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Abstract

Net-driven decomposition techniques are considered in
this paper in order to reduce the state explosion problem for
the computation of performance indices of stochastic Petri
nets. Basically, the idea is to represent (or partially rep-
resent) in a decomposed manner the reachability graph of
the model so it can be used for exact and/or approximated
performance analysis. In that way, the complete storing of
the graph is avoided and, for the case of approximate analy-
sis, the solution of the isomorphous continuous time Markov
chain is substituted by the solution of smaller components.
The techniques are applied to a couple of non-trivial mod-
els.

1. Introduction

One of the major drawbacks for the use stbchastic
Petri nets(SPN's) [9] in performance evaluation of real sys-
tems is probably thetate explosion problemThis paper
tries to contribute to the solution of that problem propos-
ing some ideas and techniques fanet-driven decomposi-
tion of the reachability graph(RG) of the original system,
leading to the generation of the continuous time Markov

chains (CTMC's) associated to several smaller submodels

whose solution can be combined for an approximated per-
formance analysis. An iterativesponse time approxima-

approximate throughput computation for particular net sub-
classes and [2] in the framework tdnsor algebra-based
exact solutiorof general SPN’s. Other related work is [4].
We assume that the reader is familiar with concepts and
notation of P/T' nets [6] and SPN’s [9]. The paper is or-
ganised as follows. In section 2, we review a decompo-
sition technique for general stochastic Petri nets that was
proposed and applied to the exact solution of the under-
lying CTMC in [2]. For our purpose, that decomposi-
tion technique has a main problenthe derived subsys-
tems may be non-ergodithus, the solution of their un-
derlying CTMC'’s could make no sense). In section 3, we
solve the mentioned problem by presenting a very sim-
ple technique to build ergodic CTMC'’s from the subsys-
tems. Even though that technique allows to compute a
(meaningful) solution in all cases, in some situations the
result may be not very accurate due to the inclusion of
spurious statesn the submodels that do not correspond
to actual ones in the original system and to the ‘inade-
guate aggregation’ of different states of the original sys-
tem into the same state in the subsystems. For solving
more accurately those cases, we present in section 4 a
structured view of the RG of the original model that al-
lows to compute and store it in a decomposed manner.
In section 4.1, the decomposed representation of the RG

is used to eliminate all the spurious states, while in sec-

tion algorithmis the technique selected here for the combi- tion 4.2 the aggregation of states not connected by in-
nation of the solutions of the (CTMC's of the) submodels in ternal transitions is avoided. The structured view of the
order to approximate theteady-statéhroughput of transi- ~ RG of the original model presented in section 4 is ap-
tions (number of firings per time unit) in the original model plied here to derive approximated values of throughput
(provided that such steady-state behaviour exists). How-but it could be also an alternative technique to the ten-
ever, one of the techniques that will be presented gives ansor algebra-based solution presented in [2] for exact analy-
exact decomposed representation of the RG of the originalsis, since it is based on the construction of an exact de-
system, therefore it could be useful also for exact perfor- composed representation of the RG of the model. In
mance analysis. section 5, an iterative response time approximation algo-

Previous works in the same direction by the authors andrithm (similar to that presented in [1]) is explained as well
other (co-)authors are [1, 11, 12, 10] in the framework of as an example of application to a couple of non-trivial

*This work has been developed within the project TAP98-0679 of the models. Some concluding remarks are stressed in sec-
Spanish CICYT. tion 6.




2. Structural decomposition of PN systems and
two-level abstract views

In this section, we review a decomposition technique
for general PN systems that was proposed in [2] in the
framework oftensor algebra-based exact solutiofiSPN's.
See [2] for the detalils.

2.1. Structured view of PN’s (net level)

An arbitrary PN system can always be observed as a
set ofmoduleqdisjoint simpler PN systems) that asynchro-
nously communicate by means of a sebaffers(places).

Definition 1 (SAM) [2] A strongly connected PN system,
S=(PU...UPgUB,T1U...UTk,Pre,Post, mg), is
a System of Asynchronously Communicating Modules
simply a SAM, if:
1L.PNP=0foralli,je{l,...,K}andi # j;
2.T;NnT; =0foralli,j € {1,...,K}andi # j;
3.P,NnB=~0forallie{1,...,K};

4.T; = P,* U*P;foralli € {].,,K}

The net systemé\;, mp;) = (P;, T;, Pre;, Post;, mg;)
with ¢ € {1,...,K} are called modulesof S (where
Pre;,Post;, andmg; are the restrictions ofPre, Post,
andmg to P; andT;). Places inB are calledbuffers Tran-
sitions belonging to the sdtl = *B U B* are calledinter-
facetransitions. Remaining onéé7; U...UTxk) \ TI) are
calledinternaltransitions.

Figure 1. (a) A SAM and (b) its LS1.

A SAM with two modules (the subnets generated by
nodes whose tag starts with or T; fori = 1, 2) and four
buffers (B, B», Bs, B,) is depicted in Fig. 1.a.

All the strongly connected PN systems belong to the
SAM class with the only addition of structured vievof the
model (either given by construction or decided after obser-
vation of the model). Many structured views are possible,
ranging from the extreme consideration of each transition as
a different module (all the places being buffers) to consider
that the system is a single module (and there are no buffers).

With respect to timing interpretation, we assume that in-
dependent, exponentially distributed random variables are
associated to the firing of transitions with single-server se-
mantics as in classical SPN’s [9]. The techniques presented
in this paper can be easily extended to infinite-server se-
mantics. We suppose that a unique steady-state behaviour
exists to compute steady-state performance indices of the
model. Even more, we restrict giructurally live, struc-
turally boundedthereforeconsistenaindconservativiand
reversible(thereforeergodig PN systems.

2.2. Reduction rule and abstract views

In [2], the reduction rule that follows has been intro-
duced for theinternal behaviourof modules of a SAM.
Each module is decomposed into several pieces and each
piece is substituted by a set of new special places called
marking structurally implicit place$MSIP’s). Later, using
that reduction, the original model can be decomposed into
a collection oflow level system&LS; withi = 1,..., K)
and abasic skeletorf5S). In eachLS;, only one module
is kept while the internal behaviour of the others is reduced.
In [2], the LS; and theBS are used for a tensor algebra-
based exact computation of the underlying CTMC. In this
paper, we adapt the decomposition for a non-exact but more
efficient approximate analysis.

Definition 2 [2] LetS = (P, T, Pre, Post, mg) be a SAM
withP =P U...UPkUBandT =T, U...UTk. The
equivalence relatiotR is defined onP \ B by: (p,p') € R
for p,p’ € P; iff there exists a non-directed pafh in \;
from p to p’ such thatll N TI = § (i.e., containing only
internal transitions). The () different equivalence classes
defined inP; withi = 1,..., K by the relationR are de-
noted asP/ withj = 1,...,r(i).

The next step is to define and compute the sets of MSIP’s
needed for the reduction process.

Definition 3 [5] Let N be a net and be a place with in-
cidence vectot, = C|p,]. The placep is a MSIP in\ if
there existy > 0 such thaty[p] = 0andi, = y-C. The set
of places inj|y|| are calledimplying placef p (where||y/||,
called support oy, is the set of non-zero componentshf

An algorithm for the computation of a sét/ of MSIP’s
for each equivalence clag¥ defined in a module by means
of relation R was proposed in [2]. The basic idea is
to consider all the MSIP'g, derived from theminimal



P-semiflowsy of the subnet induced b?ij (i.e., py is the
place with incidence vectdy,, = y - C, wherey is such
thaty - C[P/,T/] = 0,y > 0, y has minimal support).

A place isimplicit, under interleaving semantics, if it

The above property states that the reduction technique
recalled here does not remove but possibly adds new paths
between interface transitions.

can be deleted without changing the firing sequences. Eaclg, Guaranteeing subsystems ergodicity

MSIP of H/ added ta\" needs an initial marking for mak-
ing it implicit. In [5], an efficient method for computing
such marking is presented.

The next step for the definition of th&S; and theBS is
to define arextended syste(@S).

Definition 4 [2] LetS = (P, T, Pre, Post, mg) be a SAM
withP =P U...UPkUBandT =T, U...UTk. The
extended syste@iS is obtained fromS by adding all the
placesinH],j=1,...,r(i),i = 1,..., K with their inci-
dence vectors and the initial marking necessary for making
them implicit.

Consider, for instance, the SAM given in Fig. 1l.a.
The original net systend is the net without the places
H,, and H,;. These places are the MSIP’s computed
to summarise the internal behaviour of the two modules.

From the result stated in Property 6, it follows that the
RG's of LS; andBS include at least the projections (on the
corresponding preserved nodes) of the reachable markings
of the original system. They also reproduce the projections
on the preserved transitions of the firing sequences of the
original system. But since the inclusion in the statement
of Property 6 is not strict, the RG’s of the subsystems may
possibly include new (let us sagpuriousmarkings and fir-
ing sequences that do not correspond to actual markings and
firing sequences of the original system. In some cases, this
non desired behaviour can lead to non ergodic systems. In
this section we present a technique to avoid such undesired
behaviour, guaranteeing ergodicity of the subsystems. Er-
godicity of subsystems is needed to apply this decomposi-
tion technique to approximate analysis since the underlying

PlaceH;; summarises the module 1 (the subnet generatedCTMC’s of subsystems must be solved.

by nodes whose tags begin with or 7}), and placeH»;
summarises the module 2. TB& is the net system of
Fig. 1.a (adding t& the placedd;; andHay).

From thefS, we can build theS; and5S.

Definition 5 [2] LetS = (P U...UPxUB, ThU...UTk,
Pre, Post, mg) be a SAM and'S its extended system.

i) The low level systemdS; fori = 1,..., K of S is the
net system obtained frofiS by deleting all the nodes in
U, (P; U (T \ TI)) and their adjacent arcs.

i) The basic skeletoiBS of S is the net system obtained
from £S by deleting all the nodes ilnjf:l(Pj U (T \ TI))
and their adjacent arcs.

In eachLS; all the modulesV; with j # i, are reduced
to their interface transitions and to the implicit places that
were added in th&€S, while \; is fully preserved. Sys-
temsLS; represent different low level views of the original
model. In theBS all the modules are reduced, and it con-
stitutes a high level view of the system.

In Fig. 1.b. thelS; of Fig. 1.a is depicted. Th8S
is obtained by deleting from Fig. 1.b the nodes whose tags
begin with P, andT.

By construction, since the original net is conservative
thenthelS; and theBS are also conservative, so the reach-
ability sets of all these subsystems are finite. The main re-

sult about the behaviour of the constructed subsystems ig

the following.

Property 6 [2] LetS be a SAMLS; its low level systems
fori=1,..., K, BS its basic skeleton, arid(S) the language
of firing sequences &. Then:

I) L(S) T;UTI - L(,CS,) fori = 1,... ,K.

i) L(S)|11 C L(BS).

Consider, for example, the system given in Fig. 1.a. Cut-
ting the system through the plac8s to B, and applying
the reduction technique of the previous section to the right
hand side subnet, théS; of Fig. 1.b is obtained. In the
original system after the firing of interface transitidsy
only transitionl,3 can be fired, but inCS; it is also pos-
sible to fire transitionls, after the firing of transition,s.

This new possible firing make4S; non live (the sequence
o = I15152 154 is firable in£S, and the marking produced
by the firing ofo is B, Py 5 that is a total deadlock).

In other words, the underlying CTMC's of the subsys-
tems may be non ergodic.

There is a direct way to adjust these CTMC's to assure
ergodicity. In general, the RG’s of the subsystems may have
several strongly connected components. To obtain an er-
godic CTMC, only the strongly connected component of
the initial marking in each subsystem must be selected. It
will be proved that these strongly connected componentsin-
clude, at least, all the projected states and firing sequences
of the original net system.

Theorem 7 LetS be a SAMES, LS; withi = 1,... K
and BS its extended, low level and the basic skeleton sys-
tems, respectively. L&RG*(LS;) and RG*(BS) be the
strongly connected componentsRi& (LS ;) andRG(BS),
esp., that contain the initial marking. L&S*(LS;) and
RS*(BS) be the states oRG(LS;) andRG(BS), resp. Let
L*(LS;) andL*(BS) be the language of firing sequences
of RG*(LS;) andRG* (BS), respectively. Then:
i) L(S)|r,umt CL*(LS;) fori=1,..., K and
L(S)|T1 C L*(BS).
i) RS(ES)|p,urus € RS*(LS;) fori=1,..., K and
RS(£S)|pun C RS™(BS).



Proof: Consider the extended systefis of S. By definition, all the It must be pointed out thaBRG*(L£S;) and RG*(BS)
places inH = Ui’; H; are implicit in £S. Thereforel(S) = L(ES). may still include spurious markings (and/or spurious firing
Sr’lince S isbagsgsdhgg‘;eg;'gngn ishgn:‘g"gfatztactggfbt:iioirfsiggtred assequences) that do not correspond to the projection of any
:hg Eisvevinitiual marking and the7 res{xlt is still true). Given a marking marking (firing sequence) of the original system over the
m € RS(ES), by reversibility of €S, there existsr, 7 € L(£S) such preserved nodes.
thatmo-Zym-"ymo. Letmg; = mo|p,urup be the initial marking For example, in Fig. 2.a a weighted marked graph is de-
of £LS; and m,’ = m|punuB b; the projection ofn over the places  picted. Cutting the system through the plad&sand B-
o R e b LT ) By o 5 et and applying the reducton technique of the previous sec-
that the marking of the places il U B is only changed by the firing of 10N, the LS, of Fig. 2.b is obtained. Now, the underly-
transitions inTT, and the marking of the places i is only changed by ~ ing CTMC of LS, is ergodic, so by computing in it the
the firing of transitions irZ;. Then, iN£S;, mo; % sm’ " smg;, SO strongly connected component of the initial marking, the
m’ € RS*(LS;) ando’ € L*(LS;). % entire CTMC is obtained. But in this CTMC, there are spu-
rious markings and firing sequences that were not possible
The strongly connected components of a directed graphin the original system. For example, in the original system,
can be efficiently computed with a time complexity of m[B;]-m[B,] = 0, for any reachable marking, but &S,
O(maz(n,|E|)), wheren is the number of nodes of the the markingB; B, is reachable. This marking is not a pro-
graph and E| the number of edges [7]. jection of any reachable marking of the original system over
The above theorem gives a general technique applicablghe places ofS;.
to any structurally live, structurally bounded and reversible

SAM to obtain, from the subsystems, ergodic CTMC's 4, Structured view of PN’s (RG level)
available for subsequent computations.

In many cases the technique developed in previous sec-

AT _881 =50 tion is enough for getting good approximations with itera-
JPLL 11 121 P21, tive algorithms like that presented in section 5, but in some
;2 | N cases these approximations may be very poor. In our opin-
(a) HllCa 11 T2 OH2 ion, the explanation comes from the following two prob-
o2 112 122 ZPQZ lems: 1) The introduction of spurious markings (reach-
— <10 able markings in the subsystems that do not correspond to
ot —/B2 T projections of reachable markings of the original system).
— Bl In the example of Fig. 2 the staf®, B is not reachable in
m 16 e AN the original system, but it becomes reachable in the subsys-
;’Pl; 11 121 tems. And the second problem3) is the ‘inadequate’ ag-
(b) Hllca’ T11 *O Hot gregation of different states of the original system (aggrega—
X, K tion of states not connected by internal transitions) into the
% P12 112 122 same state in the subsystems. In the example of Fig. 2 the
O ‘_8‘;‘35 -------- 3 statesP;, P»; and P, P, are aggregated in the same state
H,,H,, intheBS. This aggregation in th8S introduces
e —— —m\Bl - - spurious firing sequences in the submodel. Now, from state
t’,n "@_)E H,1Hs, it is possible to fire transitiong; and I, (this
‘\* situation was not possible in the original system). Making
() Hllq OHat computations with this aggregated CTMC leads to very bad
1 . results. The same problems can appear in more complex
. 3 nets.
:1(—8 B2 e ! In this section we develop the basis for the solution of

Figure 2. (a) A SAM, (b) its LS1 and (c) its BS.

these problems. First, a structured view of the RG of a SPN
will be explained. With this view it is possible to compute
and store in a decomposed manner the RG of the original
model. Thus, this view can be applied not only for approx-
imate analysis but also for other analysis techniques. After

In the case of Fig. 1IRG(LS;) has two strongly con- that, this representation of the RG of the original system is
nected components. One of them with all the states butused for the generation of the subsystems. Several possible
B4 P53 and the other one with only the stai& Pi3 (the subsystems can be generated. In subsection 4.1 the prob-
deadlock marking). The strongly connected component oflem (P1) is completely solved (any reachable state of any
the initial marking is the first one and then, the deadlock subsystem is the projection of a state of the original system).
markingB, P, 3 is removed in the process. In subsection 4.2 also the second probl&®) (s solved.



Definition 8 Let S be a SAM and R®)) its RG. LetR;
withi = 1,..., K be the following equivalence relations
defined on the set of vertices of RG( Vs, s» vertices of
RG(S), (s1,s2) € R; iff there exists a non-directed path

in RG(S) from s, to s, containing only transitions iff’; \ TT
with j # i. Let Ry be the following equivalence relation
defined on the set of vertices of RGi( Vs, s2 vertices of
RGES), (s1,s2) € Ry iff there exists a non-directed path

in RG(S) from s; to s, containing only transitions ifi"\ T1.

The following property trivially follows from the defini-
tion.

Property 9 Let S be a SAM andR; with i 0,...,.K

the equivalence relations defined above. Then for each
i=1,...,KwehaveR; C Ry. LetD; withi =1,..., K

be the set of states of R&) belonging to an arbitrary
equivalence class induced Wy;. Then, there exists an
equivalence clas®, induced byR, such thatD; C Dj.

Definition 10 LetG, = (Vl,El,Ll), Gy = (VZ,EZ,LQ)
be two directed labelled graphs. The proddeof G; and
G- (denoted by7; x G1) is another directed labelled graph
G = (V,E,L) such that:V = V; x V, (Cartesian prod-
UCt), L = L ULy and E((SH,SQl), (812,822)) = t iff
(811 = S12 and E2(821,822) = t) or (821 S99 and
E1(811,812) = t).

Figure 3. Product of directed labelled graphs

Fig. 3 shows the product of two directed labelled graphs.

Definition 11 Let S be a SAM and R@) its RG. LetD
be the directed labelled subgraph of R&3(generated by
the states with a common given fixed marking in the buffers

(the subgraph composed by the states and the labelled edge,

joining them). A breadth-first search in R§(induces a
breadth-first search iD. Consider the breadth-first span-
ning forest computed iD. The rootH of a tree of the span-
ning forest is aheadof D iff there is not any cross edge
arriving at H.

1See [7] for the definition of cross edge in a breadth-first search.

Property 12 LetS be a SAM and R®)) its RG. LetD be

the directed labelled subgraph of R&(generated by the
states with a common given fixed marking in the buffers.
Let H be a head ofD, Dy be the directed labelled sub-
graph generated by the set of successo @fi D and D%,
withi = 1,..., K the aggregation ofDy induced byR;
(the quotient seDy /R;). ThenDy = D}, x -+ x D.

Proof: Let H* with i = 1,...,K be the equivalence class &f in
DH/Ri. Let J € Dg. Then there existg such thatd 2, J and o

composed only by internal transitions 8f Leto; withi = 1,..., K be
the projection ofo on the internal transitions of/; and J* be such that

H 74, Ji (o, is firable from H? in D%, by concurrency among the inter-

nal transitions of\; and A with i # ). ThenJ = (J%,..., %) =
JeD}qxn-ng.
Let (J1,...,J%) € D} x --- x DK Then there exists; with

i = 1,...,K such thatH? i, J¢. Lets = oy ---0x. By concur-
rency among internal transitions iK; and \; with @ # j, o is firable

from H in Dyr. LetJ be suchthatf _.J. ThenJ = (J!,...,JK) =
(J',...,J%) € Dg. &

The above property exploits the concurrency among in-
ternal transitions in a SAM to compute the successors of a
head locally in each module and storing only the aggregated
classes in each subnet so reducing the time and memory re-
quirements for the computation of these states.

Property 13 Let S be a SAM and R@) its RG. LetD

be the directed labelled subgraph of R&3(generated by
the set of states with a common given fixed marking in
the buffers. LetHy,...,H, be the set of heads dP,
and Dy, with i = 1,...,n the directed labelled sub-
graph generated by the successorsif in D. Then
D=L 1D}I x -+ x DK whereD}, withi=1,...,n
andj = 1,...,K is the aggregated subgraph difH by
means oiRj

This property immediately follows from the previous
one. Then the minimum information needed to generate the
states of an equivalence classRyf is the set of heads of
the class with their corresponding heads in each aggregated
class. In different classes of the original RG the same head
can appear in an aggregated class, so locally each aggre-
gated class can be computed and stored only once, exploit-
ing the concurrency of internal transitions at the maximum
degree.

Now we need to know what happens with the interface
transitions.

Property 14 LetS be a SAM and R®)) its RG. LetD be

the directed labelled subgraph of R&(generated by the
States with a common given fixed marking in the buffers.
Let H be a head o, Dy the directed labelled subgraph
generated by the set of successorg¢ioh D and Di; with

1,..., K the aggregation ofDy by means of rela-
tion R;. LetS € Di;. Aninterface transitiot € T; N TI
withi # j is enabled inS iff there existsS” € D7, such that
tis enabled inS".



after the firing of an interface transition. During the algo-
rithm the heads are replaced by other ones at the moment
in which a predecessor by means of internal transitions is
computed. In each iteration of the while-loop, the first head
(B, H) of the queue is studiedB is the marking of the
buffers andd = (Hq, ..., Hk) the local markings in each
module. Given a head/, locally in each modulg, the
set of interface transitions @f; that can be fired after any
firing sequence of internal transitions are computed. The
Last property allows to compute locally in each mod- union of these sets is the sktof interface transitions en-
ule i the interface transitions o¥/; that can be fired in a  abled in the equivalence class @, H) by means ofR,.
given local markingDj; and exporting them to all the local  After that, each transtitiod; of the setL is fired (j is
markings of the other modulds’, with j # i. Again, in the number of the module). The firing éf only changes
different classes of R&) by means ofR, the same head buffers (B to B’) and the local marking of modulg In
can appear in an aggregated class, so taking into accoungeneral several successdrsof H; in \; can enabld;.
the marking of buffers and the internal state\ip (in other Then for eachh; we must firel; to produce a new local
words the clasD%;) is enough to compute the interface marking H;. The next step is to check if the local mark-
transitions enabled i . Moreover, a spurious interface ing H; is new. If this is the case a new local breadth-first
transition is never computed because the interface transi-search is done in modujecomputing and storing new local
tions are computed in the corresponding module with all states. Then we must test if the reached markiBg H')
the information about its input places. is a new head to insert in the queue. To do that we test
Now we can present the algorithm to compute the de- if B’ is new (then it is clearly a new head). H' is not
composed description of RG]). new, we must compar#’ with all the computed heads of
Algorithm 4.1 the form(B’, H"). Four cases are possible.(B’, H') is

Proof: =) Let S’ be the state ofD}; in which ¢ is enabled and’
the class ofH in D%, (the head ofD%;). By property 12 the state
M = (...,H* ...,S',...) € D. tis enabled inM so, by concur-
rency among internal transitions.&f; and interface transitions of; with

1 # j, tis enabled in all the states qu, thust is enabled inS.

<) If tis enabled inS, sinceS is an equivalence class i, there exists
astateM = (...,S,...,5’,...) € D such thatt is enabled inM
(S andS’ are thei andj-component of\/). Aggregating by means at;,

S’ € Di, andt is enabled inS". &

reachable from(B’, H") by means of internal transitions
input: ASAM § (B',H') is erased. I{B', H") is reachable frontB’, H')
then(B', H') replace§B’,H"). If (B',H") and(B’, H')
have a common successor then we mark the two heads as
related. It is important to store this information for the sub-
sequent phase. In other cad®’, H') is a new head. The
previous tests about reachability between states can also be
done locally in each module.

The output of this algorithm is a decomposed descrip-
tion of RG(S) (computed with less memory and time re-
quirements than in the classical way). Applying proper-
ties 12 and 14 we could precisely compute B (Now,
we apply this reduced description of R§(to generate the
RG’s of the reduced submodelsS; and 8S. Two differ-
ent reduced submodels will be computed. In subsection 4.1
the projections of the markings of R&)on the preserved
nodes in the submodels will be computed and in subsec-
tion 4.2 the aggregations of R&)(by means of relationB;
withi =0, ..., K will be computed.

By := myo|p; initial marking on buffers
fori:=1to K do
H, := mg|p,; breadth-first search frod; in \;
H:= (Hy,..., Hg)
insert head By, H) in the queue
while queue of heads non empiyp
(B, H) :=first head of the queud; :=
for j:=1toK
L:=LU{l; € T; NTI| I; enabled inH;}
for eachI; € L do
for eachsuccessoh; of H; in NV s. t. I; is enableddo
(B,h;)Ls(B',H}); H := (Hi,...,H),..., Hg)
if H; is newthen breadth-first search frod; in A
if B is newtheninsert head B’, H')
elseisnew := TRUE
foreach H" s. t.(B’, H") is headdo
if H' 23yH',o C T \ TIthenisnew := FALSE
else ifH' -2y H" witho C T \ TIthen
replaceH" by H'; isnew = FALSE
else if H' andH'' have a common succesghen
makeH' andH" related inB’
if isnew = TRUEthen insert head B, H')
output: Set of heads
RG(S)|w; fori=1,... . K

4.1. Reducing spurious markings

In this subsection we use the decomposed description of

In the above algorithm given the initial marking of a the RG() computed with algorithm 4.1 for the generation

SAM, all the firing sequences composed only by internal of the projections of R&{) on the preserved places 68;
transitions are computed locally in each module by meansand BS. So, the difference of this second decomposition
of a breadth-first search in each module. The local statestechnique with respect to the first one presented in section 3
computed in each module are stored locally (not all the pos-is that the subsystems have no spurious states (thus, solv-
sible combinations among them). Then a queue of unex-ing the first problenP1 mentioned in the beginning of this
plored heads is maintained in the while-loop. A head in the section). In this way we obtain the smallest possible RS for
output of the algorithm is a state &fthat is reachable only  each subsystem.



Definition 15 Let S be a SAM and R@&) its RG. LetR; due to this head (the sta{éf), M) may be successor of

with i = 1,..., K be the following equivalence relation several heads with different interface transitions enabled).
defined on the set of.states of RXR( Vs, s states of In the casd. = 0 (to compute the R@ only the heads
RGES), (s1,s2) € R; iff si|lpup = sa|puB. Let Ry must be processed (not the local markings). RGan

be the following equivalence relation defined on the set of also be computed maintaining pairs of heads with the local
states of RGS): Vs, s. states of RGY), (s1,s2) € Ry marking in all the modules.

iff 51| = s2|p. We denote by RGvithi = 0,..., K the By construction, all the states of the reduced RG's are
RG resulting after the aggregation of all the states in BY5( projections of reachable statesSn Therefore, all the spu-
belonging to the same equivalence clas&ff rious states have been deleted and the inclusion of theo-

rem 7.ii becomes an equality now.

Note that the time and memory complexity of the gen-
ration of these reduced RG’s is less than or equal to the
complexity of the generation of the RG§;) of section 3
due to the fact that a spurious marking is never computed.

RG; is the reduced RG somehow related to B (it is
the result of aggregating all the states with the same marking
on the buffers) and RGwith i = 1,..., K is the reduced
RG somehow related t68S; (i.e., the result of aggregating
all the states with the same marking in the place§8f).

Here is the algorithm for the generation of these reduced

RG's. 4.2. Reducing spurious firing sequences
Algorithm 4.2
input: Set of heads of a SAM In this subsection we use the decomposed description of
RG(S)|w; fori = L,....K the RG(S) computed with algorithm 4.1 to generate differ-
1 €{0,...,K} (RG to generate) ent RG's related to th€S; andBS with respect to the ones

H :=first head (initial marking)
M; := H, the local initial marking
insert(H, M;) in the queue

in the previous subsection. In this case we will compute
the aggregations of RG] by means of relation&; with

while gueue non emptyo 1= 0, . ,K defined before. With this third decompOSition
P := (H, M;) first pair of the queue technique the subsystems have no spurious states (as in the
L := 0 (list of enabled transitions) second one) but also the aggregation of states not connected
in local subnetV;: y by internal transitions in R&) is avoided (solving the sec-
add toL interface transitions enabled (o, ;) ond problenP2mentioned in the beginning of this section).
add toL internal transitions enabled i#; . . . . .
add toL interface transitions df; with j # [ enabled inff With respect to the f|r_st technique (section 3) no spurious
for eacht € L do states are computed in the subsystems and with respect to
(H,M;)—5(H', M}) the second one (subsection 4.1), the RG’s of the subsystems
P = (H', M]) may have more states but without anomalous aggregations,
if (Hp, M;) is new in RG then thus eventually improving the approximations.
insertP’ in the queue
insert(Ho, M;) L5 (H), M}) in RG] L _
else Definition 16 LetS be a SAM and R@) its RG. LetR;
for t € TI\ T, enabled inH' do withi = 0,..., K be the equivalence relations defined in
if ¢ not enabled i Hy, M;) theninsertP' inthe queue  Definition 8. We denote by R@ithi = 0, ..., K the RG
output: RG; resulting after the aggregation of all the states in R&p(

In the above algorithm we maintain a queue of pairs belonging to the same equivalence classiaf

(H,M;) (H is a head and/; a local marking) like in

a breadth-first search of a directed graph. Given a pair RGo is the reduced RG somehow related to B (it is

(H, M), the list L of enabled transitions must be com- the result of aggregating all the states connected by internal
puted. This listZ is composed by internal transitions (in transitions ofS) and RG with i = 1,..., K is the reduced
the case of RGwith I > 0) and interface transitions. The RG related toLS; (it is the result of aggregating all the
internal transitions and interface transitions of modidee ~ States connected by internal transitions of subAgtsvith
computed inV; according to local statéHy, M;) (Hy is i # j). Inthe example of Fig. 2, the staté, P»; and

the marking of the buffers). The interface transitignsf P> P, are not aggregated in RGwhile they do were ag-
modulej with j # [ are the transition associated to the gregated in the first and second technique) because they are
headH . The firing of a transition in the list generates a new not connected through an internal transition. Note that the
pair (H', M]). If the state(H}, M) is new in RG the pair ~ time and memory complexity of this operation is less than
(H', M}) is inserted in the queue to explore the new mark- or equal to the complexity of the generation of the BG()

ing. If (H}, M) has been already computed, the interface of section 3.

transitionst of modulej with j # [ enabled inH' must be Here is the algorithm for the generation of the reduced
tested because new transitions for the marking can appeaRG's.



Algorithm 4.3
input: Set of heads of a SAM
RGES)|w; fori=1,..., K
1 €{0,...,K} (RG to generate)
H :=initial marking; M; := H; the local initial marking
insert(H, M;) in the queue
while queue non emptgio
P := (H, M;) first pair of the queue
L :=  (list of enabled transitions)
in local subnet\V;:
add toL interface transitions enabled (o, M;)
add toL internal transitions enabled #;
add toL interface transitions df; with j # [ enabled ind
for eacht € L do
(H7 Ml)—t>(H’7Ml’)
P' = (H', Mj)
if P'is new in RG then
insertP’ in the queue
insertP_ty P’ in RG,
else if3(H", M) in RG, with H" related toH'
for t € TI\ T; enabled inH' do

if ¢ not enabled if{Hy, M]) theninsertP’ in the queue

output: RG,

In the above procedure, once themodules have been

selected and given some initial valupg)) of the rates of
the interface transitions o¥/; with i = 2,..., K, a cer-
tain CTMC associated t4S; is solved. The computation
of that CTMC varies depending on which of the three tech-
niques presented in previous sections is applied.

The selection opg‘” fori = 2,..., K does not affect
(under our experience) to the approximation obtained with
the response time preservation method. A simple option
is putting the initial rate of the transitions in the original
model. From the solution of that CTMC, the first estima-
tion Xgl) of the throughput of the interface transitions\éf
can be computed. Then, the initial estimated values of ser-
vice rates of interface transitions.&f, must be derived. To
do that, we take the initial valuqsf)) for service rates of
interface transitions a/; and we scale them iteratively in
the BS until the throughput of interface transitions &f;
in the BS andxgl) are equal. The same procedure is exe-
cuted for eaclS; in a cyclic way. Each time we sol&S;
we obtain in theBS a new estimation of the interface tran-

This algorithm is very similar to the previous one. They sitions rates of\;. The previous steps are repeated until

differ only in the merging proccess of the states of the sub- convergencef the throughput approximations of the sub-
systems. In algorithm 4.2 all the states of a given subsystemsystems is achieved (if there exists).

with the same marking on the preserved places are merged. The initial estimated values of the interface transitions
Now only the states with the same marking belonging to rates of\; in £S; are computed by means of the implicit
related heads can be merged because two given states agfacesH; in £S;. Let p, be the probability that the transi-
connected through a path of internal transitions iff they be- tion t € T; N TI is enabled in the reduced subnet (similar

long to the same head or related heads.

5. Application to iterative throughput approx-

imation methods

to [1], it is an estimation of the transition utilization with
single server semantics). Then we mﬁ:{) = xt/pe (itis
an estimation of the transition rate).

The computation of the actual rates of the correspond-
ing interface transitions i3S can be implemented with

In this section we apply the previous decomposition @n iterative search (the initial estimated transition rates are
techniques for approximate throughput computation. The Weighted until the throughput of the involved transitions are

method that we consider is, basically, the saesponse
time preservation methodsed in [1, 12, 10, 11]. In each
LS; a unique module of with all its places and transi-
tions is kept. So, inCS; interface transitions of modulg
(for j # i) approximate the response time of moduldhe

algorithm is the following:

Algorithm 5.1
selectthe modules
derive RG(LS;) fori =1, ..., K and RGBS)
give an initial service rattjug0> fori=2,...,K
j = 0 {counter for iteration stegs
repeat
ji=j+1
for i := 1to K do
solve£S;: In: p forl < iandpl~" fori <1< K
Out: initial ratesy; and thr.x) of TIN T;
solveBS: In: p forl <iandpl~" fori <l <K
i andxﬁj) for transitions inTI N T;
Out: actual rateg”’) TINT;

until convergence ojdj), ey x%)

equal inBS and in£LS;). Now the net systemA4S) has
considerably fewer states than the original one. In each it-
eration of this search, the underlying CTMC of tB¢ is
solved. Note that only in the first iteration the CTMC is
completely derived. For later iterations only some values
must be changed. In some cases (for instance, for FRT-
nets [3]), the relative throughputs (or visit ratios) of tran-
sitions of theBS are independent on the transition service
time (they only depend on the net structure and on the con-
flict resolution rates). In these cases, only one parameter
must be tuned up in thBS, thus a unidimensional search
can be implemented. The case of multidimensional search
shows convergence problems so it is still an open topic.
Now, convergence of the entire method and the unique-
ness of the solution should be addressed. Using the results
in [8] we were not able yet to obtain a formal proof of the
convergence of the method due to the use ofil§gthe it-
erative scheme is more difficult for formal studies). But ex-
tensive testing with nets in which an unidimensional search
can be implemented in thBS shows that there exists one



and only one solution, computable in a finite number of ‘scale f. are the scale factors modifying the previous esti-
steps, typically between 2 and 6 if the convergence crite- mated service rates, computed with #H§. Convergence
rion is that the difference between the two last estimations of the method is obtained in this case in the four iteration
of the throughputis less than 0.1%. step and the error was -0.51%.

Figure 4. The ES of a SAM. Figure 5. The ES of another SAM.

As a second example we have selected the SAM of Fig. 5
to stress the differences among the three techniques. The
names of places and transitions follow the same rules of the
previous example. The model is composed of 2 modules
interconnected through 2 buffers. All transition rates have
been set to 1.0. It has 2698 reachable states and the ex-
act throughput of transitiofi; is 0.104304. In Table 2 we
tpresent the iteration steps of the three techniques for this

Now we are going to apply the three decomposition tech-
niques to the throughput approximation of two different
non trivial examples by means of the previous response
time preservation algorithm. The first one is the SAM of
Fig. 4. It is composed of three modules interconnected
through 5 buffers (placeB; to Bs). Places that start with
H are the implicit places (the first number is the subsystem
in which they have been computed) and places that star

with P are the internal ones. Transitions that start with Applying the first decomposition technique, the CTMC's
are the interface and the other are internal. The underlymgassociated {BS, LS, and £S, have 20, 310 and 828

CTMC has 94080 states. In this case, the three decompo-

o : tates, respectively. The throughput approximation in this
tion tech duce th ted submodeS 'S el .
? §9nwi?ﬁ inEU?SQp;Oaﬂg% Seséatrrr]lg :ggrrggiaztiosnu WIT;'O ecase is 0.113586 (5 iterations), in other words an error of

.9%.
gﬁ;g%ggr:;tezh?sgpseiz\%?; els have 14640, 14640, 1440% With the second decomposition technique, the CTMC's
The rates of transitions have been arbitrarily fixed as: associated @S, L£S; and LS have 18, 211 and 487

» states, respectively. The throughput approximation in this
1.0 for transitionsliq, 143,151, T3, I3, I34; 2.0 fOI’T12, . . . .
Toodvr It Isy, Iss: 3.0 O Iia, Ing, Ino, Ia: 4.0 fOr Tsy. case is 0.076916 (6 iterations), in other words an error of

-26.26%.
Ts» and 5.0 forlyz, Irs. With the third decomposition technique, the CTMC's as-

sociated ta3S, £S; andLS, have 22, 211 and 487 states,

LS| LS> LS; . o T :
X(I1i1) | scalef. | x(a1) | scalef. | x(Is1) | scalef. respectively. The throughput approximation in this case is
0.230496 | 1.025007 | 0.223043 | 1.089387 | 0.222493 | 1.005589 0.105939 (4 iterations), in other words an error of 1.57%.
83332; }-83?2;[1) 853331 }-83}23 8~§§§i$§ ;gggggg In this case, the first technique fails due to the great num-
0.223471 | 1.091621 | 0.223471 | 1.091612 | 0.223473 | 1.005589 ber of spurious states in the CTMC's of the subsystems

Error- -0.51% (compare the number of states&§- in the first technique

with respect to the other ones). More interesting is the great
difference between the approximation of the second and
Table 1. Iteration results for the SAM in Fig. 4. third techniques. This difference is due to the inappropri-
ate aggregation of 4 states in the CTMC associated to the
BS for the second technigue (the CTMC of thié; are the
In this case, the exact throughput of transitibn is same in the second and third techniques).
0.224607. In Table 1 we present the iteration steps of We do not compare here the overall computation time
the method. Columng(I;;) are the estimated values for of our algorithms with respect to the time needed for solv-
throughput of transitiod;; at each iteration step. Columns ing the entire CTMC due to two facts. The first one is



LS LS LS1

LSo LS LS2

x(111) scale f. x(I21) scale f. x(111) scale f. x(I21)

scale f. x(111) scale f. x(I21) scale f.

0.174202 | 1.030663 | 0.124153 | 1.209259 ([ 0.158793 | 0.998916 | 0.105566 | 1.139154 (| 0.158793 | 1.048865 | 0.110149 | 1.031971
0.114948 | 1.229055 | 0.113760 | 1.255224 (| 0.082152 | 0.949469 | 0.079294 | 1.253320 || 0.105799 | 1.003225 | 0.105927 | 1.034708
0.113605 | 1.236202 | 0.113590 | 1.256088 (| 0.077370 | 0.950758 | 0.077126 | 1.265756 || 0.105940 | 1.003435 | 0.105941 | 1.034708
0.113587 | 1.236291 | 0.113587 | 1.256088 || 0.076956 | 0.950928 | 0.076934 | 1.266884 (| 0.105939 | 1.003435 | 0.105941 | 1.034708
0.113586 | 1.236291 | 0.113587 | 1.256088 (| 0.076919 | 0.950950 | 0.076917 | 1.266979
0.076916 | 0.950950 | 0.076916 | 1.267026

First technique Error: 8.90%| Second technique

Error: -26.26% Third technique Error: 1.57%

Table 2. Iteration results for the SAM in Fig. 5 with the three decomposition techniques.

that the implementation of our algorithm is just a prototype References
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6. Conclusions (4]
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