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Carlos J. P´erez-Jiménez and Javier Campos
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Abstract

Net-driven decomposition techniques are considered in
this paper in order to reduce the state explosion problem for
the computation of performance indices of stochastic Petri
nets. Basically, the idea is to represent (or partially rep-
resent) in a decomposed manner the reachability graph of
the model so it can be used for exact and/or approximated
performance analysis. In that way, the complete storing of
the graph is avoided and, for the case of approximate analy-
sis, the solution of the isomorphous continuous time Markov
chain is substituted by the solution of smaller components.
The techniques are applied to a couple of non-trivial mod-
els.

1. Introduction

One of the major drawbacks for the use ofstochastic
Petri nets(SPN’s) [9] in performance evaluation of real sys-
tems is probably thestate explosion problem. This paper
tries to contribute to the solution of that problem propos-
ing some ideas and techniques for anet-driven decomposi-
tion of the reachability graph(RG) of the original system,
leading to the generation of the continuous time Markov
chains (CTMC’s) associated to several smaller submodels
whose solution can be combined for an approximated per-
formance analysis. An iterativeresponse time approxima-
tion algorithmis the technique selected here for the combi-
nation of the solutions of the (CTMC’s of the) submodels in
order to approximate thesteady-statethroughput of transi-
tions (number of firings per time unit) in the original model
(provided that such steady-state behaviour exists). How-
ever, one of the techniques that will be presented gives an
exact decomposed representation of the RG of the original
system, therefore it could be useful also for exact perfor-
mance analysis.

Previous works in the same direction by the authors and
other (co-)authors are [1, 11, 12, 10] in the framework of
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approximate throughput computation for particular net sub-
classes and [2] in the framework oftensor algebra-based
exact solutionof general SPN’s. Other related work is [4].

We assume that the reader is familiar with concepts and
notation ofP=T nets [6] and SPN’s [9]. The paper is or-
ganised as follows. In section 2, we review a decompo-
sition technique for general stochastic Petri nets that was
proposed and applied to the exact solution of the under-
lying CTMC in [2]. For our purpose, that decomposi-
tion technique has a main problem:the derived subsys-
tems may be non-ergodic(thus, the solution of their un-
derlying CTMC’s could make no sense). In section 3, we
solve the mentioned problem by presenting a very sim-
ple technique to build ergodic CTMC’s from the subsys-
tems. Even though that technique allows to compute a
(meaningful) solution in all cases, in some situations the
result may be not very accurate due to the inclusion of
spurious statesin the submodels that do not correspond
to actual ones in the original system and to the ‘inade-
quate aggregation’ of different states of the original sys-
tem into the same state in the subsystems. For solving
more accurately those cases, we present in section 4 a
structured view of the RG of the original model that al-
lows to compute and store it in a decomposed manner.
In section 4.1, the decomposed representation of the RG
is used to eliminate all the spurious states, while in sec-
tion 4.2 the aggregation of states not connected by in-
ternal transitions is avoided. The structured view of the
RG of the original model presented in section 4 is ap-
plied here to derive approximated values of throughput
but it could be also an alternative technique to the ten-
sor algebra-based solution presented in [2] for exact analy-
sis, since it is based on the construction of an exact de-
composed representation of the RG of the model. In
section 5, an iterative response time approximation algo-
rithm (similar to that presented in [1]) is explained as well
as an example of application to a couple of non-trivial
models. Some concluding remarks are stressed in sec-
tion 6.



2. Structural decomposition of PN systems and
two-level abstract views

In this section, we review a decomposition technique
for general PN systems that was proposed in [2] in the
framework oftensor algebra-based exact solutionof SPN’s.
See [2] for the details.

2.1. Structured view of PN's (net level)

An arbitrary PN system can always be observed as a
set ofmodules(disjoint simpler PN systems) that asynchro-
nously communicate by means of a set ofbuffers(places).

Definition 1 (SAM) [2] A strongly connected PN system,
S = hP1[ : : :[PK [B; T1[ : : :[TK ;Pre;Post;m0i, is
a System of Asynchronously Communicating Modules, or
simply a SAM, if:
1. Pi \ Pj = ; for all i; j 2 f1; : : : ;Kg andi 6= j;
2. Ti \ Tj = ; for all i; j 2 f1; : : : ;Kg andi 6= j;
3. Pi \ B = ; for all i 2 f1; : : : ;Kg;
4. Ti = Pi

� [ �Pi for all i 2 f1; : : : ;Kg.
The net systemshNi;m0ii = hPi; Ti;Prei;Posti;m0ii
with i 2 f1; : : : ;Kg are called modulesof S (where
Prei,Posti, andm0i are the restrictions ofPre, Post,
andm0 toPi andTi). Places inB are calledbuffers. Tran-
sitions belonging to the setTI = �B [ B� are calledinter-
facetransitions. Remaining ones((T1[ : : :[TK)nTI) are
called internaltransitions.
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Figure 1. (a) A SAM and (b) its LS1.

A SAM with two modules (the subnets generated by
nodes whose tag starts withPi or Ti for i = 1; 2) and four
buffers (B1,B2, B3, B4) is depicted in Fig. 1.a.

All the strongly connected PN systems belong to the
SAM class with the only addition of astructured viewof the
model (either given by construction or decided after obser-
vation of the model). Many structured views are possible,
ranging from the extreme consideration of each transition as
a different module (all the places being buffers) to consider
that the system is a single module (and there are no buffers).

With respect to timing interpretation, we assume that in-
dependent, exponentially distributed random variables are
associated to the firing of transitions with single-server se-
mantics as in classical SPN’s [9]. The techniques presented
in this paper can be easily extended to infinite-server se-
mantics. We suppose that a unique steady-state behaviour
exists to compute steady-state performance indices of the
model. Even more, we restrict tostructurally live, struc-
turally bounded(thereforeconsistentandconservative) and
reversible(thereforeergodic) PN systems.

2.2. Reduction rule and abstract views

In [2], the reduction rule that follows has been intro-
duced for theinternal behaviourof modules of a SAM.
Each module is decomposed into several pieces and each
piece is substituted by a set of new special places called
marking structurally implicit places(MSIP’s). Later, using
that reduction, the original model can be decomposed into
a collection oflow level systems(LSi with i = 1; : : : ;K)
and abasic skeleton(BS). In eachLS i, only one module
is kept while the internal behaviour of the others is reduced.
In [2], theLS i and theBS are used for a tensor algebra-
based exact computation of the underlying CTMC. In this
paper, we adapt the decomposition for a non-exact but more
efficient approximate analysis.

Definition 2 [2] LetS = hP; T;Pre;Post;m0i be a SAM
with P = P1 [ : : : [ PK [B andT = T1 [ : : : [ TK . The
equivalence relationR is defined onP n B by: hp; p0i 2 R
for p; p0 2 Pi iff there exists a non-directed path� in Ni

from p to p0 such that� \ TI = ; (i.e., containing only
internal transitions). Ther(i) different equivalence classes
defined inPi with i = 1; : : : ;K by the relationR are de-
noted asP j

i with j = 1; : : : ; r(i).

The next step is to define and compute the sets of MSIP’s
needed for the reduction process.

Definition 3 [5] LetN be a net andp be a place with in-
cidence vectorlp = C[p; �]. The placep is a MSIP inN if
there existsy � 0 such thaty[p] = 0 andlp = y�C. The set
of places inkyk are calledimplying placesofp (wherekyk,
called support ofy, is the set of non-zero components ofy).

An algorithm for the computation of a setHj
i of MSIP’s

for each equivalence classP j
i defined in a module by means

of relation R was proposed in [2]. The basic idea is
to consider all the MSIP’spy derived from theminimal



P -semiflowsy of the subnet induced byP j
i (i.e., py is the

place with incidence vectorlpy = y � C, wherey is such

thaty �C[P j
i ; T

j
i ] = 0;y � 0, y has minimal support).

A place is implicit, under interleaving semantics, if it
can be deleted without changing the firing sequences. Each
MSIP ofHj

i added toN needs an initial marking for mak-
ing it implicit. In [5], an efficient method for computing
such marking is presented.

The next step for the definition of theLS i and theBS is
to define anextended system(ES).

Definition 4 [2] LetS = hP; T;Pre;Post;m0i be a SAM
with P = P1 [ : : : [ PK [ B andT = T1 [ : : : [ TK . The
extended systemES is obtained fromS by adding all the
places inHj

i , j = 1; : : : ; r(i); i = 1; : : : ;K with their inci-
dence vectors and the initial marking necessary for making
them implicit.

Consider, for instance, the SAM given in Fig. 1.a.
The original net systemS is the net without the places
H11 and H21. These places are the MSIP’s computed
to summarise the internal behaviour of the two modules.
PlaceH11 summarises the module 1 (the subnet generated
by nodes whose tags begin withP1 or T1), and placeH21

summarises the module 2. TheES is the net system of
Fig. 1.a (adding toS the placesH11 andH21).

From theES , we can build theLS i andBS.

Definition 5 [2] LetS = hP1[ : : :[PK [B; T1[ : : :[TK ;
Pre;Post;m0i be a SAM andES its extended system.
i) The low level systemLSi for i = 1; : : : ;K of S is the
net system obtained fromES by deleting all the nodes inS
j 6=i(Pj [ (Tj nTI)) and their adjacent arcs.

ii) The basic skeletonBS of S is the net system obtained
fromES by deleting all the nodes in

SK

j=1(Pj [ (Tj nTI))
and their adjacent arcs.

In eachLS i all the modulesNj with j 6= i, are reduced
to their interface transitions and to the implicit places that
were added in theES , while Ni is fully preserved. Sys-
temsLSi represent different low level views of the original
model. In theBS all the modules are reduced, and it con-
stitutes a high level view of the system.

In Fig. 1.b. theLS1 of Fig. 1.a is depicted. TheBS
is obtained by deleting from Fig. 1.b the nodes whose tags
begin withP1 andT1.

By construction, since the original net is conservative
then theLS i and theBS are also conservative, so the reach-
ability sets of all these subsystems are finite. The main re-
sult about the behaviour of the constructed subsystems is
the following.

Property 6 [2] LetS be a SAM,LS i its low level systems
for i=1,. . . , K,BS its basic skeleton, andL(S) the language
of firing sequences ofS. Then:
i) L(S)jTi[TI � L(LS i) for i = 1; : : : ;K.
ii) L(S)jTI � L(BS).

The above property states that the reduction technique
recalled here does not remove but possibly adds new paths
between interface transitions.

3. Guaranteeing subsystems ergodicity

From the result stated in Property 6, it follows that the
RG’s ofLS i andBS include at least the projections (on the
corresponding preserved nodes) of the reachable markings
of the original system. They also reproduce the projections
on the preserved transitions of the firing sequences of the
original system. But since the inclusion in the statement
of Property 6 is not strict, the RG’s of the subsystems may
possibly include new (let us say)spuriousmarkings and fir-
ing sequences that do not correspond to actual markings and
firing sequences of the original system. In some cases, this
non desired behaviour can lead to non ergodic systems. In
this section we present a technique to avoid such undesired
behaviour, guaranteeing ergodicity of the subsystems. Er-
godicity of subsystems is needed to apply this decomposi-
tion technique to approximate analysis since the underlying
CTMC’s of subsystems must be solved.

Consider, for example, the system given in Fig. 1.a. Cut-
ting the system through the placesB1 to B4 and applying
the reduction technique of the previous section to the right
hand side subnet, theLS1 of Fig. 1.b is obtained. In the
original system after the firing of interface transitionI22
only transitionI23 can be fired, but inLS1 it is also pos-
sible to fire transitionI24 after the firing of transitionI22.
This new possible firing makesLS1 non live (the sequence
� = I12I22I24 is firable inLS1 and the marking produced
by the firing of� isB4P13 that is a total deadlock).

In other words, the underlying CTMC’s of the subsys-
tems may be non ergodic.

There is a direct way to adjust these CTMC’s to assure
ergodicity. In general, the RG’s of the subsystems may have
several strongly connected components. To obtain an er-
godic CTMC, only the strongly connected component of
the initial marking in each subsystem must be selected. It
will be proved that these strongly connected components in-
clude, at least, all the projected states and firing sequences
of the original net system.

Theorem 7 Let S be a SAM,ES, LS i with i = 1; : : : ;K
andBS its extended, low level and the basic skeleton sys-
tems, respectively. LetRG�(LS i) and RG�(BS) be the
strongly connected components ofRG(LS i) andRG(BS),
resp., that contain the initial marking. LetRS�(LS i) and
RS�(BS) be the states ofRG(LS i) andRG(BS), resp. Let
L�(LS i) andL�(BS) be the language of firing sequences
ofRG�(LS i) andRG�(BS), respectively. Then:
i) L(S)jTi[TI � L�(LS i) for i = 1; : : : ;K and
L(S)jTI � L�(BS).

ii) RS(ES)jPi[H[B � RS�(LS i) for i = 1; : : : ;K and
RS(ES)jB[H � RS�(BS).



Proof: Consider the extended systemES of S. By definition, all the

places inH =
SK

i=1
Hi are implicit inES. ThereforeL(S) = L(ES).

Since S is assumed reversible,m0 is a home state(if this is not
the case, butS has home state, any home state can be considered as
the new initial marking and the result is still true). Given a marking
m 2 RS(ES), by reversibility ofES, there exists�; � 2 L(ES) such
thatm0

�
�!m

�
�!m0. Letm0i = m0jPi[H[B be the initial marking

of LSi andm0 = mjPi[H[B be the projection ofm over the places
of LSi. Let �0 = �jTi[TI and� 0 = � jTi[TI. It must be proved that
m
0 2 RS�(LSi) and�0 2 L�(LSi). By definition ofES, it is clear

that the marking of the places inH [ B is only changed by the firing of
transitions inTI, and the marking of the places inPi is only changed by

the firing of transitions inTi. Then, inLSi, m0i
�0

�!m0 �
0

�!m0i, so
m
0 2 RS�(LSi) and�0 2 L�(LSi). }

The strongly connected components of a directed graph
can be efficiently computed with a time complexity of
O(max(n; jEj)), wheren is the number of nodes of the
graph andjEj the number of edges [7].

The above theorem gives a general technique applicable
to any structurally live, structurally bounded and reversible
SAM to obtain, from the subsystems, ergodic CTMC’s
available for subsequent computations.
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Figure 2. (a) A SAM, (b) its LS1 and (c) its BS.

In the case of Fig. 1,RG(LS1) has two strongly con-
nected components. One of them with all the states but
B4P13 and the other one with only the stateB4P13 (the
deadlock marking). The strongly connected component of
the initial marking is the first one and then, the deadlock
markingB4P13 is removed in the process.

It must be pointed out thatRG�(LS i) andRG�(BS)
may still include spurious markings (and/or spurious firing
sequences) that do not correspond to the projection of any
marking (firing sequence) of the original system over the
preserved nodes.

For example, in Fig. 2.a a weighted marked graph is de-
picted. Cutting the system through the placesB1 andB2

and applying the reduction technique of the previous sec-
tion, theLS1 of Fig. 2.b is obtained. Now, the underly-
ing CTMC of LS1 is ergodic, so by computing in it the
strongly connected component of the initial marking, the
entire CTMC is obtained. But in this CTMC, there are spu-
rious markings and firing sequences that were not possible
in the original system. For example, in the original system,
m[B1] �m[B2] = 0, for any reachable marking, but inLS1,
the markingB1B2 is reachable. This marking is not a pro-
jection of any reachable marking of the original system over
the places ofLS1.

4. Structured view of PN’s (RG level)

In many cases the technique developed in previous sec-
tion is enough for getting good approximations with itera-
tive algorithms like that presented in section 5, but in some
cases these approximations may be very poor. In our opin-
ion, the explanation comes from the following two prob-
lems: (P1) The introduction of spurious markings (reach-
able markings in the subsystems that do not correspond to
projections of reachable markings of the original system).
In the example of Fig. 2 the stateB1B2 is not reachable in
the original system, but it becomes reachable in the subsys-
tems. And the second problem (P2) is the ‘inadequate’ ag-
gregation of different states of the original system (aggrega-
tion of states not connected by internal transitions) into the
same state in the subsystems. In the example of Fig. 2 the
statesP11P21 andP12P22 are aggregated in the same state
H11H21 in theBS. This aggregation in theBS introduces
spurious firing sequences in the submodel. Now, from state
H11H21, it is possible to fire transitionsI11 andI22 (this
situation was not possible in the original system). Making
computations with this aggregated CTMC leads to very bad
results. The same problems can appear in more complex
nets.

In this section we develop the basis for the solution of
these problems. First, a structured view of the RG of a SPN
will be explained. With this view it is possible to compute
and store in a decomposed manner the RG of the original
model. Thus, this view can be applied not only for approx-
imate analysis but also for other analysis techniques. After
that, this representation of the RG of the original system is
used for the generation of the subsystems. Several possible
subsystems can be generated. In subsection 4.1 the prob-
lem (P1) is completely solved (any reachable state of any
subsystem is the projection of a state of the original system).
In subsection 4.2 also the second problem (P2) is solved.



Definition 8 Let S be a SAM and RG(S) its RG. LetRi

with i = 1; : : : ;K be the following equivalence relations
defined on the set of vertices of RG(S): 8s1; s2 vertices of
RG(S), hs1; s2i 2 Ri iff there exists a non-directed path�
in RG(S) froms1 to s2 containing only transitions inTjnTI
with j 6= i. LetR0 be the following equivalence relation
defined on the set of vertices of RG(S): 8s1; s2 vertices of
RG(S), hs1; s2i 2 R0 iff there exists a non-directed path�
in RG(S) froms1 to s2 containing only transitions inT nTI.

The following property trivially follows from the defini-
tion.

Property 9 Let S be a SAM andRi with i = 0; : : : ;K
the equivalence relations defined above. Then for each
i = 1; : : : ;K we haveRi � R0. LetDi with i = 1; : : : ;K
be the set of states of RG(S) belonging to an arbitrary
equivalence class induced byRi. Then, there exists an
equivalence classD0 induced byR0 such thatDi � D0.

Definition 10 LetG1 = (V1; E1; L1), G2 = (V2; E2; L2)
be two directed labelled graphs. The productG of G1 and
G2 (denoted byG1�G2) is another directed labelled graph
G = (V;E; L) such that:V = V1 � V2 (Cartesian prod-
uct), L = L1 [ L2 andE((s11; s21); (s12; s22)) = t iff
(s11 = s12 and E2(s21; s22) = t) or (s21 = s22 and
E1(s11; s12) = t).
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Figure 3. Product of directed labelled graphs

Fig. 3 shows the product of two directed labelled graphs.

Definition 11 Let S be a SAM and RG(S) its RG. LetD
be the directed labelled subgraph of RG(S) generated by
the states with a common given fixed marking in the buffers
(the subgraph composed by the states and the labelled edges
joining them). A breadth-first search in RG(S) induces a
breadth-first search inD. Consider the breadth-first span-
ning forest computed inD. The rootH of a tree of the span-
ning forest is aheadof D iff there is not any cross edge1

arriving atH .

1See [7] for the definition of cross edge in a breadth-first search.

Property 12 LetS be a SAM and RG(S) its RG. LetD be
the directed labelled subgraph of RG(S) generated by the
states with a common given fixed marking in the buffers.
Let H be a head ofD, DH be the directed labelled sub-
graph generated by the set of successors ofH in D andDi

H

with i = 1; : : : ;K the aggregation ofDH induced byRi

(the quotient setDH

�
Ri). ThenDH = D1

H � � � � �DK
H .

Proof: Let Hi with i = 1; : : : ;K be the equivalence class ofH in

DH

�
Ri. Let J 2 DH . Then there exists� such thatH �

�!J and�
composed only by internal transitions ofS. Let�i with i = 1; : : : ;K be
the projection of� on the internal transitions ofNi andJi be such that
Hi �i�!Ji (�i is firable fromHi in Di

H
by concurrency among the inter-

nal transitions ofNi andNj with i 6= j). ThenJ = (J1; : : : ; JK) )
J 2 D1

H
� � � � �DK

H
.

Let (J1; : : : ; JK) 2 D1
H
� � � � � DK

H
. Then there exists�i with

i = 1; : : : ;K such thatHi �i�!Ji. Let � = �1 � � ��K . By concur-
rency among internal transitions inNi andNj with i 6= j, � is firable
fromH in DH . LetJ be such thatH �

�!J . ThenJ = (J1; : : : ; JK))
(J1; : : : ; JK) 2 DH . }

The above property exploits the concurrency among in-
ternal transitions in a SAM to compute the successors of a
head locally in each module and storing only the aggregated
classes in each subnet so reducing the time and memory re-
quirements for the computation of these states.

Property 13 Let S be a SAM and RG(S) its RG. LetD
be the directed labelled subgraph of RG(S) generated by
the set of states with a common given fixed marking in
the buffers. LetH1; : : : ; Hn be the set of heads ofD,
and DHi

with i = 1; : : : ; n the directed labelled sub-
graph generated by the successors ofHi in D. Then
D =

Sn

i=1D
1
Hi

�� � ��DK
Hi

, whereDj
Hi

with i = 1; : : : ; n
and j = 1; : : : ;K is the aggregated subgraph ofDHi

by
means ofRj .

This property immediately follows from the previous
one. Then the minimum information needed to generate the
states of an equivalence class ofR0 is the set of heads of
the class with their corresponding heads in each aggregated
class. In different classes of the original RG the same head
can appear in an aggregated class, so locally each aggre-
gated class can be computed and stored only once, exploit-
ing the concurrency of internal transitions at the maximum
degree.

Now we need to know what happens with the interface
transitions.

Property 14 LetS be a SAM and RG(S) its RG. LetD be
the directed labelled subgraph of RG(S) generated by the
states with a common given fixed marking in the buffers.
LetH be a head ofD, DH the directed labelled subgraph
generated by the set of successors ofH in D andDi

H with
i = 1; : : : ;K the aggregation ofDH by means of rela-
tionRi. LetS 2 Di

H . An interface transitiont 2 Tj \ TI

with i 6= j is enabled inS iff there existsS0 2 Dj
H such that

t is enabled inS0.



Proof: )) Let S0 be the state ofDj
H

in which t is enabled andHi

the class ofH in Di
H

(the head ofDi
H

). By property 12 the state
M = (: : : ; Hi; : : : ; S0; : : :) 2 D. t is enabled inM so, by concur-
rency among internal transitions ofNi and interface transitions ofNj with
i 6= j, t is enabled in all the states ofDi

H
, thust is enabled inS.

() If t is enabled inS, sinceS is an equivalence class inD, there exists
a stateM = (: : : ; S; : : : ; S0; : : :) 2 D such thatt is enabled inM
(S andS0 are thei andj-component ofM ). Aggregating by means ofRj ,

S0 2 D
j
H

andt is enabled inS0. }

Last property allows to compute locally in each mod-
ule i the interface transitions ofNi that can be fired in a
given local markingDi

H and exporting them to all the local
markings of the other modulesDj

H with j 6= i. Again, in
different classes of RG(S) by means ofR0 the same head
can appear in an aggregated class, so taking into account
the marking of buffers and the internal state inNi (in other
words the classDi

H) is enough to compute the interface
transitions enabled inDH . Moreover, a spurious interface
transition is never computed because the interface transi-
tions are computed in the corresponding module with all
the information about its input places.

Now we can present the algorithm to compute the de-
composed description of RG(S).

Algorithm 4.1
input: A SAM S
B0 :=m0jB ; initial marking on buffers
for i := 1 to K do
Hi :=m0jPi

; breadth-first search fromHi in Ni

H := (H1; : : : ; HK)
insert head(B0; H) in the queue
while queue of heads non emptydo

(B;H) := first head of the queue;L := ;
for j := 1 to K
L := L [ fIj 2 Tj \ TI j Ij enabled inHjg

for each Ij 2 L do
for each successorhj of Hj in Nj s. t.Ij is enableddo
(B; hj)

Ij
�!(B0; H 0

j); H
0 := (H1; : : : ; H

0
j ; : : : ; HK)

if H 0
j is newthen breadth-first search fromH 0

j in Nj

if B0 is newthen insert head(B0; H 0)
elseisnew := TRUE

for eachH 00 s. t. (B0; H 00) is headdo
if H 00 �

�!H 0, � � T n TI then isnew := FALSE
else ifH 0 �

�!H 00 with � � T n TI then
replaceH 00 byH 0; isnew = FALSE

else ifH 0 andH 00 have a common successorthen
makeH 0 andH 00 related inB0

if isnew = TRUEthen insert head(B0; H 0)
output:Set of heads

RG(S)jNi
for i = 1; : : : ; K

In the above algorithm given the initial marking of a
SAM, all the firing sequences composed only by internal
transitions are computed locally in each module by means
of a breadth-first search in each module. The local states
computed in each module are stored locally (not all the pos-
sible combinations among them). Then a queue of unex-
plored heads is maintained in the while-loop. A head in the
output of the algorithm is a state ofS that is reachable only

after the firing of an interface transition. During the algo-
rithm the heads are replaced by other ones at the moment
in which a predecessor by means of internal transitions is
computed. In each iteration of the while-loop, the first head
(B;H) of the queue is studied.B is the marking of the
buffers andH = (H1; : : : ; HK) the local markings in each
module. Given a headH , locally in each modulej, the
set of interface transitions ofTj that can be fired after any
firing sequence of internal transitions are computed. The
union of these sets is the setL of interface transitions en-
abled in the equivalence class of(B;H) by means ofR0.
After that, each transtitionIj of the setL is fired (j is
the number of the module). The firing ofIj only changes
buffers (B to B0) and the local marking of modulej. In
general several successorshj of Hj in Nj can enableIj .
Then for eachhj we must fireIj to produce a new local
markingH 0

j . The next step is to check if the local mark-
ing H 0

j is new. If this is the case a new local breadth-first
search is done in modulej computing and storing new local
states. Then we must test if the reached marking(B0; H 0)
is a new head to insert in the queue. To do that we test
if B0 is new (then it is clearly a new head). IfB0 is not
new, we must compareH 0 with all the computed heads of
the form(B0; H 00). Four cases are possible. If(B0; H 0) is
reachable from(B0; H 00) by means of internal transitions
(B0; H 0) is erased. If(B0; H 00) is reachable from(B0; H 0)
then(B0; H 0) replaces(B0; H 00). If (B0; H 00) and(B0; H 0)
have a common successor then we mark the two heads as
related. It is important to store this information for the sub-
sequent phase. In other case(B0; H 0) is a new head. The
previous tests about reachability between states can also be
done locally in each module.

The output of this algorithm is a decomposed descrip-
tion of RG(S) (computed with less memory and time re-
quirements than in the classical way). Applying proper-
ties 12 and 14 we could precisely compute RG(S). Now,
we apply this reduced description of RG(S) to generate the
RG’s of the reduced submodelsLS i andBS. Two differ-
ent reduced submodels will be computed. In subsection 4.1
the projections of the markings of RG(S) on the preserved
nodes in the submodels will be computed and in subsec-
tion 4.2 the aggregations of RG(S) by means of relationsRi

with i = 0; : : : ;K will be computed.

4.1. Reducing spurious markings

In this subsection we use the decomposed description of
the RG(S) computed with algorithm 4.1 for the generation
of the projections of RG(S) on the preserved places ofLS i

andBS. So, the difference of this second decomposition
technique with respect to the first one presented in section 3
is that the subsystems have no spurious states (thus, solv-
ing the first problemP1 mentioned in the beginning of this
section). In this way we obtain the smallest possible RS for
each subsystem.



Definition 15 Let S be a SAM and RG(S) its RG. LetR0
i

with i = 1; : : : ;K be the following equivalence relation
defined on the set of states of RG(S): 8s1; s2 states of
RG(S), hs1; s2i 2 R0

i iff s1jPi[B = s2jPi[B . Let R0

be the following equivalence relation defined on the set of
states of RG(S): 8s1; s2 states of RG(S), hs1; s2i 2 R0

iff s1jB = s2jB . We denote by RG0i with i = 0; : : : ;K the
RG resulting after the aggregation of all the states in RG(S)
belonging to the same equivalence class ofR0

i.

RG0
0 is the reduced RG somehow related to theBS (it is

the result of aggregating all the states with the same marking
on the buffers) and RG0i with i = 1; : : : ;K is the reduced
RG somehow related toLSi (i.e., the result of aggregating
all the states with the same marking in the places ofLS i).

Here is the algorithm for the generation of these reduced
RG’s.

Algorithm 4.2
input: Set of heads of a SAM

RG(S)jNi
for i = 1; : : : ; K

l 2 f0; : : : ; Kg (RG0l to generate)
H := first head (initial marking)
Ml := Hl the local initial marking
insert(H;Ml) in the queue
while queue non emptydo

P := (H;Ml) first pair of the queue
L := ; (list of enabled transitions)
in local subnetNl:

add toL interface transitions enabled in(H0;Ml)
add toL internal transitions enabled inMl

add toL interface transitions ofTj with j 6= l enabled inH
for each t 2 L do
(H;Ml)

t
�!(H 0;M 0

l )
P 0 := (H 0;M 0

l )
if (H 0

0;M
0
l ) is new in RG0l then

insertP 0 in the queue
insert(H0;Ml)

t
�!(H 0

0;M
0
l ) in RG0l

else
for t 2 TI n Tl enabled inH 0 do

if t not enabled in(H 0
0;M

0
l ) then insertP 0 in the queue

output: RG0l

In the above algorithm we maintain a queue of pairs
(H;Ml) (H is a head andMl a local marking) like in
a breadth-first search of a directed graph. Given a pair
(H;Ml), the list L of enabled transitions must be com-
puted. This listL is composed by internal transitions (in
the case of RGl with l > 0) and interface transitions. The
internal transitions and interface transitions of modulel are
computed inNl according to local state(H0;Ml) (H0 is
the marking of the buffers). The interface transitionst of
modulej with j 6= l are the transition associated to the
headH . The firing of a transition in the list generates a new
pair (H 0;M 0

l ). If the state(H 0
0;M

0
l ) is new in RGl the pair

(H 0;M 0
l ) is inserted in the queue to explore the new mark-

ing. If (H 0
0;M

0
l ) has been already computed, the interface

transitionst of modulej with j 6= l enabled inH 0 must be
tested because new transitions for the marking can appear

due to this head (the state(H 0
0;M

0
l ) may be successor of

several heads with different interface transitions enabled).
In the caseL = 0 (to compute the RG0) only the heads

must be processed (not the local markings). RG(S) can
also be computed maintaining pairs of heads with the local
marking in all the modules.

By construction, all the states of the reduced RG’s are
projections of reachable states inS. Therefore, all the spu-
rious states have been deleted and the inclusion of theo-
rem 7.ii becomes an equality now.

Note that the time and memory complexity of the gen-
ration of these reduced RG’s is less than or equal to the
complexity of the generation of the RG(LS i) of section 3
due to the fact that a spurious marking is never computed.

4.2. Reducing spurious �ring sequences

In this subsection we use the decomposed description of
the RG(S) computed with algorithm 4.1 to generate differ-
ent RG’s related to theLS i andBS with respect to the ones
in the previous subsection. In this case we will compute
the aggregations of RG(S) by means of relationsRi with
i = 0; : : : ;K defined before. With this third decomposition
technique the subsystems have no spurious states (as in the
second one) but also the aggregation of states not connected
by internal transitions in RG(S) is avoided (solving the sec-
ond problemP2mentioned in the beginning of this section).
With respect to the first technique (section 3) no spurious
states are computed in the subsystems and with respect to
the second one (subsection 4.1), the RG’s of the subsystems
may have more states but without anomalous aggregations,
thus eventually improving the approximations.

Definition 16 Let S be a SAM and RG(S) its RG. LetRi

with i = 0; : : : ;K be the equivalence relations defined in
Definition 8. We denote by RGi with i = 0; : : : ;K the RG
resulting after the aggregation of all the states in RG(S)
belonging to the same equivalence class ofRi.

RG0 is the reduced RG somehow related to theBS (it is
the result of aggregating all the states connected by internal
transitions ofS) and RGi with i = 1; : : : ;K is the reduced
RG related toLSi (it is the result of aggregating all the
states connected by internal transitions of subnetsNj with
i 6= j). In the example of Fig. 2, the statesP11P21 and
P12P22 are not aggregated in RG0 (while they do were ag-
gregated in the first and second technique) because they are
not connected through an internal transition. Note that the
time and memory complexity of this operation is less than
or equal to the complexity of the generation of the RG(LSi)
of section 3.

Here is the algorithm for the generation of the reduced
RG’s.



Algorithm 4.3
input: Set of heads of a SAM

RG(S)jNi
for i = 1; : : : ; K

l 2 f0; : : : ; Kg (RGl to generate)
H := initial marking;Ml := Hl the local initial marking
insert(H;Ml) in the queue
while queue non emptydo

P := (H;Ml) first pair of the queue
L := ; (list of enabled transitions)
in local subnetNl:

add toL interface transitions enabled in(H0;Ml)
add toL internal transitions enabled inMl

add toL interface transitions ofTj with j 6= l enabled inH
for each t 2 L do
(H;Ml)

t
�!(H 0;M 0

l )
P 0 = (H 0;M 0

l )
if P 0 is new in RGl then

insertP 0 in the queue
insertP t

�!P 0 in RGl

else if9(H 00;M 0
l ) in RGl with H 00 related toH 0

for t 2 TI n Tl enabled inH 0 do
if t not enabled in(H 0

0;M
0
l ) then insertP 0 in the queue

output: RGl

This algorithm is very similar to the previous one. They
differ only in the merging proccess of the states of the sub-
systems. In algorithm 4.2 all the states of a given subsystem
with the same marking on the preserved places are merged.
Now only the states with the same marking belonging to
related heads can be merged because two given states are
connected through a path of internal transitions iff they be-
long to the same head or related heads.

5. Application to iterative throughput approx-
imation methods

In this section we apply the previous decomposition
techniques for approximate throughput computation. The
method that we consider is, basically, the sameresponse
time preservation methodused in [1, 12, 10, 11]. In each
LSi a unique module ofS with all its places and transi-
tions is kept. So, inLS i interface transitions of modulej
(for j 6= i) approximate the response time of modulej. The
algorithm is the following:

Algorithm 5.1
selectthe modules
derive RG(LSi) for i = 1; : : : ; K and RG(BS)
give an initial service rate�(0)

i for i = 2; : : : ; K
j := 0 fcounter for iteration stepsg
repeat
j := j + 1
for i := 1 to K do

solveLSi: In: �
(j)
l for l < i and�(j�1)

l for i < l � K

Out: initial rates�i and thr.�(j)
i of TI \ Ti

solveBS: In: �
(j)
l for l < i and�(j�1)

l for i < l � K

�i and�(j)
i for transitions inTI \ Ti

Out: actual rates�(j)
i TI \ Ti

until convergence of�(j)
1 ; : : : ;�

(j)
K

In the above procedure, once theK modules have been
selected and given some initial values�(0)

i of the rates of
the interface transitions ofNi with i = 2; : : : ;K, a cer-
tain CTMC associated toLS1 is solved. The computation
of that CTMC varies depending on which of the three tech-
niques presented in previous sections is applied.

The selection of�(0)
i for i = 2; : : : ;K does not affect

(under our experience) to the approximation obtained with
the response time preservation method. A simple option
is putting the initial rate of the transitions in the original
model. From the solution of that CTMC, the first estima-
tion�(1)

1 of the throughput of the interface transitions ofN1

can be computed. Then, the initial estimated values of ser-
vice rates of interface transitions ofN1 must be derived. To
do that, we take the initial values�(0)

1 for service rates of
interface transitions ofN1 and we scale them iteratively in
theBS until the throughput of interface transitions ofN1

in theBS and�(1)
1 are equal. The same procedure is exe-

cuted for eachLS i in a cyclic way. Each time we solveLS i

we obtain in theBS a new estimation of the interface tran-
sitions rates ofNi. The previous steps are repeated until
convergenceof the throughput approximations of the sub-
systems is achieved (if there exists).

The initial estimated values of the interface transitions
rates ofNi in LS i are computed by means of the implicit
placesHi in LS i. Let pt be the probability that the transi-
tion t 2 Ti \ TI is enabled in the reduced subnet (similar
to [1], it is an estimation of the transition utilization with
single server semantics). Then we put�

(j)
t = �t=pt (it is

an estimation of the transition rate).
The computation of the actual rates of the correspond-

ing interface transitions inBS can be implemented with
an iterative search (the initial estimated transition rates are
weighted until the throughput of the involved transitions are
equal inBS and inLS i). Now the net system (BS) has
considerably fewer states than the original one. In each it-
eration of this search, the underlying CTMC of theBS is
solved. Note that only in the first iteration the CTMC is
completely derived. For later iterations only some values
must be changed. In some cases (for instance, for FRT-
nets [3]), the relative throughputs (or visit ratios) of tran-
sitions of theBS are independent on the transition service
time (they only depend on the net structure and on the con-
flict resolution rates). In these cases, only one parameter
must be tuned up in theBS, thus a unidimensional search
can be implemented. The case of multidimensional search
shows convergence problems so it is still an open topic.

Now, convergence of the entire method and the unique-
ness of the solution should be addressed. Using the results
in [8] we were not able yet to obtain a formal proof of the
convergence of the method due to the use of theBS (the it-
erative scheme is more difficult for formal studies). But ex-
tensive testing with nets in which an unidimensional search
can be implemented in theBS shows that there exists one



and only one solution, computable in a finite number of
steps, typically between 2 and 6 if the convergence crite-
rion is that the difference between the two last estimations
of the throughput is less than 0.1%.
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Figure 4. The ES of a SAM.

Now we are going to apply the three decomposition tech-
niques to the throughput approximation of two different
non trivial examples by means of the previous response
time preservation algorithm. The first one is the SAM of
Fig. 4. It is composed of three modules interconnected
through 5 buffers (placesB1 to B5). Places that start with
H are the implicit places (the first number is the subsystem
in which they have been computed) and places that start
with P are the internal ones. Transitions that start withI
are the interface and the other are internal. The underlying
CTMC has 94080 states. In this case, the three decompo-
sition techniques produce the same aggregated submodels
LSi with i = 1; 2; 3 andBS so the approximation will
be the same. These submodels have 14640, 14640, 14400
and 5600 states, respectively.

The rates of transitions have been arbitrarily fixed as:
1.0 for transitionsT11, T13,T21, T23, I32, I34; 2.0 forT12,
T22,I11, I21, I31, I33; 3.0 forI12, I14, I22, I24; 4.0 forT31,
T32 and 5.0 forI13, I23.

LS1 LS2 LS3
�(I11) scale f. �(I21) scale f. �(I31) scale f.
0:230496 1:025007 0:223043 1:089387 0:222493 1:005589
0:223777 1:090070 0:223461 1:091612 0:223462 1:005589
0:223472 1:091621 0:223471 1:091612 0:223473 1:005589
0:223471 1:091621 0:223471 1:091612 0:223473 1:005589

Error: -0.51%

Table 1. Iteration results for the SAM in Fig. 4.

In this case, the exact throughput of transitionI11 is
0.224607. In Table 1 we present the iteration steps of
the method. Columns�(Iij) are the estimated values for
throughput of transitionIij at each iteration step. Columns

‘scale f.’ are the scale factors modifying the previous esti-
mated service rates, computed with theBS. Convergence
of the method is obtained in this case in the four iteration
step and the error was -0.51%.
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Figure 5. The ES of another SAM.

As a second example we have selected the SAM of Fig. 5
to stress the differences among the three techniques. The
names of places and transitions follow the same rules of the
previous example. The model is composed of 2 modules
interconnected through 2 buffers. All transition rates have
been set to 1.0. It has 2698 reachable states and the ex-
act throughput of transitionI11 is 0.104304. In Table 2 we
present the iteration steps of the three techniques for this
case.

Applying the first decomposition technique, the CTMC’s
associated toBS, LS1 and LS2 have 20, 310 and 828
states, respectively. The throughput approximation in this
case is 0.113586 (5 iterations), in other words an error of
8.9%.

With the second decomposition technique, the CTMC’s
associated toBS, LS1 and LS2 have 18, 211 and 487
states, respectively. The throughput approximation in this
case is 0.076916 (6 iterations), in other words an error of
-26.26%.

With the third decomposition technique, the CTMC’s as-
sociated toBS, LS1 andLS2 have 22, 211 and 487 states,
respectively. The throughput approximation in this case is
0.105939 (4 iterations), in other words an error of 1.57%.

In this case, the first technique fails due to the great num-
ber of spurious states in the CTMC’s of the subsystems
(compare the number of states ofLS2 in the first technique
with respect to the other ones). More interesting is the great
difference between the approximation of the second and
third techniques. This difference is due to the inappropri-
ate aggregation of 4 states in the CTMC associated to the
BS for the second technique (the CTMC of theLSi are the
same in the second and third techniques).

We do not compare here the overall computation time
of our algorithms with respect to the time needed for solv-
ing the entire CTMC due to two facts. The first one is



LS1 LS2 LS1 LS2 LS1 LS2

�(I11) scale f. �(I21) scale f. �(I11) scale f. �(I21) scale f. �(I11) scale f. �(I21) scale f.
0:174202 1:030663 0:124153 1:209259 0:158793 0:998916 0:105566 1:139154 0:158793 1:048865 0:110149 1:031971
0:114948 1:229055 0:113760 1:255224 0:082152 0:949469 0:079294 1:253320 0:105799 1:003225 0:105927 1:034708
0:113605 1:236202 0:113590 1:256088 0:077370 0:950758 0:077126 1:265756 0:105940 1:003435 0:105941 1:034708
0:113587 1:236291 0:113587 1:256088 0:076956 0:950928 0:076934 1:266884 0:105939 1:003435 0:105941 1:034708
0:113586 1:236291 0:113587 1:256088 0:076919 0:950950 0:076917 1:266979

0:076916 0:950950 0:076916 1:267026
First technique Error: 8.90% Second technique Error: -26.26% Third technique Error: 1.57%

Table 2. Iteration results for the SAM in Fig. 5 with the three decomposition techniques.

that the implementation of our algorithm is just a prototype
to make experiments about convergence and relative error.
The second one is that we made experiments with ‘simple’
examples (500000 states at most) in order to obtain the ex-
act solution of the original model (to compare with the ap-
proximation). Theses examples take just a few minutes of
computation and the reduction in time is not significant. If
the original model had millions of states then we could not
compare the time complexity because it would be impossi-
ble to solve the original model with the classical technique.

6. Conclusions

State space decomposition techniques of stochastic Petri
nets have been considered for numerical computation of
performance indices and, in particular, for throughput ap-
proximation based on response time preservation of a sub-
model. The decomposition is induced by the net structure
of the original model, for which an structured view is as-
sumed. Within this framework, three different variants for
obtaining the CTMC of the auxiliary submodels have been
presented. In the first one, only ergodicity of the CTMC
of the submodels is assured, in order to be able to compute
meaningful results. In the second technique, a reduction
of spurious states is achieved with the goal of reducing the
gap between the behaviour of the submodels and that of the
original system. The third technique seeks for the same ob-
jective but reducing the firing sequences of the submodels
that do not correspond to real (projections of) sequences of
the original model.

The accuracy of the techniques has been compared using
a couple of models that are specially sensible to spurious
behaviour. In most practical cases, our experience is that
the obtained results do not differ so much.

The gain of state space decomposition techniques with
respect to the classical exact solution algorithm (solution
of the underlying CTMC of the original model) is in both
memory and time requirements. With respect to space, the
infinitesimal generator of the CTMC of the whole system
is never stored. Instead of that, the generator matrices of
smaller subsystems are stored. With respect to time com-
plexity, we do not solve the CTMC isomorphous to the
original system but those isomorphous to the derived sub-
systems.
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