w
is given by: I(t1')=[al,aL FT] I(tL")=[aL,aLFT]
aLFT b[t']
P[t] = / ft(y)[ 11 / ft/(z)dz} dy. _ . o _
alt] tEeBCS,t#t7Y Figure 1. Preselection policy in free-choice
We can then define the following routing constraints for all TPNs.
ti,t; € ECS, such thau(t;], a[t;] < aLFT:
x[ti] _ x[t;] (14) Our equivalence notion is basically a timed trace equiv-
Plti] Pt alence that preserves the maximum and the minimum

throughputs of timed transitions.

Let us consider the integer reachability graph (RG) [18]
associated to a TPH. The node of the RG are integer
states of the net, that is states where the current local time
for each enabled transition is an integer; this RG includes
only a discrete part of all the possible net behaviors, but it
has been proved that this knowledge is sufficient to deter-
mine the min/max durations of a given feasible firing se-
guence.

A path of the RG from the initial state, to a states,,
represents a feasible firing schedule and it is characterized

. by transitions, whose firing happens timeless, and by time
The bounds for transition throughputs and for mean durations, and it can be denoted @s: s, % s; b

number of tokens in places of an interval Time Petrinetcan o, On_1 . .

be possibly improved by applying a preselection policy to ™" __> Sn—1 T f" where eithew; = (t,0),t € T or
timed transitions in free-choice conflict to make them per- 7% = (7,m3),mi €Q . . .
sistent so that inequalities (9) and (10) can be included in  Letus considerthe sét = {0 : sp —> 51 — ... ——

Moreover, if there exists € ECS : a[t] > aLFT, then
transitionst’ € ECS with a[t'] > aLFT have null firing
probabilities and we can deduce that;] = 0. Although
restrictions 1) and 2) given above are quite strong, suffi-
cient structural conditions can be applied in order to ver-
ify them, i.e., structural mutual exclusion condition based
on P-invariants for the verification of 1) and the structural
marking bound computation for the verification of 2).

3.4. Application of preselection policy

the set of constraints of the LP problem. Sn_1 == s,,n € N} of the feasible finite firing sched-
Let us assume to have a free-choice conflict betweenules of 7. From the set we construct the set¢ contain-

n transitionsty, .., t,, of a TPN, where*t, = {p},Vk = ing the finite firing schedules df reduced in a canonical

1,..,n, characterized by firing intervalg(t;) = [ak, bk] form. As canonical form of a feasible firing schedule we

as depicted in the upper part of Figure 1. kdiFT = mean a firing schedule where the immediate transitions are

ming—=1_. »{bx} be the actual latest firing time of the con- considered not observable, and hence eliminated, and the

flicting transitions: when the conflicting transitions are en- subsequences representing only time elapsing are collapsed
abled, each transitiot, can fire at a time instant, < into a unique transition from the initial state to the final state
[ax, aLF'T]. Without loss of generality we can assume that of the subsequence representing the global time duration of
ar < aLFT for the firstL transitions andy, > aLF'T for the subsequence.

the remaining ones. Then, there is an actual conflict only Let us denote as; and the first and the second pro-
between the firsL transitions and the behavior of the free- jection functions, respectivel\E;,,., = {t € T : at] =
choice conflict iquivalento the net depicted in the lower  b[¢t] = 0} and Tiimea = T \ Timm the sets of immedi-

part of Figure 1. ate transitions and of timed transitions®f The canonical



+k—
30 € [6(i — 1), 6 — 1) + k — 1] (o) =
-

] (Ul) ¢ Trimed N
-

1 m(or) €

me /\

¢(0) = 0
QZ)(Z — 1) + 1 |f 1 (0¢(i—1)) S Ttim,ed
oi—1)+k if eNt:VIelp(i-1),06G—1)
o6) = pli—1)+k+1 if ke Nt :Vie|pli—1),06—1)
pli—1)+k+1<n
# otherwise

Table 1. Index function

form can be constructed in a recursive way and it is basedProperty 1 The transformation of a timed free-choice net

on the definition of the index function given in Table 1:
Definition 1 Leto : sp —% s7 —5 ...
s, € X be a feasible firing schedule, the canonical form

of o is an observable feasible firing schedule: s —>

’
! o

; %1 n!/—2 I,
si— .. — S e s, Where:

!
n = max 1

(1)75#{ b

32 = S¢(i)>

, T1(Tp(i+1)—1), 0) if m1(0g(i+1)—1) € Ttimed
g; =

' Z?(Z:Ell) ! 2(0’[)) otherwise

With the previous definition we can finally define our
notion of equivalence between two TPNs:

Definition 2 Let ¢ and X§ be the sets containing the
finite firing schedules of; and 75, respectively, reduced
in their canonical form. Ther¥; and 7’2 are equivalent

(71 = 7o) iff there exists a bijectior : — T2

tzmed timed?

into an immediate free-choice net as depicted in Figure 1
leads to a= equivalent net.

Proof sketch. Let us consider a TPN; with a timed
free-choice conflictCS = {t4,...,t,} and let7; be the
TPN derived from the former by applying the transforma-
tion of the timed free-choice conflict into an immediate one
as depicted in Figure 1. The proof consists in the following
steps:

1. define a bijection3 over the sets of timed transitions
of the two models.3 is equal to the identity function
for transitionst € T}, ., \ FCS and it assigns to

each transition of;, € F'CS the corresponding timed
transitiont), as depicted in Figure 1.

2. Verify, by induction on the length of the canonical
firing schedules, that for each canonical firing schedule
o € X' of 7; there exists a unique firing schedule
o’ = B*(o) € ¥% and vice versa, wherg* is the
bijection induced by3.

Property 2 The equivalences preserves the minimum and
the maximum throughputs of timed transitions.

defined between the sets of timed transitions of the two Proof (for the minimum throughput)Let us consider

models, such that:

o1 On—2 On—1
Vo=s5y) 55 —5.. 2 s, 1 —— 85, XS

’ ’
r_ 1 % 1 91 On—2 In—1 4 c
o' =5y —>s1 — ... — s, — s, €35,

where:
o — (B(t;),0) ift; € TL 4
v o; otherwise
and
Vo =s) 2% 2 Bs’ 4 L;s L E XS

On—2

g0 g1
J|o=s) — 81 — ... — Sp_ 1*>5n621,

where:
If t € Ttuned
o; otherwise

two TPN models7; and 7; such that7; = 75, and let
¥1¢ and 2¢ be the sets of the canonical firing schedules
of 73 and of 75, respectively. We first have to define the
minimum throughput of a transitione 7%, as function

of canonical firing schedules belonging to the &&t.
GivenT € @™, let us consider the following subset of
canonical firing schedules f:

Elc(l—‘) = {80 o, an—_% Sp € Ei | ZT[—Q(G—Z‘) =

n—2 iTO

OI‘(Z?TQ 0;) < Fandng o) > F) (15)

=0
that is the subset of canonical firing schedules of time
length equal td" or strictly betweerl’ — 72(0,) andT,
whereo,, is the last event of the schedule causing the state
change. Let us define as(o) the number of occurrences
of tin o € ¥1¢(T") then the minimum throughput ofin the



time interval(0,T") is given by: p

MiNgesie(T) (nt(a)) 1 2 in
Xmin[t](r) = T . 1(t1)=[aL,b1] |(tz)=[az_,ﬁzi ' I(tn)=[an,bn]
R(t1)=(1,1) R(t2)=(r'2,rs2) R(tn)=(r'n,r )
We prove now that the minimum throughputtag equal to AL FT = min (B9, k=L
the minimum throughput ofi(¢), whereg is the bijection I ak <= al FT, k=1,...L
defined by the equivalence. We denote a&2(I") the At
subset of canonical firing schedules D analogous to b pL+T on
»1¢(T), then 8 induces a bijection between the subsets 101 1oL
»1¢(I) andx?(I") such that: Koo ek i .. i

X X L 1(tL+1")=[aL+1,bL+1] 1(tn’')=[an,bn]
Vo € 2(T) 3|0’ € Z%(T) : ny(0) = npn (o) ) 3

tr tL’
and vice versa I(t2)=[al,aL FT] 1AL’ )=[eL &L FT]

! 2c lc . N
Vo' € ZH(I) 3| o € ()« gy (o) = (o). Figure 2. Preselection policy in free-choice

So that: TPNFs.
) ) = ) =n(D).
Lmin (ns)(0)) = min_ (ni(o)) =n(r)
We can conclude that: pessimistic transformation, such as incrementing the aver-
n(I) age firing times, leads to a slower transformed net system

= Xmin[t](T'). so the we can use the extreme points of the transition in-

X BO)(T) = ==
terval firing times for the computation of their performance
Analogous consideration can be done for the maximum pounds.

throughput. o

Similar transformations of timed free-choice conflicts 4.1. Marked Graphs
into immediate ones can be carried out in case of TPNFs
and, under the restrictions 1) and 2) stated in sub-section A Marked Graph is an ordinary Petri Net such thiate
3.3, of XTPNs. In particular, the transformation of a free- P : |°p| = |p®| = 1. Transitions belonging to a MG are
choice conflict among transitions of a TPNF is illustrated  characterized by the same visit ratios and hence by the same
in Figure 2. The replacement of a timed free-choice con- throughputz[t] = z,Vt € T,V(0,T),T € RT.
flict of a XTPN with an immediate one leads to a general ~ The steady state average cycle time of the MG, defined
Stochastic Petri Net with finite support probability distribu- as7c = 1, can be bounded by solving the following LP
tion functions (PdFs) defining the service time of transitions problem[6]:
(i.e.,_the PdFs usc_ad in the.ori.ginal XTPN), in whigh the im— To > maximum y-BT .5 (16)
mediate free-choice conflict is characterized by immediate _ T
transitionst,; with weights equal to the probabilitid]t;], subject to y - (F—-B)" =0
defined in sub-section 3.3, and by persistent timed transi- y-Mp=1
tionst; with a PdF of the firing times that is the minimum y >0

of the PdFs associated to the timed transitigns . .
! I e wherey is a vector of variable3T and(F — B)T are the

. . ) pre-incidence and the incidence matrices, respectidly,
4. Bounds for special classes of interval Time s the initial marking vector ana is the mean service time

Petri Nets vector.
In case of TPNs (or TPNEswe can also use this LP
In case of live and bounded systems similar techniquesproblem to compute the transition throughput bounds by
as the ones defined for Stochastic Petri Nets which makereplacing the unknown vectar with the available timing
use of P-semiflows [5, 7, 6, 8] can be applied for the com- information.

putation of bounds of operational performance measuresl_Jploerbound We consider the best performance case that

fﬁr m_tervlal Time Petr: '\:Ets' In ftfgs S.eNCt'(m’hwe_a?leyie dis the case in which the mean firing time of each transition
the simplest structural classes of Petri Nets that is Marked;q equal to the minimum of its static firing interval, i.e.,

Graphs (MGs) an.d Frge Choice nets (FCs). Interval T|mevﬁ € T : 5t] = alt]. LetT3 be the solution of the LP
Petri Nets belonging either to MG class or to FC class sat-
isfy the “performance monotonicity property”, thatlgeal 2Note that marked graph TPNFs reduce to TPNs.




problem (16) in which the vectaris replaced by the vector R(t1)=(05,1.5)
of the transition earliest firing times= [a[t]], .., then the (215

throughput upper bound of each transitiok 7' is given \
by: 1 2 3 pé
UB[x) = g, VL ET. P
C pl \_ tL t6
Lower bound We consider the worst performance case D 1(t6)=[1,1]

that is the case in which the mean firing time of each tran-

e . . P R(t1)=(1,1)
sition is equal to the maximum of its static firing interval, (()=(04] P2 P4 15)=[0,0]
i.e.,Vt € T : 5[t] = b[t]. Let T be the solution of the LP ' 12
problem (16) in which the vectaris replaced by the vector
of the transition latest firing timels = [b[t]], .. In case
of a deterministic Petri Net the valé? corresponds to the
exact cycle time value. Being the deterministic Petri Net
the worst performance approximation of the given interval
Time Petri Net we can take this value as a throughput lower

Figure 3. Free choice TPNF with transitions
covered by all T-semiflows.

bound for the transitions of the interval Time Petri Net: visit ratios can be calculated by solving the linear system
of equations:
LBz = Tb’ vteT. F-B)T .v—0 a7)
v|t; V|t
In case of XTPNs, being a subclass of Stochastic Petri P[[tl-]} P[ ] Vi, tys.t. Plt;] # 0, P[t;] #0

nets, the LP problem (16) can be used to compute the tran- il
v[te] = 1, for a tg s.t.P[tg] # 0

sition throughput bounds of marked graph XTPNs by taking

5= U:[[;}] JTft(ﬂ?)dx}- Upper bound for TPNF Another possibility of com-
puting throughput upper bound for a transition of a

4.2. Free Choice nets (FCs) free-choice TPNF is to solve the following non linear
problem after the preselection policy has been applied to

A FC net is an ordinary Petri Net such thgi ¢ P : each timed conflicting transition:
‘1_7._| > 1= °(p*) = {p}. Relative throughput of_tran— Te, > maximum y-BT.v.a (18)
sitionst € T belonging to a FC net are characterized by subject to y - (F—B)T =0

visit ratiosv[t] that depend exclusively on the net structure

T _
and on the routing rates of conflicting transitions. Under (F-B)" -v=0

the assumption that preselection policy is adopted for con- y-Mo=1

flicts among timed transitions then it is possible to compute rlts]olte] < r[trlolt;]  (19)

a lower bound for the average interfiring time of a transition Pltlolt;] < rlt]olts] (20)
J

t € T (inverse of its throughput) by solving the LP problem

(16) in which vectos of mean service times is replaced by vlt] =1

the vectoD = v-s of average service demands, normalized y>0,v>0

for the transitiont whose average interfiring time is under ) )

study (i.e.o[t] = 1) [5]. where constraints (19) and (20) have to be applied for each

In TPNs and in TPNFs conflicts among transitions are Pair of transitions in conflict.
not deterministic, hence the routing rates of conflicting tran- Lower bound for TPNF  The set of transitiong’ of a FC
sitions cannot be calculated. However, it is always possiblenet can be partitioned into the set of transitions that are cov-
to apply the preselection policy to timed conflicting transi- ered by all T-semiflows7,;;, from the rest of transitions,
tions and to compute the transition throughput bounds by T \ T,;;. Then, due to the fact that free-choice conflicts are
solving the general LP problem for the transformed net in not deterministic, transitions i’ \ T,;; have throughput
which also inequalities (8) and (9) can be included in the setlower bounds equal to zero. Transitions belongingig
of constraints. may have instead non null throughput lower bounds, such
Timed transitions of a XTPN, under the restrictions 1) as for example transitioty of Figure 3.
and 2) stated in sub-section 3.3, can be made persistent and Throughput lower bounds of transitionse T,; of a
the XPTN can be transformed into a general StochasticTPNF can be computed by transforming the initial Aief
Petri net. Then it is possible to apply the LP problem (16) into the TPNF7Z F’ that results from the replacement of
in which vectors is replaced byD = v - 5. The vector of  each timed free-choice conflict into an immediate one, and



by solving the following LP problem off 7':

ub [t]]
T4’ = maximum le SE ) (22)

subject to (F—B)T.v=0

.

r'ltlulte] < refta]olty] (22)
rlteolt;] < roftlulte]  (23)
o[t"] =1

v>0

T8

wherem is the cardinality of the set of transitio’d of

TF', blt;] is the latest firing time of transition; € 77,

SE(t;) represents the structural enabling bound [5]#pr Figure 4. The TPN model of the transmission
and can be computed a priori (so it is not a variable), and  protocol

transitiont* € T’ is covered by all T-semiflows. Con-

straints (22) and (23) apply to transitionsf" in conflict.

The inverse of the solution of the above LP proble}éﬁ, such that[t] < b[t] is characterized by a uniform distribu-

is a lower bound for transition throughput of € T, of tion over the firing intervala[t], b[t]) and the timed transi-

the original FC ne? 7. tion T; is characterized by a deterministic distribution with
The LP problem (21) is actually a modification of the delay1 (Ty is immediate).

one stated in [5] for deterministic and Stochastic free-choice
Petri nets in which a set of constraint related to the visit
ratios of transitions have been added.

The throughput ofl; calculated by using analytical ap-
proximation technique [22] is equal &6(7}) = 0.12. The
computation of throughput bounds éf has been carried
out by transforming the timed free-choice conflict into an
5. Example immediate one as stated at the end of Section 4 and by

solving, first, the general LP problem subject to constraints

The example presented in this section is taken from [12], (5,6,7,8, 9,11,14) and, then, by solving the general LP prob-
where an untimed Petri net model is used to represent thdem stated for Stochastic Petri Nets [5], with the following
behavior of a communication protocol. First, we have addedresults: XU ?[T1] = 0.167 and X{Z[T1] = 0.067, in the
timing information to the untimed Petri net, obtaining the first case, and(Y?[T}] = 0.122 and XXB[T}] = 0.085, in
TPN model depicted in Figure 4: the communication be- the second case. Concerning upper bound throughput, the
tween two entities (source and sink) is started by the sourcesame resulfXY B [T}] is obtained by applying the LP prob-
that sends a message to the sink (transifiphand waits lem (16) where vecta® has been replaced iy = v - s and
for an ack from the latter. When the message transmissionthe vector of visit ratios has been computed by solving the
has been executed (transitidy), the sink receives the mes- set of linear equations (17).
sage (transitiol;) and sends the ack (transitidg) to the
sender. After the reception of the ack (transitifif) the
source entity is re-initialized. The source entity is provided
with a time-out mechanism that allows to detect the mes-

6. Conclusion

sage loss during the transmission (transitigh and to re- A first step for the development of structural perfor-

send it (transitioryy). mance analysis techniques for interval Time Petri Nets has
Let us consider transitiol} (the send action): the been achieved in this paper.

min/max throughputs, fof' sufficiently large, have been We have shown that it is possible to compute upper and

computed on the class state graph, generated by the TINAower bounds for the throughput of transitions and for the

tool [1], and they are equal t&,,;,[7T1] = 0 and to mean marking of places in linear time on the net size, by

Xmaz|[T1] = 0.2. The lower and upper bounds have been solving proper linear programming problems stated from

calculated by solving the general LP problem on the TPN the net structure, the initial marking, and the parameters that

derived from the application of the preselection policy to define the time interpretation.

transitions7y and 73, and they are equal to the min/max The technique presented here is an extension of a pre-

throughputs, respectively. vious linear programming based bound computation tech-
Then, we have added stochastic information to the TPN nique developed for timed and stochastic Petri nets. In the

model obtaining a XTPN in which each timed transition  case of the net interpretations considered in this paper, the



firing of transitions is restricted within an interval that de-
fines per each transition the earliest and the latest firing time
relative to the instant at which it was enabled. A similar in-
terval based definition is possible for the conflict resolution
policy at free choice conflicts that leads to the introduction
of the TPNFs. TPNFs have a practical interest, for example,
in the modelling of flexible manufacturing systems (FMS).
Usually, to model a production plan with Petri Nets it is nec-
essary to establish the proportion of parts that must be pro-[10;
duced for each class of parts during a period of time and,
in many cases, this is carried out by fixing firing frequen-
cies of transitions that represent the starting of the produc-
tion of each class of parts. The possibility of modelling
the production plan with an interval frequency increases the
expression power of the model, making the FMS even more
flexible (i.e., it is possible to define the production plan with
a “fairness constraint” instead of with fixed ratios).
Additionally, if the probability density function over the

firing interval of each transition is also given, the mean
value of these variables can be also introduced in the de-
rived linear programming problems to improve the quality [13]
of the computed bounds.
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