A UML Profile for Dependability Analysis of Real-Time
Embedded Systems

. ¥
Simona Bernardi
Dipartimento di Informatica
Universita di Torino, Italy

bernardi@di.unito.it

ABSTRACT

In this paper, we aim at giving a contribution toward the definition
of a UML profile supporting the dependability analysis of real-time
and embedded systems (RTES) that conforms to the upcoming pro-
file named “Modeling and Analysis of Real-Time and Embedded
Systems” (MARTE), for which a Request For Proposal has been
issued by the Object Management Group (OMG).

A set of basic dependability and fault-tolerance concepts need
to be included in the profile to support the dependability analysis
of RTES. We have exploited the best practices, proposed in the lit-
erature, on extending UML with dependability modeling capabili-
ties in order to draw up a check list of requirements to be used as
guideline for the definition of a dependability analysis profile. The
proposed profile is then applied to the UML design of a case study:
a gas turbine control system.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirement/Specification; D.2.8
[Software Engineering]: Metrics

General Terms
Design, Reliability, Standardization

Keywords
UML profiles, dependability, real-time embedded systems

1. INTRODUCTION

Within the Unified Modeling Language (UML), two profiles are
currently available to support the assessment of non-functional prop-
erties of software systems: the Schedulability, Performance and

*Simona Bernardi has been supported by the European IST project
CRUTIAL-027513 (CRitical UTility InfrastructurAL resilience)

JrJ osé€ Merseguer has been supported by the project IBE2005-TEC-
10 of the University of Zaragoza

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOSP’07, February 5-8, 2007, Buenos Aires, Argentina.

Copyright 2007 ACM 1-59593-297-6/07/0002 ...$5.00.

115

. T
José Merseguer
Dpto. de Informatica e Ingenieria de Sistemas
Universidad de Zaragoza, Spain

jmerse@unizar.es

Time (SPT) profile [19] and the Quality of Service and Fault Toler-
ance Characteristics and Mechanisms (QoS&FT) [21] profile.

The SPT profile has been the first attempt to extend UML with
basic timing and concurrency concepts and to express requirements
and properties for conducting schedulability and performance anal-
ysis. The more recent QoS&FT profile has a broader scope, its
objective is to allow the user to define a wider variety of QoS re-
quirements and properties. Nevertheless, as emerges from the com-
parative analysis carried out in [5], the QoS&FT requires too much
effort for the final users (software analyst, designer) to be applied
and, being more recent, only few application examples are given,
mainly addressed to the schedulability analysis.

Dependability assessment of software systems, as performance
and schedulability, should be carried out early in the software life-
cycle to avoid unacceptable costs in terms of loss of life and re-
sources due to system failures. Although the sub-profile proposed
in the QoS&FT can be used for the specification of the fault tol-
erant software architectures, nor the QoS&FT profile neither the
SPT profile specifically support the dependability analysis of UML
based system models.

The OMG has recently issued a request for proposal (RFP) for
a new UML profile for “Modeling and Analysis of Real-Time and
Embedded Systems” (MARTE) in order to upgrade the SPT profile
to UML2.0 [20] and to extend its scope with real-time embedded
system (RTES) modeling capabilities. The work [14] provides a
flexible and straightforward framework for MARTE by adopting
the best modeling practice of the SPT and QoS&FT, and proposes
a domain model for annotating non functional properties to support
temporal verification of UML based models.

In this article, we aim at giving a contribution toward the defini-
tion of a UML profile for the dependability assessment of RTES
which is compliant with the MARTE RFP and uses the general
framework proposed in [14]. We have exploited the best practices,
proposed in the literature, on extending UML with dependability
modeling capabilities in order to draw up a check list of require-
ments to be fulfilled by a profile supporting the different facets of
dependability analysis.

We then propose several complex non functional properties that
cover most of the dependability aspects dealt in the considered lit-
erature and that characterize a set of stereotypes: the new UML ex-
tensions introduced are structured according to [14], then providing
a skeleton of the Dependability Analysis (DA) profile. The profile
can be used to enrich the UML models with dependability require-
ments and properties and aims at supporting the transformation of
the UML-DA annotated models into suitable dependability models
(such as fault trees, Bayesian networks, stochastic Petri Nets) for
the quantitative assessment of the system.

The contribution of this work is the definition of the skeleton of
the DA profile and its application to the case study of a gas turbine
control system. The issues related to the derivation of dependability
models from UML-DA annotated models as well as their analysis
are not discussed here and they will be subject of future research.

The paper is organized as follows: in Section 2 we recall the ba-
sic concepts of dependability and the commonly used approaches
to dependability analysis of software systems. In Section 3 we ana-
lyze the different proposals made in the literature for the annotation
of dependability requirements and characteristics in UML based
models. A check list of basic concepts that should be included in a
dependability analysis profile is then derived. Section 4 describes
the proposed Dependability Analysis (DA) profile that conforms to
the MARTE request for proposal. In Section 5 we use the DA pro-
file to specify the dependability requirements and properties in the
UML design of a gas turbine control system for safety and avail-
ability analysis purpose. Conclusions and open issues are given in
Section 6.

2. DEPENDABILITY BASIC CONCEPTS

We refer to the work [2] for the definition of basic concepts and
taxonomy of dependability. We briefly summarize in the following
those key concepts that should be considered in the definition of a
dependability analysis profile.

The concepts defined in [2] are based on a component-based sys-
tem view, that is a system is an entity that interacts with other enti-
ties (i.e., other systems, including hardware and software, and the
physical world with its natural phenomena) and it is composed of a
set of components bound together in order to interact. Each compo-
nent can in turn be another system and, at the lowest nesting level,
is atomic that is any further internal structure cannot be discerned
or is not of interest and can be ignored.

The service delivered by the system is its behavior as it is per-
ceived by its users, and a service failure represents an event that
occurs when the delivered service deviates from the fulfillment of
the intended system functionalities. Service failures manifest in
different modes that are classified according to several viewpoint;
considering, for example, the failure domain, we can distinguish
content failure, when the information delivered by the system is
not correct, and timing failure, when the information is delivered
too late or too early.

A failure may occur when at least a state of the system deviates
from the correct service state, such deviation is called error. Errors
can be caused by faults that, as for failure concept, can be classi-
fied according to different viewpoints, such as the software devel-
opment phase in which their occur (i.e., development/ operational
faults), the timing persistence (i.e., permanent, transient and inter-
mittent faults), the system components they affect (i.e., hardware/
software faults). Faults, errors and failures are called impairments
of dependability.

The dependability of a system is the ability to avoid failures that
are more frequent and more severe than is acceptable. The depend-
ability encompasses a set of system properties, called attributes of
dependability, listed in the following:

- Availability, the readiness for correct service;
- Reliability, the continuity of correct service;

- Safety, the absence of catastrophic consequences on the users
and environment;

- Integrity, the absence of improper system alterations;

116

- Maintainability, the ability to undergo modifications and re-
pair.

There are different means to attain dependability. The most in-
teresting toward the definition of a dependability profile, from our
point of view, are fault tolerance and fault forecasting.

Fault tolerance aims at avoiding system failures despite the pres-
ence of faults and it is carried out via error detection and system re-
covery. Error detection techniques aim at identifying the presence
of errors in the system and different types of mechanisms can be
implemented for this purpose, such as run-time checks (e.g., hard-
ware overflow and division by zero mechanisms, software checks
that raise exception), timing checks (e.g., watchdog timers) and
coding checks based on information redundancy. System recov-
ery techniques are instead used to bring the system state from er-
roneous, or faulty, to a functioning one, without detected errors or
latent faults. Among such techniques we can mention the ones used
for masking errors through the systematic usage of spatial and/or
temporal redundancy (e.g., replicated computation and voting) and
reconfiguration. The measure of the effectiveness of a fault toler-
ance solution is called coverage, in particular the coverage factor is
the probability of system recovery given that a fault has occurred
in the system [23].

On the other hand, fault forecasting is carried out through the
qualitative and quantitative evaluation of the system behavior with
respect to faults occurrences. Qualitative evaluation consists in
identifying, classifying and rating the system failure modes. Quan-
titative evaluation, instead, aims at computing dependability met-
rics, through modeling and testing, using probabilistic assumptions.
The methods used for fault forecasting [8] can be either specific
(e.g., Failure Mode and Effect Analysis for the qualitative assess-
ment of the system reliability and safety, and Stochastic Petri Nets
for the quantitative assessment of the system reliability and avail-
ability) or can be used to carry out both qualitative and quantitative
evaluation (e.g., fault-trees and Bayesian networks).

Considering the quantitative evaluation, the attributes of depend-
ability are characterized by metrics [24]. The reliability is then de-
fined as:

R(t) = Prob{r >t}
that is, the probability that the time to failure (7) is greater than
instant ¢ or, the probability that the system is functioning correctly
during time interval (0, ¢]. Considering that F'(¢t) = 1 — R(¢) (i.e.,
unreliability) is a probability distribution function, we can calculate
the expectation of the random variable 7 as:

/OootdF(t) _ /OOC R(t)dt

that is called MTTF (Mean Time To Failure). One of the most used
metrics in the reliability analysis domain is the failure rate (called
also hazard rate) defined as a function of R(t):

ht) — — 4R

R(t) dt
The failure rate represents the probability that a component fails
between (¢, dt), assuming that it has survived until the instant ¢.
Often, this metric is used by the manufacturers of hardware com-
ponents to specify their failure rates (e.g., number of failures per
year).

For repairable systems, that is systems that can be recovered after
failure, maintainability and availability are more significant prop-
erties than reliability. As for the reliability, the maintainability is
measured by a probability:

M(t) = Prob{0 <t}

that is, the probability that the time to repair () falls into the inter-
val (0, t]. Similarly, we can calculate the expectation of the random

variable @ as:
/ t dM(t),
0

that is called MTTR (Mean Time To Repair), and the repair rate as:
dM(t) 1
dt 11— M(¢)

The availability is instead defined as the probability that the system
is functioning correctly at a given instant:

A(t) = Prob{state = UP, time = t}.

In particular, the steady state availability can be expressed as func-
tion of MTTF and MTTR:

3 MTTF
" MTTF + MTTR

The metrics used for safety assessment are similar to the relia-
bility metrics, in particular, a significant metric in safety analysis
context is the safe mission time, that is the time interval in which
the system unreliability is lower than a preassigned threshold.

Finally, it is worthwhile to notice that, often, to qualify the de-
pendability properties of a system the concept of level is used,
such as the Safery-Integrity levels [9] that correspond to intervals
in which the probability of a (dangerous) failure falls.

Ass

3. PROPOSALS FROM LITERATURE

This Section is devoted to analyze several significant works in
the literature on extending UML to support dependability analysis
of software systems. The study has been carried out from a critical
perspective, with the purpose of build on such works our proposal
of acommon dependability profile for real-time embedded systems.

Bondavalli et al. [7, 18] use UML standard extension mech-
anisms, that is stereotypes and tags for annotating dependability
properties of software systems on UML design models. From the
annotated models, the authors are able to derive analyzable proba-
bilistic models (Petri Net models) to use in the quantitative system
evaluation. In Table 1 we have summarized the stereotypes and
related tags used by Bondavalli et al. The proposed approach is
compliant with the taxonomy and basic concepts defined in [2].

The non functional properties considered are the reliability and
the availability, under both transient and steady state assumptions.
Dependability parameters, that can be both input parameters or
measures to be derived, are associated to hardware and software
components. They allow the analyst to characterize the timing oc-
currence of faults, the possible error latency for components with
an internal state, and the timing of the repair process.

The solution adopted by Bondavalli et al. is not the best choice,
since the specification of some tags requires the joint use of two
stereotypes and some stereotypes introduce unnecessary redundant
information in the system model. For example, a node, that models
a hardware component in UML, must be stereotyped as hardware
and stateful to specify the error latency.

Error propagation between components is specified by assigning
a probability to the model elements representing either relation-
ships or interactions between such components (such as associa-
tion between software components, communication path between
nodes and exchanged messages).

While dependability parameters can be used to specify compo-
nent failures due to independent fault occurrences, common failure
modes can be specified only for redundant components belonging

117

to complex fault tolerance (FT) structures. Extensions for states
and events of state machines representing the behavior of redun-
dancy manager components are introduced in order to discriminate
normal and failure states and events. Such extensions are used to
analyze different failure modes of the FT structures.

Pataricza [22] proposes to extend the General Resource Model-
ing package of the SPT profile with the notion of faults and errors
to support the analysis of the effect of local faults to the system
dependability. Although no explicit extension is given, the work
emphasizes the importance of including two phenomena in the sys-
tem model: 1) permanent and transient faults in the resources, and
2) error propagation across the system to estimate which fault may
lead to a failure.

Explicit fault injection behavioral models are also proposed to
represent faults as special virtual clients that request service to
components and that have higher priority than the other actual clients.
The effect of their request causes a change of state of the server
(that is the hardware component affected by the fault occurrence)
which moves from normal states (state in which the system is well-
functioning) to faulty ones, and to normal states again in case of
transient faults. Fault injectors can be used also to model con-
straints on fault occurrence (e.g., single fault assumption).

Cortellessa and Pompei [10] propose a UML annotation for the
reliability analysis of component-based systems. Their work is
aimed at including the annotation approach presented in [11], where
Bayesian models are derived from UML annotated models to com-
pute the system failure probability, within the frameworks of the
SPT and QoS&FT profiles.

Table 2 summarizes the UML extensions introduced in [10]. Al-
though no specific extension is used for the annotation of the relia-
bility requirements and metrics, a set of stereotypes and related tags
are instead proposed for the specification of reliability input param-
eters. Such stereotypes are specialization of stereotypes defined in
the Resource Model of the SPT profile.

The most interesting input parameters considered are the atomic
failure probabilities of software components (REcomponent) or (log-
ical/physical) links (RE connector), that is the probability that a
component, or connector, fails in a single invocation of it. There are
no explicit annotations for the failure probability of hardware com-
ponents, however such trivial extension is proposed in [15] where
nodes stereotyped as REhost are annotated with REfailprob tags.

D’ Ambrogio et al. [13] propose a transformation of UML mod-
els (Sequence and Deployment diagrams) into fault tree models to
predict the reliability of component-based software. Although no
UML extension is proposed, several UML model elements whose
failure (basic events in fault tree models) can lead to the system
failure (top-event in fault tree models) are identified. In particular,
the basic events considered are the failure of nodes and communi-
cation paths and the failure of call actions, operations and return
actions.

DalCin [12] proposes a UML profile for specifying dependabil-
ity mechanisms, that is hardware/software components to be im-
plemented or integrated in the real-time system to ensure fault tol-
erance. The proposed profile provides facilities for capturing de-
pendability requirements of such mechanisms to support the eval-
uation of the effectiveness of the fault tolerance strategy adopted.
However, a support to the modeling of the interactions among de-
pendability mechanisms and the system components is missing in
the profile.

Jiirjens et al. [17, 16] propose a check list, based on UML stereo-
types and related tags and constraints to support the analyst in
the identification of failure-prone components and assessment of
safety/ reliability requirements during the software design.

Stereotype Base Class Tag Description
- UseCase measure of interest | R(¢),MTTFA(t), A
hardware (stateless or stateful) Node FO fault occurrence
PP percentage of permanent faults
RD repair delay
hardware stateful e EL error latency
software (stateless or stateful) UseCase, Class, Object, Component, | FO fault occurrence
Package
software stateful ”r EL error latency
RD repair delay
propagation Extend, Include, Association, Usage | PP propagation probability
(use,call), Dependency, Link, Message
Action(send, call), CommunicationPath,
Deployment
redundancy manager Class, Object, Node redundancy management
variant Class, Object, Node replica
adjudicator Class, Object, Node CF common mode failure occurrence
DC detection coverage
tester Class, Object, Node sub-stereotype of adjudicator
comparator Class, Object, Node sub-stereotype of adjudicator
failure State, Event SC of redundancy manager
normal Event ”r
Table 1: UML availability and reliability annotation used by Bondavalli et al.
Stereotype Base Class Tag Description
REcomponent Classifier, ClassifierRole, Component, | REcompfailprob | atomic failure probability
Instance
REbp number of invocation
REconnector Message, Stimulus, AssociationRole REconfailprob | atomic failure probability
REnummsg number of invocation
REuser Classifier, Classifier, ClassifierRole, In- | REaccessprob probability of system access
teraction, Instance
REserviceprob | probability of a service request after system access
REservice Classifier REprob probability of service request
REhost Node, Classifier, ClassifierRole REindexHost list of hosts to which the host is physically connected

Table 2: UML reliability annotation used by Cortellessa and Pompei

The extensions introduced in [17, 16] are summarized in Table 3:
most of them are used to specify requirements on communication,
such as the stereotype guarantees whose tag goal is of complex
type and can express either a maximum duration allowed for data
transmission, or a probability that eventually a data is delivered or
a maximum probability of message loss. Several stereotypes can
be applied to specify guarantees at subsystem level. An interesting
aspect considered in [16] is the possibility of specifying both re-
quirements (guarantees stereotype) and failure assumptions (7isk,
crash/performance, value stereotypes) according to the failure do-
main, that is timing failure or content failure. Some extensions are
also proposed for the specification of fault tolerant mechanisms,
such as the types of voting algorithms.

Addouche et al. [1] propose a profile for dependability analysis
of automated system of production. Actually, a pair of stereotypes
are defined to include probabilistic aspects of functioning and mal-
functioning. The static model of the system is enriched with new
stereotyped classes that are associated with each class represent-
ing a resource according to the SPT profile. The indicator classes
are characterized by attributes related to the dynamic aspects of the
resource classes associated with, and their values represent the de-
graded or failure state of the resource classes. The cause classes

118

are characterized by attributes representing logical expressions of
failure occurrence in the resource classes associated with.

This approach allows the analyst to specify non trivial non func-
tional properties; nevertheless it is not the best choice since new
classes need to be defined and introduced in the system model, be-
side the classes representing the actual system components, for de-
pendability analysis purposes.

Bernardi et al. [3] propose a set of UML Class Diagrams struc-
tured in packages, to support the collection of dependability and
real-time requirements of automated embedded systems with the
use of COTS FT mechanisms. Although no extension is proposed,
several class attributes are introduced that support the specification
of quantitative dependability properties. The most interesting class
diagrams are the ones that define the causal relationships among the
impairments of dependability, according to [2], and the FT strate-
gies.

In [4] we propose a method to assess Quality of Service (QoS) of
FT distributed systems via derivation of performance models from
SPT annotated UML behavioral and deployment diagrams. Some
UML extensions have been explicitly introduced since the SPT pro-
file does not support the specification of fault occurrences and la-
tencies.

Stereotype Base Class Tag Description
guarantee Link, Node goal (type: immediate($t), | requirements for communication data
eventual($p), correct($q))
safe/reliable links Subsystem dependency safety/reliability to be matched by
links
safe/reliable depen- | Subsystem “call”,“send” have to respect data
dency safety/reliability
safe/reliable behavior Subsystem safe/reliable behavior
critical Class, Object level safety/reliability level
containment Subsystem no unsafe/unreliable interference between com-
ponents on different safety/reliability levels
risk Link, Node failure (type: delay($t), | timing and content failures
loss($p), corruption($q))
crash/ performance ” ” failure (type: delay($t), | “risk” to address timing failures
loss($p))
value ” ” failure (type: corruption($q)) “risk” to address content failures
redundancy Dependency, Compo- | model (type: none, majority, | type of redundancy to be implemented
nent fastest)
error handling Subsystem error object handles errors

Table 3: UML safety and reliability annotation used by Jiirjens et al.

Although the work is focused on QoS assessment, it can provide
some tips for the quantitative characterization of the “goodness” of
a FT strategy. Indeed, the objective of the analysis is to evaluate
the QoS of the FT strategy implemented in the system under late-
timing failure assumption. The QoS is defined as a function of two
non functional properties: one is strictly related to the FT effective-
ness (i.e., the time to detect a failure) and the other is related to the
cost of the FT (i.e., communication overhead).

DO @D | BG|6G|OD
Bondavalli et al. RA | V v | Vv v v v
Cortellessa-Pompei R v
Grassi et al. R v
D’ Ambrogio et al. R v v
Pataricza RA v | Vv v
DalCin R,A v
Jiirjens et al. SR | Vv v v
Addouche et al. RM | Vv | V v | v
Bernardi et al. RA | V v | Vv v v
Bernardi-Merseguer | QoS v I V|V

Legend (1): A=availability, R=reliability, S=safety, M=maintainability,
QoS=quality of service.

Table 4: Dependability aspects dealt by the mentioned works

Table 4 summarizes the dependability aspects considered in the
mentioned works according to the following check-list that will
guide us toward the definition of a UML profile for dependability
analysis of RTES:

(1) Non functional requirements to be assessed and measures to be
computed during the dependability analysis, with particular
focus on the attributes of dependability [2]

(2) Dependability input parameters that characterize the fault-failure
processes of system components (both hardware and soft-
ware) and/or the repair processes

(3) Faults behavior with respect to their timing persistence

(4) Error propagation process among system components

(5) System failure modes and system service degradation
(6) Behavior of system components affected by impairments

(7) FT mechanisms, representation of hardware/ software redun-
dancies, effectiveness of FT and its cost.

4. THE DEPENDABILITY PROFILE

In this Section we propose a set of UML extensions to sup-
port the dependability analysis of real-time and embedded systems.
Since our goal is to be compliant with the MARTE RFP, our main
guideline is the proposal [14] in which a general framework to sup-
port the definition of complex non functional properties (NFP) is
provided.

Then, the approach followed here is to apply such framework
considering the check-list drawn up at the end of Section 3 to in-
clude the necessary dependability concepts. Each choice made in
the definition of the dependability profile refers to a specific item
(n) of the check-list, that will be indicated, near the proposed UML
extension and between brackets, as guideline-n.

Figure 1 shows the package overview representing the depen-
dency of the Dependability Analysis (DA) profile with the non-
functional properties (NFP) profile proposed in [14], where the
concept of complex NFP has been introduced. Indeed, the new
stereotypes defined in the DA profile are characterized by complex
NFP attributes. Following the approach presented in [14], the DA
profile is structured in two sub-packages:

o The Dependability Analysis UML Extensions package, in-
cludes the new stereotypes that will be used to annotate the
system model built by the user, and

e The NFP Library For Dependability Analysis package, in-
cludes the concepts of dependability represented as complex
NFP.

4.1 The NFP library

Impairments of dependability are defined as complex NFP (Fig-
ure 2) and they are characterized by a set of basic NFP attributes
that can represent either quantitative properties or qualitative prop-
erties.

<< profile >>
DependabilityAnalysis

DependabilityAnalysisUML_Extensions;

<< profile >>
MARTE_NFPannotation

<< apply >>

T

<< modelLibrary >>
NFP_LibraryForDependabilityAnalysis

Figure 1: Overview of the DA profile

In the DA profile, quantitative basic NFP can represent: rates,
such as the fault occurrence and the failure rate (guideline-2), dura-
tions, such fault and error latencies (guideline-2), or probabilities,
such as the probability of error propagation between two system
components (guideline-4) and the time to failure (guideline-1).
Qualitative basic NFP are instead enumeration types, such as the
fault persistence (guideline-3) and the failure domain (guideline-
5).

<< complexNFP >>
Fault

<< basicNFP >>+occurrence:NFP_Rate_Type{direction=decreasing}
<< basicNFP >>+latency:NFP_Duration_Type
<< basicNFP >>-+persistence:Persistences

+cause

+effect

<< complexNFP >>
Error

<< basicNFP >>+latency:NFP_Duration_Type{direction=decreasing} ;ause
<< basicNFP >>+propagation:NFP_Probability Type{direction=decreasing}

+cause

+effect [~

+effect

<< complexNFP >>
Failure

<< basicNFP >>+TimeToFailure:NFP_Probability_Type{statisticalQualifier=distribution}

<< basicNFP >>+FailureRate:NFP_Rate_Type{direction=decreasing}

<<basicNFP >>+MTTF:NFP_Duration_Type{statisticalQualifier=mean, direction=increasing}

<< basicNFP >>+mission-time:NFP_Duration_Typ¢[statisticalQualifier=quantile, direction=increasing}
<< basicNFP >>+domain:Domain

Figure 2: Impairments

Basic NFP attributes may have associated two kinds of proper-
ties: the statistical qualifier property specifies the type of statistical
function represented by the attribute, while the direction property
specifies the order of relation for QoS purposes. For example, the
time to failure is a probability distribution function, characterizing
the system unreliability, and the MTTF is the mean of such distribu-
tion (guideline-1). Moreover, if we compare two system scenarios
with different MTTF, the better scenario is the one with the greater
MTTF (increasing order of relation). Faults, errors and failures are
related with the cause-effect relationships, and errors may propa-
gate between system components before causing a system failure.

120

<< complexNFP >>
Repair

<< basicNFP >>+TimeToRepair:NFP_Probability_Type{statisticalQualifier=distribution}
<< basicNFP >>+MTTR:NFP_Duration_Type{statisticalQualifier=mean, direction=decreasing}
<< basicNFP >>+RepairRate:NFP_Rate_Type{direction=increasing}

Figure 3: Repair

<< complexNFP >>
ErrorDetection

<< basicNFP >>+TimeToDetection:NFP_Probability Type{statisticalQualifier=distribution}
<< basicNFP >>+MTTD:NFP_Duration_Type{statisticalQualifier=mean, direction=decreasing}
<< basicNFP >>+detection_coverage:NFP_Probability_Type{direction=increasing}

<< complexNFP >>
WatchDog

<< basicNFP >>+timer:NFP_Duration_Type

<< complexNFP >>
Recovery

<< basicNFP >>+TimeToRecover:NFP_Probability_Type{statisticalQualifier=distribution}
<< basicNFP >>+MTTRec:NFP_Duration_Type{statisticalQualifier=mean,direction=decreasing}
<< basicNFP >>+coverage_factor:NFP_Probability Type{direction=increasing}

Figure 4: Error detection and recovery (FT)

In order to characterize the repair process of a system compo-
nent after failure, a complex NFP has been introduced (Figure 3).
The quantitative characterization of the repair process is given in
terms of a probability distribution - time to repair, its mean - MTTR
(guideline-1) and the repair rate (guideline-2). The specification of
the repair process in the dependability model is important from the
analysis point of view, when the goal is, for example, the assess-
ment of the system availability.

The QoS&FT profile includes a sub-profile devoted to support
the design of FT software architectures, and hence the specification
of the functional properties of the mechanisms implementing the
FT, in which most of the FT basic concepts have been introduced
(such as the software redundancy and the replication styles).

Here, we propose further extensions (complex NFP) that support
the analyst in the quantitative assessment of FT techniques imple-
mented in RTES. Figure 4 shows the representation of the two main
steps of FT [2], that is error detection and system recovery. Error
detection encompasses those techniques and mechanisms used to
identify the presence of an error in the system.

The complex NFP Error Detection is characterized by attributes
that quantify the time of error detection once an error has occurred
in the system. In particular, they represent the probability distri-
bution, its mean and the detection coverage (guideline-7). Typical
mechanisms used to detect errors during the normal service deliv-
ery are watchdog timers that raise error exceptions if they do not
receive from the controlled application signal of life within a pre-
fixed time interval. The complex NFP Watchdog has been added as
an example of how to specialize the error detection concept with
further mechanism-specific NFP, such as the timer duration of the
watchdog (guideline-7).

System recovery includes those techniques that bring the system
from a faulty or erroneous state into a state without errors or latent
faults. A complex NFP has also been defined for this FT step in
order to quantify the time required to recover the system from error

<< complexNFP >>
Overhead

<< basicNFP >>+time—overhead:NFP_Duration_Type{direction=decreasing}
<< basicNFP >>+percentage:NFP_Rate_Type{direction=decreasing}

Figure 5: Overhead (FT)

to avoid a system failure and the coverage factor (guideline-7). As
for error detection, also the recovery stereotype can be specialized
to characterize NFP of specific mechanisms implemented in this
step, such as voter mechanisms used to mask faults.

Finally, the last complex NFP proposed is the overhead intro-
duced in the system by the implemented FT strategy (Figure 5) that
allows the analyst to specify the cost of the FT. We have defined the
overhead in terms of time spent by the system in carrying out FT ac-
tions and of percentage (guideline-7). The time required to execute
a voting algorithm on outcomes produced by independent compu-
tation replicas is an example of time overhead. The augmented traf-
fic in the network due to the execution of a self-checking algorithm,
consisting in exchanging control messages among components of a
distributed system [4], can be expressed as a percentage overhead.

4.2 The dependability stereotypes

The complex NFP defined so far are not used directly in the an-
notation of the system model, they represent instead complex types
of some attributes of the stereotypes defined in the dependability
analysis package. This package contains the extensions that will
support the annotation of dependability requirements and proper-
ties in the system UML models.

The attributes of dependability described in Section 2 are de-
fined as stereotypes (Figure 6), then suggesting the type of depend-
ability analysis to be carried out, e.g., reliability, availability and
safety analysis (guideline-1). The three stereotypes have the same
base classes; the base classes have been selected from the UML2
meta-model considering the UML model elements extended with
non-functional annotations in the different proposals mentioned in
Section 3. So that, hardware and software components, communi-
cation path between nodes and interactions between software com-
ponents, as well as the whole subsystem included in package and
use cases representing the top-level services offered by the system
can have assigned the same stereotype, e.g., reliability, which al-
lows the analysts to characterize their reliability requirements and
properties.

The reliability stereotype is characterized by attributes of com-
plex NFP type, such as fault, error and failure, and by an enumera-
tion type attribute (basic NFP) that can be used to specify the criti-
cal level of system components (guideline-1). Similarly, the safety
stereotype has a complex NFP type attribute, to be used to spec-
ify the hazards that may bring the system to catastrophic failures
(guideline-2), and an enumeration type attribute (basic NFP) for
the assignment of safety levels to system components (guideline-
1). We have considered the availability property as a particular case
of reliability: it is meaningful only for repairable components and
systems, and to compute it a quantitative characterization of the
repair process should be specified. To specify the availability two
basic NFP attributes can be used: steady state and instantaneous
(guideline-1). The former is a derived attribute, since its value can
be computed from the values of attributes defined in the complex
NFP failure (MTTF) and repair (MTTR), the latter represents in-
stead a probability value.

121

<<extend>>

L
<< stereotype >>
Reliability

+failure:Failure
+fault:Fault

l
<< extend >> |

!

UML2—BaseCIasse;
<< metaclass >> << metaclass >> << metaclass >> << metaclass >>
Node UseCase Package Dependency
<< metaclass >> << metaclass >> << metaclass >> << metaclass >>
Component Class Link Action

<< metaclass >> << metaclass >> << metaclass >> << metaclass >>
InstanceSpecification Lifeline CommunicationPath Operation
<< metaclass >> << metaclass >> << metaclass >> << metaclass >>

Extend Include A i
))

<< stereotype >>
Safety

+level:PSA_level
+hazard:Failure

+error:Error
+level:Rel_level

1

<< stereotype >>
Availability

+repair:Repair
+/steady_state:NFP_Rate_Type
+istantaneous:NFP_Probability_Type
+level:Avail_level

Figure 6: Dependability stereotypes

As alternative to the steady state attribute, the availability level
allows the analyst to specify the so called “nines of availability”,
used by the hardware manufacturers to characterize their products
(guideline-1). For example, a high availability level may be asso-
ciated to 3 nines (i.e., 99,9% of availability) that corresponds to
8, 5 hours per year of downtime. The availability stereotype inher-
its from reliability one also the base classes, so it can be applied to
the same model elements as the reliability stereotype.

The integrity and maintainability stereotypes, although not ex-
plicitly shown in Figure 6, are characterized by similar complex
NFP attributes. In particular, the integrity stereotype has an at-
tribute of type Error that supports the specification of communica-
tion errors (guideline-4) and the maintainability stereotype has an
attribute of type Repair to be used for the characterization of the
repair process (guideline-2).

Finally, a FT stereotype has been defined to support the assess-
ment of the FT solution adopted for a given real-time embedded
system (Figure 7). The attributes of FT are used to characterize,
from a quantitative point of view, the error detection and recovery
techniques implemented in the system as well as the overhead paid
by using such FT solutions (guideline-7). The attribute of type in-
teger can be used instead to specify the maximum number of faults
supported.

4.3 Discussion

Most of the shortcomings pointed out in some of the reviewed
literature have been addressed by the proposed dependability pro-
file. For example, the specification of the error latency on a faulty
node is simplified in the profile. Instead of using the pair of stereo-
types hardware and stateful, as suggested in [7, 18], to set a value
to the tag EL, the node is stereotyped with a single stereotype, e.g.,
reliability, and a value is set to the latency attribute of the complex
NFP error.

The DA profile supports the specification of the two phenom-
ena emphasized in [22], that is the fault persistence (guideline-

UML2—BaseCIassea
<< stereotype >> << metaclass >> | | << metaclass >>
FT Package Dependency
X - << extend >>
+error—detection:ErrorDetectionf - - - - << metaclass >> | | << metaclass >>
+recovery:Recovery Component Class
+overhead:Overhead - -
. << metacla: >> << metaclia: >>
+max-number-of-faults:int o
Lifeline Node
<< metaclass >>
InstanceSpecification

Figure 7: FT stereotype

3) and the probability of error propagation between components
(guideline-4), through the definition of proper attributes (persis-
tence and propagation) of complex NFP (fault and error, respec-
tively).

In general, each dependability property, annotated by the analyst
on the UML system model, will correspond to a value assigned to a
proper basic NFP attribute. The value of a basic NFP attribute in-
cludes a textual specification of the property and the source which
indicates whether the property value is a requirement to be assessed
- req - or a measure to be predicted with the dependability analysis
- pred (guideline-1), or an input parameter to be assumed - assm
(guideline-2). The specification of the source addresses a short-
coming of the work [10], where no specific extensions are given to
specify requirements and measures.

Failure occurrence in nodes, communication paths, actions and
operations, as indicated in [13], can be specified by using the same
basic NFP FailureRate and the same stereotype, which suggests
the type of analysis to be carried out. This choice avoids the in-
troduction of a different stereotype, and related tag, for each type
of system component affected by a failure, as proposed in [10], to
specify the same dependability property.

It is worthwhile to note that no new classes are added in the UML
models of the system for the specification of dependability prop-
erties, as instead proposed in [1]. Indeed, the extensions defined
in the profile support the specification of dependability properties
through the introduction of annotations attached to the model ele-
ments.

As suggested by the works [17, 16], failures are discriminated
with respect to the domain - timing and content failures - through
the usage of the attribute domain of the complex NFP failure. How-
ever, the guideline-5 has been partially supported by the depend-
ability profile and further investigations are needed to support the
specification of the system service degradation.

Finally, the guideline-6 has not been specifically addressed in
the current proposal and will be part of our future work. Provide
UML extensions for the specification of the behavior of the system
components affected by impairments will possibly solve the lack
of support to the modeling of interactions between system compo-
nents and fault tolerance mechanisms; a shortcoming we pointed
out in the work [12].

5. A GAS TURBINE CONTROL SYSTEM

The case study presented in [6] is the digital embedded con-
trol system supplied for the gas turbine in a co-generative plant
in Casaccia, Italy. This system will be useful to illustrate how to
apply some of the most relevant NFPs proposed for dependability
analysis.

122

The work in [6] proposes different dependability models (fault-
trees, Bayesian networks and stochastic Petri nets) for the safety
and availability assessment of the control and protection functions
of the gas turbine control system. In this Section we recall a small
part of the system, specified by the UML models shown in Fig-
ure 8, in order to demonstrate the applicability of the DA profile to
a real case study. The UML models of Figure 8 don’t allow us to
get the dependability models proposed in [6], since not all the sys-
tem components together with their dependability parameters have
been explicitly modeled here. A fault tree model could be obtained
following the approach [13]; however, we think that this example
will be enough for our illustrative purposes.

The system architecture, deployment diagram in Figure 8, con-
sists of a main controller (MC) and a backup unit (BU), which
interact with a speed probe and two thermocouple sensors. The
actuators provide input signals (overspeed, overtemp) to the MC
and the BU to protect the turbine. Each device fails under differ-
ent assumptions that have been specified in the model as number of
failures per hour (FailureRate basic NFP).

Watchdog software components are associated to the MC and
BU for shutdown requests, see the sequence diagram in Figure 8:
the timer duration of the watchdog associated to the main controller
is an input parameter ($duration) whose value has to be set during
the analysis. The performance annotations for the duration of ac-
tions in the sequence diagram could complement the dependability
system view.

For the system safety assessment some measures need to be pre-
dicted via dependability analysis, such as the mean time to failure
(MTTF) and the mission time. Moreover, as specified by the Time
To Failure basic NFP, the system unreliability should be lower than
1073, In [6], the safety assessment is followed by the availability
analysis to evaluate the availability of the gas turbine system under
different repair rate assumptions.

In Figure 8 some annotations have been included as examples
of measures for this type of analysis: the repair rate is specified as
an input parameter ($rr), the steady state availability represents a
measure to be computed in the analysis, then it is specified as an
output parameter ($avail), and the availability level of the system is
required to be 4 nines, i.e., 99, 99%.

Finally, assume that the MC can be found in three conditions
(working, degraded, failed). When the MC is degraded induces an
anomalous behavior in the BU, quantified as a failure with proba-
bility 0.9. The proposed profile does not support the modelling of
non trivial relations among NFP of different model elements. Apart
from this problem, the profile has been powerful enough to model
the NFPs of the case study.

6. CONCLUSION

In this paper we have proposed a UML Dependability Analy-
sis (DA) profile to support the assessment of the dependability of
real-time embedded systems. The profile conforms to the upcom-
ing MARTE RFP, issued by the OMG and, in particular, the basic
concepts of dependability defined in the DA profile are expressed
in terms of complex non-functional properties (NFP).

The DA profile specifically addresses the quantitative evaluation
of dependability and the notions introduced in the profile should
complement the ones defined in the QoS&FT sub-profile, which
supports instead the specification of FT software architectures. Al-
though the DA profile has been conceived to be compliant with the
MARTE RFP, it is general enough to support the dependability as-
sessment of any software/hardware system.

We have shown the applicability of the DA profile by enriching
the UML design model of a gas turbine control system with the in-

<<Safety>>
hazard={MTTF($mttf,hours,pred),
mission-time($smt, hours, pred),
TimeToFailure(1.0x10e-03,req)}

<<Availability>>
repair={RepairRate($rr,r/h,assm)}
steady_state={($avail,%,pred)}

~ level={(4,nines,req)}

Gas Turbine Control System © 0/" -

:speed probe

<<Safety>>
hazard={FailureRate(5.0x10e-07,f/h,assm}

T =

<<device>>
:MainController

Deploys

<<artifact>>
ctrlFunct:CSys

shutdown
override

<<artifact>>
wdM:WD

]

<<FT>>

error-detection={timer($duration,assm)}
T
() |

ctrlFunct:CSys ‘

|
shutdown |

&
’ wdM:WD ‘

de-energisation

override

<<Safety>>
hazard={FailureRate(2.0x10e-07,f/h,assm)}

:Backup

<<device>>

Deploys

<<artifact>>
protFunct:CSys

<<artifact>>

wdB:WD

overtemp
overspeed

=

sl:Thermocouple

s2:Thermocouple

~
~

<<Safety>>
_ | hazard={FailureRate(2.0x10e-07,f/h,assm)}

Figure 8: System architecture

troduced NFP, for safety and availability assessment purposes. We
have not discussed, in this work, the issues related to the derivation
of dependability analysis models (e.g., fault-trees, Baye-sian net-
works, Stochastic Petri Nets) from the UML-DA annotated mod-
els. However, we feel confident that the derivation approaches pro-
posed in the literature can be applied on UML-DA annotated mod-
els since the DA profile has been built on the best practices on ex-
tending UML with modeling capabilities for dependability analysis
purposes.

As future work, we plan to address the guideline 6 of the check-
list, drawn up at the end of Section 3, that has not been considered
in the current proposal. Another issue that will be subject of our
future investigation is how to specify relations among NFP of dif-
ferent UML model elements, such as the conditional failure proba-
bility of a system component that depends on the state probabilities
of another component. The work [14] does not deal specifically
with them, however it suggests the use of constraints, e.g., written
in a machine readable language such as OCL, as solution for the
specification of this kind of non trivial relations.

7. REFERENCES

[1] N. Addouche, C. Antoine, and J. Montmain. UML models
for dependability analysis of real-time systems. In In Proc.
International Conference on Systems, Man and Cybernetics,
volume 6, pages 5209 — 5214. IEEE CS., Oct. 2004.

[2] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transactions on dependable and secure
computing, 1(1):11-33, January-March 2004.

[3] S. Bernardi, S. Donatelli, and G. Dondossola. A class
diagram framework for collecting dependability

123

(4]

(3]

(6]

(7]

(8]
(9]

[10]

[11]

requirements in automation systems. In In Proc. of the 1%
International Symposium on Leveraging Applications of
Formal Methods (ISOLA’04), Paphos, Cyprus, 2004.

S. Bernardi and J. Merseguer. QoS Assessment via
Stochastic Analysis. IEEE Internet Computing, pages 32—42,
May-June 2006.

S. Bernardi and D. Petriu. Comparing two UML Profiles for
non-functional requirement annotations: the SPT and QoS
Profiles. SVERTS - Satellite Events at the UML Conference,
Lisbon (Portugal) - 2004.

A. Bobbio, E. Ciancamerla, G. Franceschinis, R. Gaeta,

M. Minichino, and L. Portinale. Sequential application of
heterogeneous models for the safety analysis of a control
system: a case study. Reliability Enginering and System
Safety, 81:269-280, 2003.

A. Bondavalli, I. Majzik, and 1. Mura. Automatic
Dependability Analysis for supporting design decisions in
UML. In A. Williams, editor, in Proc. of Fourth IEEE
International High Assurance System Engineering
Symposium (HASE’99). IEEE Computer Society Press, 1999.
International Electrotechnical Commission. IEC-60300-3-1
standard: Dependability management.

International Electrotechnical Commission. IEC-61508
standard: Functional Safety of Electrical/ Electronic/
Programmable Electronic safety related problems.

V. Cortellessa and A. Pompei. Towards a UML Profile for
QoS: a contribution in the reliability domain. In Proceedings
of the Fourth International Workshop on Software and
Performance (WOSP’04), pages 197-206, January 2004.

V. Cortellessa, H. Singh, and B. Cukic. Early reliability
assessment of UML based software models. In In

[12]

[13]

(14]

[15]

[16]

[17]

Proceedings of Third International Workshop on Software
and Performance, pages 302-309, Rome, Italy, July 2002.
M. Dal Cin. Extending UML towards a Useful OO-Language
for Modeling Dependability Features. University of
Erlangen-Niirnberg, Informatik 3, Germany, 2003.

A. D’Ambrogio, G. Iazeolla, and R. Mirandola. A method
for the prediction of software reliability. In Proc. of the 6-th
IASTED Software Engineering and Applications Conference
(SEA2002), Cambridge, MA, USA, November 2002.

H. Espinoza, H. Dubois, S. Gérard, J. Medina, D.C. Petriu,
and M. Woodside. Annotating UML models with
non-functional properties for quantitative analysis. In
Proceedings of Models, volume 3844 of LNCS.
Springer-Verlag, 2005.

V. Grassi, R. Mirandola, and A. Sabetta. From Design to
Analysis Models: a Kernel Language for Performance and
Reliability Analysis of Component-Based Systems. In
Proceedings of the Fifth International Workshop on Software
and Performance (WOSP’05), pages 25-36, July 2005.

J. Jiirjens and S. Wagner. Component-based Development of
Dependable Systems with UML. In Atkinson et al., editor,
Component-Based Software Development, volume 3778 of
LNCS, pages 320-344. Springer-Verlag, 2005.

Jan Jiirjens. Developing safety-critical systems with UML. In
UML 2003, San Francisco, volume 2863 of LNCS, pages
360-372. Springer-Verlag, October 2003.

124

(18]

[19]

[20]

(21]

(22]

(23]

[24]

1. Majzik, A. Pataricza, and A. Bondavalli. Stochastic
Dependability Analysis of System Architecture Based on
UML Models. In R. De Lemos, C. Gacek, and

A. Romanovsky, editors, Architecting Dependable Systems,
LNCS 2677, Lecture Notes in Computer Science, pages
219-244. Springer-Verlag, Berlin, Heidelberg, New York,
2003.

Object Management Group. UML Profile for Schedulabibity,
Performance and Time Specification, January 2005. Version
1.1, formal/05-01-02.

Object Management Group. Unified Modeling Language:
Superstructure, July 2005. Version 2.0, formal/05-07-04.
Object Management Group. UML Profile for Modeling
Quality of Service and Fault Tolerant Characteristics and
Mechanisms, May 2006. Version 1.0, formal/06-05-02.

A. Pataricza. From the General Resource Model to a General
Fault Modelling Paradigm ? Workshop on Critical Systems,
held within UML’2000, 2000.

D. Powell, E. Martins, J. Arlat, and Y. Crouzet. Estimators
for Fault Tolerance Coverage Evaluation. Transaction on
Computers, 44(2), February 1995.

R.A. Sahner, K.S. Trivedi, and A. Puliafito. Performance and
Reliability Analysis of Computer Systems: An
Example-Based Approach Using the SHARPE Software
Package. Kluwer Academic Publishers, 1996.

