
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 1843–1865
Performance evaluation of UML design with Stochastic
Well-formed Nets

Simona Bernardi a,*,1, José Merseguer b,2

a Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy
b Departamento de Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza, 50018 Zaragoza, Spain

Received 20 April 2006; received in revised form 31 January 2007; accepted 10 February 2007
Available online 25 February 2007
Abstract

The paper presents a method to compute performance metrics (response time, sojourn time, throughput) on Unified Modeling Lan-
guage design. The method starts with UML design annotated according to the UML Profile for Schedulability, Performance and Time.
The UML design is transformed into a performance model where to compute the referred metrics. Being the performance model a
Stochastic Well-formed Net, the method is enabled to analyze systems where the object identities are relevant as well as those where they
are not. A complete case study reveals how to apply the method and its usefulness.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Unified modeling language; UML profile for schedulability performance and time; Stochastic Well-formed Net; Software performance
engineering; Model driven architecture
1. Introduction

The quantitative analysis of software systems has been a
topic of interest during the last decades. Today, the chal-
lenges still remain open, since the software demands
high-quality non-functional properties such as perfor-
mance, scalability, dependability or quality of service.

According to the Model Driven Architecture (MDA)
approach, conceived by the Object Management Group
(OMG), the development of the entire software life-cycle
can be seen as a process based on models. MDA proposes
an efficient use of system models, where the primary mod-
eling notation is the Unified Modeling Language (UML)
(OMG-UML, 2005). While other OMG standard lan-
guages, such us the UML Profile for Schedulability, Perfor-
0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.02.029

* Corresponding author.
E-mail address: bernardi@di.unito.it (S. Bernardi).

1 Simona Bernardi has been supported by the European IST project
CRUTIAL-027513 (CRitical UTility InfrastructurAL resilience).

2 José Merseguer has been supported by the project DPI2006-15390 of
the Spanish Ministry of Science and Technology.
mance and Time (UML-SPT) (OMG-UML-SPT, 2005),
are used to add information to the original UML system
design, in this case quantitative information.

One of the main goals of MDA is to support transfor-
mations between models that emphasize different views
and levels of the system. In the last years, several works
have been proposed to transform automatically UML-
SPT models (i.e., UML models enriched with perfor-
mance annotations) into performance models, using as
target modeling formalism either queueing networks
(Cortellessa and Mirandola, 2000; Gu and Petriu,
2005), or stochastic process algebras (Canevet et al.,
2003; Jansen et al., 2003) or stochastic Petri nets (Ber-
nardi et al., 2002; Bondavalli et al., 2001; López Grao
et al., 2004). Other works transform the UML-SPT mod-
els into any kind of performance model (Woodside et al.,
2005; Grassi et al., 2005) or into simulation models
(Balsamo and Marzolla, 2003; De Miguel et al., 2000).
Performance models, unlike UML-SPT models, benefit
from the analysis techniques and tools developed during
decades.

mailto:bernardi@di.unito.it

1844 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
In Merseguer et al. (2002) and Bernardi et al. (2002) we
proposed a method that converts automatically UML state
machines (SM) and sequence diagrams (SD) into General-
ized Stochastic Petri Net (GSPN). This method can be used
to analyze software systems in which the objects of the clas-
ses are considered indistinguishable (i.e., the object identi-
ties are not modeled). The method is scalable with
respect to the class population, i.e., the number of objects
per class.

From the UML point of view, models use to be inter-
preted in terms of objects that can be distinguishable
among each other. But, when large class populations have
to be modeled and the object identities need to be consid-
ered as well, GSPN use to scale bad and their modeling
and analysis becomes intractable. Stochastic Well-formed
Nets (SWN) – the colored version of GSPN – overcome
these difficulties by providing a support to the construction
of compact models (Balbo, 1995; Bobbio et al., 2001). Con-
cretely, the common behavior of several entities constitut-
ing a large system is described by the SWN topology and
different entities are identified by different colored tokens.
Moreover, the analysis of SWN models can be carried
out with efficient techniques that exploit model symmetries
to reduce the size of the state space representation (Chiola
et al., 1993).

In this work, we propose a new transformation method
of UML-SPT design into SWN models, that builds on the
one proposed in Merseguer et al. (2002) and Bernardi et al.
(2002). The method exploits the properties of the SWN to
gain scalable, with respect to class population, performance
models that represent the object identities.

From the performance analysis point of view, it is worth
noting that it is not always relevant to consider the object
identities. Indeed, for some systems, the analysis of the col-
ored model and the corresponding uncolored model gives
the same performance results. Then, software analysts face
the modeling issue of whether considering the object iden-
tities in the performance evaluation or not. To the best of
our knowledge, there is no work that has identified a set
of system conditions that guarantee same results when ana-
lyzing the colored and uncolored models. The most we can
say is that there are systems (Ballarini et al., 2002, 2003;
Franceschinis et al., 2001) where the results from colored
and uncolored models differ. While there are other case
studies, such as Merseguer et al. (2003), where the two
models are performance equivalent.

Therefore, the main contribution of this work is to pro-
vide software engineers with a method, suited to object-ori-
ented methodologies, for the computation of performance
metrics, such as response time, sojourn time and throughput,
on UML design.

The application of the method does not require expertise
in Petri net modeling and analysis since all the method
steps but one have tool support. Moreover, guidelines are
provided to the analysts in the step of the method that is
not currently automated, that is the conversion of unco-
lored models into colored ones. Nevertheless, the method
does not still support performance assessment, so the soft-
ware engineers need knowledge to read the SWN and then
pinpoint the performance problems in the UML model.
This an easy task since traceability between models is
provided.

1.1. Related works

The problem of deriving formal models from UML
design has been studied by several researchers during these
last seven years, so there exists a lot of literature on this
topic. We restrict our discussion to the works that aim at
deriving, from UML design, formal models that capture
the object identities.

One of the first proposals of deriving high-level Petri net
models, that preserve the object identities, from UML
design was made by Baresi and Pezzè (2001). The authors
exploit the net composition property to obtain the final
high-level Petri net model of the system. The behavior of
the classes, specified by UML statecharts, is represented
by high-level Petri net component models with interface
places. The objects belonging to the same class share the
same net structure and their identity is captured by the
token values. The collaboration diagram guides the con-
nection among the component models, which is carried
out through the merging of interface places, then providing
the final model for the system under study.

Saldhana and Shatz (2000) propose a method to derive
Colored Petri Net (CPN) models from UML statecharts
and collaboration diagrams. As in Baresi and Pezzè
(2001), the Petri net composition approach is adopted to
get the final analyzable CPN model. However, unlike
Baresi and Pezzè (2001), the objects belonging to the same
class do not share the same Petri net structure, then pro-
ducing a final CPN model that is not scalable with respect
to the class population. More recently, in Hu and Shatz
(2004), the authors investigate model-driven simulation
and propose the use of the CPN models derived according
to Saldhana and Shatz (2000), as the engine that drives the
simulation. The scenarios generated by the simulation runs
are represented as Message Sequence Charts, then provid-
ing a support to the user in the verification of system prop-
erties, such as checking the occurrence of events and the
causality between event occurrences.

The work of Bouabana-Tebibel and Belmesk (2004)
builds on the Shatz et al.’s approach (Saldhana and Shatz,
2000) and proposes new rules of interaction of the CPN
component models. Objects diagrams are also considered
by Bouabana-Tebibel and Belmesk (2004) providing infor-
mation on the class population and on the object attribute
values. Token colors are not only used to specify object
identities but also to represent their attribute values.

The works cited above have a different focus with
respect to our proposal; indeed, the gain of the automatic
mapping of UML to high-level Petri nets in Baresi and
Pezzè (2001), and to CPN in Saldhana and Shatz (2000),
Hu and Shatz (2004) and Bouabana-Tebibel and Belmesk

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1845
(2004), is to have a formal model to prove system qualita-

tive properties (e.g., absence of deadlocks, fairness). In our
proposal, instead, we aim at deriving Petri net quantitative

models to be used for the performance evaluation of the
system. Moreover, it should be observed that the SWN
models are also suitable for qualitative analysis purposes.

The approach of Pettit and Gomaa (2004) derives, in a
semi-automatic manner from UML design, CPN models
suitable for both qualitative and quantitative system assess-
ment. This method consists in translating, systematically,
UML collaboration diagrams into CPN models by means
of a set of predefined CPN model components, called ‘‘tem-
plates’’. Such templates are defined according to a set of
object behavioral roles.

In Canevet et al. (2003) a method is proposed to derive
automatically performance models from UML statecharts
and collaboration diagrams. In this case, the Performance
Evaluation Process Algebra (PEPA) is the target modeling
formalism, then exploiting its composition capabilities. So,
each UML statechart is mapped onto a PEPA component.
According to the information drawn from the collabora-
tion diagram, these PEPA components are synchronized
over common activities, through the cooperation operator,
to obtain the final PEPA system model. As in Saldhana
and Shatz (2000), the approach in Canevet et al. (2003) is
not scalable with respect to the class population; since a
UML statechart is assumed to represent the behavior of
a single object, then a PEPA component is generated for
each object in the system.

Finally, the works (Merseguer et al., 2003; Bernardi and
Merseguer, 2006) combine the use of UML state machines
and a sequence diagram to produce models for perfor-
mance evaluation and quality of service analysis. In this
paper, we have built on the experience gained on them.
1.2. Structure of the article

The paper is organized as follows. Section 2 presents an
overview of the method that consists of four main steps.
Section 3 describes how to add performance information
to the UML design of the target system (first step). Section
4 goes over how to translate the UML-SPT design into
SWN components (second step). Section 5 accomplishes
the third step of the method, that gains an SWN perfor-
mance model from the SWN components. Section 6
describes how to analyze the performance model, i.e., the
last step. Section 7 applies the method to the case study
of a software retrieval system. Finally, in Section 8 conclu-
sions and future work are presented.
2. Overview of the proposed method

The method aims at supporting the software analyst in
the performance evaluation of UML design. The UML
design, enriched with performance annotations, is then
converted into an SWN, where the metrics can be effec-
tively computed via stochastic analysis. The method has
been devised to satisfy the following properties:

• Suitability for object-oriented methodologies. Since the
method uses SMs, SDs, interaction overview diagrams
(IOD) and deployment diagrams (DD), it can be
applied within any software methodology that encom-
passes these types of UML diagrams as design
notation.

• Preservation of object identities. Since we interpret the
UML design in terms of the object-oriented paradigm,
then objects carry identities. SWN models can deal with
this interpretation, in particular the SWN concept of
color can be exploited to represent object identities.

• UML-SPT compatibility. The OMG standard profile for
Schedulability, Performance and Time (OMG-UML-
SPT, 2005) is used to annotate, on the UML design,
the performance characteristics of the system. The
UML-SPT profile is easy to apply from the software
analyst point of view and it has been integrated in sev-
eral CASE tools.

• Repeatability and partial automation. The software ana-
lyst is provided with repeatable steps to gain the final
performance SWN model. The method is partially auto-
mated and three software tools help the software analyst
in its application: ArgoSPE (http://argospe.tigris.org),
algebra (Bernardi et al., 2001) and GreatSPN (http://
www.di.unito.it/~greatspn).

• Traceability. The use of labels in the SWN elements (i.e.,
places, transitions) supports traceability between the
UML design and the SWN performance model. Indeed,
the UML elements (such as states, events or activities)
can be identified by their names as labels in the SWN
elements.

• Scalability. Compact SWN performance models are
derived from large UML design and they can be effi-
ciently analyzed by using the SWN solvers that exploit
model symme- tries.

The method consists of four steps that are summarized
in the following.

2.1. Construction of a UML model for SWN analysis

The input to the method is a UML design that consists
of a set of SMs, modeling the behavior of system compo-
nents (classes), and one performance scenario (OMG-
UML-SPT, 2005), modeling the interactions among system
components (i.e., the messages exchanged among the
classes).

The performance scenario can be represented either by
an SD or, alternatively, by an IOD with a set of referenced
SDs. The IOD is a new notation introduced in UML
(OMG-UML, 2005) that uses the UML activity diagram
notation, where a node can be either an SD or a referenced
SD, and it is a way to describe interactions where messages
and lifelines are abstracted away.

http://argospe.tigris.org
http://www.di.unito.it/~greatspn
http://www.di.unito.it/~greatspn

1846 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
The UML design has to be annotated with the perfor-

mance input parameters and with the performance metrics

to be computed. Both are specified using the annotation
approach of the UML-SPT profile. Appendix A details
the set of UML-SPT extensions used in the method.

Performance input parameters include system workload,
activity demand, routing rates and message transmission
delays. Moreover, when the network speed is a parameter
of interest, then a DD, where to annotate it, augments
the UML design. The performance metrics encompass
instead scenario response time, sojourn time and throughput.

2.2. Translation of the UML model into SWN

This step includes two sub-steps. First, each SM is trans-
lated into an SWN component. Second, the performance
scenario is translated into one SWN component.

This paper provides a translation to convert an SD with
combined fragments into an SWN (Section 4.2). It is
important to note that when the performance scenario is
represented by an IOD with a set of referenced SDs, they
have to be converted into an SD where to apply such trans-
lation. Then we use the technique proposed by Haugen
et al. (2005) to get a unique and equivalent SD.

The translation of the SM and the SD ensures the trace-

ability of the method. In particular, the performance input
parameters in the UML-SPT model are mapped onto the
input parameters of the SWN components, basically tran-
sition firing rates/weights and place initial markings.

2.3. Obtention of the performance SWN

The goal is to get an analyzable SWN N for the system,
that represents the internal behavior of the system compo-
nents as well as their interactions. N is obtained by
exploiting the SWN composition features: the SWN com-
ponents representing the SMs are composed over places
to get an intermediate model NSMs. Then, the latter is com-
posed over transitions with the SWN component represent-
ing the scenario, to get the final SWN model N. Appendix
B gives an introduction to the basic concepts of SWN and
to their composition operators.

The method supports two different interpretations of the
possible concrete interactions modeled by the performance
scenario. Each interpretation corresponds to define a differ-
ent initial marking of N.

2.4. Performance analysis

The performance analysis is carried out on N, where
the metrics annotated in the UML design can be computed.
Each metric is mapped onto a function of the throughput
of transitions and/or mean marking of places, properly
identified through the labeling. The metrics are calculated,
on the steady state assumption, by applying well estab-
lished SWN solution methods (Chiola et al., 1993; Gaeta
and Chiola, 1995; Chiola et al., 1997).
The following sections describe in detail each step of the
method.

3. Construction of a UML model for SWN analysis

This first step of the method is illustrated by using, as
running example, a modified version of the gas station sys-
tem originally presented in Hu and Shatz (2004). The sys-
tem consists of N customers and four pumps which
process the customers’ requests for filling the gas.

3.1. UML design: the input to the method

The software analyst has to provide the method with a
UML design describing the behavior of the system. The
UML design consists of:

• a set of SMs, in the example the SM of the customers in
Fig. 1a and the SM of the pumps in Fig. 1b;

• a performance scenario, in the example it is represented
either by the SD in Fig. 2c or by the IOD in Fig. 2a
together with the set of referenced SDs. One of the ref-
erenced SDs is shown in Fig. 2b;

• and, optionally, a DD where to annotate the network
speed. The DD is not necessary in the example, since
the objects do not exchange messages throughout a
network.

Therefore, the system functionality is modeled through a
set of UML SMs, each one representing the behavior of its
class and cooperating with the other SMs by exchanging
messages.

A SM is made of states, used to place the do-activities

defined for the class, and transitions, used to represent mes-
sage exchange and labeled as eventRec/class.eventProd. The
SM represents a reactive model, i.e., an object is in a state
either waiting for an event occurrence or executing a do-

activity. When the object receives an eventRec then it
‘‘reacts’’ by changing state and sending an eventProd to
the target class. If an eventRec is received while executing
the do-activity, then the latter is aborted and the event
accepted. A transition is considered immediate if it has
not modeled an eventRec then, it fires just when the do-

activity finishes its execution.
In the example, a customer in state Arriving performs

the activity arrive, not computing but spending some time
before to send the ServiceRequest event to a pump. Then,
an Unused pump receives the event and answers to the cus-
tomer with an OK event, and then it Waits for Payment.
The customer Waiting for availability performs the activity
count-down to zero before making a ServiceRequest to
another pump. If, in the meantime, an OK event arrives
then the count-down activity is aborted, the payment is sent
to the pump (OK/Pump.Pay) and the customer moves in
state Paid where it waits until the event PumpReady arrives
from the pump. After payment, the customer selects the gas
grade and presses the nozzle. The pump fills gas and it

Paid

Request
Canceled

PickUpChange

Grade
Selected

Nozzle
Pressed

OK/Pump.Pay

PumpReady

/Pump.Cancel

/Pump.SelectGrade

ReceiveGrade

/Pump.Cancel
/Pump.PressNozzle

GetChange

Finish

GetChange

Arriving

DO:arrive

DO:picking-up

/Pump.ChangePickedUp

Unused

Cancelling

Working

Pay
Cancel

SelectGrade/Customer.ReceiveGrade

Cancel

PressNozzle

/Customer.PumpReady

entry/Customer.GetChange

ChangePickedUp

Checking

Change?
/Customer.Finish

DO:count

ReadyTo
Fill

Grade
Selected

DO:filling

[No]

[Yes]

Waiting for
availability

DO:count-down

/Pump.ServiceRequest

/Pump.ServiceRequest

Thinking

DO:think

Thinking

DO:think

Waiting for
Payment

ServiceRequest/
Customer.OK

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,5),’s’))}

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,2,’s’))}

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,3,’s’))}

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,100,’s’))}

Cancel?

[Yes]

[No]

Cancel?
[No][Yes]

/Customer.GetChangePickingUpChangePickedUp

<<PAclosedLoad>>
{PApopulation= $N}

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,0.01),’s’))}

<<PAclosedLoad>>
{PApopulation= 4}

<<PAstep>>
{PArespTime =
(’pred’, ’mean’,$MWT)}

Fig. 1. UML state machines of customers (a) and of pumps (b).

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1847
stops either when the pre-paid money is spent or when the
tank is full. The pump can prompt the customer to pick up
the change. The customer can cancel the operation after the
pre-payment or after the selection of the gas grade.

The UML SMs model is augmented with the modeling
of one performance scenario due to the following reasons:

• Performance engineers feel comfortable analyzing their
system under an scenario where performance values
can be parameterized.

• An SD captures the causal relation among the events
exchanged in the system (object control flow). This rela-
tion is not explicitly described by the SMs model.

Concerning the SD modeling assumptions, we consider
that each lifeline names a generic object Obj[i] of class
Class. The behavior of such class has to be modeled by
an SM. According to the UML interpretation, any object
belonging to the class can execute the lifeline, but obviously
when a concrete object (a customer, in Fig. 2c) sends the
ServiceRequest event to a concrete pump and the latter
accepts the event, the rest of the SD is executed by this pair
of objects. In terms of the SWN model, it will mean that
the identities of the objects participating in the interaction
have to be preserved along the whole interaction execution.

By representing only one object per lifeline, a message is
characterized by a sender and a receiver; we do not con-
sider broadcast messages since there is not a clear seman-
tics in UML for this concept. Although some proposals
have been made, for example by Whittle (2006), they are
still not standard.

3.2. Performance annotation of the UML design

Being our objective to analyze the system performance,
the UML design has to be annotated with performance
characteristics, i.e., performance input parameters and per-
formance metrics. The UML-SPT profile (OMG-UML-
SPT, 2005) gives the syntax to define them through the
use of predefined stereotypes and attributes. Appendix A
summarizes the UML-SPT approach and the annotations
used in the method.

First, we describe the meaning of the performance input

parameters and how to annotate them in the design.
The system (closed) workload has to be defined by spec-

ifying in each SM their population (i.e., the number of

C[i]:Customer P[j]:Pump

PressNozzle

alt
GetChange

ChangePickedUp

Finish

[Change]

ServiceRequest

OK

Pay

PumpReady

alt
Cancel

GetChange

ChangePickedUp

SelectGrade

PumpReceiveGrade

alt Cancel

GetChange

ChangePickedUp

<<PAstep>>
{PAprob= 0.1}

<<PAstep>>
{PAprob= 0.1}

<<PAstep>>
{PAprob= 0.5}

[Cancel]

[Cancel]

sd: performance scenario<<PAstep>>
{PArespTime =
(’pred’, ’mean’, $MRT)}

ref
Initial

Canceling Selection

GasSupply

refref

Canceling
ref ref

<<PAstep>>
{PAprob= 0.1}

<<PAstep>>
{PAprob= 0.1}

<<PAstep>>
{PArespTime =
(’pred’, ’mean’, $MRT)}

PressNozzle

alt
GetChange

ChangePickedUp

Finish

[Change]

<<PAstep>>
{PAprob= 0.5}

C[i]:Customer P[j]:Pump

sd: Gas Supply

a

Fig. 2. Alternative representations of the gas system performance scenario: an IOD (a) with the referenced SDs, such as the gas supply interaction (b), or a
single SD (c).

3 For interpretation of color in all figures, the reader is referred to the
web version of this article.

1848 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
objects that will execute concurrently the SM). The UML-
SPT provides the PAclosedLoad stereotype, that we attach
to the SM initial state, and the PApopulation attribute. In
Fig. 1a and b, a variable $N and an integer number (4) have
been used, respectively, to define the number of customers
and pumps in the system.

System activities, modeled inside the states of the SMs as
do-activities, represent (computation or thinking) time and
they are stereotyped as computational PAsteps. See, for
example, activities think in states Thinking in Fig. 1a where
the PAdemand attribute specifies the duration of the activ-
ities as random variables exponentially distributed, which
are the ones supported by the SWN formalism.

The system routing rates can be modeled either in the
SD or in the IOD by assigning probabilities to the interac-
tion constraints, see the PAprob attributes in Fig. 2b and c,
or to the interaction occurrences, see the PAprob attributes
in Fig. 2a.

The delay of the messages exchanged among objects
allocated in different physical nodes are annotated in the
SD. We consider two alternative ways to model such delay:

• If the amount of delay is known, then we use the attri-
bute PAdemand to annotate it in the message. See, for
example, PumpReady in Fig. 4a.
• Otherwise, we use a combination of attributes: PAsize,
annotated to the message, and PAspeed (communication
network speed) annotated in the DD. See, for example,
Fig. 12.

Concerning the performance metrics (annotated in red3

color in the UML diagrams along the paper), although
some of them are specified in the SMs and others in the
SD, or in the IOD, all of them will be computed on the
same performance model, the one obtained in the third step
of the method.

These metrics are defined as mean values. They are com-
puted considering the set of class objects that execute, an
infinite number of runs, the SMs and the performance sce-
nario (steady state assumption in the SWN).

We have proposed performance scenarios as an input to
the design, then it may be of interest to compute their mean
execution time, we call it scenario response time. The sce-

nario response time is annotated as a PAstep with attribute
PArespTime attached either to the initial state of the IOD
or to the most external combined fragment of the SD. In
the gas system, Fig. 2a and c illustrates both annotations.

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1849
The sojourn time in a SM’s state is the mean time spent
by an object in the state, from its entrance to its exit. The
sojourn time metric is annotated as PAstep with attribute
PArespTime attached to the SM state of interest, in the
example, Waiting for availability in Fig. 1a.

Finally, the throughput of a SM transition measures the
number of its firing per unit of time. It is a mean value cal-
culated considering the SM transition executed by all the
instances. The throughput metric is annotated as PAstep

with attribute PAthroughput attached to the SM transition
of interest.
4. Translation of the UML model into SWN

This second step of the method takes as input the UML-
SPT design, from the first step, to produce one SWN com-
ponent for each UML SM and one SWN component for
the performance scenario.
4.1. Translation of annotated state machine

In Merseguer (2003) we proposed a formal translation,
for most of the SM features into GSPN, that has been
implemented in the ArgoSPE tool (http://argospe.tigris.
org). Concretely, we translated the different kind of states
(initial, final, simple states, composite states, history, syn-
chronous), actions (entry, exit, do-activity), transitions
and events.

The GSPN component, obtained automatically by
ArgoSPE, can be provided with color information to gain
the SWN component for the SM. For example, the net
depicted in Fig. 3, without blue inscriptions, is actually
the GSPN produced by ArgoSPE for the SM of the pumps.
The sub-nets enclosed in the dotted areas represent the
translation of the states together with their outgoing tran-
sitions. Net labels are written in italic and net names in
roman. The blue inscriptions (in bold font) are the color
information that need to be added to the GSPN to get
the SWN component for the SM of the pumps. For read-
ability reasons, we do not show all the labels, names and
colors information.

An SWN component is obtained from the GSPN com-
ponent by defining the object identities, the initial state of

the objects, the arc expressions and the color domain of mail-

box places.
The object identities are captured by assigning a token of

different color to each object. The objects of class Pump are
then mapped into a basic color class Pump = {p1,p2,p3,p4},
where the cardinality of Pump is the value of the PApopu-

lation tag associated to state Unused of the SM. The basic
color class is parameterized if, instead, a variable is
assigned to the PApopulation tag, as for the SM of the cus-
tomers in Fig. 1a.

The tag provides also information on the initial state of
the objects, that corresponds to assign, as initial marking of
the SWN, one token per color to place ini_Unused. Then,
the initial marking of place ini_Unused is equal to
hS Pumpi, that is the symbolic notation of the formal
sum hp1i + hp2i + hp3i + hp4i. The current state of an
object is represented by the presence of its corresponding
token in a place of color domain Pump: such places, let
us call them internal, are drawn in red in the figure. Observe
that, each internal place is shared by all the objects of the
same class, this makes the SWN model of a SM scalable
with respect to the class population.

By definition of SWN, when the same variable appears
in many arc expressions related to the same transition,
the different occurrences actually denote the same object.
Then, the same variable name #x is assigned to the input
and output arcs connecting a SWN transition to a pair of
internal places; this choice guarantees the preservation of
the identity of the objects during their lifetime.

In the GSPN component, places that are not internal
contain event occurrences related to object communica-
tion: they represent mailboxes collecting outgoing and
incoming messages that are, respectively, sent and received
by the objects. See for example in Fig. 3, the mailbox place
e_PumpReady in the sub-net Checking.

In the SWN component, the color domain of mailbox

places is defined as the Cartesian product of two basic color
classes, where the first component identifies the sender class
and the second one identifies the receiver class. An event
occurrence is then represented by a colored token hs, ri,
where s represents the sender object and r represents the
receiver object. For example, the place e_PumpReady, with
color domain Pump · Customer, represents an outgoing
mailbox for the pump. Vice-versa the place e_SelectGrade,
in the sub-net Ready To Fill, with color domain
Customer · Pump, models an incoming mailbox for the
pump. The arc expressions related to mailbox places ensure
that tokens hs, ri: (1) are added to mailbox places e_ev due
to the generation of an event occurrence by the object of
color s and, (2) are removed from a mailbox place e_ev

either due to event consumption performed by the object
of color r or due to event loss.

Finally, it is worth noticing that ArgoSPE maps the
annotated do-activities, like filling in sub-net Working, into
timed transitions whose firing rate is derived from the value
of the PAdemand tag. More precisely, the latter specifies
the expectation value of the duration of the activity,
100 s. for the filling activity. The firing rate of the corre-
sponding timed SWN transition is equal to the inverse of
expectation value, X(t4) = 0.01/s. When the PAdemand

value is characterized by a variable, then the firing rate of
the SWN transition is parameterized.

4.2. Translation of annotated sequence diagram

The SD is translated into an SWN that preserves the
causal relation between the events exchanged by the inter-
acting objects. The SWN is obtained through net composi-
tion, where the unit of composition is an SWN sub-net
modeling one single message.

http://argospe.tigris.org
http://argospe.tigris.org

e_Finish

e_PressNozzle

ini_Filling

e_GetChange

e_Cancel

e_SelectGrade

e_ReceiveGrade

e_PumpReady

ini_Checking

e_Pay

ini_Unused

e_ServiceRequest

e_OK

filling

count

Customer.GetChange

Customer.Finish

lost_PressNozzle

lost_Cancel

Customer.OK
<#x,#y>

Customer.ReceiveGrade

Customer.PumpReady

lost_Pay

lost_SelectGrade

lost_ServiceRequest

lost_ChangePickedUp

Customer.GetChange

e_PressNozzle

e_Cancel

e_Cancel

e_Pay

e_SelectGrade

π:2 e_ServiceRequest

e_ChangePickedUp

π:2

π:2

π:2

π:2

π:2

π:2

e_ChangePickedUp

ini_Cancelling

e_ChangePickedUp
π:2

ini_PickingUp

Pump

Pump x Customer

<#x>

<#y,#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x> <#x> <#x>

<#x>

<#x>

<#x> <#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#y,#x>

<#y,#x>

<#x,#y>

<#x,#y><#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>
<#y,#x>

<#x,#y>

<#x,#y>

<#y,#x>

<#x,#y>

Customer.OK-OK

<#x,#y>
Customer.PumpReady-PumpReady

<#x,#y>

<#x,#y>

<#x,#y>

Customer.ReceiveGrade-ReceiveGrade

Pump x Customer

<#x,#y>

<#x,#y> <#x,#y>

<#y,#x>

<#x,#y>

Pump = {p1,p2,p3,p4}

M0P = <S Pump> = <p1>+<p2>+<p3>+<p4>

Customer x Pump

Unused

Waiting for
Payment

Checking

ReadyTo
Fill

<#y,#x>

Grade
Selected

Working

<#x>

Change?

<#x>

Cancelling

PickingUp

Ω(t4)=0,01

Ω(t1)=0,334

M0P

t1

t4

t2

t3 <#x,#y>

ini_WaitingforPayment

ini_ReadyToFill

ini_SelectGrade

ini_Change?

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump
Pump

Fig. 3. Component SWN for the pump class.

1850 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
Let us consider how a single message is translated into
an SWN sub-net: Fig. 4a depicts the message PumpReady

exchanged between two objects of classes pump and cus-
tomer, respectively. Fig. 4b shows the resulting SWN
sub-net, where t1 represents the sending action performed
by object P[j], t2 models the message transmission delay,
t3 represents the reception of the message by object C[i]
and t4 models the message loss.

The value associated to the tag PAdemand defines the
firing rate of the timed transition, X(t2). When the trans-
mission delay is modeled using a combination of tags
PAsize (in the SD) and PAspeed (in the DD), then X(t2)
is equal to the ratio between their values.
<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,0.01),’s’))}

<

<

<

Ω(t2)=100

C[i]:Customer P[j]:Pump

PumpReady

<

<

<

Fig. 4. SWN translat
Transition labels match with the corresponding ones in
the SWN models of the SMs, as it can be observed by com-
paring, for example, the transitions t1 and t2 in Fig. 4b with
the transitions t2 and t3, of the sub-net Checking, in the
SWN model of the Pump in Fig. 3.

Places are all of the same type (Customer · Pump, in the
example); their color domain is equal to the Cartesian
product of the color classes of the participants, in the order
they appear in the SD, from left to right. The arc expres-
sions keep track of the interacting objects by means of
the variable names #x and #y, so matching with the arc
expressions of the corresponding transitions in the SWN
components of the SMs. The variable #x is always assigned
Customer x Pump

Customer.PumpReady
#y,#x>

Customer.PumpReady-PumpReady

#x,#y>
e_PumpReady

#y,#x>

t2

lost_PumpReady
t4

t1

t3π=2

Customer x Pump

Customer x PumpCustomer x Pump

Customer x Pump

#y,#x>

#y,#x>

#x,#y>

<#x,#y>

<#x,#y>

ion of a message.

sd Sequential

(a1)

a[i]:A b[j]:B

ev1

ev2

A x B

<#x,#y>

<#y,#x>

<#x,#y>

<#y,#x>

(a2)

ev1

ev2

A x B

A x B

(b1) (b2)

alt [cond]

[else]

sd Alternative

a[i]:A b[j]:B

ev1

ev2

<<PAstep>>
{PAprob = 0.2}

<#x,#y>

<#y,#x>

ev1

<#x,#y>

<#y,#x>

ev2

t1 t2

<#x,#y>

<#x,#y>

<#x,#y>

<#x,#y>

<#x,#y> <#x,#y>

<#x,#y><#x,#y>

A x B

A x B

A x B

A x B

A x B

A x B

Ω(t1)=0.2
Ω(t2)=0.8

Choice

Collect

(c1) (c2)

par

sd Parallel

a[i]:A b[j]:B

ev1

ev2

<#x,#y>

<#y,#x>

ev1

<#x,#y>

<#y,#x>

ev2

<#x,#y>

<#x,#y> <#x,#y>

<#x,#y> <#x,#y>

<#x,#y>

A x B

A x B

A x B

A x B

A x B

A x B

Fork

Join

(d1) (d2)

loop[1,N] [cond]

sd Repeat

a[i]:A b[j]:B

ev1

<<PAstep>>
{PAprob = 0.2}

<#x,#y>

<#y,#x>

ev1

t1

t2

<#x,#y>

<#x,#y>

<#x,#y>

<#x,#y>

A x B

A x B

A x B Ω(t1)=0.2
Ω(t2)=0.8

Repeat

<#x,#y>

<#x,#y>

Fig. 5. SWN translation of some basic operators on messages.

Customer.ServiceRequest
t1

...

... ...

end_sd

start_performance scenario

impl_performance scenario

... ...

... ...

Customer x Pump

Customer x Pump

Customer x Pump

Customer x Pump

Customer x Pump

Customer x Pump

Customer x Pump

<#x,#y>

<#x,#y>

Customer x Pump

Customer x Pump

Customer x Pump

Customer x Pump

to_start
<#x,#y>

<#x,#y>

Fig. 6. SWN model of the gas system scenario.

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1851
to the active part in the communication and #y is always
assigned to the passive part. In case of sending action
and message transmission, the sender is the active part,
while the receiver the passive one. Vice-versa, in case of
event consumption, the sender plays the passive role and
the receiver plays the active one.

An SD is defined in terms of basic operators on mes-
sages. Fig. 5 shows the four main types of SD constructors
(sequential, alternative, parallel and loop with ‘‘repeat-
until’’ semantics) and their mapping onto SWNs. The
sequential operator on messages (a1) corresponds to
causally connect the SWN sub-nets representing the mes-
sages (a2). The translation of the other operators requires
the use of additional SWN sub-nets. Fig. 5(b2) shows the
SWN sub-net modeling the alternative choice between
ev1 and ev2. The additional sub-nets enclosed in the red
dotted rectangle Choice and Collect represent, respectively,
the choice between the sending of ev1 or ev2, and the uni-
fication of the flow. Note that the choice is probabilistic:
the weights of the conflicting transitions t1 and t2 are
derived from the tag PAprob attached to the constraint
cond. Fig. 5(c2) depicts the SWN sub-net corresponding
to the parallel execution of ev1 and ev2. The two additional
sub-nets Fork and Join represent, respectively, the splitting
of the control flow and their subsequent synchronization.
Finally, Fig. 5(d2) shows the SWN sub-net modeling a
‘‘repeat-until’’ loop. The sub-net Repeat models the itera-

1852 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
tion of message ev1. The loop is probabilistic and the
weights of the transitions t1 and t2 are derived from the
tag PAprob attached to the constraint cond.

For metric computation purposes, an implicit neutral
place impl_S and a transition to_start are added to the
SWN of a SD S. The former keeps track of the number
of instances executing the interaction and the latter is intro-
duced to bring the SWN back to its initial state start_S.
Fig. 6 shows a sketch of the SWN for the SD in Fig. 2c,
with the new elements in red.
5. Obtention of the performance SWN

The SWNs of the SMs are characterized by interface
places, labeled e_ev, that represent mailboxes of events
ev. These SWNs are composed over such interface places
to get an intermediate SWN NSMs that models the commu-
nication between objects via mailboxes.

Fig. 7 shows, as black boxes, the SWNs of the customer
and the pump. The figure emphasizes two pairs of interface
places that represent two kinds of object interaction: (1) the
interaction in which an event GetChange is produced by a
e_GetChange

Pump
SWN model

e_ChangePickedUp

Customer
SWN model

Sys = {Customer,Pump}

Customer x Pump

Pump x Customer

<#x,#y>

<#x,#y><#y,#x>

<#y,#x>

e_GetChange

e_ChangePickedUp

Customer x Pump

Pump x Customer

Fig. 7. Composition of Customer and Pump SWN models.

e_G

Sys = {

Cus
<#x,#y>

<#y,#x>

e_GetChan
<#x>

<#x>
Customer

<#x>
Pump.ChangePickedUp

<#x> <#x>

<#x,#y>

<#x,#y>

Customer

<#x,#y>

<#x,#y>

<#x,#y>

<#x,#y>
<#

<#x,#y>

<#x,#y>

t1

p3

t2Customer x Pump

Customer

Customer

Pump

Fig. 8. Partial view of the Custo
pump when prompting the customer to pick up the change,
and (2) the consequent interaction where an event Change-

PickedUp is generated by the customer once he/she has
picked up the change. For each kind of event, there are
two mailbox places with matching labels (one in each
SWN): the SWN composition replaces them by a unique
place (depicted as dotted red circle) with the same type con-
necting the two SWNs.

By construction, the NSMs model is scalable with respect
to the class population and it represents the communica-
tion between objects considering their identities. However,
it fails to capture the causal relation between events, such
as the one between the events GetChange and ChangePicke-

dUp. In fact, it may happen that the pump p[1] generates an
event GetChange for customer c[1] and the latter, once con-
sumed it, answers by producing an event ChangePickedUp

for another pump, different from p[1], which is not the
desired behavior.

On the other hand, the SWN model of the SD Nsd, rep-
resents the causal relation between events without the
objects internal behavior. The composition of Nsd and
NSMs, over matching label transitions, produces an SWN
model N of the system, that is able to capture both
properties.

Let us come back to the example to see how the final
SWN N behaves. Fig. 8 shows the portion of N related
to the exchange of messages GetChange and ChangePicke-

dUp. The red part comes from the Nsd model that repre-
sents the interaction. Let us suppose that the pump,
identified by the token hp1i, sends a message GetChange
to the customer identified by hc1i. Then a control token
hc1,p1i is added to place p1. When, after transmission,
the message is received by hc1i (firing of transition t1 for
the pair hc1,p1i) the control token hc1,p1i is moved from
p2 to p3. The presence of this control token in p3 constraints
the object hc1i to send the answer ChangePickedUp to
pump hp1i (firing of transition t2 for the pair hc1,p1i), then
capturing the causality of the two interactions.
etChange

Customer,Pump}

tomer x Pump

<#x,#y>

<#y,#x>

e_ChangePickedUp

ge

e_ChangePickedUp

<#x>
Customer.GetChange

<#x>

<#x>

Pump
Pump x Customer

<#x,#y>

<#x,#y>

Customer x Pump

Pump

y,#x>

<#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>

p1

p2

Pump

x Customer

mer and Pump SWN model.

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1853
5.1. Interaction assumptions

An SD S represents a system interaction, but depending
on the participating objects, several concrete interactions
can be interpreted on S. The method supports two alterna-
tive interpretations, let us call them A1 and A2.

Fig. 9 exemplifies the two assumptions for an interaction
between objects of two classes A and B with population
n = 3 and m = 2, respectively. On the assumption A1 each
pair of objects can potentially execute the interaction S,
then leading to n · m = 6 potential interactions (Fig. 9 on
the left).

On the assumption A2, a subset of m objects of class A

can participate to a concrete interaction S with at most one
partner of class B. The remaining n � m objects of class A

behave as in assumption A1, that is each one can poten-
tially execute the interaction S with any object of class B.
The assumption A2 leads to m + (n � m) · m = 4 potential
interactions (Fig. 9 on the right).

The choice between A1 and A2 depends on the system to
be analyzed: e.g., in the gas station system both the
assumptions are reasonable and they correspond to a dif-
ferent service discipline. Indeed, under A1, a customer that
arrives to the gas station is not aware of the availability sit-
uation of the pumps and then he/she selects probabilisti-
cally to be served by a pump; if the pump is available the
customer proceeds with the operation, otherwise he/she
tries again until he/she succeeds. Under A2, customers do
not wait for being served when the number of customers
does not exceed the number of pumps; indeed, an available
pump is always ready and the service requests are pro-
cessed in parallel.

In the SWN N, each assumption corresponds to assign
a different initial marking to the place start_S, modeling
the beginning of S. The set of concrete interactions can
be formalized by a relation R � A� B, where A and B
a[i]:A b[j]:B

m1

m2

A1 A2

a[1]:A b[1]:B a[2]:A b[1]:B

a[1]:A b[2]:B a[2]:A b[2]:B

a[3]:A b[1]:B a[3]:A b[2]:B

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

a[1]:A b[1]:B

m1

m2

a[2]:A b[2]:B

m1

m2

a[3]:A b[1]:B a[3]:A b[2]:B

m1

m2

m1

m2

n=3 m=2

n x m = 6 interactions m + (n-m) x m = 4 interactions

Fig. 9. Concrete interactions according to assumptions A1 and A2.
are SWN basic color classes associated to the classes A

and B respectively, and hai; bji 2 R represents a pair of
objects that participate in a concrete interaction. Then,
the initial marking of the place start_S is set to the formal
sum of the pairs hai; bji 2 R:

A1 : M0S ¼ hS A;S Bi ¼
Xn

i¼1

Xm

j¼1

hai; bji; ð1Þ

A2 : M0S ¼
Xm

i¼1

hai; bii þ
Xn

i¼mþ1

Xm

j¼1

hai; bji: ð2Þ

In case of N participant classes, A1 and A2 can be straight-
forward interpreted and R easily generalized. In particular,
under assumption A1, R is equal to the Cartesian productQN

j¼1Cj, where the SWN basic color class Cj represents the
participant class Cj.
6. Performance analysis

The objective of the performance analysis is to compute
the metrics annotated in the UML design and to interpret
the values obtained in the system domain. The perfor-
mance analysis is carried out on the SWN model N,
obtained in the third step of the method, where the metrics,
annotated in the UML design, are computed. Indeed, each
metric is mapped onto an output parameter of the SWN
model and all them represent mean values, to be computed
under the steady state assumption. They can be of the fol-
lowing types:

• Mean response time of the scenario S.
• Mean sojourn time of an object in a given state A of the

state machine M.
• Throughput of a transition tr of the state machine M.

These metrics can be computed using the GreatSPN tool
(http://www.di.unito.it/~greatspn), then no expertise in
SWN modeling and analysis is required. Nevertheless, we
consider of interest giving the definition of the metrics in
terms of SWN formulas in order to show the traceability
of the method. Moreover, the software analysts with exper-
tise in Petri net analysis, once learned how to map such
metrics onto SWN output parameters, may undertake the
mapping of their own metrics, then improving the usability
of the method.

The SWN output parameters corresponding to the first
and second types of metrics are defined by using the Lit-
tle’s formula (Lazowska et al., 1984) applied on SWN.
In particular, the mean response time of the scenario S

is mapped onto an SWN output parameter defined as
the ratio between the mean number of tokens in the impli-
cit place impl_S, that keeps track of the number of
instances executing the interaction, and the throughput
of transition to_ start, that closes the SWN sub-net of
N representing the scenario S (e.g., see the gas system sce-
nario of Fig. 6).

http://www.di.unito.it/~greatspn

1854 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
The definition of the SWN output parameter corre-
sponding to the mean sojourn time in the state A of the
state machine M is based on the identification of the
SWN sub-net NA that represents the state A. Such identi-
fication is carried out through the labels associated to the
places and transitions in N that match with the names
of the elements in A.

In the gas example, this metric has been annotated in the
state Waiting for availability of the customer SM, charac-
terized by the do-activity count-down. The SWN sub-net,
depicted in the dotted area in Fig. 10 represents the state
Waiting for availability. It consists of two internal places
labeled as ini_Waiting for availability and compl_Waiting

for availability, and the timed transition labeled as count-
down. The mean sojourn time metric is then defined as
E½#p1�þE½#p2�

X ðt1ÞþX ðt2Þ
, where SWN transitions t1 and t2 may remove

tokens from the sub-net. In particular, in the system
domain, t1 – labeled e_OK – represents the dispatching of
the event OK and t2 – labeled Pump.ServiceRequest – rep-
resents the execution of the ServiceRequest action.

In general, let PA be the set of internal places and TA the
set of transitions of NA, the mean sojourn time in state A is
defined as

P
p2P A

E½#p�
P

t2P �A;t 62T A
X ðtÞ ;
where E[#p] is the mean number of tokens in place p 2 PA.
The denominator is the sum of the throughputs X(t) of
transitions that have an input place in the set PA ðt 2 P �AÞ
and that do not belong to the sub-net NA (t 62 TA).

The throughput of a transition tr, of a state machine M,
can be mapped onto either a SWN transition throughput
or a sum of SWN transition throughputs, depending on
the presence or absence of trigger events and effect actions.

Let PA and PB be the sets of places of the SWN sub-nets
representing the source state A and the target state B of tr,
respectively. The simplest case is when neither trigger event
nor action are associated to tr; then, the SWN output
parameter is defined as the throughput of the SWN transi-
tion characterized by an input place in PA and an output
place in PB. When the SM transition tr has a trigger event
ev, then the SWN output parameter is defined as the sum of
count-down

Pump.ServiceRequest

<#x>

<#x,#y>

Waiting for availability
SWN subnet

Customer

<#x>

<#x>

e_OK

<#x>

<#y,#x>

e_OK

<#x>

Pump x Customer

Customer

p1

p2

t1 t2

ini_Waiting for availability

compl_Waiting for availability

<#x>

Fig. 10. Waiting for availability SWN sub-net.
the throughputs of the SWN transitions with an input place
in PA and representing the dispatching of the event ev:

Throutr ¼
X

t2P�A;kðtÞ¼ e ev

X ðtÞ:

A similar formula is defined when no event is associated to
tr but the latter is characterized by an effect action act. In
this case the sum of the throughputs is made over the tran-
sitions, labeled as act, with an input place in PA and an out-
put place in PB.

The software analyst can compute these metrics by
choosing between two main types of SWN solution meth-
ods (Chiola et al., 1993; Gaeta and Chiola, 1995; Chiola
et al., 1997): numerical, based on the solution of the Mar-
kov chain underlying the SWN N, and discrete event sim-
ulation. Numerical methods are used to obtain ‘‘exact’’
results, that is results equal to the theoretical values of
the corresponding statistical qualifiers, apart from approx-
imation errors. Simulation methods provide results with
confidence intervals and, depending on the type of simula-
tion technique adopted, several simulation parameters need
to be set before starting the experiment (e.g., confidence
level, accuracy). In general, the main drawback of numer-
ical methods is the (time and space) exponential complexity
of the state space generation and Markov chain solution.
So the choice of the type of method strongly depends on
the size of the state space of the SWN.

The GreatSPN tool (http://www.di.unito.it/~greatspn)
can deal with both types of solution methods. In particular,
concerning numerical techniques, GreatSPN supports the
generation of both the ordinary and the symbolic state
spaces (Chiola et al., 1997) of an SWN. The symbolic tech-
nique can be used only for SWN with symbolic initial
marking, this is the case of the assumption A1, while it is
not for the assumption A2.

In the following we describe our experience in the per-
formance analysis of the gas system. It is our intention that
the software analysts can gain an insight into facing this
step of the method.
6.1. Performance analysis of the gas system

We have solved the SWN N, obtained in the third step,
with the GreatSPN tool (http://www.di.unito.it/~greatspn)
running on a Pentium 4 PC with 2,666 GHz CPU. For a
customer population ranging from 1 to 4, we have used
numerical techniques to solve N (with an approximation
error of the results equal to 10�6). On the assumption
A1, both the ordinary and the symbolic state space con-
struction methods can be applied, while on the A2 only
the ordinary one can be used, due to the (not symbolic) ini-
tial marking set to the place start_S.

Table 1 shows, on both the assumptions A1 and A2, and
for different customer populations N 2 [1, 4], the size of the
state space, the memory space required to store the reach-
ability graph and the time required to solve the SWN.

http://www.di.unito.it/~greatspn
http://www.di.unito.it/~greatspn

Table 1
Performance of the numerical techniques on the gas system example

N A1 A2

Symbolic Memory Time Ordinary Memory Time Ordinary Memory Time

1 46 15.6KB 10 ms 178 42KB 20 ms 46 9.2KB 7 ms
2 518 287KB 30 ms 10,313 3.6MB 1 s 891 242KB 15 ms
3 3290 2.7MB 11 s 342,940 155MB 1 m:45 s 14,036 4.6MB 3 s
4 15,247 16MB 9 m:59 s 6,485,707 2GB 6 h:48 m:20 s 200,981 74MB 2 m:44 s

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1855
Comparing the size of the state spaces on the assump-
tion A1 (second and fifth columns), we can observe that
the symbolic technique reduces drastically the size of the
state space with respect to the ordinary one, then reducing
the memory space required to store the reachability graph
(third and sixth columns) as well as the time required to
solve the SWN (fourth and seventh columns).

Comparing, instead, the size of the ordinary state spaces
on the assumptions A1 and A2 (fifth and eighth columns),
we find that the results on the A2 are smaller than on the
A1. This is due to the difference between the number of
possible concrete interactions under A1 and under A2.
For example, when N = 4, they are equal to 16, under
A1, and equal to 4, under A2. When the number of custom-
ers is higher than four, the batch simulation technique has
been adopted, with confidence level 99% and accuracy
10�2, to obtain results within a reasonable time. Indeed,
the mean time used by GreatSPN to solve the SWN models
for N 2 [5, 10] has been equal to 1 min and 13 s.

Fig. 11a plots the curves of the mean response time of
the performance scenario in Fig. 2c (metric MRT in the
design), under both the assumptions A1 and A2, for
N 2 [1, 4]. Under A2, the MRT is constant (equal to
96.47 s), since the customers arriving at the gas station find
always an available pump. Under A1, instead, the MRT

increases as the number of customers increases, since there
may be the case in which there are available pumps but the
96

98

100

102

104

106

108

110

112

114

 1 1.5 2 2.5 3 3.5 4

Customers

A1
A2

Fig. 11. (a) Mean scenario response time – seconds – and (b) m
customer chooses a pump that is not available, then wait-
ing in a queue.

Fig. 11b plots the curves of the mean time spent by a
customer waiting for an available pump (metric MWT in
the design) on both assumptions. When N 2 [1, 4], the gas
system behavior slightly differs under the two assumptions:
while under A2, the MWT is zero, under A1 it is greater
than zero when there are more than one customer and
reaches 1.46 s for N = 4. The two curves are characterized
by the same trend when N > 4. In particular, they tend to
the horizontal asymptote y(x) = 2. Indeed, when the num-
ber of customers at the gas station grows, the termination
of the count-down do-activity, without interruptions due to
the reception of an OK event, becomes more likely. Then,
the mean sojourn time in the Waiting for availability state
becomes equal to the mean duration of the do-activity.

7. Case study: software retrieval system

A software retrieval system, like the web site Tuc-
ows.com (http://www.tucows.com), provides Internet users
with facilities to retrieve and install software. The work in
Merseguer et al. (2003) models and analyzes a Tucows-like
system. Here, we recall it to illustrate the method: we have
updated its specification to UML2, annotated it with the
UML-SPT, and obtained an analyzable SWN by applying
the steps of the method.
 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

1.6

1.8

 2

 1 2 3 4 5 6 7 8 9 10

Customers

A1
A2

ean sojourn time in state Waiting for availability – seconds.

http://www.tucows.com

1856 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
7.1. Construction of a UML model for SWN analysis

(step 1)

The system allows users to find software by navigating
through categories of software programs especially
designed to make this task easier. The SD in Fig. 12a illus-
trates how the system works. The user ‘‘clicks’’ on a brow-
ser’s category, who requests to the web server for the
corresponding HTML page. The web server returns the
HTML page to the browser, which presents it to the user.
After reading this page, the user can ‘‘click’’ on another
link to access either a new web page with other categories
or a list of software for the current category. This process
is repeated until the user finds a software that fulfills her/
his needs. Then the browser requests the selected software,
which is downloaded into the user computer.

The system behavior is completed with the UML SMs,
of the interacting classes, in Fig. 13: the user (a), the brow-
ser (b) and the web server (c). The user aims at installing
some software in her/his computer. Initially, she/he is in
the Idle state and sends the select_category event to the
sd NavigationFacility

b[i]:Browseu[i]:User

loop[1,N]

select_category(url)

se

ge

observe(html_page)

select_sw(url)

d

succ_install

[not satisfied]

u[i]:User

PAspeed =
 {100,’KBps’}

:UserPC

:Internet

<<PAresource>>

b[i]:Browser

a

b

<<PAstep>>
{PArespTime =
(’pred’, ’mean’,$MRT

Fig. 12. Navigation facility scenario
browser, so moving in state Waiting for html page. The
observe event, generated by the browser, allows the user
to examine the HTML page with the available software
(state Examining). The user can choose to either select
another category, then coming back to the state Waiting

for html page, or to select the desired software, moving in
the state Waiting for download.

The browser interfaces with the user and the web server
to help in the software selection as well as in its download-
ing. It is waiting for user’s requests (select_category and
select_sw). The selection of a category is concurrently pro-
cessed in the local node by the browser and in the remote
node for the web server. The software selection is trans-
formed into a download for the corresponding software
by the web server. The web server accepts requests for
select and download the software. For each request, it exe-
cutes the proper do-activity to serve it, find_html_page and
find_file. While serving a request, other requests coming
from other browsers may arrive: in this case, they are
deferred until the current activity is not completed. When
the activity is completed, the web server sends the corre-
r w:WebServer

lect_URL(url)

t(html_page)

ownload(url)

end(file)

<<PAstep>>
{PAprob = 0.8}

:Server

w:WebServer

)}

<<PAstep>>
{PAsize = 1KB}

<<PAstep>>
{PAsize = 20KB}

<<PAstep>>
{PAsize = 1KB}

(a) and system architecture (b).

Waiting for
html page

Examiningobserve(html_page)

/Browser.select_sw(url)

a

Idle

do:think

/Browser.select_category(url)

do:examine

/Browser.select_category(url)

Waiting for
download

succ_install

Processing request

Selecting SW

b

Waiting for
request

select_category(url)

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,10),’s’))}

entry: WebServer.select_URL(url)

select_sw(url)

/WebServer.download(url)

end/User.succ_install

SearchingPage

SearchingFile

/Browser.get(html_page)

c

Waiting for
request

select_URL(url)

do: find_html_page

download(url)

/Browser.end

do: find_file

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,1),’s’))}

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,1),’s’))}

Downloading

/User.observe(html_page)

<<PAclosedLoad>>
{PApopulation = $N} <<PAclosedLoad>>

{PApopulation =1}

do: search

Processing remote

Processing local

get(html_page)

do:compare

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,0.5),’s’))}

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,0.01),’s’))}

Comparing
def:download,
 select_URL

def:download,
 select_URL

[No]
[Yes]

Satisfied?

<<PAclosedLoad>>
{PApopulation = $N}

<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,1),’s’))}

<<PAstep>>
{PAthroughput = $Throu}

Fig. 13. SMs of the user (a), browser (b) and web server (c).

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1857
sponding message to the browser and comes back to its ini-
tial state where the deferred requests can be handled as nor-
mal events.

In Fig. 12b, the DD models the system architecture.
Messages exchanged between the browsers and the web ser-
ver travel through the Internet, then requiring a certain
amount of transmission time. Such time is calculated as
the ratio between the network speed (tag PAspeed anno-
tated to the node Internet in the DD) and their size (tag
PAsize attached to the messages in the SD). Delays associ-
ated to the messages exchanged between the user and the
browser are instead assumed negligible.

The rest of the performance input parameters are anno-
tated in the SD and the SMs. The system routing rate,
annotated in the SD to the interaction constraint not satis-

fied with the tag PAprob, models the decision made by the
user about to select a category. The class populations,
annotated to the initial states of the SMs with the tag
PAclosedLoad, model the number of users and browsers
executing the system (parameter variable $N) and the
unique web server.

The performance metrics of interest are annotated in the
performance scenario – Fig. 12a – and in the SM of the web
server – Fig. 13c. Concretely, the scenario response time and
the throughput of the transition download(url), that in the
problem domain are interpreted as (1) the mean time
required to find the software and to download it and (2)
the mean number of downloading per seconds, respectively.
7.2. Translation of the UML model into SWN (step 2)

We modeled the UML SMs of the user, browser and
web server with the ArgoSPE tool, that yielded the GSPNs
according to the work in Bernardi et al. (2002). ArgoSPE
produces the GSPNs in the file format of the GreatSPN
tool, so we use the GreatSPN graphical editor to update
them into the component SWNs, following the indication

1858 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
of the second step of the method, described in Section 4.1.
Fig. 14 depicts the user’s component SWN, which is used
to illustrate such syntactical updating.

• We first define the basic color class of the User as
User = N, where N is the variable defined in the attri-
bute PApopulation. The object identities are implicit in
this color definition.

• The initial state of the objects corresponds with the def-
inition of the initial marking M0 = hS Useri, assigned to
place ini_Idle. The color domain of the internal places,
in red color, is equal to the basic color class User. The
tokens contained in the internal places represent user
objects and the arc expressions related to the internal
places are defined using the same variable #x to guaran-
tee the preservation of the user object identities.

• The mailbox places labeled e_observe and e_succ_install,
contain the event occurrences that users receive: then the
color domain Browser · User has been associated to
them. The other mailbox places, e.g., the places labeled
select_category and select_sw, contain the event occur-
rences that users generate and, then, their color domain
is defined as User · Browser.

• Finally, we defined the arc expressions related to the
mailbox places as either h#x,#yi or h#y,#xi to ensure
the preservation of the object identities in the
communication.

The performance scenario represented by the SD in
Fig. 12a was converted into an SWN following the steps
given in Section 4.2. The SWN model Nsd, in Fig. 15 bot-
tom-right, was edited with GreatSPN. It is quite easy to get
since it consists in the translation of each single message,
according to Fig. 4, and causally connect them, except
for the loop operator that implies to apply the translation
proposed in Fig. 5(d2).

7.3. Obtention of the performance SWN (step 3)

The SWN NSMs was obtained, first, by composing the
SWNs of the SMs over interface places. In the case of
exami

think
 <#x> <#x> <#x>

 <#x>

<#x,#y>

<#y,#x>

 <#x> <#y,#x>

<#x>

User User x Browser

UsUser
Browser x User

User = N
M0 = <S User>

ini_Idle User

browser.select_category browser.select_category-

e_observe
e_observe

lost_observe

browser.select_

Idle

Examin

Waiting for html page

<#x,#y>

Fig. 14. Component SW
the user SWN the interface places are the ones labeled as
e_observe, e_succ_install, e_select_sw, e_select_category.
The composition has been performed automatically, by
using the algebra tool (Bernardi et al., 2001) that composes
SWNs in GreatSPN format just indicating the net names
and the place labels.

The algebra tool was also used to compose NSMs with
Nsd over interface transitions, then producing the perfor-
mance SWN N. In this case, the transition labels provided
to algebra were those that match in NSMs and in Nsd.
Considering the user SWN, the matching labels are
Browser.select_category, Browser.select_category-select_
category, Browser.select_sw, Browser.select_sw-select_sw,
e_observe, lost_observe, e_succ_install, lost_succ_install.
The SWN N is depicted in Fig. 15, where we can identify
the sub-nets representing the SMs and the performance sce-
nario. To improve visibility, the algebra tool allows the user
to hide the arcs connecting the sub-nets.
7.3.1. Interaction assumption

The performance scenario represented in Fig. 12a is exe-
cuted by N users, each one using its own browser. This
interpretation corresponds to the interaction assumption
A2, where there are N concrete user–browser interactions,
executed in parallel, and all them using the (unique) web
server.

The initial marking of the place start_NavigationFacility

(the red place in the NavigationFacility sub-net in Fig. 15),
representing the beginning of the interaction, is then
defined according to the formula (2):

M0NavigationFacility ¼
XN

i¼1

hui; bi;wi:
7.4. Performance analysis (step 4)

We have used the SWN model N to analyze, with the
GreatSPN tool, the behavior of the software retrieval sys-
tem under different workload assumptions, considering a
user population ranging between 1 and 60. In particular,
ne

<#x>

<#x>

 <#y,#x>

<#x,#y>

<#x,#y>

 <#x>

 <#x>

 <#x,#y>

<#x,#y>

 <#x>

 <#x,#y>

<#x>
<#x,#y> <#x,#y>

<#y,#x>

 <#x>

 <#x>

User x Browser

User

er

Browser x User

User

User x Browser
User x Browser

User x Browser

select_category

e_select_category

browser.select_category-select_category

browser.select_category

sw

e_succ_install

e_succ_install

lost_succ_install

browser.select_sw-select_sw

e_select_sw

ing

Waiting for download

N for the user class.

e_select_category

Webserver,Browser

<x>

<x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>

<x,y>

<x,y>

Webserver

e_download

<x> ini_Waiting
forrequest

M0W

find_file

ini_SearchingFile

compl_SearchingFile
Webserver

Webserver
Webserver

Browser.end

Browser.end-end

e_select_URL

ini_SearchingPage
Webserver

find_html_page

compl_SearchingPage
Webserver

Browser.get
<x,y>

<x,y>
Browser.get-get

e_end

e_get

e_select_URL
e_download

Browser.select_category-select_category

Browser.select_category-select_category

<x>

<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x,y>

<x,y>

<y,x>

<y,x>
<y,x>

<x,y>
<x,y> <x,y>

User,Browser

Browser,User

User

User

ini_Idle

M0U

compl_Idlethink

<x>
User

Browser.select_category

<x>

<x> <x,y>

<x,y>

e_select_category
User,Browser

<x,y><x,y>

<x>

lost_observe

<y,x>

e_observe
e_observe

<x> ini_Waiting
forhtmlpage
Userini_Examining

User

examine

User
ini_Satisfied?

Browser.select_category
User,Browser

Browser.select_sw

User,Browser

Browser.select_sw-select_sw

e_select_sw
User,Browser

ini_Waitingfordownload

e_succ_install

User

e_succ_install
Browser,User

lost_succ_install

e_select_sw

lost_select_sw

lost_select_category

e_select_category

<x> <x>

<x>

<x>

<x>

<x>

<x><x><x>

<x>

<x>

<x><x>

<x>

Browser

Browser,Webserver

<x>

<x,y>

<x,y>

<x,y>

<y,x>

<x>

<x>

<y,x>

<y,x>

<x,y>

<x,y>

<x,y>

<x><x>

<x>

Browser

M0B

ini_Waitingforrequest e_select_sw

lost_select_sw

ini_SelectingSW

Browser
<x>

WebServer.download

WebServer.download-download

e_download

Browser,Webserver

<x,y>

Browser
ini_Downloading

e_end

e_end
Webserver,Browser

lost_end

Browser

<x>
User.succ_install

Browser,User

User.succ_install-succ_install
<x,y>

User.observe-observe

Browser,User
<x,y>

<x,y>

User.observe

compl_Comparing
Browser

compare

ini_Comparing
Browser

Browser

Browser

search

<x>

<x>
e_get

<y,x>

e_get
Webserver,Browser

lost_get

Browser

WebServer.select_URL

Browser,Webserver

WebServer.select_URL-select_URL

Browser,Webserver
e_select_URL

ini_Processing
local

ini_Processing
remote

Browser

Browser

lost_select_category

e_select_category

e_download

Browser.end-ende_succ_install

e_select_URL

e_observe

e_select_sw

Browser.get-get

User,Browser,Webserver

NavigationFacility

Browser.select_sw.

Browser.select_sw-select_sw

Browser.end

Browser.end-end

Browser.get

Browser.get-get

e_select_sw.

WebServer.download

WebSever.download-download

e_download

e_end

User.succ_install

User.succ_install-succ_install

e_succ_install

e_succ_install<x,y,z>

<x,y,z>

Browser.select_category

e_select_category

WebServer.select_URL

e_select_URL

WebServer.select_URL-select_URL

e_get

User.observe

User.observe-observe

e_observe
<x,y,z>

<x,y,z>

<x,y,z>

start_NavigationFacility

impl_NavigationFacility

<x,y,z>

User,Browser,Webserver

Browser.select_category-select_category

User,Browser,Webserver

<x,y,z>

<x,y,z>

<x,y,z>

<y,x,z>

User,Browser,Webserver

User,Browser,Webserver

<z,x,y>

<z,x,y>

User,Browser,Webserver

<z,x,y>

<z,x,y>

<z,y,x>

<z,y,x>

User,Browser,Webserver
<z,y,x>

<z,y,x>
User,Browser,Webserver

<z,y,x>

<z,y,x>

User,Browser,Webserver
<z,x,y>

<z,x,y>

User,Browser,Webserver
<y,x,z>

<y,x,z>

User,Browser,Webserver

<y,x,z>

<y,x,z>
User,Browser,Webserver

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

User,Browser,Webserver

User,Browser,Webserver

<x,y,z>

<x,y,z>

<y,x,z>

User,Browser,Webserver

User,Browser,Webserver

<y,x,z>

<z,x,y>

<z,x,y>

<z,x,y>

<z,x,y>

<z,y,x>

User,Browser,Webserver

User,Browser,Webserver

<z,y,x>

<z,y,x>

<z,y,x>
User,Browser,Webserver

<z,y,x>

<z,y,x>

<z,x,y>

<z,x,y>

User,Browser,Webserver

User,Browser,Webserver

<y,x,z>

<y,x,z>
User,Browser,Webserver
<y,x,z>

<y,x,z>

User,Browser,Webserver

<x,y,z>

e_succ_install

M0NavigationFacility

lost_select_category

lost_get

<y,x,z>

<y,x,z>

<z,x,y>

<z,x,y>

lost_observe

<x,y,z>

<x,y,z>

lost_select_sw
<y,x,z>

<y,x,z>

lost_end
<z,x,y>

<z,x,y>

lost_succ_install

<y,x,z>

User,Browser,Webserver

<x,y,z>

Fig. 15. SWN of the software retrieval system.

Table 2
Performance of the solution techniques

N State space size Memory Time

1 47 12KB 10 ms
2 1129 385KB 20 ms
3 23,228 9MB 20 s
4 447,685 215MB 5 m:39 s
5 8,311,586 2TB 8 h:49 m:41 s
6–60 [28 s,1 m:21 s], mean time: 50.17 s

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1859
the metrics of interest are the mean time to find the soft-
ware and to download it, and the throughput of the down-
load request. Such metrics correspond, respectively, to the
scenario mean response time ($MRT) and the throughput
of the web server SM transition download ($Throu) in the
UML design.

For a population of at most 5 users, we have used
numerical techniques (with an approximation error of
10�6) to solve N. Since the instantiation of the scenario
has been carried out under the assumption A2, the only
possibility is the use of the solution technique based on
the construction of the ordinary state space.

Table 2 shows the data collected during the analysis of
N, for different user populations. In particular, the size
of the state space, the memory space required to store the
reachability graph and the time required to solve the
SWN when the numerical technique has been applied.
The memory space and the time grows exponentially when
increasing the number of users, then simulation is the only

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30

Users

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 20 30 40 50 60

Users

Fig. 16. (a) Mean time to find and download the software (seconds). (b) Throughput of SM transition download (1/seconds).

1860 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
possible available technique when N > 5. We have used the
batch simulation, with confidence level 99% and accuracy
10�2. The last line of the table, shows the minimum, max-
imum and mean times required to solve the model for a
user population ranging from 6 to 60.

Fig. 16a plots the curve of the scenario mean response
time versus the number of users. Fig. 16b plots, instead,
the curve of the throughput of the SM transition download

versus the number of users.
When the number of users is greater than 20, MRT

increases with a constant factor and the throughput of
the SM transition download, in the web server SM, becomes
constant (equal to 0.1662/s) indicating that the web server
acts as the bottleneck software resource.

8. Conclusion

In this paper, we have presented a method for the eval-
uation of performance requirements in software systems.
This method, based on the works (Merseguer et al., 2002;
Bernardi et al., 2002) where we proposed to convert
UML models into GSPNs, provides software engineers
with the ability to compute a set of predefined metrics
(sojourn time, throughput and response time) from the
UML-SPT design. The method offers desirable properties
such as traceability and object-oriented suitability, and an
important advance introduced by the SWN formalism:
the capability to analyze, with scalability, systems where
the identities of the objects are relevant.

Currently, all the steps of the method but one have tool
support: ArgoSPE (http://argospe.tigris.org), algebra (Ber-
nardi et al., 2001) and GreatSPN (http://www.di.unito.it/
~greatspn). The remaining step, i.e., the automatic conver-
sion of the GSPN into an SWN, is being now addressed in
ArgoSPE. When ArgoSPE implements such conversion, it
will compute automatically the metrics for the SWN since
now it does for the GSPN, then the whole method will be
automatic.
The method does not consider hardware resource con-
tention, then relaying on the infinite hardware resource

assumption. As a future work, we plan to extend the
method with a step that will produce automatically a
resource model. Now, software engineers with certain
expertise in the Petri net domain could introduce manually
in the SWN the places and tokens that represent hardware
resources, then gaining an SWN that relaxes this
assumption.

The more metrics provided the more useful the method
turns. Therefore, it is a must to add new metrics and their
computation should be carried out on assuming a transient
period or steady state. Currently, the method only supports
steady state assumption, nevertheless typical transient mea-
sure need to be evaluated such as probability distribution
function of a scenario execution.

The most important and challenging future work is to
improve the method with a final step addressing perfor-

mance assessment. Indeed, the performance analysis results
(from the fourth step) can provide feedback to assess the
UML design, then enabling the method to pinpoint the
performance bottlenecks. As an example, the software ana-
lyst could obtain information for redesigning the concur-
rency, the deployment or the system workload to meet
the desired performance metrics. Moreover, it could be
very useful to provide tool assistance to automate this
work.

Appendix A. Performance annotated UML design models

In this appendix, we introduce the annotation approach
used by the method to enrich a UML design with perfor-
mance characteristics, that conforms to the standard
Schedulability, Performance and Time UML profile
(UML-SPT) (OMG-UML-SPT, 2005).

The UML-SPT is partitioned into sub-profiles defining
specific quantitative aspects of software systems. In partic-
ular, the Performance Modeling sub-profile is addressed to

http://argospe.tigris.org
http://www.di.unito.it/~greatspn
http://www.di.unito.it/~greatspn

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1861
the performance analysis of UML models and supports the
computation of performance indices from a scenario point
of view. The sub-profile provides a straightforward
approach to the annotation of sequence, communication,
activity and deployment diagrams. A set of UML stereo-

types and related tags are defined to characterize the proper
diagram elements from a quantitative point of view.
Fig. A.1 depicts an example of annotation, where a mes-
sage is stereotyped as a computation step and its transmis-
sion delay is specified by the PAdemand tag. However,
neither UML state machine (UML SM) nor Interaction
Overview diagrams are explicitly considered in the sub-
profile.

We have used the annotation approach of the Perfor-
mance Modeling sub-profile by identifying the subset of ste-
reotypes and tags that can be naturally mapped onto input/
output parameters of the SWN models. We have extended
the usage of some UML-SPT tags to support the perfor-
mance annotation of the UML SM, according to Merse-
guer and Campos (2003), and of the UML2.0 Interaction
Overview diagrams. We have also added new tags (PAsize

and PAspeed) to existing UML-SPT stereotypes (PAstep
and PAresource, respectively) to allow the user to specify
the size of data transmitted via message exchange and the
speed of the communication network. Table A.1 shows
the subset of annotations used in this work. The first and
second columns indicate the stereotype and its tags. The
third and fourth columns list the model element (i.e.,
UML meta-classes) and the UML diagram where the
extension is applied. Finally, the last column provides indi-
cation on the typical usage of the tag in the performance
field.

Each tag in Table A.1 is defined with a type, Table A.2
shows those used in this work, that can be: (a) primitive,
such as integer or real; (b) a pair (primitive type, string),
where the string describes either a rate or a size unit, such
as ‘Kbps’, ‘MB’; (c) complex (PAperfValue). Complex type
values are specified according to the following format:

ðh<source-modifieri;htype-modifieri;htime-valueiÞ

where the source modifier indicates the origin of the value,
e.g., a system requirement (req), an assumed input param-
eter (assm), a performance metric to be computed (pred).
The type modifier defines the statistical meaning, e.g., a
mean value (mean), a distribution (dist). Finally, the time
value can be a primitive type value or an expression
((dist-type,value), time-unit). The transmission
sd Message

a[i]:A b[j]:B

ev3
<<PAstep>>
{PAdemand = (’assm’,’dist’,
((’exponential’,0.01),’sec’))}

Fig. A.1. UML-SPT annotation.
delay of the message in Fig. A.1 is an input parameter,
characterized by a random variable of an exponential dis-
tribution function, with mean 0.01 s. A primitive type value
can be a Perl-like expression, even may contain variable
names prefixed by the dollar symbol ($). The last column
in Table A.2 relates the tag values with the SWN parame-
ters affected in the translation proposed in this work.

Appendix B. Stochastic Well-formed Nets and SWN

composition

In this appendix, we introduce the basic concepts of Sto-
chastic Well-formed Net (SWN) and its composition oper-
ators. A complete and formal definition of SWN can be
found in Chiola et al. (1993), while reader interested in
SWN compositional features can see the work (Bernardi
et al., 2001).

B.1. SWN basics

A Stochastic Well-formed Net (SWN) is a high-level
Petri net N ¼ hP ; T ;C;D;W �;W þ;W h;U;P;X;M0i, where
P is the set of places, T is the set of transitions,
C = {C1, . . .,Cn} is the set of basic color classes. Basic color
classes are finite and disjoint sets, and each class Ci can be
partitioned into several static (disjoint) subclasses
Ci ¼ C1

i [� � � [CKi
i when it is necessary to make a distinc-

tion among groups of colors of the class.
Fig. B.1 shows the SWN derived from the SM of the

pumps in Fig. 1b.
Place color domains and variable names of the arc

expressions are written in bold fonts. The SWN is charac-
terized by two basic color classes Customer and Pump, the
former is only declared while latter is defined as a unique
static subclass.

D is a function that associates a color domain to each
place and transition of the net. Color domains are
expressed as Cartesian product of basic color classes (rep-
etition of the same class is allowed): tokens in a place
p 2 P incorporate information and they can be seen as
instances of a data structure whose type is the color
domain of p. In Fig. B.1, places with color domain Pump

contain tokens representing the pumps together with their
identities. Places with color domain Pump · Customer con-
tain, instead, tokens modeling messages sent by pump
objects: each message is represented by a pair of colors,
where the first one is associated to the pump that sends
the message and the second one is associated to the cus-
tomer that receives it.

SWN transitions can be considered as procedures with
formal parameters, where the latter range in the transition

color domain: the classes in the color domain define the
types associated with the transition parameters. The color
domain of t 2 T is implicitly defined by the color domains
of its input, output and inhibitor places, and the relation
between transition and place color domains is defined
through the input, output and inhibitor arc functions

Table A.1
Performance annotations

Stereotype Tag Meta-class Diag. Performance concept

PAclosedLoad PApopulation Initial PseudoState SM System closed load

PAstep PAdemand Message SD Transmission delay
Action(doActivity) SM Activity duration

PAsize Message SD Message size
PAprob InteractionOperand, Int.Constraint SD Routing probability

(inline)Interaction, Int.Occurrence IOD Routing probability
PArespTime State SM State sojourn time

Interaction SD Scenario response time
ActivityInitialNode IOD Scenario response time

PAthroughput Transition SM Transition throughput

PAresource PAspeed Node DD Network processing rate

SD = sequence diagram, IOD = interaction overview diagram, SM = state machine, DD = deployment diagram.

Table A.2
Specification of performance values

Tag Type Type value
(expression)

SWN parameter

PApopulation Integer n 2 N; $Nuser Initial marking
PAprob Real p 2 [0,1]; $Prob Trans. weight
PAthroughput Real p 2 R; $Throu Trans. throughput
PAspeed (Real,String) ðr 2 R; rateUnitÞ;

($rate,‘Kbps’)
Trans. rate

PAsize (Real,String) ðs 2 R; sizeUnitÞ;
($size,‘Mb’)

Trans. rate

PArespTime PAperfValue (pred, mean,
$respTime)

Trans.thr.,pl.marking

PAdemand PAperfValue ðassm; dist;
ððexponential;
d 2 RÞ; timeUnitÞÞ

Trans. rate

1862 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
W�, W+, Wh. A transition t whose formal parameters have
been instantiated to actual values is called transition

instance, denoted as [t,c], where the assignment c is a color
tuple belonging to the transition color domain of t. Only
transition instances can fire and their enabling and firing
depend on the expression of the arcs connected to the
transitions.

An arc expression is a sum of weighted tuples of elemen-
tary functions defined on the basic color classes. The sim-
plest elementary function is the projection one, used in
Fig. B.1, that can be used to select one element of a transi-
tion instance color tuple. The variables used for specifying
the function can be chosen arbitrarily, e.g., x, y.

Observe that, when the same variable appears in many
arc expressions related to the same transition, the different
occurrences actually denote the same object. On the other
hand, if the same variable is used in several arc expressions,
each related to different transitions, there is no relation
between the objects represented by the different variable
occurrences.

U is a function that associates to each transition t 2 T a
guard expression: guards are used to restrict the set of
admissible color instances of a transition to those satisfying
a given predicate. A predicate is expressed in terms of stan-
dard predicates and it is a boolean expression. By default,
U(t) = true is assumed.

P is the priority function that assigns a priority level to
each transition. Timed transitions are graphically repre-
sented by white tick boxes, such as transition filling in
Fig. B.1, and they are characterized by zero priority. Prior-
ity levels greater than zero are reserved, instead, for imme-
diate transitions, graphically represented as black thin
boxes. Conflicting immediate transitions e_ServiceRequest

and lost_ServiceRequest are characterized, for example,
by different priorities: the former has higher priority (equal
to 2) with respect to the latter (default priority, equal to 1).

X is a function that associates to each timed transition a
firing rate, that is the parameter of the exponential proba-
bility distribution function characterizing the random firing
delay of the transition, and to each immediate transition a
weight. Transition weights are used for the probabilistic
resolution of conflicts among immediate transitions with
the same priority.

Finally, M0 is the initial marking function that assigns
to each place either a multi-set over its color domain or a
parameter. In Fig. B.1, an initial marking parameter
M0P is assigned to place ini_Unused. M0P is equal to the
symbolic marking hS Pumpi, which corresponds to the for-
mal sum hp1i + hp2i + hp3i + hp4i. The place ini_Unused

initially contains four tokens, one per color in the color
domain Pump.
B.2. SWN composition features

The SWN composition rules used are based on the con-
cept of matching labels, that is transitions and places of a
SWN are labeled and pairs of transitions (or places) with
matching labels, each one belonging to a different operand,
i.e., SWN component, are superposed.

A SWN component is then defined as a triplet
LN ¼ ðN;w; kÞ where N is a SWN, and w : P !
LP [fsg and k : T ! LT [fsg are the place and transition
labeling functions, respectively. Net objects labeled as s are
considered non-observable with respect to the composition,

e_Finish

e_PressNozzle

ini_Filling

e_GetChange

e_Cancel

e_SelectGrade

e_ReceiveGrade

e_PumpReady

ini_Checking

e_Pay

ini_Unused

e_ServiceRequest

e_OK

filling

count

Customer.GetChange

Customer.Finish

lost_PressNozzle

lost_Cancel

Customer.OK
<#x,#y>

Customer.ReceiveGrade

lost_Pay

lost_SelectGrade

lost_ServiceRequest

lost_ChangePickedUp

Customer.GetChange

e_PressNozzle

e_Cancel

e_Cancel

e_Pay

e_SelectGrade

π:2 e_ServiceRequest

e_ChangePickedUp

π:2

π:2

π:2

π:2

π:2

π:2

e_ChangePickedUp

ini_Cancelling

e_ChangePickedUp
π:2

ini_PickingUp

Pump

Pump x Customer

<#x>

<#y,#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x> <#x> <#x>

<#x>

<#x>

<#x> <#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#x>

<#y,#x>

<#y,#x>

<#x,#y>

<#x,#y><#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>

<#y,#x>
<#y,#x>

<#x,#y>

<#x,#y>

<#y,#x>

<#x,#y>

Customer.OK-OK

<#x,#y>
Customer.PumpReady-PumpReady

<#x,#y>

<#x,#y>

<#x,#y>

Customer.ReceiveGrade-ReceiveGrade

Pump x Customer

<#x,#y><#x,#y> <#x,#y>

<#y,#x>

<#x,#y>

Customer x Pump

<#y,#x>

<#x>

<#x>

M0P

t1

t4

t2

t3 <#x,#y>

ini_WaitingforPayment

ini_ReadyToFill

ini_SelectGrade

ini_Change?

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump
Pump

Sys = {Customer,Pump}
Pump = {p1,p2,p3,p4}

M0P = <S Pump> = <p1>+<p2>+<p3>+<p4>

Pump x Customer

Pump x Customer

Pump x Customer

Customer x Pump

Customer x Pump

Pump x Customer

Customer x Pump

Pump x Customer

Pump x Customer

Customer x Pump

Customer x Pump

Pump x Customer

Pump x Customer

Pump x Customer

Fig. B.1. A sample SWN.

<#x>

<#x>
<#x,y>l

p3

p4 p5

A

AxBA

<#x,#y>

<#x,#y>

l

p1

p2

AxB

AxB

<#y>

<#y>

l

p6

p7

B

B

t1 t2 t3

<x>

<x><x,y>

l

p1

p2 p4

A

AAxB

<x,y>

p3
AxB

<x,x1>

p5

<y>

<y>

l

p7

B

B
AxB

p6

t12 t13

<x,y>

<x,y>

N1 N2

{l}

Fig. B.2. SWN transition composition operator.

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1863
and those whose labels do not appear in the other operand
are not involved in the composition.

An exemplification of how the transition superposition
operator works is given in Fig. B.2: the two SWN compo-
nents N1 and N2 are composed over the common labeled
transitions (labels are written in italic font). The resulting
SWN is shown on the right: it contains the cross product
of the transitions of equal label l 2 LT, that is t12 � (t1, t2)
and t13 � (t1, t3). Observe that the variable names prefixed
by the # symbol are not renamed during the composition,
then allowing to unify values. This is the option we have
used in this paper. On the other hand, the variables names
which are not prefixed by # are renamed in the composed
net; e.g., compare the arc expressions of the arc connecting
transition t2 to place p5 in N2 and the corresponding arc,
in the composed SWN, connecting t12 to p5. The place
superposition operation is the direct counterpart of the
transition composition with the additional constraint that
the color domain of places to be superposed have to be
identical.
References

Balbo, G., 1995. On the success of stochastic Petri nets. In: Proceedings of
the 6th International Workshop of Petri Nets and Performance
Models (PNPM95), Durham, NC, USA, pp. 2–9.

Ballarini, P., Bernardi, S., Donatelli, S., 2002. Validation and evaluation
of a software solution for fault tolerant distributed synchronization.

1864 S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865
Proceedings of International Conference on Dependable Systems and
Networks (DSN). IEEE Computer Society, Los Alamitos, CA, USA,
pp. 773–782.

Ballarini, P., Capra, L., Franceschinis, G., Pierro, M.D., 2003. Memory
fault tolerance software mechanisms: design and configuration support
through SWN models. Third International Conference on Application
of Concurrency to System Design (ACSD’03). IEEE Computer
Society, Los Alamitos, CA, USA, pp. 111–121.

Balsamo, S., Marzolla, M., 2003. A simulation-based approach to
software performance modeling. Proceedings of ESEC/FSE. ACM,
Helsinky, Finland, pp. 363–366.

Baresi, L., Pezzè, M., 2001. On formalizing UML with high-level Petri
nets. In: Agha, G., De Cindio, F., Rozenberg, G. (Eds.), Concurrent
Object-Oriented Programming and Petri Nets. State of the Art,
Advances in Petri Nets. Lecture Notes in Computer Science (LNCS),
vol. 2001. Springer-Verlag, Heidelberg, pp. 276–304.

Bernardi, S., Merseguer, J., 2006. QoS assessment via stochastic analysis.
IEEE Internet Computing 10 (3), 32–42.

Bernardi, S., Donatelli, S., Horváth, A., 2001. Implementing composi-
tionality for stochastic Petri nets. International Journal on Software
Tools for Technology Transfer (STTT) 3 (4), 417–430.

Bernardi, S., Donatelli, S., Merseguer, J., 2002. From UML sequence
diagrams and statecharts to analysable Petri net models. Proceedings
of the 3rd Workshop on Software and Performance (WOSP’02).
ACM, Roma, Italy, pp. 35–45.

Bobbio, A., Bologna, S., Ciancamerla, E., Franceschinis, G., Gaeta, R.,
Minichino, M., Portinale, L., 2001. Comparison of methodologies for
the safety and dependability assessment of an industrial programmable
logic controller. In: Proceedings of European Safety and Dependability
Conference, pp. 411–418.

Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia,
G., 2001. Dependability analysis in the early phases of UML-based
system design. International Journal of Computer Systems Science &
Engineering 16 (5), 265–275.

Bouabana-Tebibel, T., Belmesk, M., 2004. Formalization of UML object
dynamics and behavior. In: IEEE International Conference on
Systems, Man and Cybernetics, pp. 4971–4976.

Canevet, C., Gilmore, S., Hillston, J., Prowse, M., Stevens, P., 2003.
Performance modelling with UML and stochastic process algebras.
IEE Proceedings: Computers and Digital Techniques 150 (2), 107–120.

Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1993. Stochastic
well-formed coloured nets for symmetric modelling applications. IEEE
Transactions on Computers 42 (11), 1343–1360.

Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1997. A
symbolic reachability graph for coloured Petri nets. Theoretical
Computer Science B (Logic, Semantics and Theory of Programming)
176 (1–2), 39–65.

Cortellessa, V., Mirandola, R., 2000. Deriving a queueing network based
performance model from UML diagrams. Proceedings of the Second
International Workshop on Software and Performance (WOSP2000).
ACM, Ottawa, Canada, pp. 58–70.

De Miguel, M., Lambolais, T., Hannouz, M., Betge, S., Piekarec, S., 2000.
UML extensions for the specification of latency constraints in
architectural models. Proceedings of the Second International Work-
shop on Software and Performance (WOSP2000). ACM, Ottawa,
Canada, pp. 83–88.

Franceschinis, G., Bertoncello, C., Bruno, G., Lungo-Vaschetti, G., Pigozzi,
A., 2001. SWN models of a contact center: a case study. 9th International
Workshop on Petri Nets and Performance Models (PNPM’01). IEEE
Computer Society, Los Alamitos, CA, USA, pp. 39–48.

Gaeta, R., Chiola, G., 1995. Efficient simulation of SWN models.
Proceedings of the Sixth International Workshop on Petri Nets and
Performance Models. IEEE Computer Society, Washington, DC,
USA, pp. 137–147.

Grassi, V., Mirandola, R., Sabetta, A., 2005. From design to analysis
models: a kernel language for performance and reliability analysis of
component-based systems. In: Proceedings of the Fifth International
Workshop on Software and Performance (WOSP’05), pp. 25–36.
Gu, G., Petriu, D., 2005. From UML to LQN by XML algebra-based
model transformations. Proceedings of the Fifth International Work-
shop on Software and Performance (WOSP’05). ACM, Palma de
Mallorca, Spain, pp. 99–110.

Haugen, O., Husa, K., Runde, R., Stolen, K., 2005. STAIRS: towards
formal design with sequence diagrams. Software & System Modeling 4
(4), 255–267.

Hu, Z., Shatz, S.M., 2004. Mapping UML diagrams to a Petri net
notation for system simulation. In: Maurer, F., Ruhe, G. (Eds.),
Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering (SEKE’2004), Banff, Alta.,
Canada, pp. 213–219.

Jansen, D.N., Hermanns, H., Katoen, J.-P., 2003. A QoS-oriented
extension of UML statecharts. Proceedings of the 6th International
UML Conference. In: Lecture Notes in Computer Science, vol. 2863.
Springer, pp. 76–91.

Lazowska, E., Zahorjan, J., Scott Graham, G., Sevcik, C., 1984.
Quantitative System Performance: Computer System Analysis Using
Queueing Network Models. Prentice-Hall.

López Grao, J.P., Merseguer, J., Campos, J., 2004. From UML activity
diagrams to stochastic Petri nets: application to software performance
engineering. Proceedings of the Fourth International Workshop on
Software and Performance (WOSP’04). ACM, Redwood City, CA,
USA, pp. 25–36.

Merseguer, J., 2003. Software performance engineering based on UML
and Petri nets. Ph.D. thesis, University of Zaragoza, Spain, March.

Merseguer, J., Campos, J., 2003. Exploring roles for the UML diagrams in
software performance engineering. Proceedings of the 2003 Interna-
tional Conference on Software Engineering Research and Practice.
CSREA Press, Las Vegas, Nevada, USA, pp. 43–47.

Merseguer, J., Bernardi, S., Campos, J., Donatelli, S., 2002. A compo-
sitional semantics for UML state machines aimed at performance
evaluation. In: Silva, M., Giua, A., Colom, J.M. (Eds.), WODES02:
6th International Workshop on Discrete Event Systems. IEEE
Computer Society, Zaragoza, Spain, pp. 295–302.

Merseguer, J., Campos, J., Mena, E., 2003. Analysing Internet software
retrieval systems: modeling and performance comparison. Wireless
Networks: The Journal of Mobile Communication, Computation and
Information 9 (3), 223–238.

OMG-UML, 2005. Unified Modeling Language: Superstructure Object
Management Group, version 2.0, formal/05-07-04. http://www.om-
g.org, July 2005.

OMG-UML-SPT, 2005. UML Profile for Schedulability, Performance
and Time. Object Management Group, version 1.1, formal/05-01-02,
January 2005.

Pettit IV, R., Gomaa, H., 2004. Modeling behavioral patterns of
concurrent software architectures using Petri nets. 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA). IEEE
Computer Society, Oslo, Norway, pp. 57–68.

Saldhana, J., Shatz, S., 2000. UML diagrams to object Petri net models:
an approach for modeling and analysis. Twelfth International Con-
ference on Software Engineering and Knowledge Engineering. Knowl-
edge Systems Institute, Chicago, IL, USA, pp. 103–110.

Whittle, J., 2006. Specifying precise use cases with use case charts. In:
Bruel, J.-M. (Ed.), Satellite Events at the MoDELS 2005 Conference,
MoDELS 2005 International Workshops, Doctoral Symposium,
Educators Symposium, Montego Bay, Jamaica, October 2–7, 2005,
Lecture Notes in Computer Science, vol. 3844. Springer.

Woodside, M., Petriu, D., Petriu, D., Shen, H., Israr, T., Merseguer, J.,
2005. Performance by unified model analysis (PUMA). Fifth Interna-
tional Workshop on Software and Performance (WOSP’05). ACM,
Palma, Illes Balears, Spain, pp. 1–12.

Simona Bernardi is a researcher at the University of Torino, Italy. Her
research interests include software performance and dependability engi-
neering, stochastic modeling, and UML. She has a BS, an MS in mathe-
matics, and a PhD in computer science, both from the University of

http://www.omg.org
http://www.omg.org

S. Bernardi, J. Merseguer / The Journal of Systems and Software 80 (2007) 1843–1865 1865
Torino. She has served as a referee for international journals and
conferences.

José Merseguer is an assistant professor in the Department of Computer
Science and Systems Engineering at the University of Zaragoza, Spain.
His research interests include performance and dependability analysis of
software systems, UML semantics, and object-oriented software engi-
neering. He has a BS and an MS in computer science from the Technical
University of Valencia and a Ph.D. in computer science from the Uni-
versity of Zaragoza. He has served as a referee for international journals
and as a program committee member for several international conferences
and workshops.

	Performance evaluation of UML design with Stochastic Well-formed Nets
	Introduction
	Related works
	Structure of the article

	Overview of the proposed method
	Construction of a UML model for SWN analysis
	Translation of the UML model into SWN
	Obtention of the performance SWN
	Performance analysis

	Construction of a UML model for SWN analysis
	UML design: the input to the method
	Performance annotation of the UML design

	Translation of the UML model into SWN
	Translation of annotated state machine
	Translation of annotated sequence diagram

	Obtention of the performance SWN
	Interaction assumptions

	Performance analysis
	Performance analysis of the gas system

	Case study: software retrieval system
	Construction of a UML model for SWN analysis(step 1)
	Translation of the UML model into SWN (step 2)
	Obtention of the performance SWN (step 3)
	Interaction assumption

	Performance analysis (step 4)

	Conclusion
	Performance annotated UML design models
	Stochastic Well-formed Nets and SWN composition
	SWN basics
	SWN composition features

	References

