
Simona Bernardi
Università di Torino, Italy

José Merseguer
Universidad de Zaragoza, Spain

QoS Assessment
via Stochastic Analysis

Using a stochastic modeling approach based on the Unified Modeling Language

and enriched with annotations that conform to the UML profile for schedulability,

performance, and time, the authors propose a method for assessing quality of

service (QoS) in fault-tolerant (FT) distributed systems. From the UML system

specification,they produce a generalized stochastic Petri net (GSPN) performance

model for assessing an FT application’s QoS via stochastic analysis. The ArgoSPE

tool provides support for the proposed technique, helping to automatically

produce the GSPN model.

Critical software systems distributed
over the Internet need high depend-
ability to avoid unacceptable failures,

such as crashes or attacks, despite the pres-
ence of faults. One way to guarantee
dependability is via fault tolerance (FT).
Software FT, in particular, involves embed-
ding — within either the middleware or
application layers — techniques aimed at
system failure avoidance,1 such as error-
detection and recovery mechanisms coor-
dinated according to an FT strategy.

Providing software systems with FT
capabilities has its costs, however, and
a trade-off is usually required between
system overhead and an FT strategy’s
effectiveness, which is directly related to
system dependability. Thus, FT distrib-
uted systems’ quality of service (QoS)
depends on basic metrics related to the
adopted strategy’s effectiveness (the
time required for error-detection and

recovery, for example) as well as on
classical performance metrics (such as
response time, throughput, or the prob-
ability of dropping packets due to net-
work congestion) that let us quantify
computation or communication over-
head. We can assess such systems’ QoS
before development using fault-fore-
casting techniques,1 which let us predict
system behavior in the presence of
faults. In particular, stochastic modeling
and analysis techniques — in which we
can represent system activity durations
and delays as random variables and
model logic conditions with probabili-
ties — let us derive probabilistic esti-
mates of QoS metrics.

To this end, we propose a stochastic
modeling technique built on the Unified
Modeling Language2 and enriched with
annotations conforming to the UML pro-
file for schedulability, performance, and

32 MAY • JUNE 2006 Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

A
pp

li
ca

ti
on

-L
ev

el
 Q

oS



time (SPT).3 We then assess QoS by analyzing a
generalized stochastic Petri net (GSPN)4 perfor-
mance model, automatically derived from the
UML-SPT specification. (For related work in com-
bining UML and performance models for QoS
assessment, see the sidebar.)

We’ve successfully applied our approach to
assessing QoS in mobile-agent software systems,5

and now adopt it for assessing QoS in FT Internet-
based distributed systems. We take our modeling
and analysis guidelines from our experience with
verification and validation activities in the Euro-
pean Dependability for Embedded Automation
Systems in Dynamic Environments project (www.
depaude.org), and illustrate them via the Backbone
case study (developed within Depaude). These
guidelines are useful with a wide range of FT sys-
tems, which share important commonalities. Here,
we present only a simplified version of the origi-
nal UML models and the QoS assessment carried
out in Depaude, focusing instead on the most rel-
evant QoS aspects of Backbone.

The Backbone Case Study
The Backbone application is part of an FT middle-
ware devoted to guaranteeing high-dependability
for automation systems distributed over both
intra- and internetworks (Ethernets and the Inter-
net, respectively). Figure 1 shows the architecture
of a processing node from an automation system
integrated with the Depaude framework.

Backbone itself is a distributed application in
which agents run on multiple processing nodes. Its
main functionalities are gathering and maintain-

ing error-detection information in replicated data-
bases and coordinating the FT mechanisms at run-
time by interpreting the user-defined FT strategy.
Given that Backbone is the Depaude architecture’s
core element, its developers devised a self-check
algorithm specifically so it could tolerate crash
failures and temporary partitioning.

The Backbone agents — each of which runs on
a different node — can act as either masters or
backups. At startup, and in normal situations, the
full system has only one master. In faulty situa-
tions, however, more than one master can exist —
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Figure 1. Processing-node architecture in
Depaude.The Backbone element within the
Depaude middleware is a distributed application
that gathers and maintains error-detection
information and coordinates fault-tolerant
mechanisms.

User application
(Automation system)

Fault-tolerant
mechanisms

Backbone

Basic services API

Operating system
D

ep
au

de

Related Work in UML Specification for QoS Assessment

Andrea Bondavalli and colleagues pre-
sented one of the first attempts at

enriching a UML design to specify depend-
ability aspects for QoS assessment with
fault-tolerant (FT) systems.1 Their UML
extension mechanisms don’t conform to any
OMG profile, but the authors exploit them
to automatically produce stochastic Petri net
(SPN) models amenable to dependability
analysis. In particular, the authors derive
high-level SPN models from UML structural
diagrams (such as class,deployment,and use
cases) under the assumption of standard
behaviors by system components; they
obtain more detailed SPN models from

UML behavioral specifications (such as state-
charts and sequence diagrams).

Vittorio Cortellessa and colleagues
devised a methodology for estimating the
performance risk factor — that is, the
probability that a system won’t meet cer-
tain performance requirements.2 Although
not specifically developed for the FT
domain, this approach is based on using
UML sequence diagrams to represent sys-
tem scenarios and deployment diagrams to
represent hardware restrictions. From the
UML system specification — properly
annotated with risk-related attributes
according to the schedulability, perfor-

mance, and time (SPT) profile — the
authors derive a formal model (the execu-
tion graph) from which they can estimate
the probability of performance failures and
identify possible bottleneck components by
computing asymptotic bounds.
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that is, a temporary partitioning occurs in which
the set of agents is divided into as many subsets as
the number of current masters. The master is the
only component that can initiate error recovery.

The agents execute the self-check algorithm with
support from an alarm manager (AM). The algorithm
involves a message exchange among participants:
each backup agent expects a “master is alive” (MIA)
message from the master every Tt2r seconds, at most,
whereas the master expects a “backup is alive” (BIA)
message from each backup every Tt2r seconds, at
most. Each agent sends its “I am alive” message as
soon as it receives the proper time-out expiration
notification, which the AM running on that particu-
lar node sends every Tt2s seconds.

In a normal situation, the master and backups
continue to receive and send MIA and BIA mes-

sages; however, if an agent doesn’t receive such a
message within the specified deadline, it detects a
late-timing failure and views the sender agent as
“failed.” At this point, a transitory phase begins in
which Backbone isolates the failed agent and, if
this agent was a master, elects a new one from
among the backups.

Vincenzo De Florio and his colleagues imple-
mented a heavier (that is, more complex) version
of the self-check algorithm on a Backbone proto-
type running on a Parsytec Xplorer — a multiple-
instruction, multiple-data engine — using four
PowerPC nodes.6 They tested this system via fault-
injection and determined that it could tolerate
crash failures and system partitioning.  We ana-
lyze the lighter version of the Backbone self-check
algorithm developed in Depaude, which is scalable
with respect to the number of processing nodes.

As with the Depaude framework’s other FT
mechanisms, users must configure Backbone when
defining the FT strategy; in particular, they must set
the alarm durations Tt2s and Tt2r. From the user’s
viewpoint, the main QoS requirement is thus to
establish reasonable values for these durations that

guarantee high Backbone availability (99.99 per-
cent) without congesting the network (the maxi-
mum acceptable overhead being 5 percent). In
particular, users should satisfy the inequality Tt2s �
Tt2r to minimize the frequency of false alarms (such
as when the master agent suspects a failed backup
but the latter is actually working correctly).

So, how do we quantify Backbone’s QoS? Fol-
lowing Daniel Menascé’s proposal,7 we can express
it as a function of two metrics: the time required
to detect a failed agent and isolate it (Ttd), which
is directly related to Backbone’s availability, and
the communication overhead (Onet) generated from
executing the self-check algorithm. We can then
define Backbone’s QoS as

, (1)

where Ttd
max and Onet

max are QoS user requirements.
Once they’re established, Equation 1 becomes a
function of the system’s input parameters, which
characterize both the network (such as network
speed) and the Backbone application itself (the
number of execution nodes, size of exchanged
messages, or activity and alarm durations, for
example). We can then use the QoS formula dur-
ing stochastic analysis to find and assign values to
the alarm durations for a given system character-
ization that will satisfy the QoS user requirements.

UML Specification of FT Systems
UML is currently the primary choice for software
engineers developing design system models. Fol-
lowing this current trend, we designed our FT appli-
cations using the UML statechart and sequence
diagrams to model system behavior and the deploy-
ment diagram to model system architecture. More-
over, we move a step forward in the use of UML by
proposing a technique that lets us the exploit these
diagrams in verifying QoS system properties — that
is, for system analysis purposes.

UML-SC
Most FT distributed applications, such as Back-
bone, exhibit discrete, event-driven behavior. To
accurately model this behavior, UML provides the
statechart formalism (UML-SC) as a primary nota-
tion. UML-SCs are, in fact, suitable for modeling
system components that react to stimuli generat-
ed inside or outside the system boundaries. Such
components carry out their system responsibilities
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From the user’s viewpoint, the main
QoS requirement is to guarantee
high Backbone availability without
congesting the network.



(services) by exchanging messages — a behavior
the Backbone agents clearly exhibit.

Moreover, UML-SCs are useful for modeling
specific FT behaviors such as affected system
components’ anomalous states, system-recovery
actions, and different types of fault behavior (per-
manent, transient, or intermittent).

When modeling an event-driven FT system, we
must identify those system components that coop-
erate to both carry out actual system functionali-
ties (their “normal’’ behavior) and implement the
inherent FT techniques (error detection and recov-
ery). We can easily model each cooperating com-
ponent’s behavior in UML with a UML-SC; in our
case study, these components were the backup and
master agents and the AM. Using the master
agent’s UML-SC as an example, Figure 2 illustrates
four guidelines (M1 through M4) common to mod-
eling FT components:

• M1. Each component-provided service executes
when agents properly react to the event (exter-
nal stimuli) that requests that service. The
occurrence of a notify event, for example —
invoked by either the user application or an FT
mechanism from the Depaude framework —
moves the master to the update&recovery
state, from which it performs the service
(updating the database and starting user-appli-
cation recovery). Once it finishes these activi-
ties, the master returns to its waiting state.

• M2. We can model self-checking between FT
components using the UML-SC’s message-
exchange mechanism. The notation supporting
message exchange labels UML-SC transitions
with trigger–effect clauses. For example, when
the master receives a time-out event T2SM (time
to send MIA) from the AM, it notifies the back-
up of an MIA event. The transition T2SM/
Bck.MIA represents the master accepting the
T2SM event (the trigger) and the MIA event
generation (the effect). The backup agent will
manage MIA events to realize the master’s
healthy state (that is, that the master is proper-
ly working). Consequently, we model each
agent as a self-checking component defining
an error-confinement area, where failures in the
system can occur.

• M3. The system must discover anomalous
states, such as failure states, internally in
order to execute proper actions. For the mas-
ter agent, we model the failure state (backup
failed) that the master agent reaches when

it processes the AM-generated T2RB (time to
receive BIA) event and realizes that the back-
up has failed. Because backup and master
behaviors are similar, the agents and the AM
concurrently implement error-detection poli-
cies. The AM’s UML-SC in Figure 3 depicts
how the system concurrently manages the
alarms. We chose alarms as the mechanism to
test system components’ availability. Each
alarm begins a count down and, when this
count down expires, fires the alarm event to
the proper agent. In the first concurrent
region, for example, the AM sends the master
a T2SM event, then waits for the master to
receive a reset_T2SM.

• M4. Once the system has detected the anom-
alous states, it must take the proper recovery

actions by implementing the FT strategy. We
model this situation with an activity in the
failure states (backup failed and master
failed) that should initiate a chosen recovery
policy, such as reinitializing the failed agent —
that is, restarting this agent’s computation.

Observe that the representation of the FT strategy
could be more or less complex than M4 indicates,
depending on the model-abstraction level. In some
cases, we must explicitly model the FT strategy
mechanisms’ behaviors via UML-SC. Moreover,
depending on the objective of the analysis, a fault-
generator model might be necessary (when assess-
ing system availability, for example). UML-SC is
suitable for modeling different types of fault
behavior with respect to persistence (permanent,
transient, or intermittent) as well as fault occur-
rences’ effects on the system components.

UML-SD
The UML sequence diagram (UML-SD) provides the
proper notation for representing scenarios of inter-
est. Figure 4a (p. 38) shows the execution of a nor-
mal Backbone scenario, which includes the
concurrent interactions representing the mutual
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We can easily model each
cooperating component’s behavior
in UML with a UML state chart.



checking of the Backbone components and the
main Backbone functionalities. In the same figure,
the self-check scenario emphasizes the order
among the exchanged messages. In the FT system
domain, UML-SDs are useful for representing not
only normal system executions but also faulty sce-

narios — that is, sequences of exchanged messages
that lead to system failures or accomplish the coor-
dinated recovery actions defined by the FT strate-
gy. We could easily model a backup crash and its
recovery, for example, by ordering T2RB and
reset_T2RB events.
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Figure 2. UML statechart specification. (a) The backup component is a software replica of a master
agent that takes over the master’s role if the latter isn’t working correctly. (b) The master component is
the primary agent for the Backbone application’s self-check algorithm.The schedulability, performance,
and time (SPT) annotations support the specification of different performance measures: required
values (yellow), assumed values (green), estimated values (blue), and measured values (not used).
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UML-DD
UML deployment diagrams (UML-DD) let us represent
system architectures — particularly hardware and
software redundancies, which are among the most-
applied FT techniques (see Figure 4b). Backbone itself
has been implemented as a redundant application
consisting of software replicas — that is, the master
and backup agents, which run on separate nodes,
together with their associated AMs. Each backup is a
replica of its master, and running on different nodes
guarantees that when one (master or backup) is down
the other is alive and can continue computation.

Enriching UML Models
with Stochastic Information
The standard procedure for stochastic modeling
and analysis follows four main steps:

• construct the stochastic model,
• establish the QoS metrics of interest,
• set the model parameters, and
• derive probabilistic estimates of QoS metrics using

numerical, analytical, or simulation techniques.

We can repeat the latter two steps — for example,
to study how performance changes if parameter
values change (sensitivity analysis) or find the
parameter configuration that guarantees best per-
formance (optimization analysis).

The Depaude modeling experience, partially
reported here, shows that UML-SCs, UML-SDs, and
UML-DDs have the artifacts necessary for model-
ing most FT systems’ intricacies. Thus, we can con-
sider UML a very acceptable tool for modeling FT
systems. However, UML lacks support for stochas-
tic modeling, which enables fault forecasting and,
consequently, QoS assessment via predictive quan-
titative analysis.

The UML-SPT profile provides a framework
within UML that introduces new modeling capa-
bilities as annotations. These SPT annotations
stereotype core UML elements — that is, they add
semantics in the time domain. Each stereotype has
a list of tagged values describing time-related
attributes. Figure 2 depicts several examples
attached to UML notes. SPT annotations support
the specification of different performance mea-
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Figure 3. UML statechart (SC) specification for the alarm manager. The SC’s concurrent regions are
useful for modeling how the system can concurrently manage multiple alarms, including time-to-send
(T2S) and time-to-receive (T2R) master and backup alarms.The schedulability, performance, and time
(SPT) annotations help set the alarms’ durations.
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sures: required values (annotated in yellow),
assumed values (green), estimated values (blue),
and measured values (not used).

SPT models are the basis from which we
derive performance models, which we can use for
our quantitative analysis, adopting existing
model-analysis techniques and tools. (We express
performance models in terms of GSPNs, so we use
the GSPN formalism’s analysis tools. The “Sto-
chastic Modeling using Petri Nets” sidebar has
more information.) Moreover, the SPT doesn’t
hamper the way software engineers use UML to
construct their models. Thus, we can follow the
FT component-modeling guidelines (M1 through
M4) within the SPT framework to model FT appli-
cations’ performance measures and QoS require-
ments. SPT annotations let us address three main
concerns in stochastic modeling: time, probabil-
ity, and load.

FT applications carry out activities to provide,
among others, either actual services (M1) or sys-
tem recovery actions (M4). A Time annotation
models the time spent on these activities. Figure
2a shows examples of time annotations on the
store and recoveryM do-activities (that is, com-
putations in the system). The first annotation
states that updating the database service takes
0.01 seconds, whereas the second states that a
backup spends 0.01 seconds recovering its mas-
ter agent.

Sometimes, an FT component must proba-
bilistically select a behavior from a set of possi-
ble ones. A Prob annotation models this in the
FT component’s UML-SC, in which more than
one transition leaves the state from which the
component selects the behavior. We stereotype
these transitions as <<PAstep>> (the transition
is a step in the system computation) with a
PAprob tag.

The load annotation models the system work-
load — that is, the number of FT components or
execution threads expressed as a closed load in the
corresponding UML-SC. Figures 2 and 3 show an
example of this in the PApopulation tags.

We also annotate the QoS requirement T td
max

and the predicted measure T td, from Equation 1, in
the master agent’s Backup Failed state, as Figure
2 shows. Note that the SPT lets us use variables
($T_td), allowing us to parameterize the model.
Unfortunately, the SPT lacks the syntax to address
certain performance measures and QoS require-
ments that might be necessary for configuring an
FT distributed system. Thus, we’ve extended the
SPT with new annotations:

• Message-size and network-speed tags are use-
ful for computing message-transmission delay
(see the UML-SD and UML-DD annotations in
Figure 4).

• QoS requirements that represent relationships
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Figure 4. UML specification. (a) Sequence diagrams (SDs) let us represent scenarios of interest. (b) Deployment diagrams
(DDs) let us represent system architectures, particularly hardware and software redundancies.
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among variables are expressed as constraints,
(see the red annotation in Figure 3).

• Nonstandard QoS requirements, such as com-
munication overhead (Onet in Equation 1), can’t
stereotype a concrete UML core concept. The
$N and $M annotations in the UML-SD are use-
ful, for example, for defining Onet as $M/($N +
$M). Observe that messages have the same size
in this case. We can thus express Onet as the
percentage of MIA/BIA messages sent with
respect to the total messages Backbone sends
and receives over the Internet.

• When we use UML-SC to explicitly model
faults, we can specify their quantitative char-
acterization via fault frequency and latency
tags, which are associated, respectively, with
<<FTstep>> transitions (representing fault
occurrences) and do-activities (representing
fault-latency duration).

The new annotations, together with the UML-
SPT annotations, give us a framework for model-
ing the system’s stochastic view. It complements
the system’s functional view, defined using UML
diagrams. Thus, we homogeneously model the sys-

tem using UML and its extension mechanisms,
stereotypes, and tagged values.

QoS Assessment
via Stochastic Analysis
Once we have a UML system specification, enriched
with QoS annotations, we can produce a perfor-
mance model for assessing an FT application’s QoS.
The “Generating Performance Models from UML
Designs” sidebar (p. 41) describes the general prin-
ciples that we followed to derive a GSPN perfor-
mance model from the Backbone UML specification.

Once we generated the GSPN model, we were
able to compute estimated values and compare
them against the required values. Each estimated
value corresponds to a metric prediction in the per-
formance model. The mean return time in the
Backup Failed state, for example, corresponds to
Ttd and leads us to evaluate the inverse of a tran-
sition throughput in the GSPN model.

For effective analysis, we turned to the
ArgoSPE tool (http://argospe.tigris.org). Imple-
mented as a plug-in of ArgoUML, the tool lets us

• derive GSPN models from UML- SC, DD, and
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Stochastic Modeling using Petri Nets

Carl Adam Petri introduced Petri nets
(PNs) in the early 1960s as a formal

and graphical language suitable for mo-
deling concurrent systems. PNs are struc-
turally characterized by places and
transitions connected via arcs. PNs incor-
porate the notion of (distributed) state,
called marking, and their dynamic behavior
is governed by transition-enabling and fir-
ing rules. A marking is a distribution of
tokens; a transition is enabled if its input
places contain at least as many tokens as
the multiplicity of the corresponding input
arcs. An enabled transition can “fire” to
remove as many tokens from its input
places as the multiplicity of the corre-
sponding input arcs and add to its output
places as many tokens as the correspond-
ing output arcs.

As originally defined, PNs didn’t
include time concepts; researchers intro-
duced temporal specification in PN mod-
els several years later, with different
approaches, based first on the use of

deterministic timing and then on stochas-
tic timing. They introduced temporal
specification in PNs mostly by associating
delays with transitions. With stochastic
Petri nets (SPNs),1 in particular, the tran-
sition-firing delays are negative exponen-
tially distributed random variables; thus,
we can view an SPN as a high-level model
that generates a Markov chain.

Although classical PNs are useful for
investigating logical properties (such as
boundedness, fairness, and the absence of
deadlocks), SPNs present a powerful mod-
eling formalism that lets us conduct
quantitative analysis and then performance-
metric prediction. The typical steps in per-
formance evaluation with SPNs are

• modeling the given system via an SPN;
• generating the Markov process and

corresponding Markov chain;
• computing the steady-state probability

distribution of the marking process’s
states; and

• obtaining the required performance met-
rics from the steady-state probabilities.

Several tools are available for SPNs,
including the Graphical Editor and Analyz-
er for Timed and Stochastic Petri Nets
(GreatSPN;www.di.unito.it/~greatspn/index.
html), which lets us model, validate, and
evaluate distributed systems’ performance
using generalized SPNs and their colored
extensions (stochastic well-formed nets).
GSPNs are well-known extensions of
SPNs,2 in which certain transitions fire in
zero time (immediate),with priorities over
stochastic transitions (timed). We’ve used
this class of SPN as the target for our per-
formance model in this article.
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collaboration diagrams (which are semantical-
ly equivalent to SDs);

• submit queries that the tool maps automatical-
ly to the corresponding metrics, which the
GSPN solver computes on the underlying GSPN
model; and

• visualize the predicted metric values directly
onto UML diagrams.

For this article’s purposes, we used ArgoSPE to
automatically produce — from the UML-SCs and
the UML-DD — the GSPN model leading the exper-
iments. Given that ArgoSPE doesn’t support UML-
SDs, we didn’t consider them in our analysis;
instead, we annotated all the message-size speci-
fications to the UML-SCs’ transitions.

We first analyzed a Backbone application run-
ning on two nodes. Using sensitivity analysis, we
found values for the alarm durations that maxi-
mized the QoS function defined in Equation 1: the
maximum value gives information on predicted
metrics’ goodness with respect to the given QoS
requirements. That is, the closer the maximum is
to 1, the smaller the predicted metric values. On
the other hand, if the maximum is negative, at
least one QoS requirement will remain unsatisfied.

Figure 5 plots the QoS versus the duration of
time-to-send (T2S) alarms (Tt2s, as described in the
Backbone Case Study section): the three curves

represent the QoS for different relations between
T2S and the duration of the time-to-receive (T2R)
alarms (Tt2r, as described in the Backbone Case
Study section). When setting T2R = T2S (green
curve), we reach the maximum QoS at T2S = 0.34
seconds — in this case, Backbone satisfies both QoS
requirements (Ttd = 0.51 seconds � 0.9 seconds and
Onet = 2.9% � 5%).

If T2S = 0.34 seconds, we can still satisfy the
QoS requirements when T2R is twice as long as
T2S (blue curve), but the predicted Ttd value is
worse than in the previous case (Ttd = 0.78 sec-
onds). Finally, when T2R is three times longer than
T2S (brown curve) and T2S = 0.34 seconds, the
time for detecting and isolating a failed backup
agent is equal to 1.09 seconds, which is more than
the maximum acceptable threshold.

Having established the values for the alarm
durations that guarantee satisfied QoS require-
ments for a two-node Backbone application, we
investigated whether such durations were still
acceptable for a Backbone application running on
N nodes (N � 2). We considered, for example, N =
3, 6, and 11, and the experiments showed that
none of the considered cases satisfied both QoS
requirements when T2S = T2R = 0.34 seconds.
Indeed, we must set different maximum thresholds
for Ttd and Onet depending on the number of nodes.

We applied the modeling and analysis ap-
proach illustrated here during validation and ver-
ification activities in Depaude. In particular, we
adopted it for the performance and dependability
evaluation of the FT mechanisms, implemented
within Depaude, to provide a benchmark for soft-
ware engineers, with optimal parameter configu-
rations that guarantee certain QoS levels for
automated systems using the Depaude framework.

From our experience with verification and vali-
dation activities in Depaude, we learned that

one of the main modeling issues is deciding on the
specification’s level of abstraction. Considering all
the system aspects in stochastic modeling isn’t a
good approach because the performance model
becomes too detailed and its analysis intractable.

In fact, model construction should be driven by
analysis goals. (What are the necessary QoS
requirements for validation? What are the metrics
to compute?) Indeed, different models might be
necessary in different scenarios. Modeling faults
affecting the Backbone components, for example,
wasn’t necessary for us to validate the QoS
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Figure 5. Quality of service in a Backbone application running on two
nodes. The three curves represent varying alarm durations for
different relations between time-to-send (Tt2s) and time-to-receive
(Tt2r) alarms.When we set all the alarms to the same value, we
obtain better performance results (green curve). We reach the
maximum QoS when Tt2r = Tt2s = 0.34 seconds.
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requirements we consider in this article; however,
to evaluate Backbone availability — which depends
highly on fault frequency and latency — faults
should be explicitly modeled.

Using tool support is a must when analyzing
realistic case studies. ArgoSPE’s automatic gener-
ation of the performance model shortens this stage
considerably, but we could shorten it even more if
ArgoSPE computed the metrics for Backbone.

Finally, we must verify several QoS requirements
because it isn’t easy to keep all the derived predict-
ed metrics under control. Defining QoS functions7

facilitates system QoS assessment. To this end, we’ve

defined a QoS function for analysis with Backbone
that depends on the two equally important require-
ments discussed at the beginning of this article. 

We plan to extend our approach of deriving
performance models from UML specification to
consider object identities. For some systems, fail-
ing to do so in the performance analysis could
generate misleading results. For this purpose, we
believe that the colored extension of GSPN (sto-
chastic well-formed nets) is a more suitable per-
formance model than GSPN, given that it allows
us to generate a scalable model with respect to the
system population.

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2006 41

QoS Assessment

Generating Performance Models from UML Designs

The literature presents several approa-
ches to generating performance mod-

els from UML designs. Simonetta Balsamo
and colleagues present a survey of the
main contributions to such work.1 In the
work we present in the main text, we fol-
low one method that generates a general-
ized stochastic Petri net (GSPN) model
from a UML-annotated design — such
annotations include statecharts (SCs) and
sequence and deployment diagrams (SDs
and DDs).2 The approach exploits GSPNs’
compositional features, letting us master
complexity in both defining and imple-
menting the generation process, which
consists of three main steps. First, the
approach involves translating SCs sepa-
rately into GSPN models characterized by
labeled places and transitions. Labeled
places represent mailboxes associated with
event types, whereas labeled transitions
can represent event generation or event
consumption. The second step translates
the SD into a GSPN model with labeled
transitions, capturing the causal relations
between the represented scenario’s events
as well as the message-transmission delays.
The last step presents two choices:we can
compose the SC GSPN models over
labeled places to produce the performance
model of the system, SysModel; or we
can compose SysModel with the GSPN
model, over labeled SD transitions, to gain
a performance model for a system sce-
nario ScenarioModel.

During the translation steps,we use the

SPT annotation specified in the UML dia-
grams to define the performance model’s
input parameters. In particular, we use
PAdemand tagged values to define the fir-
ing rates of GSPN timed transitions repre-
senting the SC’s do-activities (that is,
computations in the system). The message-
size annotation PAsize, together with the
network-speed annotation PAspeed
(specified in the DD), define the rate of
GSPN timed transitions that model the
message-transmission delays. We map the
PApopulation tagged values into the
GSPN’s initial marking parameters and use
PAprob tagged values to assign weights to

the GSPN’s immediate transitions repre-
senting the choices among a set of possible
behaviors. Figure A shows a sketch of
Backbone’s SysModel emphasizing the
main translation features.
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