On Linear Algebraic Techniques for Liveness
Analysis of P/T Systems

Laura Recalde, Enrique Teruel, and Manuel Silva *

Dep. Informatica e Ingenieria de Sistemas, Centro Politécnico Superior de Ingenieros,
Universidad de Zaragoza, Maria de Luna 3, E-50015 Zaragoza, Spain

Abstract. Liveness is a basic property that in many discrete event
dynamic systems is considered essential for their correct behavior. Tt
expresses that no action (transition in P/T models) will ever become
unattainable. A polynomial time necessary condition for the existence
of a live and bounded marking of a P/T net is given. This condition
is shown to be also sufficient for some subclasses. The applicability of
these results is extended by the use of transformation techniques that
allow to exploit them in the analysis of more general nets. Some results
for the structural analysis of actual liveness are also overviewed, in par-
ticular, sufficient conditions for deadlock-freeness and absence of dead
transitions.

1 Introduction

Liveness, the property that no action will ever become unattainable, is necessary
for the correct behavior of many reactive systems. Moreover, properties related to
proper termination of non reactive systems can be rephrased in terms of liveness
of a modified system. Thus, liveness is frequently one of the basic requirements in
a system, before undertaking the analysis of more complex properties. Together
with liveness, boundedness, which ensures that the system will not overflow, is
also usually required. In this paper we concentrate on the analysis of liveness in
bounded systems by means of linear algebraic techniques.

Linear algebraic techniques (and in general structural techniques) intend to
extract the maximal amount of information from the structure of the net, avoid-
ing the enumeration of the state space. The results thus obtained are in general
computationally much more efficient, although, on the other hand, they often
only provide semidecision results (i.e., only necessary or sufficient conditions are
obtained).

The paper reviews the application of linear algebraic techniques for liveness
analysis, integrating results already published (references are provided), with
some new contributions.

A possible strategy to analyze liveness of a given net system through linear
algebraic techniques is the following;:

* This work was supported in part by Contract CHRX-CT94-0452 (MATCH) within
the HCM Programme of the EU.

1. Check if the net structure allows an initial marking that makes the system
live. This property is called structural (str.) liveness. In case the net is not
str. live, we conclude non liveness for any initial marking and stop.

2. In other case, check liveness of the net system for the given initial marking.

Observe for instance the net systems in Figure 1. The net on the left is not
str.live. For any marking, if ¢; is fired “too many times” wrt. ¢y (or vice versa)
it will deadlock beacuse ¢3 will become unfireable. That is, a problem exists in
the structure of the net. On the other hand, the net on the right can be proven
to be str. live, although it is not live with the given marking (it would be live if
a token were added to p; or if the existing token were put in p3).

(a) (b)

Fig.1. A non str.live net system (a) and a str. live, but non live net system (b).

For the analysis of str. liveness we propose the use of efficient (i.e., polynomial
time complexity) results based on strong connectedness of the net and some
properties of its token-flow matrix (e.g., its rank). These results allow to disprove
str. liveness in general nets and to prove it in some particular classes. For those
situations in which we cannot decide, net ¢ransformation techniques can be used.
If the transformations preserve liveness and/or non liveness, from the analysis
of the transformed net we can obtain information about liveness of the original
one.

When the net is str.live (or we have not been able to disprove it), we can
also try linear algebraic techniques to analyze liveness, avoiding the enumera-
tion of the state space. For general nets, some necessary conditions exist, which
are also sufficient in some cases. Among these conditions are absence of dead
transitions (every transition is enabled at least once) and deadlock-freeness (at
every reachable marking at least one transition is enabled).

In Section 2 some basic definitions of P/T systems and concepts of structure
theory are presented, together with the notation to be used. Subsection 3.1 is
devoted to study liveness from the point of view of conflicts. It 1s proved that
str. liveness or deadlock-freeness are preserved by the addition of certain arbiters
that (partially) regulate some conflicts. This is applied in Subsection 3.2 to de-
duce the general necessary condition for liveness and boundedness known as the

rank theorem. This condition is also sufficient in the case of equal conflict (EQ)
systems or deterministically synchronized sequential processes (DSSP). These
subclasses are studied in Subsection 3.3, which includes, besides the aforemen-
tioned particular version of the rank theorem, other results that simplify the
analysis of liveness.

Transformation techniques can be used in the analysis of liveness when the
previous results cannot decide or are not directly applicable. Besides the removal
of certain arbiters, studied in Subsection 3.1, in Section 4 some other transforma-
tions are considered, namely the removal of implicit places or bypass transitions,
equalization and release.

Dead transitions are studied in Section 5, and a general sufficient condition
is obtained for their non existence. Section 6 analyzes the problem of deadlock-
freeness, giving a sufficient condition for bounded systems, based on the absence
of solutions of a system of inequalities in the integer domain. In Section 7 the
application of the previous results is illustrated through an example.

2 Preliminaries and Notation

The reader is assumed to be familiar with basic Petri net concepts (see [14,26] for
an introduction). Some preliminary material that is needed and the notation to
be used are recalled here. (For the sake of readability, whenever a net or system
is defined it “inherits” the definition of all the characteristic sets, functions,

parameters,... with names conveniently marked.)

2.1 Nets and net systems

We denote a P/T net as N' = (P, T, Pre, Post), where P and T are the sets
of places and transitions, and Pre and Post are the |P| x |T| sized, natural
valued, incidence matrices. For instance, Post[p,t] = w means that there is an
arc from ¢ to p with weight (or multiplicity) w. When all weights are one the
net is ordinary. For pre- and postsets we use the conventional dot notation, e.g.,
*t = {p € P | Pre[p,t] # 0}, which can naturally be extended to sets of nodes. If
N is the subnet of N defined by P’ C P and 7" C T, then Pre’ = Pre[P’,T"]
and Post’ = Post[P/,7"]. A P- (T-)subnet is defined by a subset of places
(transitions) and all their adjacent transitions (places).

A marking is a |P| sized, natural valued, vector. A P/T system is a pair
S = (N, mg), where mg is the initial marking. A transition ¢ is enabled at m
iff m > Pre[P,t]; its firing yields a new marking m’ = m + C[P, t], where C =
Post — Pre is the token-flow matrix of the net. This fact is denoted by m_*ym’.

An occurrence sequence from m is a sequence of transitions o = #y-- -t -
such that m-"ym; ---my_; -t ... The set of all the occurrence sequences,

or language, from m is denoted by L(AN,m), and the set of all the reachable
markings, or reachability set, from m, is denoted by RS(N, m). The reachability
relation is conventionally represented by a reachability graph RG(N, m) where

the nodes are the reachable markings and there is an arc labeled ¢ from node m'’
tom” if m’_tym”.

A transition is live if it can ultimately occur from every reachable marking. A
P/T system is live when every transition is live and it is deadlock-free when any
reachable marking enables some transition. A net system is reversible when the
initial marking (hence every marking) is reachable from any reachable marking.
A net system is bounded when every place is bounded, i.e., its token content is less
than some bound at every reachable marking. Boundedness precludes overflows,
liveness ensures that no single action in the system can become unattainable,
and reversibility informs on the possibility to return to every state.

2.2 Some concepts from structure theory

Structural techniques intend to obtain as much information for the analysis as
possible from the net structure, avoiding the enumeration of the state space.
Among these techniques, some are formulated on linear algebraic terms, based
on the following observation: Given o such that m—Zym’, and denoting by o
the firing count vector of o, then m’ = m + C - . This is known as the state
equation of §. The set of all the markings that fulfill the state equation for a
given m €]Nlpl, with o €]NlTl, is called the linearized reachability set (wrt. the
state equation), LRS(S). Its elements (the linearly reachable markings) can be
represented as nodes of the linearized reachability graph LRG(S), constructed
like RG(S). Clearly, RS(S) C LRS(S); the linearly reachable markings that
are non reachable will be called spurious [6,27]. For instance, for the system in
Figure 2, the shaded markings in the LRG are the spurious ones.

Fig. 2. A live system and its LRG.

The relaxation of the reachability relation using the net state equation pro-
vides a convenient way to analyze important properties using linear algebra and
convex geometry. This method is specially well suited to deal with safety prop-
erties, such as marking bounds or mutual exclusions [26,27]. For example, a str.

bound for the marking of a place p can be obtained as:
sb[p] = max{m[p] | m — C -6 =mo Am, o > 0} (1)

In principle, Equation (1) is an integer programming problem. If integrality
constraints (on m and o) are disregarded then (1) is a linear programming
problem, that can be solved in polynomial time. The marking that yields the str.
bound could be spurious, thus the bound may never be reached. (Nevertheless,
for some net subclasses it is always reachable.)

A net N is str. bounded when (N, mg) is bounded for every mq. By applica-
tion of duality theory of linear programming to the formulation of the str. bound
of a place in (1), a characterization of str. boundedness can be derived (see for
instance [27]): N is str.bounded iff y > 0 exists such that y - C < 0. When
y+C = 0 the net is said to be conservative. The dual property of str. boundedness
is str. repetitiveness: N is str.repetitive iff x > 0 exists such that C - x > 0.
When C - x = 0 the net is said to be consistent. These latter properties inform
on the existence of potential infinite behaviors: with a large enough marking, a
sequence with firing count vector x would be fireable, and its occurrence would

not decrease the marking, so it could be fired once and again.

Structural boundedness is defined abstracting from the initial marking in the
definition of boundedness (i.e., boundedness for every initial marking). Other
structural properties are defined likewise. For instance, str.liveness of a net
informs about eristence of a marking for which the net system is live. When a
net 1s non str. live, for every initial marking the net system is non live, so the
problem is rooted on the net, not on the marking.

When a net is str.live and str. bounded there exists some marking mg such
that (A, mg) is live, and boundedness is ensured whichever myg is taken. In such
a case liveness is a matter of the the initial marking, and we need not worry about
boundedness. Notice that, in general, str. boundedness is not necessary for live-
ness and boundedness (although it happens to be in some selected subclasses).
For instance, the system in Figure 3 is bounded, although not str. bounded (if
mo = [0,4,0] the system is not bounded). However, since str.boundedness is
not over restrictive, and it is robust (it will not fail if the marking changes) and
much simpler to check, it is often required instead of boundedness.

Annullers of C, such as those appearing in the definition of conservativeness
and consistency, play an important role in structure theory. Flows (semiflows)
are integer (natural) annullers of C. Right and left annullers are called T- and
P-(semi)flows, respectively. We call a semiflow v minimal when its support,
|[v]| = {7 | v[i] # 0}, is not a proper superset of the support of any other, and
the greatest common divisor of its elements is one. Flows are important because
they induce certain invariant relations which are useful for reasoning on the
behavior (e.g., if y > 0 and y - C = 0 then every m € RS(N,myg) satisfies

y -m=y -mop.)

1
=OZ Dts

Fig. 3. A live and bounded system which is not str. bounded.

3 The Rank Theorems

Liveness is a property that is difficult to deal with structurally. Nevertheless,
a careful investigation of the net structure leads to structural results that are
helpful in the analysis of this property. These results prevent us from undertaking
a costly liveness analysis when the net is not correct, and may help in the
identification of problems in the model.

In this section we will start studying conflicts, mainly from a structural point
of view. We will see how liveness can be preserved if a particular kind of conflicts
are regulated by means of simple nets. This information about conflicts will be
the basis to obtain a polynomial time general necessary condition for liveness
and boundedness. Next, we will concentrate on some subclasses, for which better
results can be obtained. In particular, we will prove that this necessary condition
is a full characterization for them.

3.1 On Conflicts and Arbiters

We consider a conflict as the situation where not all that is enabled can occur
at once. More formally, t,¢' € T are in (effective) conflict relation at marking
m iff there exist k, k' € IN such that m > k- Pre[P,¢] and m > k' - Pre[P, 1],
but m # k - Pre[P,t] + k' - Pre[P,t']. For this it is necessary that *¢ N *t' £ 0,
and in that case we say that ¢t and ¢’ are in str. conflict relation. The str. conflict
relation (or choice) is an structural prerequisite for the behavioral property of
conflict.

The str. conflict relation is not transitive, and we define the coupled conflict
relation as its transitive closure. Each equivalence class is called a coupled con-
flict set denoted, for a given ¢, CCS(¢). The set of all the equivalence classes is
denoted by SCCS. When Pre[P,t] = Pre[P,t] # 0, t and #’ are in equal conflict
(EQ) relation, meaning that they are both enabled whenever one is. This is an
equivalence relation on the set of transitions and each equivalence class is an
equal conflict set denoted, for a given ¢, EQS(¢). An equal conflict set is called

trivial if it is formed by just one transition. SEQS is the set of all the equal
conflict sets of a given net.

In principle, P/T systems are non deterministic, i.e., there is no rule about
which of the enabled transitions in a conflict should fire. However, there are
occasions when this indeterminism has to be reduced somehow. For instance,
to avoid reaching dangerous states, or to schedule the system under a timed
interpretation. A way to reduce the non determinism is to (partially) regulate
the conflict by means of a net system, called arbiter, some of whose transitions
are merged with transitions of the system that has to be regulated (possibly the
arbiter does not completely determine the solution of the conflict). That is, the
regulated system is defined by the parallel composition of the system and its
arbiter(s) [11]. A particular case of arbiters are local arbiters, that are applied
to EQ sets:

Definition 1. Let ¢ be an EQ set of a net A'. A local arbiter for e is a net
A = (P, 7¢, Pre’, Post®) such that:

—-T*NT=e
*TS.U.TQZPS
- P°NP=0

In general, neither liveness nor non liveness preservation is guaranteed by the
addition of local arbiters to a system, as can be seen in Figure 4. The system
on the left is live without the arbiter, but ¢ and # are never enabled when it is
present. The opposite holds for the system on the right, which is live with the
arbiter, but it is not so when it is removed. We can ensure however deadlock-
freeness preservation:

Fig.4. Neither liveness nor non liveness are preserved in general when arbiters (the
P-subnets generated by the shaded places) are added.

Proposition 2. Let (N,mq) be a P/T system, e an EQ set and {A° mo®) a
local arbiter for e.

If (N, mq) and (A°, mo®) are deadlock-free, then the system obtained fusing
their common transitions, (N',mq’), is deadlock-free. Moreover, if (N',mq) and
(A®, mo®) do not have spurious deadlocks, neither does (N', mg’).

Proof. Clearly, for any sequence that can be fired in the complete system, its
projections on A/ and A® can be fired in the associated systems. Since both of
them are deadlock-free, at least a transition is enabled in each system. If one of
these transitions is not in e, it can be fired. Otherwise, given that e is an EQ
set, any transition enabled in 4° is enabled in the complete system too.

The proof for spurious deadlocks is analogous, reasoning on linearly reachable
markings. O

Better results are obtained if we restrict the kind of arbiters we allow and
relax the property by not fixing the marking of the arbiter. Since the purpose
of arbiters is to reduce the indeterminism, it is quite common not to allow
choices inside the arbiter, i.e., arbiters are frequently choice free systems (Yp €
P |p*| < 1) [30]. Figure 5 (a) shows a simple system, taken from [16], in which
parts are sent from STORE 1 to STORFE 2 and STORE 3. The destination
is decided by solving the equal conflict e = {#2,74}. The P-subnet generated by
the shaded places (p4, ps,ps, and pr) is a local choice free arbiter (in fact, an
strongly connected marked graph) that imposes some restrictions on the way
parts are distributed between the destination stores.

Fig.5. An EQ system with a choice free local arbiter.

A particular case of choice free local arbiters are (ordinary) circuit arbiters
(or regulation circuits), see Figure 6:

Definition 3. Let A be a P/T net, and let e € SEQS such that |e| > 1. A net
C° = (P?,e,Pre®, Post®) is an (ordinary) circuit arbiter for the equal conflict
set e iff C? is an ordinary net such that P* N P =) and its underlying graph is
an elementary circuit.

Fig. 6. A circuit arbiter (shaded places) merged on an equal conflict set.

Structural liveness is preserved by the addition of circuit arbiters to non-
trivial EQ sets (see for instance [31]). This is one of the key results to obtain
the liveness and boundedness necessary condition of Section 3.2. The same proof
can be slightly modified to allow using the more general choice free local arbiters
instead:

Proposition 4. Let N be a P/T net, e an EQ set, A° a strongly connected
and consistent choice free local arbiter for e, and N' the net with the arbiter. If
8§ = (N, my) is live and bounded, then there erists mo’ with mo'[P] = mq such

that 8" = (N',mg’) is live and bounded (thus N is str. live).

Proof. A strongly connected and consistent choice free net is conservative (i.e.,
y > 0 exists such that y - C = 0) [30], and so it is str. bounded. Thus, bounded-
ness of § implies boundedness of &’ for every mg’ with mg’[P] = mgq. Since S
is live and bounded, the number

Te = r?gx{rrloin{#(e, o)|ot € LN, m)}|te€T Am e RS(S)}

is well-defined for every transition ¢, where #(e, o) represents the total number
of firings of transitions of e in o. This is a bound for the number of firings of
transitions in e that are required to enable an arbitrary ¢ from an arbitrary
reachable marking. Now, put enough tokens in every p € P as to (1) enable
its output transition at least that number of times, and (2) be able to fire the
minimal T-semiflow of the arbiter, what in choice free systems implies its liveness
and reversibility [30].

Now we prove that &' is live with this marking. Let m’ € RS(S’) and ¢t € T..
We shall prove that ¢ can ultimately be enabled from m’. We claim that there
exists a marking m” € RS(N’, m’) such that m”[P¢] = mo/[P¢]. In that case,
since (1) § is live, (2) m'[P] € RS(S), and (3) mo’[P?] has been defined in
a way that it does not interfere when firing a sequence to enable an arbitrary
t from an arbitrary reachable marking, then we can fire in (N’, m") the same
sequence that we could fire in (A, m”[P]) in order to enable ¢.

To prove the claim, let 0. = ¢;,€;, - -€;, € L(N®,m’[P?]) be such that
m'[P¢] Ze5ymo’[P?], i.e., a sequence in the circuit arbiter returning to the initial

marking. It is easy to see that a sequence such that its projection on e is o, can
be fired in (A, m’). The idea is firing transitions not in e, which does not affect
the marking of places in P?, until e are P-enabled (their input places in P have
enough tokens, no matter how many tokens there are in other places), which will
eventually happen thanks to liveness of (M, m’[P]). Then, firing e;, which is also
P¢?-enabled according to our definition of o, then firing more transitions not in
e until e are P-enabled again and firing e;, which is also P®-enabled, etc. O

The addition of a circuit arbiter increases the rank of the token-flow matrix
in the number transitions (or places) in the circuit minus one. The proof shows
that one place in the regulation circuit can be obtained by adding the rest of
the places in the circuit, and that if it is removed, no other place in the circuit
is a linear combination of the rest of the places in the system.

Lemma 5 ([31]). Let S = (N, mg) be a P/T system, and e a non-trivial EQ
set, i.e., |e|] > 1. Let C® be a circuit arbiter for e, and let N' be the net N
merged with the circuit arbiter C¢ by sharing the transitions in e. If S is live and

bounded, then rank(C’) = rank(C) + |e| — 1

This result can be extended to choice free local arbiters. The idea is to replace
the choice free local arbiter by a weighted circuit with an equivalent token-flow
matrix (a weighted circuit with the same T-semiflow will have an equivalent
incidence matrix). The rank of the token-flow matrix of the complete system
will not change. Neither liveness, nor boundedness will change by the addition
of self-loops around the transitions of the circuit that do not belong to the EQ set,
what reduces the problem to adding a weighted circuit arbiter to a live system.
Observe that the proof of Lemma 5 is also valid, with slight modifications, for
weighted circuit arbiters.

Proposition 6. Let § = (N,mg) be a P/T system, and e a non-trivial EQ
set, i.e., le] > 1. Let A® be a strongly connected and consistent choice free local
arbiter for e, and let N’ be the net N' merged with the choice free local arbiter
by sharing some transitions in e. If § is live and bounded, then rank(C’) =

rank(C) + rank(C®) = rank(C) + |T°| — 1

3.2 The Rank Theorem: a Liveness and Boundedness Necessary
Condition

A well-known polynomial time necessary condition for liveness of a bounded net
system, based solely on purely structural properties, is strong connectedness [23]
and consistency (i.e., x > 0 exists such that C - x = 0) of the net [13,24]. Al-
though, if str. boundedness is required, conservativeness is also necessary [13,24].

These conditions are very useful to discard models that are not correct before
undertaking a more costly analysis. Unfortunately they are only necessary: there
are strongly connected and consistent nets that cannot be lively and boundedly
marked. We present here an improved — and still polynomial time — necessary
condition that incorporates an upper bound for the rank of the token-flow matrix.

This condition was first deduced for free choice systems, and was derived from
the problem of computability of visit ratios in stochastic free choice nets [5]. In
general, the bound on the rank of the token-flow matrix is obtained through the
regulation of each EQ set by means of a circuit arbiter, what increases the rank of
the token-flow matrix in a fixed known amount (the number of transitions in the
conflict minus one), Lemma 5. By Proposition 4, the regulation of non-trivial EQ
sets with circuit arbiters preserves liveness and boundedness, thus this procedure
can be applied to every non-trivial EQS. Moreover, since the regulated system
is live and bounded, at least a repetitive sequence exists. This is the basis for

the bound on the rank of the token-flow matrix in live and bounded systems.

Theorem 7 (The rank theorem). If S is a live and bounded P/T system,
then N is strongly connected, consistent, and rank(C) < |[SEQS|.

Proof. Only the rank condition needs to be proven. Let A be the net A together
with circuit arbiters merged to every non-trivial equal conflict set. Applying
Lemma 5 repeatedly after each circuit arbiter is merged, what can be done
thanks to Proposition 4, and since |e| = 1 in trivial EQ sets, it follows that:

IT|— 1> rank(C') = rank(C) + Y (le|—1)
e€SEQS

Rearranging the above inequality we obtain a bound for the rank:

rank(C) < |T|— > (le[—1)—1

c€SEQS
Since) cqpqs el = |7, this bound is [SEQS| — 1, so the result follows. O

According to Theorem 7 the difference |SEQS| —rank(C) should be positive.
This difference somehow quantifies the interplay between choices (decisions) and
direct or indirect synchronizations reflected in the dimension of the linear space
of T-(semi)flows. That is, let X be the space of T-flows of a net N with |T|
transitions. If the net is conservative any T-flow can be transformed into a T-
semiflow by adding a linear combination of other T-semiflows. Thus, |SEQS| —
rank(C) = |SEQS| — (|7'] — dim(X)) = dim(X) — (|T| — [SEQS]|). If the number
of linearly independent T-semiflows (dim(X)) is less than the number of “free
decisions” (|7'] — [SEQS]) the system cannot be live and bounded.

Intuitively, from the proof of Theorem 7, it becomes apparent that the rank
condition fails when some individual “choices between alternatives” are not in-
dependent from the rest of the system (synchronizations, other choices, etc.).
Apart from “flow problems” (i.e., absence of consistency), absence of such in-
dependence indicates that a wrong decision taken in an individual choice may
affect the rest of the system (to the point of “killing” it).

If the rank theorem detects a problem in the net, a procedure can be given
to locate 1t: start adding regulation circuits to the non-trivial EQ sets, one at a
time, and check if the rank increases in the right amount. When the addition of

() (b)

Fig.7. Two conservative and consistent nets where the rank theorem detects non
str. liveness. The (non-trivial) equal conflicts are shaded.

a regulation circuit does not increase the rank as expected, a conflict has been
spotted that is (apparently) free, but whose resolution should be conditioned
by the resolution of (some) of the conflicts regulated before. This relationship
between the conflicts is reflected in the existence of a T-semiflow containing at
least two transitions of this last conflict.

Let us illustrate this with the examples of Figure 7. In the net of Figure 7 (a)
rank(C) = 2 = |SEQS| and the only minimal T-semiflow is 1. Notice that
the fact that #; and ¢ are together in every T-semiflow — what is due to the
synchronization or join transition ¢3 — means that in every infinite sequence
they should be fired in a fixed proportion (one to one in this case). Nevertheless,
since the choice between ¢ and ¢ is free, the net does not prevent the violation
of this proportion. This mismatch between conflicts and synchronizations is what
the rank theorem detects. If we merge a circuit arbiter on ¢; and t5, say ¢q from
ts to t1 and ¢1 from t; to to, the rank is not increased: one place is clearly a
linear combination of the other, say Clcg,T] = —Cley, T; but also ¢; is a linear
combination of other places, namely Cley, T| = C[p1, T|+2C[ps, T], what reveals
the problem.

In the net of Figure 7 (b) rank(C) = 4 = |SEQS| and two minimal T-
semiflows exist: t1 +t2+1¢3 and ¢4 +15+t6. Now the synchronizations (¢2 and ¢5)
do not impose a given resolution of each conflict to allow infinite activity (the
outcomes of each conflict are in different minimal T-semiflows), but they impose
that each conflict is solved according to the other, what is again not guaranteed
by the net structure where the choices are free. The rank theorem detects also
this mismatch. If we merge a circuit arbiter, say on #; and #4, it increases the
rank. Now the net with the arbiter has a unique minimal T-semiflow, 1, and the
second circuit arbiter does not increase the rank (after merging an arbiter on

one conflict, a proportion between the outcomes of the other conflict has been

fixed).

Unfortunately the condition for the existence of a live and bounded marking
given by Theorem 7 is only necessary: there are strongly connected and consistent
nets that fulfill the rank condition and cannot be lively and boundedly marked.

For instance, both systems in Figure 8 fulfill it, however the system in Figure 8 (a)
is str. live (it is live with this marking) while for the net in Figure 8 (b) there is
no marking making it live.

Fig.8. Two nets for which the necessary condition in Theorem 7 does not allow to

decide.

3.3 Rank Theorem and Subclasses

There are some net subclasses for which the rank theorem is also sufficient.
Loosely speaking, these subclasses have in common that their syntactical con-
straints leave only conflicts that are essentially “choices between alternatives”
(equal conflicts), what limits the possibility of representing competition. In other
words, choices and synchronizations appear, but do not directly interfere.

Definition 8.

1. A P/T net is an equal conflict (EQ) net iff for all ¢,#' € T such that *tN*t' #
0, Pre[P,t] = Pre[P,t'] (i.e., SCCS = SEQS). An (extended) free choice net
is an ordinary EQ net.

2. A P/T system (P,T,Pre,Post,mg) is a system of deterministically syn-
chronized sequential processes (DSSP system, or simply a DSSP) when P is
the disjoint union of P, ..., Py, and B, T is the disjoint union of 77, ...,1,,
and the following holds:

(a) Forevery i€ {1,...,n}let N; = (P;, T;, Pre[P;, T;], Post[P;, T;]). Then,
(N;,mg[P;]) is a live and safe (i.e., strongly connected and 1-bounded)
state machine.

(b) Forevery i,j € {1,...,n} if i # j then Pre[P;, T;] = Post[P;, T;] = 0.

(c) Places in b are called buffers and for every b € B,

— dest(b) € {1,...,n} exists such that b* C Tyeqp).
— The equal conflict sets of the sequential processes are preserved by
the buffers, ie., if ¢,#' € p*, where p € Piesi(r), then Pre[b, t] =
Pre[b, t'].
A DSSP net is the net of a DSSP (system). A DSSP marking is a marking
for a DSSP net that respects the monomarkedness of the state machines.

In EQ nets all conflicts are equal, generalizing (extended) free choice nets
by allowing bulk services and arrivals. In DSSP several live and safe state ma-
chines cooperate by message passing through destination private buffer places.
(Thus DSSP are modularly defined, the communication among modules being
asynchronous.)

Fig.9. A DSSP model of a manufacturing line: three state machines and four buffers.

The system in Figure 9 is a DSSP. It models a manufacturing line that
makes tables and is composed of three workstations (SM1,SM 2, and SM 3),
that make legs, boards, or assemble a table. Each workstation is modeled by a
live and safe state machine, identified by the superscript ¢ € {1,2,3} at every
node. SM 1 makes legs and can work in two modes, producing one or two legs
at a time. SM 2 makes boards and can fail, either scrapping or not the board.
SM 1 and SM 2 deposit their products in two respective intermediate buffers (b,
and bp) from which they are collected by SM 3 to assemble the table. Buffers

have a (physically) limited capacity. When a buffer is full its producer is blocked

and when it is empty its consumer is starved. Places b] and b represent the
empty slots in their respective buffers. In the DSSP representation these places
are also called buffers to distinguish them from the places in the SM. For easy
identification buffers are signaled by a double circle (although they are normal
places).

A very restricted version of DSSP in which buffers were “source private” and
multiple arc weights were not allowed, was first proposed and studied in [21], Tt
was generalized in [28] by allowing weights on arcs adjacent to buffers. In Defin-
ition 8 the “source private” restriction on the buffers is also removed. With this
definition and under interleaving semantics, DSSP are a strict generalization of
equal conflict systems. In other words, provided that only sequential observations
are relevant (which is the case if we are interested in liveness or boundedness),
equal conflict systems can be simulated by DSSP. The construction is simple
(see Figure 10): add self-loop places marked with one token around each equal

S S

Fig. 10. Simulation of equal conflict systems by DSSP.

conflict set of a given equal conflict system. These self-loop places (with their
adjacent transitions) are the sequential agents, and the original places of the
equal conflict system play the role of buffers. Anyhow, we keep the distinction
between EQ and DSSP all along the paper, since the membership problem for
EQ is straightforward, while DSSP models appear after a restricted modular
building process. That is, rather than recognizing a given net as being DSSP
we know by construction, through a synthesis procedure that distinguishes func-
tional entities and their communication, that a model is a DSSP.

An important result in DSSP and EQ systems, that greatly simplifies the
analysis of liveness, is the equivalence of liveness and deadlock-freeness if the
system is bounded and strongly connected. Moreover, the LRG is directed in
live EQ systems and in live and consistent DSSP. This means that live EQ
systems and live and bounded DSSP cannot have spurious deadlocks and, in
particular, that it is possible to verify liveness in these subclasses by checking

absence of solution of a linear system in the integer domain, as we will see in
Section 6. Another useful result is that liveness is monotonic wrt. the marking
in EQ systems, and wrt. the marking of the buffers in DSSP. These important
properties are summarized in the following result:

Theorem 9 ([31,17]).

1. A bounded, strongly connected DSSP (thus, also an EQ system) is live iff it
s deadlock-free.

2. The LRG of a live EQ system or a live and consistent DSSP is directed, i.¢.,
any pair of linearly reachable markings have a common successor. Thus,
spurious deadlocks do not exist.

3. Lweness is monotonic wrt. the marking in EQ systems, and wrt. the marking

of the buffers in DSSP.

In general, a live system can be bounded without being str. bounded (see
Figure 3). However, this cannot happen in live EQ systems or DSSP. This can
be immediately deduced from the following lemma and the general liveness and
boundedness necessary condition of Theorem 7. Lemma 10 for EQ is proved in
[31], while its generalization to DSSP is contained in [20].

Lemma 10 ([20,31]). Let N be a strongly connected DSSP (EQ) net and let
rank(C) < |[SEQS|. Then it is consistent iff it is conservative.

Corollary 11. A live DSSP (EQ system) is bounded iff it is str. bounded.

For DSSP, and hence also for EQ nets, the necessary condition of Theorem 7
for the existence of a live and bounded marking is also sufficient, what makes it a
polynomial time structural characterization. This sufficient condition is based on
the following result, which shows that, assuming the system has “good structural
properties”, a marking of the buffers exists that makes the system live. That is,
problems due to wrong connections among the SM are reflected in the structural
properties of the net. (A proof of the sufficient condition specific for EQ nets
can be found in [31].)

Lemma 12 ([18,19]). Let N be a strongly connected and conservative DSSP
net with rank(C) < |[SEQS|. For every N; let mo; be such that (N;,mg;) is live
(i.e., mg; -1 > 1). Then mg exists such that mo[P;] = mo; for every 1 <i<n
and the system (N, mg) is live.

Using some of the previous results, in [18] it is proven that a DSSP net is
str. live and str. bounded iff it is consistent, conservative and rank(C) = |SEQS|—
1. A slightly stronger result is proven now:

Theorem 13. Let N be a DSSP (EQ) net. A marking mg such that 8 is live and
bounded exists iff N is strongly connected, consistent, and rank(C) = |SEQS|—1.

Proof. Applying the general necessary condition of Theorem 7, if (N, mg) is live
and bounded, then it is consistent and rank(C) < |SEQS| — 1. Moreover, by
Lemma 10, it is conservative. The equality of rank(C) and |SEQS| — 1 can be
obtained observing that after adding the regulation circuits, as in the proof of
Theorem 7, this net cannot have more than one minimal T-semiflow. (Being
conservative, any T-flow is a linear combination of minimal T-semiflows [27].)
Let x be a T-semiflow of the regulated net, and let ¢ € ||x||. For any transition in
||x||, every output place must have at least one output transition in ||x||. Thus,
all the transitions in EQS(¢) are also in ||x|| (because the places in the circuit
arbiter have only one output transition), and all their output places in the SM
have an output transition in ||x||. Applying repeatedly this argument, by strong
connectedness of the SM all its transitions are in ||x||. Moreover, each output
buffer of this SM has at least one output transition in ||x||. Since A is strongly
connected and the buffers are “output private”, repeating this argument with
every SM, ||x|| = T'. There cannot be two minimal T-semiflows with the same
support, hence rank(C) = |[SEQS| — 1.

Using that any strongly connected and consistent DSSP with rank(C) <
|SEQS]| is conservative, the sufficient condition is immediately deduced from
Lemma 12. O

The system in Figure 9 is strongly connected, consistent, and rank(C) =
15 = |[SEQS| — 1, therefore it can be lively and boundedly marked (for instance
it is live and bounded with the marking shown). According to Theorem 9.3, what
is needed is to put a large enough initial marking in the buffers.

The idea of taking some modules and communicating them by means of
buffers in a restricted way is also the basis of {SC}*ECS[19,20]. This class is de-
fined by extending recursively the definition of DSSP: an {SC}*ECS is composed
of a set of {SC}*ECS modules that communicate through a set of destination
private buffer places, with live and safe SM as the simplest modules. Results
analogous to Lemma 12, and Lemma 10 can also be proven for this class as they
are for DSSP, with the only difference that the proofs here are done by induction
on the number of “levels” used to build the net. Hence, the same characterization
for the existence of a live and bounded marking holds for this class, too [19,20].

4 Transformation Techniques for the Analysis of Liveness

A straightforward application of the rank theorems provides no information
about those systems that fulfill this condition, unless they belong to one of
the subclasses for which it is sufficient for str.liveness (EQ systems, DSSP and
{SC}*ECS for the moment). For instance, we cannot say whether the systems
in Figure § are live or not.

Transformation and decomposition techniques have been traditionally used
in analysis (see [2,3,25]). The aim has been usually to transform the system into
another one as small as possible, that will be analyzed by enumeration. The
previous results suggest that a different approach can be used, i.e.; a complete

reduction is not necessary if a decision can be taken in an intermediate step
by means of structural methods. That is, in some cases, after applying some
transformations, we can decide that the original system was not live by observing
that the transformed system does not fulfill the rank theorem, or decide that it
is live if we obtain a system that belongs to a particular subclass to with special
results can be applied.

Most of the classical transformation techniques do not improve the applica-
bility of the rank theorems. They neither affect to the difference between the
number of EQ sets and the rank of the token-flow matrix (i.e., [SEQS|—rank(C)),
nor do they transform the net into another one belonging to one of the subclasses
for which particular results are known. However, they can allow in some cases
to apply other more “effective” transformations. Not intending to be exhaustive,
in this section we present some of these transformations, studying whether they
preserve liveness, non liveness or both, and their effect on [SEQS| — rank(C).

Besides transformations, also decompositions can be used in the analysis of a
system. In particular, by applying results concerning arbiters, like Proposition 2,
Proposition 4 and Proposition 6. Consider for instance the system in Figure 5.
Tt can be seen as an EQ subsystem (in fact an SM with two tokens) and a
choice free local arbiter. Applying Proposition 2 and Proposition 4, liveness of
these subsystems allow to deduce that the complete system is deadlock-free and
str. live.

4.1 Implicit Places and Bypass Transitions

In this section we will see how the removal of implicit places and its dual coun-
terpart, bypass transitions, can help in the analysis of liveness.

Implicit Places A place in a net system is a constraint to the firing of its
output transitions. If the removal of a place does not change the behavior of
the original net system, it represents a redundancy in the system wrt. transition
enabling and it can be removed. A place whose removal preserves the fireable
sequences (i.e., the interleaving semantics) of the system is called a (sequential)
implicit place [6].

Definition 14. Let S = (M, mg) be a P/T system and &’ = (N’, m¢’) the P/T
system resulting from removing place p from S. Place p is a (sequential) implicit
place iff L(N',mg’) = L(N,myp). If, additionally, RS(N’,mg’) = RS(N,myo)
(the projection on the places of), then m[p] is a marking redundancy and p
is said to be a marking-redundant implicit place.

It follows from the definition that the elimination of an implicit place pre-
serves deadlock-freeness, liveness, or marking mutual exclusion; if it 1s marking-
redundant, then it additionally preserves boundedness or reversibility.

By means of linear relaxations, a sufficient structural condition for a place
to be implicit can be stated. This condition is based on the solution of a linear
programming problem, so it can be verified in polynomial time:

Proposition 15 ([6]). Let (N, mq) be a P/T system. A place p € P with initial
marking mo[p] > z, where z is the optimal value of (2), is implicit:

z= min.y -mg+ (2)
s.t. y-C<Clp,T]
y - Pre[P,t] + u > Pre[p,t] Vi€ p*
y>0,y[pl=0

Problem (2) is feasible iff y > 0 exists verifying y[p] = 0 and y - C <
C|p, T, because the other inequalities can be made true by adequately choosing
p. Choosing mo[p] big enough, place p becomes implicit, so we will say that a
place p such that y > 0, y[p] = 0, and y - C < Clp, T] is str. implicit. In order
to preserve str.boundedness, we concentrate on marking str.implicit places:

Definition 16. Let A be a P/T net. A place p € P is a marking str. implicit
place (MSIP) iff there exists y > 0, y[p] = 0 such that y - C = C[p, T].

Notice that an MSIP is not necessarily implicit. For instance, pg is an MSIP
in the system in Figure 11 (the sum of ps and pass), but clearly it is not implicit.
However, any MSIP is implicit if marked with enough tokens. For instance, two
tokens in pg make it implicit. By the way, increasing the initial marking of pg
kills the system, i.e., liveness is not monotonic wrt. mg.

Observe that for any (linearly) reachable state the marking of an MSIP can
be obtained by adding to its initial marking a linear combination of the marking
of the rest of the net. From this it i1s not difficult to see that str. boundedness
is not affected by the addition or removal of MSIP. Structural liveness is also
preserved if an MSIP is added, since for any marking of the rest of the system,
a marking of this place exists that makes it implicit (Proposition 15).

Proposition 17. Let (N, mg) be a P/T system, and p € P an MSIP.

1. N\ {p} is str. bounded iff N is str. bounded.

2. If N\ {p} is str.live, then N is str. live.

3. If mo[p] > =, where z is the optimal value of (2), then (N, mq) is live iff
(N\ {p}, mo[P\ {p}]) is live.

On the other hand, the removal of an MSIP does not modify the rank of the
token-flow matrix, although it may affect to the EQ sets.

Take for instance the system in Figure 11. It is obtained from the system in
Figure 8 (a), by fusion of series of places, thus any result about liveness of this
system will hold for the system in Figure 8 (a), too. It is not an EQ, neither
a DSSP. However removing psss, which is an MSIP (C[psss, 7] = Clpes, T] +
Clpg, T1]), yields an str.live and str.bounded EQ system (actually, a marked
graph). Thus, the system in Figure 11 is str.live and str. bounded and so is the
system in Figure 8 (a). That is, the use of implicit places and classical reduction
techniques allows to deduce str. liveness of a system for which the rank theorems
alone could not decide. Moreover, since the marking of paas is 1, the same as the

Fig.11. This system can be obtained applying fusion of series of places to Figure 8 (a).
It is an str. live and str. bounded EQ system plus an MSIP, ps45. Therefore, by Prop. 17
the system in Figure 8 (a) is str.live and str. bounded. Even more, since with one token
psas 1s implicit, the original system is live.

solution of (2), psss is implicit. Therefore, liveness of the system without psas
(see Section 6) implies liveness of the system in Figure 11, and hence liveness of
the system in Figure 8 (a).

On the contrary, notice that removing an MSIP (but not implicit) may well
destroy str.liveness: The net in Figure 11 is str.live (it is live with the given
marking) and N \ {ps} is not str.live. In those classes for which liveness is
monotonic wrt. the marking, such as EQ or DSSP (Theorem 9.3), since there
always exists a live marking that makes the MSIP truly implicit, removing an
MSITP preserves str. liveness.

Bypass Transitions Duality reasonings in net theory are essentially based on
interchanging places and transitions, and possibly the orientation of arcs. This
way, any structural object has a dual counterpart. For instance, P-semiflows are
“dual objects” of T-semiflows, and the “dual property” of str.boundedness is
str. repetitiveness. It must be noticed that, when dealing with not so algebraic
objects or properties, duality reasonings should be applied with caution.

As it is done for instance in [8] (in the context of deriving dual top-down
synthesis results for live and bounded free choice), marking str. bypass transitions
(MSBT) can be defined applying duality to MSIP:

Definition 18. A transition ¢t € T is a marking str. bypass transition (MSBT)
iff there exists x > 0, x[t] = 0 such that C -x = C[P,1].

Taking into account the state equation, the effect of an MSBT on the marking
is the same as that of the (weighted sum of the) occurrences of the transitions
indicated by the corresponding x, occurrences that may not correspond to any

fireable sequence. In other words, the removal of an MSBT preserves the linearly
reachable markings, thus properties such as str. boundedness, conservativeness,
etc. Nevertheless, some reachable markings may become spurious when an MSBT
is removed. For instance, removing the black transition in Figure 12 (b), (which
is an MSBT) makes 2py spurious. Moreover, as happened with MSIP, removal of
MSBT do not modify the rank of the token-flow matrix, although it may affect
to the EQ sets.

The same as their dual objects, marking-redundant implicit places, bypass
transitions are those that preserve the reachable markings and their connectivity
(note that the preservation of the connectivity in the case of implicit places
follows from the preservation of the reachable markings, so it does not appear

explicitly in their definition):

Definition 19. Let § = (N, mg) be a P/T system and &' = (N’,mg’) the
P/T system resulting from removing transition ¢ from S. Transition ¢ is a bypass
transition iff RS(M,mg) = RS(N’,mg’) and for every m;,m, € RS(N,mg)
such that there is a path from m; to my in RG(NV,mg) there is also a path in
RG(N', mg’).

It follows from the definition that the elimination of a bypass transition
preserves deadlock-freeness, liveness, marking mutual exclusion, boundedness,
reversibility, etc.

Clearly, a transition that is a bypass must be an MSBT, although the converse
is not true. For instance, transition ¢5 in Figure 12 (a) is an MSBT (t5 = t4+21%1),
but not a bypass: Although the reachability set is the same, from a marking that
puts the two tokens in the input place of ¢5 we cannot reach any other marking
if 15 is removed (i.e., t5 was not only a “short cut” of firing ¢4 and twice ¢1).

@ (b)

Fig. 12. The removing of MSBT (the black transitions) preserves neither str.liveness
(a) nor non str. liveness (b).

The fact that MSBT are not necessarily (behavioral) bypasses makes difficult,
in general, to (structurally) prove properties by addition/removal of MSBT. For
instance, the live system in Figure 12 (a) becomes non str. live if we remove the
black MSBT transition. In the other way, the net in Figure 12 (b) is (str.) live
without the black MSBT transition, while not being so if we add it (the, now
reachable, marking 2ps is a deadlock).

In the following proposition we give a simple sufficient condition for an
MSBT to be a (behavioral) bypass, since with the imposed conditions when-
ever t is fireable x is fireable in one step. Taking into account the properties of
MSBT and bypass transitions, the rest of the statement follows:

Proposition 20. Let (N,mg) be a P/T system and t € T an MSBT, with
x>0, x[t] =0, and C-x = C[P,]. If *||x|| N ||x||* = 0, then t is a bypass.
Therefore:

1. N\ {t} is str. bounded iff N is str. bounded.

2. If (N',mg) is live, then (N \ {t}, mo) is live.

3. If (N'\ {t}, mg) is live, then (N, my) is deadlock-free and all the transitions
in T\ {t} are live.

Fig.13. An EQ system with a bypass transition, tas.

Take the net A in Figure 13. It is obtained from the net in Figure 8 (b), by
fusion of t4, p3 and ¢5. Transition t45 is a bypass (C[P,t45) = C[P,t2] + C[P, 3],
and *{t2,13} N {t2, 13} = 0) and N = N'\ {t45} is a consistent and conservative
EQ net with [SEQS’| = rank(C’). Therefore N’ it is not str.live, and from
Proposition 20, neither is A/, nor the net in Figure 8 (b).

In order to get useful conclusions via MSBT, instead of restricting them,
we can restrict the nets to analyze. Taking into account that the LRS does not
change with the addition of an MSBT, and no arc is deleted from LRG, the
following holds:

Proposition 21. Let § = (N, mqo) be a P/T system and B C T a set of MSBT.
If 8 = (N \ {B},mo) is a system without linearly reachable deadlocks (spu-
rious or not), then S does not have linearly reachable deadlocks either.

This result 1s useful if, after the removal of MSBT, we get into a class like
EQ or DSSP. For instance, if some system is a live and bounded EQ or DSSP
plus some MSBT, then it is deadlock-free (live, except perhaps the MSBT).

4.2 Equalization and Release

In this section we investigate two transformations that, under some conditions,
preserve non (str.) liveness. This allows to obtain sufficient conditions out from
the ones we know for EQ systems and DSSP, i.e., these will be the target classes
we intend to transform the system into.

The transformations, equalization and release, while having a similar purpose,
approach the problem differently: in equalization the enabling conditions of the
transitions in a conflict are hardened to make it equal, while in release they
are weakened. In both cases, the basic idea is, taking a place as reference, to
decouple synchronization and conflict (of a coupled conflict set not being an equal
conflict set): equalization asks for (the maximum) synchronization constraints
before solving the conflict, while release solves the conflict a priori, disregarding
the synchronization constraints. Both transformations may kill a live system
(even structurally), but in case they do not, that is, if we can prove that the
transformed net system is (str.) live, then we can deduce (str.) liveness of the
original one.

Equalization Equalization is inspired in the efec-representation of [T], where it
was used to derive liveness and boundedness of reqular marked Petri nets, a class
of ordinary nets containing live and bounded free choice. We define equalization
as a local transformation that makes equal a str. conflict originated by a common
input place by increasing the preconditions of the transitions to make them equal,
while preserving the token-flow matrix. This definition is intended to be suitable
not only to transform a net into EQ, but also for DSSP (the place is in that case
selected to be the one that defines a choice from the SM point of view).

Being more precise: Let A be a P/T net and pg € P such that py® is not an
EQ set. The equalization of A wrt. py defines a new net, A, with the same set
of places and transitions and where the arc weights are such that:

— Pré'[p,t] = w, and Post'[p,t] = Post[p,t] — Pre[p,t]+w, if t € p* Npo*,
where w, = max;ep,s {Pre[p,t]}
— Pre'[p,t] = Pre[p,t] and Post'[p,t] = Post[p,t] otherwise.

Consider the net system in Figure 14 (a). It models two agents, a reader
and a writer that operate on a common database. The reader and the writer
cannot simultaneously access it, and a monitor is in charge of accepting just a
request at a time. The system is not an EQ, neither a DSSP, but it can be easily

:

Fig. 14. A writer-reader access system to a common database.

transformed into a DSSP (and also an EQ in this case) by adding arcs from b{
to t4 and from b}V to ¢} (Figure 14 (b)). In terms of our interpretation of the
model, the monitor waits till both, the reader and the writer, ask permission to
access the database before granting it to any.

Notice that equalization does not change the token-flow matrix, and thus
structural properties of the net based on this matrix (consistency, conservative-
ness,...) are preserved. Some states can be made unreachable (pEp}plV for
instance in the example in Figure 14), but provided that this does not kill the
system and that any of its linearly reachable states has an effectively reachable
successor, the original system will be live too.

Proposition 22. Let S = (N,mg) be a P/T system and &' = (N, mg) the
system obtained equalizing N with respect to one or several places.

1. N’ is str. bounded iff N is str. bounded.
2. If 8’ is a live system such that any linearly reachable marking has an effec-

tively reachable successor, that is, for any marking m € LRS, RS(NV/,m) N
RS(N',mgq) # 0, then § is also live.

Proof. The first item comes directly from preservation of the token-flow matrix.

For the second, assume S non live. Then ¢ € T and m,; € RS(S) exist such
that ¢ cannot be fired from any m € RS(V, m;). Clearly, m; € LRS(S’), thus
applying the hypothesis, a marking m; exists such that m; € RS(N’,m;) N
RS(N’,mg). Since (N’ ;mg) is live, ms € RS(N’,m;) exists such that ¢ is
enabled. Contradiction, since my € RS(NV, m,). O

The example in Figure 15 shows the interest of the linear reachability re-
striction for &’. In the example, § (Figure 15 (a)) deadlocks (see its RG in
Figure 15 (b)), although if we equalize wrt. p; (see 8’ in Figure 15 (c)) &' is
live: its RG is the one in Figure 15 (b) without ps ps, which is now spurious (so
Proposition 22 cannot be applied). Fortunately, this linear reachability restric-

Fig.15. A non live system whose equalization wrt. py is live.

tion holds, for instance, if the LRG is directed, as it happens in live EQ systems
or live and consistent DSSP (Theorem 9.2). In particular, if A is an str. live and
str. bounded EQ or DSSP, then A is str.live and str. bounded too.

Using EQ as target class, i.e., converting each coupled conflict set into an
equal conflict set via equalization, allows to deduce the next general sufficient
condition out from the str.liveness and str. boundedness characterization of EQ
nets. It generalizes a result for ordinary nets in which free choice was used as the
target class [7]. Moreover, if every minimal P-semiflow of the equalized system
is live, the EQ system is live [31], and hence the original system is live.

Proposition 23 (A General Sufficient Condition [18]). Let S be a P/T
system. If N is strongly connected, consistent and rank(C) = |[SCCS| — 1, then
it 1s str. live and str. bounded.

Release Release is inspired in [10], where the idea was also to transform a given
net to obtain a free choice net. We define release as a local transformation that
makes equal a str.conflict originated by a common input place by weakening
the conditions that enable the firing of transitions in a conflict, so that the con-
flict resolution is completely free and the synchronizations are done afterwards.
Again, this transformation can lead, for instance, to an EQ or DSSP, although in

a different way than equalization. As an example, in the system of Figure 14, the
monitor decides in advance to whom the access to the database will be granted,
no matter who is asking for it (Figure 14 (c)).

Being more precise: Let A" be a P/T system and py € P such that pg
an EQ set. We define the transformed net in two steps (Figure 16):

¢ is not

1. For each non-trivial EQ set in py* with more than one input place, e, delete

the arcs connecting the transitions and their input places, add one transition,
te, one place, p, and arcs so that

— Pre[p,t.] = Pre[p,t] with t € e,

— Pre'[p.,t] = 1if t € e ,0 otherwise,

— Post/[p., t.] = 1.

In words, transform such EQ set into a synchronization plus a free choice

afterwards.
2. Now every EQ set in pg* is trivial or has py as unique input place. Let
out = {t1,...,tx} be the transitions in pg® with more than one input place

or with Pre[pg,t] # 1. Remove the arcs that connect pg to the transitions in
out and add transitions {t{, ... %}, places {p1,...,px}, and arcs so that

— Pre’[po,t}] =1,

— Pre’[py, ;] = Pre'[po, tr]

— Post"[pg, 1] = 1.
This way, all the outputs of pg are equally possible and the synchronizations
are done afterwards.

The marking of the new system is defined as the marking of the initial system
and zero tokens in the new places.

A

<
W

=01
[==O=1

[R

E)ow«ow

Fig. 16. Release of the transitions in the conflict wrt. po.

The first step in the release transformation is done in order to avoid killing
the system in an absurd way. Imagine that we do not apply the first step and
directly use the second step to “release” the system in Figure 17 (b) wrt. p and
P, obtaining the system in Figure 17 (c). Firing ¢ and #', the system deadlocks.
The system would not deadlock if the EQ set had been grouped before, as in
Figure 17 (a).

It is clear that even then, a live system can be killed if the conflicts are
released, but when the released system is live, the original one 1is live too:

[R

@ (b) ©

Fig. 17. Not grouping the EQ sets can lead to absurd killings of the system.

Proposition 24. Let S be a P/T system and 8’ a system obtained releasing S
with respect to one or several places.

1. N is str. bounded iff N is str. bounded.
2. If 8 is live, then S is live.

Proof. Tt is not difficult to see that str. boundedness is not modified by release.
For liveness, observe that any sequence in L(S) can be extended to a sequence
in L(S8’). Since &' is live, for any transition of N a sequence in L(S8’) exists that
enables it. This sequence can be projected so that it is in L(S). O

Release vs. Equalization Both release and equalization decrease the SEQS —
rank(C) difference (remember that if it is made zero or negative, then the target
net violates Theorem 7, so it is non str. live and we cannot decide). By equaliza-
tion the rank is maintained and |[SEQS| is decreased, while by release the rank
is augmented more than |[SEQS| because each new transition increases the rank
but some belong to the same EQ set. Tt can be shown that release and equal-
ization wrt. a place decrease this difference in the same amount. However, they
are not equivalent when a coupled conflict set is transformed into an equal con-
flict set, since release has to be done wrt. all the input places, while that is not
always necessary for equalization. Take for instance the philosophers example in
Figure 18 (a). To transform {¢1,%3,¢5} into an equal conflict set, release has to
be done with respect to p1, ps, and ps, making zero the difference between the
rank of the token-flow matrix and |SEQS|, thus not allowing to decide, while
equalization with respect to any two of them is enough, keeping the difference
positive, thus allowing to prove str. liveness of the original net.

From a liveness preservation point of view, release and equalization are not
comparable, 1.e., in some cases the released system is live while the equalized
system is non live, and vice-versa (Figure 18).

On the other hand, equalization does not have sense unless we have informa-
tion about the LRG of the target system (Proposition 22). For instance, if we
used {SC}*ECS as target class, equalization would be of no help, since in this
class spurious deadlocks may exist [19].

@ (b)

Fig. 18. Release of the system in (a) with respect to p1,ps and ps makes it non (str.)
live, while equalization with respect to the same places makes it live. However, the
release of (b) with respect to p; is live and the equalization with respect to that place

is dead.

4.3 Application of Transformations

Four main kinds of transformations have been considered in this section: re-
moval of implicit places, removal of bypass transitions, equalization and release.
Additionally, the removal of arbiters can be considered as a transformation—by—
decomposition rule (see Proposition 4). In that sense, observe that a choice free
local arbiter should not be removed if this reduces the rank of the token-flow ma-
trix less than the number of transitions in the arbiter minus one (Proposition 6).
These transformations (from S to & or from N to N') can be classified into three
main groups, according to what is preserved (structurally or behaviorally):

— Group I: Either &' live & 8 live, or N str.live < N str.live

— Group 1I: Either & live = S live, or N str.live = A str. live

— Group III: Either &’ non live = 8 non live, or N’ non str.live = N non
str. live

Table 1 summarizes most of the results about transformations. When the
property relates liveness in both systems it is denoted with an “L”, and when the
relationship is set at a structural level it is denoted with “SI.”. Besides removal
of implicit places, other classical reduction rules like pre- and post-fusion [2] or
macroplaces [25] belong to group I, since they fully preserve liveness.

When using transformations to analyze a system, those in group II and those
in group III cannot be mixed, because the ones in group II aim at proving (str.)
liveness, while the one in group IIT try to prove non (str.) liveness. Transforma-
tions of group T can be used with any of them, since they keep all the information
wrt. the properties under study.

A possible application strategy is: first, apply all the transformations you
can of group I. Then, concentrate either in group Il or group III. Assume for

Preserves 1.&—1.| Preserves -l Preserves L
I |Remove implicits L,SL (Def. 14)
Remove MSIP SL (Prop. 17)
IT |Remove local arbiters SL (Prop. 4)
Equalization L,SL (Prop. 22)
Release L,SL (Prop. 24)
III |Remove bypasses L,SL (Prop. 21)

Table 1. Let 8 be the original system and 8’ the transformed one. The preservation of
behavioral properties (liveness or non liveness) is denoted by “L.”, while the preservation
of structural ones (str. liveness or non str. liveness) is denoted by “SL”.

instance that group II is chosen, i.e., it is liveness of the system we intend to
prove. Apply a transformation of group II and go on applying transformations
of group T and group II till str.liveness or non str. liveness is proved or till you
reach a dead end and no transformation can be applied. If the application of
transformations leads to a non str. live system or to a dead end, then go back to
the point where the last transformation of goup IT was applied, i.e., undo all the
transformations of group I and the last transformation of group II. If another
transformation of group II can be applied, then proceed. Otherwise, repeat the

backtracking.

It should be noticed that two different transformation sequences can lead
to net systems with different properties, unless all the transformtions belong to
group 1.

Let us illustrate the suggested procedure with an example. Consider the sys-
tem in Figure 19 (a). This net is consistent and conservative (thus str. bounded),

(a ()

Fig. 19. The system in (b), obtained applying transformations of group I to the system
in (a), can be deduced to be live using transformations of group II.

rank(C) = 4 and |SEQS| = 5, hence nothing can be said about liveness applying
the general necessary condition (Theorem 7). Apply as many transformations as
you can of group I: remove p7 (implicit) and fuse transitions ¢4 and ¢5 into a5
(post-fusion [2]). The system obtained, Figure 19 (b), is irreducible wrt. group
I. Assume we intend to prove str.liveness. Then, in the following we will use
transformations in groups I and II. A possible transformation that can be done
is to remove the circuit arbiter defined by ps and pg. This makes the net non
strongly connected, thus it is not str.live and str. bounded, and no conclusion
can be obtained. Hence, this transformation must be undone. Instead of remov-
ing this circuit arbiter, we can also remove the circuit arbiter defined by ps and
ps. Now, places p1 and p4 can be fused into a macroplace [25], p14, which is im-
plicit. What remains after removing pi14 1s simply the circuit formed by ps, ts, ps
and t45, which is live. Thus, the original system is str. live.

5 Liveness and Dead Transitions

So far, we have concentrated on the use of the rank theorems for the analysis
of str. liveness, not taking into account the actual marking of the system. This
will allow to discard some non live systems. However, if the system is proven
to be str.live (or we cannot decide whether it is str.live or not) liveness of the
specific system should be studied. Using the general structural approach, based
on the state equation relaxation, the system one might consider for the analysis
of liveness is:

(Vt,m)(30”)
Mm=my+C 6>0Am'=m+C-0'>0Am’>Pre[Pt{]Ao,0’ >0)

However, validity of the above predicate is neither sufficient for liveness, because
the o’ may not be fireable, nor necessary, because an m invalidating it may
be spurious. As a result we cannot even semidecide on this property, since we
can only obtain necessary conditions for existentially quantified predicates, and
sufficient conditions for universally quantified ones, due to the possible presence
of spurious solutions.

Nevertheless, linear techniques can be used to give necessary conditions for
liveness. Dead transitions are transitions that are not fireable from any reachable
marking. The existence of dead transitions means that some actions can never
be executed, what clearly implies that the system is not live. In other words,
absence of dead transitions is necessary for liveness. Deadlock-freeness is another
condition that is also clearly necessary for liveness. Notice that these two con-
ditions are not related to each other, i.e., a system with dead transitions can be
deadlock-free and a system without dead transitions can deadlock. For instance,
the system in Figure 20 (a) is deadlock-free, while transitions ¢3,¢4 and ¢5 are
dead; in the system in Figure 20 (b) no transition is dead and it deadlocks. In
this section we will concentrate on dead transitions, and deadlock-freeness will
be studied in the following one.

(b)

Fig.20. Absence of dead transitions is neither necessary (a), nor sufficient (b), for
deadlock-freeness.

An algebraic general sufficient condition for the existence of dead transitions
can be obtained. Its negation will thus be a necessary condition for liveness.

Definition 25. Let S be a P/T system. A transition is dead iff it is not fireable
from any reachable marking.

Proposition 26 (Sufficient condition for ¢ dead).
Let (N',mg) be a P/T system. If there is no (integer) solution to

m-—C-0=mg
m > Pre[P,{]
m> 0 ®)
>0

then t is dead.

The converse of Proposition 26 is not true. That is, even if (3) has a solution
the transition could be dead, because such a solution might be non reachable,
i.e., it might be an spurious solution. For instance, transition ¢5 in Figure 20 (a)
is dead, and a solution of (3) exists: m = [0,0,0,1] and & = [0,0,1,1,0] i.e.,
there exists an spurious marking that enables #5.

Relaxing (3) into the reals, and using duality theory [15], an alternative for-
mulation of the condition for a transition to be dead can be obtained. In this
case, the dual problem of (3) leads to:

Corollary 27. Let (N ,mo) be a P/T system. If there is a solution to
y-C<0
y - Pre[P,t]—y -mgo >0 (4)
y>0,

then t is dead.

Existence of a solution to (4) can be interpreted as follows. If it has a solution,
then a set of str. bounded places exists, defined by ||y||. This vector induces the
following marking invariant relation: y - m < y - mg. To fire transition ¢, a
content of tokens with a “weight” given by y - Pre[P,] is required on places in
|ly||- But so much “token weight” can never be collected in these places, because
y - Pre[P,t] > y - mg, and every reachable marking must fulfill y - m <y - mg.

If a P/T system is live, then there is no dead transition, i.e., all transitions are
fireable at least once. Thus, we can state the following polynomial time necessary
condition for liveness, that requires checking for absence of solution |T| linear
systems of equations in the worst case.

Corollary 28. Let S be a P/T system. If S is live, then there is not € T for
which a solution to (4) exists.

Clearly, absence of dead transitions is in general not sufficient for liveness.
As usual, better results are obtained if subclasses of systems are considered. For
instance, in free choice systems liveness is equivalent to str.liveness and every
P-semiflow being marked [8], or alternatively, to str. liveness and every transition
being non dead.

Proposition 29. Let (N, mg) be a free choice system. It is live and bounded iff

1. N is strongly connected, consistent and rank(C) = |SEQS| — 1, and
2. no transition is dead

Proof. 1f the system is live and bounded, it is clear that 1t does not contain any
dead transition. Applying Theorem 13 the net is strongly connected, consistent
and rank(C) = |[SEQS| — 1.

Assume the system strongly connected, consistent and rank(C) = |[SEQS|—1,
and no transition is dead. Applying Theorem 13 and Corollary 11, it is str. live
and str. bounded. By the results in [31], liveness of a str. live and str. bounded EQ
system (in particular free choice) is equivalent to liveness of all the P-subsystems
that its minimal P-semiflows define. In the case of free choice nets these P-
subsystems are strongly connected SM [9]. Consider a minimal P-semiflow, y
and let ¢t be a transition belonging to the SM it defines. Since ¢ is not dead, a
sequence o exists that enables it, i.e., mg + C - & > Pre[P,t]. Thus, y - mqg >
y - Pre[P,t]. Moreover, y - Pre[P,t] > 1 because ¢ is in the SM the P-semiflow
defines. Therefore y-mg > 1, that is, the SM is marked and so it is live. Repeating
with every minimal P-semiflow, liveness of the free choice system is deduced. O

Algebraically, liveness of a str. live and bounded free choice net (i.e., strongly
connected consistent and rank(C) = |SEQS| — 1) is equivalent to non existence
of solution to (5), what can be checked in polynomial time.

y-C=0
y-mg=20 (5)
y>0

This property does not hold in general. In fact, it even fails in the simple
case of weighted circuits (see Figure 20(b)). For this subclass (and EQ systems
or DSSP) more information is obtained from the analysis of deadlock-freeness,

which is equivalent to liveness if the system is bounded and strongly connected
(Theorem 9.1).

6 Deadlock-Freeness

Deadlock-freeness is another necessary condition for liveness that can be (par-
tially) analyzed using the state equation. In net terms, a deadlock corresponds
to a marking from which no transition 1is fireable. Thus, absence of deadlock is
also necessary for liveness, although in general not sufficient.

Clearly, every reachable deadlock is a solution to the state equation where
every transition is disabled, what leads to the following basic general sufficient

condition for deadlock-freeness:
Theorem 30. Let S be a P/T system. If there is no (integer) solution to

m-—C.-oc=mg
m,o>0 (6)
Ve, m[p] < Pre[p,t] Vt€T

then 8 1is deadlock-free.

Unfortunately, it is a non linear system and its resolution poses practical
problems. A possible way of solving it is to use an alternative statement as the
absence of solutions to a set of systems of linear equations in the integer domain.
This set of systems is defined by taking each time one of the conditions linked
disjunctively, i.e., considering for each transition one of its input places as the
“culprit” for its disabledness. The problem is that we have to check [],cp [*?]
linear systems.

This can be improved by using specific transformation techniques [29]. Firstly,
if Pre[P,t] < Pre[P,t'] for some t and #', the disabledness condition for ¢ can be
removed. We can also remove from (6) the disabledness conditions of transitions
that are known to be dead (Section 5). These transformations do not affect the
set of solutions to (6), even over the reals.

Although disregarding some transitions applying the above arguments may
be helpful, typically the more drastic reduction in the number of systems to
check is produced by the results that we present in the sequel. They provide
rules to rewrite the disabledness condition of a transition in a less complex way
while preserving the set of integer solutions to (6).

Proposition 31 ([29]). Lett be a transition such that for every p € m C *t the
following holds: sb[p] < Pre[p,t]. Replacing in (6) for the disabledness condition
corresponding to transition t the following (less complex) condition:

(Z m[p] < ZPre[p,t]) \ \/ m[p] < Pre[p, t]

peE™ peE™ pESt\T

the set of integer solutions is preserved.

By the application of this result to a transition ¢, the number of linear systems
to be solved is divided by Iﬂfll—.%’
number of input places to the transition and the actual number of them that need
being considered separately. In the particular case where m = *¢, the disabledness
condition is reduced to a linear inequality.

This is for instance the case of the system obtained from the one in Figure 11
by removing the implicit place ps4s. It can be easily proven to be live by checking

the absence of solutions of the following linear system:

what is deduced from the ratio between the

m-—C. -0 =mg
m(ps] = m(ps] =0
m[pi] + m[ps] <1 (7)
m|[p7] + m[ps] <1
m,og>0

(In this particular case, deadlock-freeness can also be proven by observing
that this is a marked graph and no unmarked circuit exists.)

Also when all but one of the input places of a transition are such that their
str. bound equals to the weight of the arc, the disabledness condition of the
transition can be reduced to a linear inequality, applying the following result,
which generalizes Proposition 31:

Proposition 32 ([29]). Let t be a transition such that *t = = U {p'}, where
sb[p’] > 0 and sblp] < Pre[p,t] for every p € m. Replacing in (6) for the
disabledness condition corresponding to transition t the following (less complez)
condition:

sb[p']- > _m(p] + m[p'] < sb[p']- Y Pre[p,t] + Pre[p,1] — | (8)

peET peEm

the set of integer solutions is preserved.

By the application of this result to a transition ¢, the number of linear systems
to be solved is obviously divided by |*#|.

We can still further reduce the number of systems to solve by pre-applying a
transformation to the system that preserves deadlock-freeness (actually, it pre-
serves the projected language). The transformation, illustrated in Figure 21, can
be applied as needed to every place p with homogeneous weighting (Pre[p, p*] =
wl). After the transformation, we have one more transition (¢() in the figure),
the disabledness condition of which can be written as a linear inequality because
the str.bound of p(®) is one. On the other hand, the str. bound of p(® is also
one, thus we have in each transition in p* one input place less with str. bound
greater than the weight (perhaps only one, or even none, remains, and then the
disabledness condition for such transition can be written as a linear inequality
too).

Fig.21. A transformation preserving the projected language (in particular, preserving
deadlock-freeness).

After the presented results, clearly the state equation based verification of
deadlock-freeness reduces to checking non-existence of (integer) solution to a
single linear system of inequalities in the case of str. bounded P/T systems with
homogeneous weighting — in particular equal conflict systems — because the
transformation in Figure 21 can be applied as necessary to enable Propositions 31
or 32. Moreover, since every P/T system can be simulated by another with
homogeneous weighting preserving the projected language (see Figure 22 for an

Fig. 22. Simulating weights with ordinary nets preserving the projected language.

illustrative example of the kind of transformation used), it follows that every
str. bounded P/T system (or merely known to be k-bounded, because these can
always be made str. bounded using the complementary place construction) can

be transformed to require a single linear system of inequalities:

Theorem 33. Let S be a str. bounded P/T system. Then (6) in the sufficient
condition for deadlock-freeness given by Theorem 30 can be rewritten as a single
system of linear inequalities.

Although the transformation shown in Figure 21 can always be applied, more
compact transformations exist for particular classes. For instance, for DSSP,
where the only places with marking bound possibly greater than the correspond-
ing arc weight are the buffers, it is possible to transform the net so that every

transition has at most one input buffer, as it clearly follows from the rules shown
in Figure 23. The first rule is obvious. The second rule can be applied in the case

Fig.23. Transformations to avoid having more than one input buffer in the same
transition.

of DSSP because all the outputs of a buffer belong to the same sequential agent
(“destination private” constraint). Therefore, when a transition requiring tokens
from two buffers is enabled, these tokens can be collected in sequence because
no other transition can remove them in the meanwhile (at any time, only one
transition is enabled in a live and safe state machine).

Putting together the above results, a possible schema for the analysis of
deadlock-freeness could be: First, compute the str.bound for the marking of
every place. Remove every transition such that the str. bound for one of its in-
put places is less than the weight of the arc to the transition (clearly these
transitions will be dead). Remove also any transition ¢ for which ¢’ exists with
Pre[P,t] > Pre[P,t']. Then, select the transitions to which Proposition 32 can-
not be applied (i,e., sb[p] > Pre[p,t] for more than one input place). For each
input place of these transitions with sb[p] > Pre[p,t], make its output arcs
homogeneously weighted (for instance, as in Figure 21) and apply the trans-
formation in Figure 22. The equivalent system thus obtained verifies that for
each transition ¢ at most one input place p exists with sb[p] > Pre[p,t]. Using
Proposition 32 a single system of inequalities is obtained. If this system does not
have an integer solution, the system is deadlock-free.

Moreover, in the case of EQ systems or DSSP, absence of solutions to the
system is not only sufficient, but also necessary for deadlock-freeness. The reason
is that, a bounded and strongly connected deadlock-free EQ system or DSSP is
live (Theorem 9.1), and therefore any marking that is solution of the state equa-
tion has a reachable successor (Theorem 9.2). Thus, there cannot be spurious
deadlocks. Hence, analyzing liveness in these subclasses is specially simple: First,

check if a marking that makes the system live and bounded exists by checking
strong connectedness, consistency and rank(C) = [SEQS| — 1 (Theorem 13).
Assuming this holds, checking deadlock-freeness (which, as said before, is equiv-
alent to checking the absence of an integer solution to a system of inequalities)
allows to conclude on liveness.

Transformation techniques may also allow to apply this method for the analy-
sis of systems for which in principle could not be used. Assume we have been
able to prove that a net is str.live by transforming it into an EQ or DSSP net.
If the transformations preserve not only str.liveness but effective liveness, the
equivalence of liveness and deadlock-freeness in these subclasses allows to reduce
the problem to solving absence of deadlock in the transformed system. For ex-
ample, liveness of the system in Figure 8 (a) can be deduced from the absence
of solution to the system of equations in (7).

7 Example
In this section we will apply the previous results to analyze liveness in an exam-

ple.
Consider the system represented in Figure 24, composed of two producers,

Producer 1 Producer 2
i

~ Robot P ® o

= e |5

o bt [J N
Robot C

Consumer 1 Consumer 2

Fig.24. A manufacturing system composed of two producers, two consumers, and two
robots with two intermediate buffers.

two consumers, two robots and two buffers. Each producer manufactures one
kind of parts that are consumed by one of the consumers. One robot takes the
parts the producers have manufactured and transports them to their buffer, while
the other one removes the parts from the buffers according to the consumers’
requests. The buffers capacities are two and three respectively. A P/T model of
this system is represented in Figure 25 (a).

This net is consistent, conservative, and rank(C) = 10. But |SEQS| = 12
and |SCCS| = 10, and thus the general necessary or sufficient conditions do not

iddle_robotl iddle_robot1

waiting "
@ waiting2
producel Oj produce2
readyl ready2 .
loaded2 loadedl loaded?2

unload2 unloadi unload?

part2

consumel consume2

requestingl requesting2

iddle_robot2

@ (b)

iddle_robot2

Fig.25. A P/T representation of the manufacturing system in Figure 24.

allow to decide about liveness in any sense. However, some transformations can
be applied that will allow to decide. Places waiting! and readyl and the transi-
tion producel can be grouped into a single place that self-loops transition load!
without affecting liveness (fusion of places [2,26]). Moreover, this new place is
implicit, thus by Proposition 17, it can be removed without modifying liveness.
Analogous transformations can be done to remove the circuits representing the
other producer and both consumers. The system obtained is represented in Fig-
ure 25 (b). Now rank(C) = 6 = |SEQS]|, therefore cannot be lively marked and
the system in Figure 25 (a) is not live.

Observe that problems in this system arise because robots do not check the
existence of parts or space in the buffers before accepting a request to remove
or put a part, what can lead to a deadlock. This can be solved by adding a pair
of status variables that record the state of the buffers and which the robots will
check before accepting a request by a producer or a consumer, Figure 26 (a).
Again, liveness cannot be analyzed using the general conditions (the system is
consistent, conservative and rank(C) = 10, while [SEQS| = 12 and [SCCS| =
10), but this can be improved applying some transformations.

The circuits representing the consumers and the producers can be removed
as before. The places that represent the number of empty positions in the
buffers, free! and free2, are implicit. (They can be obtained by adding loaded!,
check _freel | iddle_robot2, and accepted?, and loaded?, check _free2, iddle_robot1

iddle_robotl

waiting2

Waiting@ °

produce2

ready2

accept2

chosen2

consume2

consumel @

requestingl requesting2

iddle_robot2

@ (b)

iddle_robot2

Fig.26. The addition of status variables makes the system live.

and accepted!, respectively, and solving the systems given in (2) it can be seen
the marking is enough to make them implicit.) Therefore they can be removed
and the system will be live or non live just the same. Now, load _part1, loaded1
and unload! can be grouped into one transition (fusion of transitions [2,26])
and analogously load_part2, loaded?2 and unload2. This transforms iddle_robot1
into an implicit place that can be removed. Applying release wrt. iddle_robot2
the system is transformed into a free choice system. This system, represented in
Figure 26 (b), is consistent, conservative, and rank(C) = 6 = [SEQS| — 1. Thus,
this system is str. live, and so is the original one. (This could also have been
decided before doing the release, applying the sufficient condition of Proposi-
tion 23.) Moreover, applying the particular results of free choice nets, we can
prove that this system 1s live just by checking that there is no dead transition,
i.e., no solution of the system in (5) exists. Hence, by Proposition 29 we can
deduce that the system in Figure 26 (a) is live.

8 Conclusions

In this paper several linear algebraic techniques have been proposed for the
analysis of liveness. Other structural approaches using concepts based on graph
theory, (namely particular classes of siphons) can be found in [1,12].

The analysis of liveness is divided in two main phases: First, analyzing
str. liveness and second, if the net is str.live, or this could not be disproved,
analyzing liveness. In the first part, it is the structure of the net we mainly
concentrate on, and not the actual marking. We have given a general necessary

condition for the existence of a live and bounded marking for a net, the rank
theorem (Theorem 7). This condition allows to detect in some cases mismatches
between choices and synchronizations that preclude liveness.

For some subclasses, in particular EQ systems or DSSP, the kind of prob-
lems this condition pinpoints to, are in fact the only possible ones, what makes
it a complete characterization for the existence of a marking that makes the
system live and bounded (Theorem 13). Moreover, other specific results, such
as the equivalence of liveness and deadlock-freeness, or the absence of spurious
deadlocks, makes the analysis of liveness for these subclasses specially simple
(Theorem 9).

Unfortunately, if the system does not belong to one of these subclasses, it
may be the case that the rank theorem does not conclude. We have studied
some transformations that may help in the analysis of these systems. Table 1
sumimarizes the results obtained, which do not intend to be exhaustive.

If the system is finally proven to be str.live, or at least we have not been
able to disprove it, liveness should be analyzed. Two basic necessary conditions
for liveness have been studied using linear algebraic techniques: absence of dead
transitions (Section 5) and deadlock-freeness (Section 6). For both of them suf-
ficient conditions based on the analysis of the state equation have been given.
In particular, it has been proven that a simple sufficient condition for deadlock-
freeness, which is also necessary for EQ systems or DSSP, can be stated in terms
of absence of solutions of a single system of linear inequalities in the integer
domain (Theorem 33).

Although this method will not always allow to prove that a system is live,
it will help to detect non liveness in most practical systems, avoiding the use
of more costly techniques. It can also help to solve the problems these faulty
systems may present by signaling the cause of their non liveness: existence of
a structural pathology or of a marking leading to the existence of dead tran-
sitions or a deadlock (Section 7). For interesting net subclasses (EQ, DSSP),
str. liveness is always decidable in polynomial time, and liveness for a particu-
lar mg is also decidable using linear algebraic techniques. For free choice nets,
liveness is equivalent to absence of dead transitions, what can be decided in
polynomial time.

Acknowledgement

We thank Peter Kemper (University of Dortmund), Hassane Alla (University of
Grenoble), José Manuel Colom, Joaquin Ezpeleta, and one anonymous referee

for their helpful comments and suggestions.

References

1. K. Barkaoui and J.F. Pradat-Peyre. On liveness and controlled siphons in Petri
nets. In Billington and Reisig [4], pages 57-72.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Berthelot. Checking properties of nets using transformations. In G. Rozenberg,
editor, Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer
Science, pages 19-40. Springer, 1986.

. G. Berthelot. Transformations and decompositions of nets. In W. Brauer,

W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models and their Proper-
ties. Advancesin Pelri Nets 1986, Part I, volume 254 of Lecture Notes in Computer
Science, pages 359-376. Springer, 1987.

J. Billington and W. Reisig, editors. Application and Theory of Petri Nets 1996,
volume 1091 of Lecture Notes in Computer Science. Springer, 1996.

J. Campos, G. Chiola, and M. Silva. Properties and performance bounds for closed
free choice synchronized monoclass queueing networks. /FEE Trans. on Automatic
Control, 36(12):1368-1382, 1991.

J. M. Colom and M. Silva. Improving the linearly based characterization of P/T
nets. In Rozenberg [22], pages 113-145.

J. Desel. Regular marked Petri nets. In J. Leeuwen, editor, WG’ 93: 19" Int.
Workshop on Graph-Theoretic Concepts in Computer Science, volume 790 of Lec-
ture Notes in Computer Science, pages 264-275. Springer, 1993.

J. Esparza and M. Silva. On the analysis and synthesis of free choice systems. In
Rozenberg [22], pages 243-286.

M. H. T. Hack. Analysis of production schemata by Petri nets. Master’s thesis,
M.I.T., Cambridge, MA, USA, 1972. (Corrections in Computation Structures Note
17, 1974).

M. H. T. Hack. Petri net languages. Technical Report Technical Report 159,
Laboratory for Computer Science, M.I.T., Cambridge, MA, USA, 1976.

W. E. Kluge and K. Lautenbach. The orderly resolution of memory access conflicts
among competing channel processes. [EEE Trans. on Computers, 31(3):194-207,
1982.

K. Lautenbach and Hanno Ridder. Liveness in bounded Petri nets which are
covered by t-invariants. In R. Valette, editor, Application and Theory of Petri Nets
1994, volume 815 of Lecture Notes in Computer Science, pages 358-375. Springer,
1994.

G. Memmi and G. Roucairol. Linear algebra in net theory. In W. Brauer, editor,
Net Theory and Applications, volume 84 of Lecture Notes in Computer Science,
pages 213-223. Springer, 1979.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

K. G. Murty. Linear Programming. Wiley and Sons, 1983.

C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asynchronous concur-
rent systems using Petri nets. IEEE Trans. on Software Engineering, 6(5):440-449,
1980.

L. Recalde, E. Teruel, and M. Silva. Modeling and analysis of sequential processes
that cooperate through buffers. [EFEE Trans. on Robotics and Automation. To
appear.

L. Recalde, E. Teruel, and M. Silva. On well-formedness analysis: The case of
deterministic systems of sequential processes. In J. Desel, editor, Proc. of the
Int. Workshop on Structures in Concurrency Theory (STRICT), Workshops in
Computing, pages 279-293. Springer, 1995.

L. Recalde, E. Teruel, and M. Silva. {SC}*ECS: A class of modular and hierarchical
cooperating systems. In Billington and Reisig [4], pages 440-459.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

L. Recalde, E. Teruel, and M. Silva. A structural view of hierarchical determinis-
tically synchronized sequential processes. Research report, Dep. Informatica e In-
genieria de Sistemas, Universidad de Zaragoza, Maria de Luna, 3, 50015 Zaragoza,
Spain, 1997.

W. Reisig. Deterministic buffer synchronization of sequential processes. Acta
Informatica, 18:117-134, 1982.

G. Rozenberg, editor. Advances in Petri Nets 1990, volume 483 of Lecture Notes
in Computer Science. Springer, 1991.

M. W. Shields. An Introduction to Automata Theory. Blackwell Scientific Publi-
cations, 1987.

J. Sifakis. Structural properties of Petri nets. In J. Winkowski, editor, Mathemat-
ical Foundations of Computer Science 1978, pages 474-483. Springer, 1978.

M. Silva. Las Redes de Petri: en la Automdtica y la Informdtica. AC, 1985.

M. Silva. Introducing Petri nets. In Practice of Petri Nets in Manufacturing, pages
1-62. Chapman & Hall, 1993.

M. Silva, E. Teruel, and J. M. Colom. Linear algebraic techniques for the analysis
of net systems. In G. Rozenberg and W. Reisig, editors, Advances in Petri Nets,
Lecture Notes in Computer Science. Springer. To appear.

Y. Souissi and N. Beldiceanu. Deterministic systems of sequential processes: The-
ory and tools. In Concurrency 88, volume 335 of Lecture Notes in Computer
Science, pages 380-400. Springer, 1988.

E. Teruel, J. M. Colom, and M. Silva. Linear analysis of deadlock-freeness of Petri
net models. In Procs. of the 2"% European Control Conference, volume 2, pages
513-518. North-Holland, 1993.

E. Teruel, J. M. Colom, and M. Silva. Choice-free Petri nets: A model for de-
terministic concurrent systems with bulk services and arrivals. TEFEFE Trans. on
Systems, Man, and Cybernetics, 27(1), 1997.

E. Teruel and M. Silva. Structure theory of equal conflict systems. Theoretical
Computer Science, 153(1-2):271-300, 1996.

