
a

1

d

www.elsevier.com/locate/arcontrol

Annual Reviews in Control 28 (2004) 253–266
On fluidification of Petri Nets: from discrete to

hybrid and continuous models

Manuel Silva�, Laura Recalde1
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Abstract
Petri Nets (PNs) is a well-known modelling paradigm for discrete event systems (DES). As in other paradigms, hybrid and continuous PN

formalisms have appeared in the literature, some of them being used in different engineering application domains. Hybridization may be

obtained for example ‘‘by direct addition’’ of capabilities to model continuous subsystems. The approach adopted in this work is different:

hybrid and continuous models appear because natural variables of a PN–DES model are transformed into non-negative reals. This relaxation

may be quite reasonable when very populated or high traffic systems are considered. It is a classical relaxation applied to fight against the state

explosion problem appearing when dealing with the analysis and synthesis of models. In tune with this, the paper presents ‘‘a biased’’ view of

works in the hybrid PN arena. Partly an overview, this work revisits hybrid and continuous PNs, all of them being in essence hybrid models.

Limitations to (partial) fluidification, and analysis and synthesis problems in this evolving field are considered. Several optimization problems

(at design and at control) are also introduced here.

# 2004 Published by Elsevier Ltd.
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1. Introduction

The Petri Nets paradigm is helpful for the modelling,

analysis and synthesis of models, being useful at different

phases of the life cycle of a system (see, e.g. Silva & Teruel,

1996). Nevertheless, like other different formal alternatives,

enumeration techniques suffer from the so called state

explosion problem, inherent to a large part of discrete event

modelled systems. One way to deal with that problem is to

use some kind of relaxation. Fluidification (or continuization)

is a classical relaxation technique, in particular applicable to

some discrete event models. In this setting, fluid models have

potential for the application of more analytical techniques,

possibly at the price of losing some modelling or analysis

capabilities with respect to the discrete view.
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Let us point out that the approach developed in this work

follows the one introduced by R. David and H. Alla in

Grenoble (Alla & David, 1998a; David & Alla, 1987), but

there exist alternative hybrid PN formalisms around the idea

of fluidification. Trivedi and his group introduced the so

called Fluid Petri Nets (Horton, Kulkarni, Nicol, & Trivedi,

1998; Trivedi & Kulkarni, 1993). However, from a technical

point of view the models are quite different. First let us point

out that Trivedi and coworkers deal with hybrid models, not

with simply fluid ones: only the marking of one (or a few)

place is relaxed into the non-negative reals. Moreover, and

contrary to the approach presented here, autonomous

(untimed) models are not considered. Finally, timing

remains for them stochastic, while in a first approximation

we just take into account first moments (average values),

fitting deterministic timing for the relaxed transitions.

Alternative approaches to hybrid PN models are: ‘‘direct

addition’’ of continuous modelling capabilities, as done by

Valette and coworkers (Champagnat, Esteban, Pingaud, &

Valette, 1998), or some kind of reinterpretation as in
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Demongodin and Koussoulas (1998). For example, in the

Valette approach systems of differential equations are

associated to places. The set of marked places defines the

continuous dynamic systems being active at a certain

moment. Predicates at transitions may depend on continuous

variables. Clearly, hybrid models may exhibit much more

complex behaviours than discrete event or completely

fluidified (i.e., ‘‘continuous’’) ones.

In our opinion, deep understanding of the kind of hybrid

models obtained by partial fluidification of Petri Nets requires

a better understanding of fluid or continuized models.

Surprisingly enough, analysis of fully fluidified models does

not receive still enough attention in the literature.

The existence of non-linearizable continuous models is a

well known fact. Analogously, many Discrete Event

Systems (DES) do not allow even partial continuization

(e.g., due to the fact that qualitative properties as deadlock-

freeness in the discrete model are neither necessary nor

sufficient for deadlock-freeness of the continuous or hybrid-

relaxed model; Recalde, Teruel, & Silva, 1999). Moreover, it

happens that continuous timed models obtained from Petri

Nets are in essence hybrids, more precisely piecewise linear

in the basic cases of infinite and single servers semantics

(Silva & Recalde, 2002). Under infinite server semantics,

behavioural properties of continuous models that are not true

for hybrid models are, for example, those preserved under

marking scaling (homothetic behaviour). Under finite server

semantics, marking scaling for the clients (i.e., excluding

servers) has no effect on the performance of the model

(insensitivity for clients). None of both is true, in general, for

hybrid systems.

The present work is structured as follows: In Section 2

some basic concepts, and the notation to be used, are

introduced. Continuous and hybrid nets are defined in

Section 3. However, continuization does not always make

sense, as can be seen in Section 4. The analysis of continuous

and hybrid nets, both as autonomous and timed systems, is

addressed in Section 5. Finally, the design and control of

continuous timed models is considered in Section 6.
2. Basic concepts and notation

We assume that the reader is familiar with discrete PNs.

For notation we use the standard one, see for instance Silva

(1993).

A P/T system is a pair hN ;m0i, where N ¼
hP; T;Pre;Posti is a P/T net (P and T are disjoint (finite)

sets of places and transitions, and Pre and Post are jPj � jTj
sized, natural valued, incidence matrices), and m0 is the

initial marking.

For v2P[ T, the set of its input and output nodes are

denoted as 
v, and v
, respectively. A transition t is enabled

at m iff for every p2 
t, m½p�>Pre½p; t�. Its enabling degree

measures the maximal firing of the transition that can be

done in one step, enabðt;mÞ ¼ bminp2 
tfm½p�=Pre½p; t�g c .
The firing of t in a certain amount a2N;a � enabðt;mÞ
leads to a new marking m0 ¼ mþ a � C½P; t�, where C ¼
Post� Pre is the token flow matrix. If m is reachable from

m0 through a sequence s, a state (or fundamental) equation

can be written: m ¼ m0 þ C � s, where s2NjT j is the firing

count vector.

Annullers of the incidence matrix are important because

they induce certain invariant relations which are useful for

reasoning on the behaviour. Flows (semiflows) are integer

(natural) annullers of C. Right and left annullers are called

T- and P-(semi)flows, respectively. For instance, if y� 0 is

such that y � C ¼ 0 then, every reachable marking m
satisfies: y �m ¼ y �m0. This provides a ‘‘token balance

law’’. Analogously, if x� 0 is such that C � x ¼ 0, then

m ¼ m0 þ C � x ¼ m0. That is, T-semiflows correspond to

potential repetitive sequences. When C � x ¼ 0, x> 0, the

net is said to be consistent, and when y � C ¼ 0, y> 0, the net

is said to be conservative.

Two transitions, t and t0, are in structural conflict relation

iff 
t\
t0 6¼1. The coupled conflict relation is defined as the

transitive closure of the structural conflict relation. The set of

all the induced equivalence classes is denoted by SCCS. Two

transitions, t and t0, are in equal conflict (EQ) relation when

Pre½P; t� ¼ Pre½P; t0� 6¼ 0. This is an equivalence relation

and the set of all the equal conflict sets is denoted by SEQS.

Equal conflict systems are systems in which all conflicts are

equal, i.e., 
t\
t0 6¼1) Pre[P,t]=Pre[P,t0].
A P/T system is bounded when every place is bounded,

i.e., its token content is less than some bound at every

reachable marking. It is live when every transition is live,

i.e., it can ultimately occur from every reachable marking. A

netN is structurally bounded when hN ;m0i is bounded for

every m0, and it is structurally live when there exists an m0

such that hN ;m0i is live.

Different timed extensions of (discrete) PNs have been

introduced. Here we will assume that time is associated to

the firing of transitions, and that either a deterministic or

stochastic pdf is used. Vector l defines the (mean) firing

speeds. For the modelling of conflicts we may use immediate

transitions with the addition of (marking and time

independent) routing rates R. In other words, for the subset

of immediate transitions ft1; . . . ; tkg� T being in conflict at

a reachable marking, we suppose that the constants

r1; . . . ; rk 2Rþ are explicitly defined in the system

interpretation in such a way that when t1; . . . ; tk are

simultaneously enabled, transition ti (i ¼ 1; . . . ; k) fires

with probability ri=ð
Pk

j¼1 rjÞ. For a thorough discussion on

the different policies used to solve conflicts among timed

transitions see for example Ajmone Marsan et al. (1989).
3. Continuization as a standard relaxation

Simplifying the presentation for the actual purpose, it can

be said that the analysis of Petri Nets models can be

approached by state enumeration (e.g., reachability analysis
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and computation of the underlying Markov Chain), by net

transformation (moving from a model to another one which

is easier to analyse, while preserving the properties under

study) or by structural techniques (using graph theory and/or

mathematical programming techniques). Unfortunately

transformation techniques are not complete (i.e., for every

kit of transformation rules non-reducible net models exist),

while structural analysis techniques, in general, only allow

to semi-decide (either necessary or sufficient conditions

are obtained), although for some net subclasses they allow to

decide. Therefore, in some cases, the enumeration approach

has to be used, with more or less sophisticated tech-

niques (stubborn sets (Valmari, 1998), sleep methods, . . .),
probably leading to a state explosion problem.

Continuization (or fluidification) is one of the classical

relaxations. The idea is analogous to that allowing the

transformation of an integer linear programming problem

(ILP, NP-hard) into a linear programming problem (LPP,

polynomial complexity). This relaxation can be applied to

Petri Nets in order to deal with the so called state explosion

problem. The computational gain is usually increased if

dealing with highly populated systems, because in those

cases the state explosion problem may become much more

acute. Fortunately, in most practical cases errors due to the

relaxation of timed models happen to be not very

significant when relatively heavy traffic conditions are

relaxed.

Before advancing in this question, it should be pointed

out that it has been proved by Recalde et al. (1999) and Silva

and Recalde (2002) that full relaxation of an autonomous PN

model, leading to so called continuous PNs, is essentially

analogous to the use of convex geometry-linear program-

ming techniques (as in Silva, Teruel, & Colom, 1998), which

constitute a particular case of structural techniques.

Let us now consider timed formalisms, for example,

Queuing Networks (QNs) which provide well known models

for DES. Fluidification of QNs is a classical, and in many

cases very practical, relaxation allowing not only analysis,

but also synthesis of controls (see, e.g., Cassandras, Sun,

Panayiotou, & Wardi, 2002; Chen & Yao, 2001;Mandelbau

& Chen, 1991). In a quite different cultural setting, Forrester

Diagrams (stock/flow diagrams), which appeared in the

Systems Dynamics framework, is a well-known, essentially

continuous, formalism for modelling certain classes of DES

(Forrester, 1961, 1969). Comparisons of PNs and (mono-

class) QNs or FDs can be seen in Vernon, Zahorjan, and

Lazowska (1987), Silva and Campos (1993), Chiola (1998,

chap. 4), and Jiménez, Recalde and Silva (2001),

respectively. What is relevant here is that all three different

formalisms are in essence bipartite:
Reservoirs
 Activities
PN
 Places
 Transitions
QN
 Queues
 Stations
FD
 Deposits
 Valves
From a structural point of view, the main differences of

Petri Nets with respect to the other formalisms are the possible

simultaneous existence in a single model of arc weights,

attributions, choices, forks and joins, and the possible absence

of local conservation rules (material, energy and information)

when transitions are fired. Moreover, as it will be pointed out

in Section 5.2, timed interpretation of the evolution may lead

to different firing/flow policies. The firing logic of PNs is of

the type consumption/production, a kind of generalization of

the classical client/servers in QNs (Jackson, Gordon-Newell).

Thus, continuization should be introduced through transi-

tions, and extended to its neighbourhood (input and output

places). When not all transitions are continuized, the obtained

model is said to be hybrid. If all the transitions are continuized

the net is said to be ‘‘continuous’’ (Alla & David, 1998a;

Recalde & Silva 2001), even if, as it will be pointed out, time

interpreted models exhibit a hybrid behaviour.

Observe that in the following definitions we do not

consider reading arcs or guards (transitions just reading the

state of a place; Montanari & Rossi, 1995), an extension of

net models that escape from the consumption/production

logic, but that sometimes are ‘‘inaccurately’’ modelled by

self-loops (this means that tokens are consumed and

immediately restored, not that a marking value is read).

Probably the most interesting reading arcs, really extending

the modelling power of (discrete) net models to that of

Turing Machines (Agerwala & Flynn, 1973), are the so

called inhibitor arcs or zero test arcs, in which the read

variable acts under a negated logic (basically, if the place at

origin is marked, the firing of the transition is inhibited). The

inclusion of non-negated reading arcs is straightforward, but

will complicate the notation, so it will not be considered

here. The inclusion of inhibitor arcs presents some problems

that go beyond the scope of this work. Thus, in order to

simplify the presentation, just nets without guards and

inhibitor arcs will be considered.

Definition 1. A hybrid (autonomous) Petri Net system is a

pair hN ;m0i, where

 N
 is a PN with two kinds of places and transitions,

discrete and continuous, and such that places are discrete

unless they are input or output of continuous transitions.

That is, N ¼ hPD [PC; TD [TC;Pre;Posti, with

PC ¼
 TC [ T
C, and Pre and Post jPD [PCj �
jTD [ TCj sized, natural valued, incidence matrices.

 m
0 is a vector of markings of size PC [PD, and such that

m0½p� 2Rþ if p2PC and m0½p� 2N if p2PD.
If PD ¼ TD ¼ ? , it is a continuous Petri Net system. If

PC ¼ TC ¼ ? , it is a classical (discrete) Petri Net system.

As in discrete systems, the fundamental equation

(m ¼ m0 þ C � s, s� 0) summarizes the way the marking

evolves along time. But, in the continuous part, the marking
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is continuously changing, so we may consider the derivative

of m with respect to time. If all the transitions are continuous

(TD ¼ ? ) we obtain that ṁ ¼ C � ṡ. Let us call f ¼ ṡ, since

it represents the flow through the transitions. Observe that it

can be interpreted as the ‘‘throughput vector’’ of continuous

PNs.

For the timing interpretation of continuous and hybrid

PNs we will use a first order (or deterministic) approxima-

tion of the discrete case (Recalde & Silva, 2001), assuming

that the delays associated to the firing of transitions can be

approximated by their mean values. A similar approach is

used, for example, in Balduzzi, Giua, and Menga (2000).

Different semantics have been defined for continuous

transitions, the two most important being infinite servers (or

variable speed) and finite servers (or constant speed) (Alla &

David, 1998a; Recalde & Silva, 2001).

Under finite servers semantics, the flow of t, f½t� is defined

as:

f½t� ¼

l½t�; if @ p2 
t with m½p� ¼ 0

min minp2 
tjm½p�¼0

X
t0 2 
p

f½t0� � Post½t0; p�
Pre½p; t�

( )
;l½t�

( )

otherwise

8>>><
>>>:

Observe that then the flow of t is defined just using an upper

bound, l½t� (the number of servers times the speed of a

server), knowing that at least one transition will be in

saturation, that is, its utilization will be equal to 1.

Under infinite servers semantics, the flow through a timed

transition t is the product of the speed, l½t�, and the enabling

of the transition:

f½t� ¼ l½t� � enabðt;mÞ ¼ l½t� �minp2 
t
m½p�

Pre½p; t�

	 


As in discrete PNs, immediate transitions act as flow split-

ters. The system obtained adding this equation to the state

equation is positive (Farina & Rinaldi, 2000; Luenberger,

1979; Silva & Recalde, 2003), that is, m� 0 is redundant.

In the association of a time semantics to the fluidification of

a transition, it has been taken into account that a transition is

like a station in QNs, thus ‘‘the meeting point’’ of clients and

servers. Assuming that there may be many or few of each one

of them, fluidification can be considered for clients, for

servers or for both. Table 1 represents the four theoretically

possible cases. Two of them do not allow the continuization,

while the other two cases correspond to the previously

introduced finite and infinite servers semantics.
Table 1

The four cases for possible continuization of a transition

Clients Servers Semantics of the transition

Few (D) Few (D) Discrete transition

Many (C) Few (D) Finite server semantics (bounds to firing speed)

Few (D) Many (C) Discrete transition (servers become implicit places)

Many (C) Many (C) Infinite servers semantics (speed is enabling-driven)
It should be pointed out that finite server semantics,

equationally modelled by bounding the firing speed of

continuized transitions, corresponds at pure conceptual level

to a hybrid behaviour: fluidification is applied only to

clients, while servers are kept as discrete, counted as a finite

number (the firing speed is bounded by the product of the

speed of a server and the number of servers in the station).

More precisely, clients are assumed to be so many that they

will never constraint the firing of transitions, although the

net structure will impose some restrictions on the relative

firing of the transitions (see visit ratio later on).

On the other hand, infinite servers semantics really

relaxes clients and servers, being the firing speed driven by

the enabling degree of the transition. In this case, although

the fluidification is total, the model is hybrid in the sense that

it is a piecewise linear system, in which switching among the

embedded linear systems is not externally driven as in

Bemporad, Giua, and Seatzu (2002), but internally through

the minimum operators.

So, piecewise linear behaviours are obtained, either under

finite or infinite servers semantics. In both cases the firing

speed of a transition is defined through linear inequalities. If

continuized models are obtained from decoloration of

colored PN models (Ajmone Marsan & Neri, 1997; Chiola &

Franceschinis, 1991; Dutheilett, Franceschinis, & Hadded,

1998, chap. 7), a product of state variables appears (as for the

classical Volterra–Lotka model for a basic population

dynamic case) (Silva & Recalde, 2002). This opens the

door to the possibility of modelling chaotic behaviours with

continuous PNs. In the following, unless otherwise stated,

we will concentrate on basic, i.e., non-decolored, infinite

servers semantics.

The system in Fig. 1 models a simple manufacturing

system. A product is composed of two different parts, A and

B, that are processed in machines M1 and M2, and stored in

buffers BA and BB, respectively. Then, they are assembled

by M3, and processed in M4. Finally, M5 packages them in

twos. During all the processing of parts A and B, Tool1 and

Tool2 are needed. Also Tool3 has to be used in the three final

operations.
Fig. 1. A simple manufacturing system with firing rates ½1; 1; 1; 1; 1; 1; 1�.
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Table 2

Throughput of M5 in the system represented at Fig. 1 when the initial marking is k �m0, and m0½Tool1� ¼ m0½Tool2� ¼ 6, m0½Tool3� ¼ 4, m0½CBA� ¼
m0½CBB� ¼ 3, and the rest unmarked

k Size of the

reachability space

Infinite servers semantics Finite-server semantics

(single server)
Stations are ‘‘delays’’ Stations with unique server

xI xI=k xI xI=k xS

1 205 0.4982 0.4982 0.2976 0.2976 0.2976

2 1885 1.1254 0.5627 0.7303 0.3652 0.3862

3 7796 1.7719 0.5906 1.1877 0.3959 0.4214

4 22187 2.4269 0.6067 1.6565 0.4141 0.4399

5 50801 3.0868 0.6174 2.1320 0.4264 0.4513

� � � � � � � � � � � � � � � � � � � � �
1 1 1 2/3 1 1/2 1/2
Let us see for this example how the continuized model

relates to the discrete one under both semantics. Let us

assume first that finite servers semantics is used. Table 2

shows how the value that is obtained for the throughput of

the discrete net system increases when the marking is scaled,

and approaches in the limit to the continuous one. If infinite

servers semantics is applied instead, it is the throughput of

the discrete net system divided by the multiplying constant

which approaches to the continuous value.

In discrete PNs, finite servers semantics can be

‘‘simulated’’ using infinite servers semantics and adding

self-loops to the transitions marked with the number of

servers. This can also be done for continuous nets, but the

result is not always the same as for finite servers (or constant

speed) semantics. In continuous nets, finite servers

semantics means that it is assumed that resources are never

a restriction, and the only thing that restricts the evolution of

the system is the speed of the servers. However, if finite

servers are simulated with infinite servers semantics both

things are taken into account. Hence, in the continuous

system, depending on which is the most restrictive element

(servers or clients), this infinite servers semantics with

servers restrictions may behave as a finite servers semantics

(see Table 2), or as infinite servers semantics (see Table 3).

Observe also that even if the steady state throughput of

the two semantics is the same, the transient behaviour will be

different. Moreover, even if the steady state throughput

under both semantics is the same, the markings will be

different.
Table 3

Throughput of M5 in the system represented at Fig. 1 when the initial marking

k Size of the

reachability space

Infinite servers semantics

Stations are ‘‘delays’’

xI xI=k

1 96 0.2650 0.2650

2 735 0.5852 0.2926

3 2800 0.9166 0.3055

4 7605 1.2498 0.3125

5 16896 1.5832 0.3166

� � � � � � � � � � � �
1 1 1 1/3
In the following, whenever infinite servers semantics is

applied to this example, we will assume that the machines

restrictions are included in the model, i.e., it is the model

with the self-loops that we will be studying.

Visit ratios measure the relative flow or throughput of

customers in QNs (with respect to a given station). In

(discrete) PNs visit ratios generalize the notion in order to

measure the relative (to a transition) throughput of tokens

(Campos & Silva, 1992). Let x be throughput vector of the

net system, that is, x½tj� is the number of firings per time unit

of transition tj. If transition ti is taken as a reference, the

relative throughput of tj is the so called visit ratio of tj with

respect to ti: vðiÞ½tj� ¼ x½tj�=x½ti�. Notice that, due to the way

it is defined, vðiÞ½ti� ¼ 1. In general, the vector of visit ratios,

v, is a function of the net structure, the initial marking, the

routing (controlling conflict resolutions) and the service

time of transitions: v ¼ vðN ;m0;R;lÞ, both for discrete

and continuous net systems. The computability of visit ratios

induces somehow a hierarchy of nets, and some well-known

net subclasses are ‘‘re-encountered’’ (see Table 4).

For example, mono-T-semiflow nets are those that have

only one full minimal T-semiflow. That is, the system

C � x ¼ 0, has only one positive solution, up to constants.

This means that the vector of visit ratios is completely defined

by the net structure, since it must fulfill that C � vð1Þ ¼ 0

and vð1Þ½t1� ¼ 1. This happens for instance in the example

of Fig. 1. For this net all the T-semiflows are proportional to

½2; 2; 2; 2; 1�. And so, the visit ratio w.r.t. M5 is ½2; 2; 2; 2; 1�,
not depending on anything but the net structure.
is k �m0, and m0 is as in the figure except that m0½Tool3� ¼ 2

Finite-server semantics

(single server)
Stations with unique server

xI xI=k xS

0.2169 0.2169 0.2169

0.5285 0.2642 0.3364

0.8592 0.2864 0.3846

1.1946 0.2987 0.4140

1.5317 0.3063 0.4318

� � � � � � � � �
1 1/3 1/2
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Table 4

Computation of visit ratios in net subclasses, adapted from Campos and

Silva (1992)

Net system subclass Visit ratio, v

Strongly connected marked graphs 1, Constant

Mono-T-semiflow nets vðN Þ
Mono-T-semiflow reducible nets vðN ; l;RÞ
Simple nets vðN ;m0;R;lÞ

Fig. 2. A system that is live as discrete, but non-live as continuous or hybrid

(with t2 as continuous).

Fig. 3. The unique T-semiflow is x ¼ ½1; k=10; k; k�, thus ‘‘a priori’’ assum-

ing k> 10 the less reasonable candidate to fluidify is t1.
Mono-T-semiflow reducible nets is a generalization,

defined as those PNs for which the following system has

a unique solution:

C � vð1Þ ¼ 0 vð1Þ> 0

R � vð1Þ ¼ 0; for the resolution of EQ conflicts

among immediate transitions

vð1Þ½ti�
l½ti�

¼ vð1Þ½tj�
l½tj�

; 8 ti; tj timed transitions in EQ

relation

(1)

where R is the routing rates matrix. That is, R � vð1Þ ¼ 0 is

equivalent to ðvð1Þ½ti�=riÞ ¼ ðvð1Þ½tj�=rjÞ for every pair of

immediate transitions in EQ relation.

For example, structurally live and bounded EQ nets with

conflicts solved through immediate transitions belong to the

class. Observe that in mono-T-semiflow reducible nets the

visit ratio only depends onN , R and l, i.e., the structure and

interpretation, but not on m0.
Table 5

Throughput differences in the system in Fig. 3

Single server Infinite servers

Discrete 0.423 (deterministic) 0.714 (deterministic)

0.677 (Markovian) 0.602 (Markovian)

Continuous 1 0.732

Hybrid (t1 discrete) 0.5 0
4. Partial continuization is not always possible

If a discrete net model is to be partially continuized, a

basic question appears: which are the transitions that is

reasonable to fluidify? This question does not have now a

complete answer at general level, and only guidelines, not

rules, can be provided. Relaxation of a given model, like

modelling in itself, is partially an art, and in many cases it

requires ingenuity and experience, something essential in

most engineering activities. For autonomous (untimed) net

models, guidelines should take into account the token load

of places (those having usually many tokens are better

candidates). For timed models, the driving idea is that errors

due to the relaxation tend to be not very significant under

relatively heavy traffic conditions. Therefore, as a guideline,

not as a rule, it can be said that transitions with relatively

high visit ratio are ‘‘good’’ candidates for fluidification.

However, this does not work for all the systems. To begin

with, not all Petri Net systems allow continuization as an

approximate modelling, and important technical problems

may sometimes appear (Recalde et al., 1999).

For example, the autonomous system in Fig. 2 is live as

discrete. However, if it is seen as continuous or hybrid

(perhaps t1 and t3 should be kept as discrete), it is non-live.

In a similar way, a discrete bounded system may be

unbounded as continuous or hybrid.
Problems may also be related to which are the transitions

that are continuized or the firing semantics that is being used.

To simplify, here we will focus on timed transitions,

although similar problems may appear if immediate transi-

tions are allowed.

Consider the system in Fig. 3, with firing speed vector

l ¼ ½1; 3; 30; 30�, under infinite servers semantics. For this

net, vð1Þ ¼ ½1; k=10; k; k� and, if k� 10, t1 will be fired far

less than the others. Moreover, taking into account that it is

used for the synchronization of many tokens, it seems

reasonable to leave it as discrete, and continuize only t2; t3
and t4. However, if it is done so the throughput of the hybrid

system tends to zero! This is due to the queue of the

exponential decay. On the other hand, if all the transitions

are continuized, the throughput is on average 0.732

(optimistic!), but quite close to the value of the discrete

system both if the transitions are defined as deterministic

(0.714) or have exponential pdf (0.602). However, if finite

servers semantics is used, the hybrid system has average

throughput 0.5, the continuous system 1, the discrete system

with exponential transitions 0.677, and 0.423 with determi-

nistic timing (see Table 5). The problem with the hybrid

interpretation under infinite servers semantics is due to the

fact that all the tokens have to be synchronized in order to
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fire t1, but it takes infinite time to put them in p1 and

p4 (the problem is similar to the charge of a condenser in an

R–C circuit). If the marking of p1 and p4 is increased by one

token, the average throughput of the hybrid system changes

from zero to 0.4686. In fact, adding a very small number of

tokens to these places the throughput increases quickly.
5. On the structural analysis of hybrid and

continuous net models

Structural analysis tries to get the maximal amount of

information from the net structure, and sees m0 as a

parameter. Here we will focus on mathematical program-

ming techniques, and not in graph based ones (for discrete

nets see Silva, Teruel, & Colom, 1998).

From the adopted perspective, at a purely conceptual

level, there exists a kind of hierarchy from discrete to hybrid

and continuous models. Usually, there is a progressive

degradation from discrete to continuous, through hybrid, in

the quality of the model. This is reflected in a parallel

improvement in the cost of the ‘‘same’’ analysis techniques.

But relaxation means also that some properties are lost. For

example, mutex properties cannot be observed in continuous

systems (and just partially in hybrid ones), and existence of

home states is equivalent to reversibility. Other properties

have to be modified, for example lim-properties (Recalde et

al., 1999), or d-properties (Júlvez, Recalde, & Silva, 2003).

5.1. Autonomous models

The fundamental equation (m ¼ m0 þ C � s, s� 0) can

be used in the continuous (or hybrid) formalism, with the

only difference that variables belong to Rþ (some to Rþ and

some to N, in the hybrid case). Moreover, there are no

spurious solutions in continuous models, under very light

conditions (Júlvez et al., 2003; Recalde et al., 1999), but they

start to appear in hybrid models.

This means that the fundamental equation is extremely

useful for the analysis of properties. For example, a simple

necessary and sufficient condition for deadlock-freeness can

be obtained for continuous PNs: a solution of the

fundamental equation exists in which no transition is

enabled.

Two characteristics of continuous models that do not hold

for discrete models are that the set of reachable markings is a

convex set, and that it verifies a scaling property: if m is

reachable in hN ;m0i, k �m is reachable in hN ; k �m0i
(Recalde et al., 1999). This is less and less true for hybrid

models, and certainly not true for discrete models. However,

neither continuous, nor hybrid or discrete, are live-

monotonic with respect to the marking. That is, increasing

the initial marking (i.e., the number of resources) can kill the

system (Recalde, Júlvez, & Silva, 2002).

P- and T-semiflows can be used in continuous or hybrid

models just as in discrete ones. In discrete systems rank
theorems provide necessary or sufficient structural con-

ditions for liveness and boundedness, that are both

necessary and sufficient for some subclasses. These results

can be generalized to continuous or hybrid systems, since

they are based on an underlying ‘‘continuous-view’’ of net

systems.

Theorem 2 (Recalde et al., 1999; Teruel & Silva, 1996).

 L
et hN ;m0i be a live and bounded system. Then, N is

consistent, conservative and rank ðCÞ � jSEQSj � 1.

 L
et N be a consistent and conservative net. If rank

ðCÞ ¼ jSCCSj � 1, then N is structurally live.
For EQ systems the rank theorem is a characterization of

structural liveness and structural boundedness.

Theorem 3 (Recalde et al., 1999; Teruel & Silva, 1996).

An EQ net is structurally live and structurally bounded if

and only if it is consistent, conservative and rankðCÞ ¼
jSEQSj � 1.

Traps (a set of places whose output is contained in its

input, i.e., Q P;Q
 � 
Q), and siphons (a set of places

whose input is contained in its output, i.e.,S P;
S�S
)
can also be defined in the continuous or hybrid case, since

they are structural objects. However, some of the

behavioural properties they enjoy in discrete models are

lost for continuous: traps can be emptied (at the limit), and

‘‘almost’’ empty siphons can recover, even if the system is

bounded.

5.2. Timed models under infinite servers semantics

Under finite servers semantics, the evolution graph (Alla

& David, 1998b) has been defined as a way to represent how

the systems of equations that define the evolution of the

system change. A similar graph could be defined for infinite

servers semantics. This is basically a behavioural approach.

Our approach here will be more structural.

In continuous PNs, as in discrete PNs, the throughput of

the system is non-monotonic with respect to l (i.e.,

increasing the speed of a transition may lead to a decrease

in the throughput), neither w.r.t. m0 (i.e., increasing the

number of resources may lead to a decrease in the

throughput), nor w.r.t. the net structure (i.e., adding places,

restrictions, may increase the throughput) (Recalde et al.,

2002).

It could be thought that, since continuization removes

some restrictions of the system, the throughput of the

continuous system should be at least that of the discrete one.

However, the throughput of a continuous PN is not in general

optimistic, i.e., an upper bound of the throughput of the

discrete PN. It can also be a pessimistic approximation (see

Fig. 4).
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For bounded discrete net systems, an upper bound of the

throughput of one transition (f½ti� �x½ti�) can be obtained by

means of the following linear programming problem

(Campos, 1998; Chiola, Anglano, Campos, Colom, & Silva,

1993).

maxff½ti�
s:t:m ¼ m0 þ C � s

f½t� � l½t� � m½p�
Pre½p; t� 8 p2 
t

R � f ¼ 0

C � f ¼ 0;
m;s;f� 0g

(2)

These equations correspond to the fundamental equation (a

necessary condition for m to be the average marking), the

Little Law applied to the different transitions, the routing at

the free-conflicts, and the fact that f has to be a T-semiflow

(can be replaced by C � f� 0 if the net is not structurally

bounded). The linear programming problem is exact (i.e.,

x ¼ f) in some cases, for example, for deterministic marked

graphs, state machines with just delays, . . .
For continuous (and hybrid) models almost the same linear

programming problem can be written. The only difference is

that the flow law at continuous persistent transitions (with a

single input place) can be improved. Let us denote as TU the

set of transitions with a unique input place, and as TS the

remaining transitions, in which synchronizations appear.

Using the same kind of notation as before,

 f
 as a the approximation of x,

 m
 as the approximation of m

it can be stated as follows:
maxff½ti�
s:t:m ¼ m0 þ C � s

f½t� � l½t� � m½p�
Pre½p; t�; 8 t2 TS; 8 p2 
t

f½t� ¼ l½t� � m½p�
Pre½p; t�; 8 t2 TU; p ¼
 t

R � f ¼ 0

C � f ¼ 0

m;s;f� 0g

(3)

In general the solution of (3) is just an upper bound, although

it is exact for example for EQ nets (Recalde & Silva, 2001),

or some mono-T-reducible nets (Recalde et al., 2002).

Observe that the LPP (3) is in fact a relaxation of the

following nonlinear (due to the ‘‘min’’ operators) program-

ming problem:

maxff½ti�
s:t:m ¼ m0 þ C � s

f½t� ¼ l½t� � min
p2 
t

m½p�
Pre½p; t�

	 

; 8 t2T

R � f ¼ 0

C � f ¼ 0

m;s;f� 0g

(4)
Unfortunately, programming problem (4) cannot be solved

in general with a polynomial time algorithm. A branch and

bound based algorithm can be used to solve it (Recalde et al.,

2002). The idea is to first solve the relaxed LPP defined in

(3). Then, if the marking does not correspond to a steady

state (i.e., there is at least one transition such that all its input

places have ‘‘too many’’ tokens) choose one of the syn-

chronizations and solve the set of LPPs that appear when

each one of the input places is assumed to be defining the

flow. That is, build a set of LPPs by adding an equation that

relates the marking of each input place with the flow of the

transition. These subproblems become children of the root

search node. The algorithm is applied recursively, generat-

ing a tree of subproblems. If an optimal steady state marking

is found to a subproblem, it is a possible steady state

marking, but not necessarily globally optimal. Since it is

feasible, it can be used to prune the rest of the tree; if the

solution of the LPP for a node is smaller than the best known

feasible solution, no globally optimal solution can exist in

the subspace of the feasible region represented by the node.

Therefore, the node can be removed from consideration. The

search proceeds until all nodes have been solved or pruned.

For mono-T-semiflow reducible nets, problem (3) can be

simplified. In this class, vð1Þ is completely defined (see Eq.

(1), and since x is proportional to vð1Þ, x ¼ a � vð1Þ. Hence,

maximizing x½t� is equal to maximizing a. Moreover, the

equalities added to LPP (3) with respect to LPP (2) can be

removed, since if the obtained solution does not fulfill them,

there exists another one with the same throughput which

does. The idea is to send the extra marking ‘‘down’’ the

transition till a synchronization appears. Since it is a mono-

T-semiflow net, there cannot be cycles without synchroniza-

tions, unless the whole system is just a cycle, and in that case

all the equalities must be fulfilled in the maximum. Applying

all this to the LPP (3), f�x can be obtained as follows:

f½ti� ¼ maxfa
s:t:m ¼ m0 þ C � s

a � PDð1Þ � m
m;s� 0g

(5)

where PDð1Þ is defined as

PDð1Þ½p� ¼ max
t2 p


Pre½p; t� � vð1Þ½t�
l½t�

( )

Applying linear programming duality and changing vari-

ables, the following LPP can be written, which is clearly

related to the ‘‘classical’’ one for discrete net systems in

Campos, Chiola, and Silva (1991):

1

f½ti�
¼ maxfy � PDð1Þ

s:t: y � C ¼ 0

y �m0 ¼ 1

y� 0g

(6)

For example, for the net system in Fig. 1 (with the self-loops
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around the machines), if m0½Tool3� ¼ 4, the result of this

LPP is 1/2, which comes from the use of the machines. If

m0½Tool3� ¼ 2, the result is 1/3, which derives from the P-

semiflow associated to the use of Tool3.
6. On the synthesis of continuous timed net models:

design and control problems

In order to limit our presentation here, let us assume that

the system is already logically constrained by the required

controller (generalized mutual exclusion controller, GMEC

(Giua, DiCesare, & Silva, 1993), supervisory controller

(Ramadge & Wonham, 1989), . . .).

6.1. Design problems: the EQ systems case

In this section we consider ‘‘off-line’’ problems in which,

given the system configuration, it is optimally parameterized

for the steady state. Among the problems belonging to this

class are those devoted to the computation of an optimal m0,

i.e., problems in which the goal is the search of the optimal

number of resources, like the best number of machines or

AGVs, or the optimal size of buffers. Other kind of problems

belonging to this general scheme are those in which the goal

is the computation of the optimal routing, R, or the optimal

firing speeds, l. Examples of this last pattern are equipment

selection problems (choice of best machines). Close to this

framework, some steady state control problems are

considered in Section 6.4.

6.2. Optimization of m0

A quite frequent formulation for this class of optimization

problems in steady state is: try to maximize a profit function

depending on the flow or throughput vector (x), the average

marking (mss), and the initial marking (m0), among other

variables. If the profit function may be formulated in linear

terms, it may adopt patterns like: g � x� w �mss � b �m0,

where, g represents a gain vector w.r.t. to flows (e.g., if x½t1�
is to be maximized, g½t1� ¼ 1, while the rest of weights

should be zero), w is the cost vector due to immobilization to

maintain the production flow (e.g., due to the levels in

stores), and vector b represent depreciations or amortization

of the initial investments (e.g., due to the size of the stores,

number of machines, . . .). In other cases, the optimization

tries to minimize a cost function (e.g. a weighting on the

initial marking, v �m0).

This kind of optimization problems admit a particularly

elegant and efficient solution if the LPPs, stated in Section

5.2 lead to the exact value (otherwise upper bounds are

obtained). As was previously mentioned, this happens, for

example, for structurally live and bounded EQ nets (its

characterization can be computed polynomially through the

rank theorem, see Section 5.1). Let us consider some

interesting and simple optimization problems. For simpli-
city, in the sequel of this section let us assume that nets are

structurally live and bounded EQ (thus, mono-T-semiflow

reducible), and conflicts among immediate transitions are

solved according to routing rates, R.

Problem 4 (Silva & Recalde, 2002).

Given V �m0 � k, as a set of linear cost-constraints on the

initial marking, compute an optimal m0 in order to

maximize f½ti� (here g ¼ 1i;w ¼ 0 and b ¼ 0).

Simply adding the cost constraints to LPP (5), the

following can be written, in which m0 denotes the

approximation of m0:

G ½ti� ¼ maxfa
s:t:a � PDð1Þ � m0 þ C � s

V � m0 � k

m0;s� 0g

(7)

If LPP (3) is used instead as the basis (it is equivalent if

the visit ratio is computable with C � f ¼ 0 and R � f ¼ 0)

(Campos, 1998, chap. 17), the optimization problem can be

solved by means of the following alternative LPP, that is also

straightforward to derive; only the cost constraints on the

initial marking, now a vector of variables, are added.

Nevertheless a higher number of (in)equations and variables

appear:

maxff½ti�
s:t:m ¼ m0 þ C � s
f½t� � l½t� � m½p�

Pre½p; t� 8 t2 TS; 8 p2 
t

f½t� ¼ l½t� � m½p�
Pre½p; t� 8 t2 TU; p ¼
 t

R � f ¼ 0

C � f ¼ 0

s;m0� 0

V � m0 � kg

(8)

When the net system is not EQ, the LPPs in (7) and (8)

provide just bounds (a lower bound of the cycle time in (7)

and an upper bound of the throughput of a transition in (8)).

Problem 5 (Silva & Recalde, 2002).

Given a cost weight vector b and a cycle time G i ¼ 1=f½ti�,
compute the minimal cost initial marking, b � m0, to have the

given cycle time:

minfb � m0

s:t: PDð1Þ � C � zþ G i � m0

z;m0� 0g
(9)

Let us apply this LPP to the system in Fig. 1, to see which

is the best initial marking that allows to obtain a throughput

of 1/2, i.e., cycle time 2. Assume that the costs vector is 10

per tool, i.e., b½Tool1� ¼ b½Tool2� ¼ b½Tool3� ¼ 10, 5 per

buffer space, i.e., b½CBA� ¼ b½CBB� ¼ 5, and w.r.t. inter-
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mediate stocks b½BA� ¼ b½BB� ¼ 20, and b½B34� ¼ b½B45�
¼ 40. Then, the marking that is obtained is m½Tool1� ¼
m½Tool2� ¼ 4, m½Tool3� ¼ 3 and m½CBA� ¼ m½CBB� ¼ 2.

Alternatively, if LPP (3) is used instead as the basis, the

optimization problem can be solved by means of the

following LPP, that once again is straightforward to derive;

only the last constraint, on the lower bound for the flow of ti,

should be added.

minfb � m0

s:t:m ¼ m0 þ C � s
f½t� � l½t� � m½p�

Pre½p; t� 8 t2TS; 8 p2 
t

f½t� ¼ l½t� � m½p�
Pre½p; t� 8 t2TU; p ¼
 t

R � f ¼ 0

C � f ¼ 0

s;m0� 0

f½ti� � 1=G ig

(10)

6.3. Optimization of routing, R

A simple case for optimizing a profit function w.r.t. the

routing R is the following example. As in the preceding

section, let us assume that hN ;m0i is a structurally live and

bounded EQ system.

Problem 6. Maximize g � f� w � m� b � m0, with respect

to the routing.

The following LPP computes an optimal flow vector, f. It

can be remarked that the only difference w.r.t. LPP (3) has

been to remove the constraint on the routing.

maxfg � f� w � m� b � m0

s:t:m ¼ m0 þ C � s
f½t� � l½t� � m½p�

Pre½p; t� 8 t2TS; 8 p2 
t

f½t� ¼ l½t� � m½p�
Pre½p; t� 8 t2TU; p ¼
 t

C � f ¼ 0

s;m0� 0g

(11)

Once LPP (11) has been solved, the computation of the

routing matrix R is straightforward: just proceed free-choice

by free-choice. Assuming for simplicity that choices are

binary:

 f
f

1

2
¼ r1

r2

 r
1 þ r2 ¼ 1

Note, if all conflicts are solved with immediate transi-
tions, and g ¼ 1;w ¼ b ¼ 0, this LPP is analogous to the

one stated in Gaujal and Giua (2002), assuming bounded-

ness. Even if in this case nets are P-timed with a delay

associated to places, and conflicts are solved according to a
stationary routing policy (which in practice is equivalent a

net without conflicts), and have different transient beha-

viour, their steady state is the same.

6.4. Control problems in general net systems

In this section the system configuration and parameters

are supposed to be fixed. The problems to be considered here

are those devoted to the computation of some dynamic

control variables. Among many examples that can be

presented, we deal with the computation of a feed forward

control for maintaining an optimal steady state, or for

bringing the system from an initial marking to another final

marking in minimal time. Because the control of equal

conflict net systems is relatively easy, let us consider in the

sequel general continuous PNs under infinite servers

semantics.

To speak about dynamic control, some previous questions

should be answered. For example, what to control?

According to the adopted time interpretation, flows through

transitions should be controlled, both w.r.t. routing and

service. Observe that this is not really new; the same strategy

is used for QNs, where servers activity and routing of

customers are controlled; analogously, when dealing with

Forrester Diagrams, the opening of valves has to be

controlled. Now the second question, how to control? The

only idea is to control at routing points (what may be

complex at no free-choices) and, eventually, to slow down

the activity of transitions (servers in a station). As a last

question, it should be decided how to express the control.

Two main approaches can be considered: multiplicative (the

speed of t is controlled as a � l½t�, with a2 ð0; 1Þ) or additive

(subtracting u, the flow can go from f½t� to 0). It is not the

moment to discuss that issue in detail, let us just say that they

are ‘‘in essence’’ equivalent. Our choice here is to use the

additive formulation. Proceeding in that way, using u as the

slow down control vector, the state equation is now:

ṁ ¼ C � ðfðmÞ � uÞ, were 0 � u � fðmÞ.
The above statement suggests two different remarks: (1)

the system is not positive anymore in the classical (and

restrictive) sense of Luenberger (1979) and Farina and

Rinaldi (2000) (see (Silva & Recalde, 2003)); (2) the

slowing down action is dynamically bounded by the actual

state (marking) of the system.

Some results are already known for controllability in the

previous framework. For the present purpose let us just point

out the following.

Proposition 7. If all transitions are controllable, reach-

ability in timed models is equivalent to reachability in the

underlying untimed models.

In other words, if marking m is reachable in the untimed

model hN ;m0i, there exists a way of controlling the

transitions for reaching it in the timed model hN ;m0;R;li.
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Table 6

Best steady state control and flow depending on which is the control place of

t1 and t2

Limiting places u f½t1�
t1 t2

p1 p1 u ¼ ½0:781; 0; 0; 0� 1.5625

p1 p4 u ¼ ½0:781; 0; 0; 0� 1.5625

p5 p1 u ¼ ½0; 3:13; 0; 0� 0.6522

p5 p4 Unfeasible –

Fig. 5. Feedforward–feedback control schema.
Let us assume in the sequel that all the transitions are

controllable.

6.4.1. Optimal steady state control

The formulation can be done in an analogous way to that

used for the routing optimization.

Problem 8. Maximize g � x� w �mss � b �m0 with

respect to the control vector u in steady state. The basic

statement of the problem (maximize the throughput of one

transition) can be presented as follows:

maxff½ti�
s:tm ¼ m0 þ C � s

f½t� ¼ l½t� �minp2 
t
m½p�

Pre½p; t�

	 

� u½t� 8 t

R � f ¼ 0

C � f ¼ 0;
s; u; � 0g

(12)

According to Property 7, marking m should be reachable

by appropriate controls, possibly in an asymptotic way. At

this point it is very important to observe that the above is not

a LPP. In fact, this problem is very similar to (4), and the

same branch and bound strategy can be used to solve it.

The net in Fig. 4 is mono-T-semiflow, with x ¼ 1.

Considering it without any control (i.e., the unforced net

system) the steady state flow is f½t1� ¼ 0:535. Table 6

represents which are the steady state flows depending on

whether p1 or p5 limits t1 and whether p1 or p4 limits t2.

It can be seen that in this case the optimal value is 1.5625,

and can be reached using as control u ¼ ½0:781; 0; 0; 0�.
But the above computed control is open loop. One very

classical way for using it in a structure with feedback is to

use a mixed feedforward–feedback schema (see Fig. 5). The

computation of ‘‘good’’ controllers for the control loop

requires still more attention. Nevertheless, in practice, the

use of the controller that corresponds to the linear system

driving the application in the optimal steady state gives

usually good practical results, if no big perturbation appears.

6.4.2. Minimum reachability time control

The statement is quite classical: which is the control

action for bringing the net system from m0 to mf in
Fig. 4. In this net with l ¼ ½3; 1; 1; 10�, the steady state throughput of the

continuous system is 0.535, while it is 0.801 as discrete.
minimum time? For simplicity, let us assume that there are

no immediate transitions.

minfu
s:t:mðtÞ ¼ m0 þ

R t
0 C � fðcÞ dc

fðcÞ½t� ¼ l½t� �minp2 
t
mðcÞ½p�
Pre½p; t�

	 

� uðcÞ½t�; 8 t

mðcÞ; fðcÞ; uðcÞ� 0

mðuÞ ¼ mf g
(13)

Solutions to problems of this type are not known in general,

because of the simultaneous existence of minimum opera-

tors (non-differentiability) and state (marking) dependent

constraints for the control variables. Nevertheless, using

knowledge from the analysis of the net model, in some

cases the problem can be solved using ad hoc procedures.

As an example, let us consider the net model of Fig. 4.

Assume we want to obtain the control law to go from m0 to

m ¼ ½1:56; 1:56; 0:156; 2:44�, which as we have seen before

is the optimum steady state. Place p5 is implicit (Silva,

Teruel, & Colom, 1998), so it can be removed without

changing the behaviour of the model. The same can be said

for the arc joining p1 to t2. Doing so, the plant of the system

looses all the synchronizations, therefore it becomes linear,

although with dynamic constraints on the control vector u.

The optimal evolution from m0 to m is a classical bang-bang

control, for which here the only relevant thing is to decide

the commutation time of t2. In essence the optimal control

consists on not constraining t1 and t3 (u½t1� ¼ u½t3� ¼ 0),

keep t4 closed (u½t4� ¼ f½t4�), and start with t2 closed and

open it completely afterwards. Just when t2 has to be opened

has to be decided. By means of simulation it can be seen that

t ¼ 0:27 is the best option, and the time for reaching it is

0:37. Fig. 6 shows how the time increases if t2 is open sooner

or later.
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Fig. 6. Time needed to reach m is minimum if t2 is opened at 0.27.
7. Some final remarks

Continuization of (time-interpreted) Petri Nets models

may be a very useful relaxation technique when applied to

systems with high traffic (as often happens when highly

populated), independently of its nature or application

domain. When the continuization is applied to all the

transitions (and places), i.e., total continuization, a

continuous Petri Net system is obtained. If some parts are

kept discrete (partial continuization) the result is a hybrid

Petri Net system. Some of the most common application

domains are for example production systems (Alla & David,

1998a; Allam & Alla, 1998), inventory management

systems (Giua, Furcas, Piccaluga, & Seatzu, 2001) or

transportation systems (Febbraro & Sacone, 1998).

The continuization is intended as an approximation. In

this sense, it has been observed that not every net system

allows a ‘‘reasonable’’ continuization, just as not every

continuous dynamic system admits to be linearized.

In general, it is expected that the study of the continuized

model will be simpler than the study of the original discrete

one. For example, several steady state optimization

problems for continuous PNs have been introduced here

which happen to be just linear programming problems.

From a more dynamic or control theory perspective, there

is a lot of developments to be done, both at observation and

at control levels. This is still an emerging topic, and

observation of continuous Petri Net models (under infinite

servers semantics) is being addressed. The development of

observability criteria for continuous net systems is still a

starting task (see, for example Júlvez, Jiménez, Recalde, &

Silva, 2004b). For join-free nets (i.e., nets without

synchronizations) a linear system is obtained (no ‘‘min’’

operator appears) and classical observability results can be

applied. Structural observability (i.e., independent of firing

speeds, assumed to be non-zero) is a new concept of some
interest. For the design of observers, in essence observation

techniques for some kind of hybrid dynamic systems are

adapted to the particularities of the multilinear systems that

are found for infinite servers semantics models (Júlvez,

Jiménez, Recalde, & Silva, 2004a).

Analogously, at the control level, both controllability

criteria and control techniques are being developed. For

example, in (Júlvez, Bemporad, Recalde, & Silva 2004)

hybrid control techniques based on Mixed Logic Dynamical

systems (Bemporad & Morari, 1999) are applied to control

continuous net systems under finite servers (constant speed)

semantics.

However, the results that are obtained have to be

interpreted in the original discrete model. It is necessary yet

to see how to go back from the (partially) continuous

relaxation to the discrete model. Moreover, not much is

known for the moment about the quality of the solutions

when discretized.
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