
ArgoSPE: Model-Based Software Performance

Engineering�

Elena Gómez-Mart́ınez and José Merseguer

Dpto. de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza
C/Maŕıa de Luna, 1 50018 Zaragoza, Spain

{megomez, jmerse}@unizar.es

Abstract. Stochastic Petri nets (SPNs) have been proved useful for
the quantitative analysis of systems. This paper introduces ArgoSPE,
a tool for the performance evaluation of software systems in the first
stages of the life-cycle. ArgoSPE implements a performance evaluation
process that builds on the principles of the software performance engi-
neering (SPE). The theory behind the tool, i.e. the underlying SPE pro-
cess, has been presented in previous papers and consists in translating
some performance annotated UML diagrams into SPN models. There-
fore, ArgoSPE prevents software engineers to model with SPN since they
are obtained as a by-product of their UML models. The design of the
tool follows the architecture proposed by OMG in the UML Profile for
Schedulability, Performance and Time specification.

Keywords: GSPN, UML, UML-SPT, software performance evaluation.

1 Introduction

Performance evaluation focusses on the analysis of the dynamic behavior of
systems and the prediction of indices or measures such as their throughput,
utilization or response time. Among the different formalisms used in this field,
stochastic Petri nets (SPN) [1] have been proved as a very powerful one.

Concerning the performance evaluation of software systems, Software Per-
formance Engineering (SPE) [2] proposes methods to evaluate them in the
early stages of the development process. Being the Unified Modelling Language
(UML) [3] a standard de facto for software engineers, the SPE community has
adopted it to specify performance parameters in software designs, then defining
the UML Profile for Schedulability, Performance and Time Specification (UML-
SPT) [4].

Many approaches, see [5] for a survey, have arisen to derive from UML-SPT
specifications, performance models based on a given modelling formalism, such
as SPN. A step forward for the application of these approaches, and to contrast
its maturity, should be the development of tools that support their proposals.
� This work has been developed within the projects: TIC2003-05226 of the Span-

ish Ministry of Science and Technology; and IBE2005-TEC-10 of the University of
Zaragoza.

S. Donatelli and P.S. Thiagarajan (Eds.): ICATPN 2006, LNCS 4024, pp. 401–410, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

402 E. Gómez-Mart́ınez and J. Merseguer

The availability of these tools is a necessary condition for the industry in order
to apply these proposals and to discover the feasibility of the SPE research field.
The UML-SPT, being concerned about the problem, has proposed the main
steps and modules that any SPE tool should follow, see Figure 1.

Fig. 1. Architecture proposed in the UML-SPT of OMG

Nevertheless, to the best of our knowledge, there not exist tools that fully im-
plement the remarked SPE methodologies and follow the UML-SPT proposals.
We guess that it is mainly motivated because the field is young. As a conse-
quence, software performance prediction is still accomplished by means of clas-
sical performance evaluation tools such as [6, 7, 8], that introduce a gap between
their methods and notations and those commonly used by software engineers.
Good news are that prototypes and first attempts to implement parts of these
approaches are arising in these last years.

In this paper, we present ArgoSPE, a tool for the performance evaluation
of software systems in the first stages of the development process. It is based
and implements most of the features given in our previous works [9, 10, 11] and
gathered in [12] as a software performance modelling process. So, the system
is modeled as a set of UML diagrams, annotated according to the UML-SPT,
which are translated into Generalized Stochastic Petri Nets (GSPN) [13]. The
UML diagrams used to obtain a performance model by means of ArgoSPE are
those considered in our process: statemachines, activity diagrams and interac-
tion diagrams. The use case diagram is taken into account in the process, but it
has not been considered in ArgoSPE yet. The class and the implementation dia-
grams (components and deployment) are used to collect some system parameters
(system population or network speed).

ArgoSPE has been implemented as a set of Java modules, that are plugged
into the open source ArgoUML CASE tool [14]. It follows the software architec-
ture proposed in the UML-SPT, see Figure 1. ArgoSPE has been used to model
and analyze software fault tolerant systems [15] and mobile agents software [16].

The rest of the article is organized as follows. Section 2 presents the most inter-
esting features of ArgoSPE, while section 3 focusses on its software architecture.

ArgoSPE: Model-Based Software Performance Engineering 403

Section 4 surveys those tools prototypes, developed to analyze performance of
software systems, based on the UML-SPT. Finally, conclusions and further works
are exhibited in section 5.

2 ArgoSPE Features

From the user viewpoint, ArgoSPE is driven by a set of “performance queries”
that s/he can execute to get the quantitative analysis of the modeled system.

We understand that a performance query is a procedure whereby the UML
model is analyzed to automatically obtain a predefined performance index. The
steps carried out in this procedure are hidden to the user. Each performance
query is related to a UML diagram where it is interpreted, but it is computed
in a GSPN model automatically obtained by ArgoSPE.

Moreover, the performance analyst, that has expertise in Petri net modelling
and analysis, can use the GreatSPN tool to compute domain specific metrics
using the GSPN models, that ArgoSPE generates automatically.

2.1 Queries in the Statechart Diagram

A statechart models the behavior of a class. Figure 2 depicts an example of
statechart that models a Consumer class and a very simplified version of its
GSPN translation.

– State population. This query computes the percentage of objects in each
state. For example, in Figure 2, the 40% of the objects could be Consuming
and the others WaitingForProducer.

The query can be useful to detect saturated software processes or to know
how an agent shares out its execution among different tasks (states). The
state population is obtained by dividing the number of objects in the state
among the mean number of objects that populate the class.

For instance, in the state WaitingForProducer, the State population is
computed by dividing the mean marking of place p9 among the initial mark-
ing of the net in place p1.

p9|WaitingForProducer_implicit_place

p6|e_Consume

p2|accept_Consume

t2|end_Consume

p7|ack_Consume

t1|Consume

p1|ini_WaitingForProducer

t5|end_lambda

p8|e_IsConsumed

t4|S_Producer_IsConsumed

p4|comp1_Consuming

p3|ini_Consuming

t3|DoConsume

p5

WaitingForProducer

Consuming

do/DoConsume

/Producer.IsConsumed()Consume()

<<PAstep>>{PArespTime=(3,’s’)}

Fig. 2. Statechart and its corresponding GSPN

404 E. Gómez-Mart́ınez and J. Merseguer

– Stay time. Represents the mean time that the objects of a class spend
in each state. For each state, this value is computed by dividing the mean
number of objects in it among its throughput, therefore, applying the Little’s
Law.

In the example of Figure 2, the Stay time of the state WaitingFor-
Producer represents the mean time that a Consumer spends waiting for
consuming, and it is computed by dividing the mean marking of place p9
among the throughput of the transition t5.

– Message delay. When the sender and the receiver of a message reside in
different physical nodes, this query calculates the time spent by the mes-
sage to reach the receiver’s node. This value is straightforward calculated by
dividing the size of the message among the network delay (see section 2.2).

2.2 Queries in the Deployment and Collaboration Diagrams

The deployment diagram specifies the execution architecture of a system. Hard-
ware resources are represented as nodes where software components can be de-
ployed. Moreover, the physical network connections are modeled as relationships
between nodes.

– Network delay. Calculates the network delay (bit rate) between two non
adjacent hardware resources (nodes). Given a system configuration, the net-
work delay is useful to find the node where a new software component could
be deployed, i.e. the node that minimizes the delay of the component’s mes-
sages.

The collaboration diagram is an interaction diagram that focusses on how
objects exchange messages. It describes the behavior of the system in a specific
context (scenario).

– Response time. For a given collaboration diagram (system scenario), this
query computes its mean response time, i.e., the mean duration of a certain
system execution.

2.3 Performance Annotations

ArgoSPE uses as input a UML-SPT annotated model, i.e. UML models have to
explicitly include performance characteristics. These performance annotations,
defined in the UML-SPT, are made by means of the UML extension mechanisms:
stereotypes and tagged values.

The stereotypes specify the main performance characteristics of the UML
model elements, while the tagged values specify the attributes of the stereotypes.
As an example, see the performance annotation in Figure 2, where the stereotype
PAstep means that DoConsume is a computation step, while the tagged value
PArespTime models its response time.

The UML-SPT defines a Tag Value Language (TVL), a subset of the Perl
language, that allows to specify complex and parameterized expressions in the
tagged values.

ArgoSPE: Model-Based Software Performance Engineering 405

The annotations supported by ArgoSPE are those necessary to compute the
proposed performance queries, see Table 1.

Table 1. Performance annotations in ArgoSPE

Annotation Stereotype Tagged value Unit Model elements and
Diagrams

Activity PAstep PArespTime ms, s, m, h Activities in the SC
duration and AD

Probability PAstep PAprob - Transitions in SC & AD
Messages in the Coll.

Size PAstep PAsize b, B, kb, kB, Messages in the
Mb, MB SC and Coll.

Network PAcommu- PAspeed bps, Bps, Deployment
speed nication kbps, kBps,

mbps, MBps

Population PAclosedLoad PApopulation - Class in Class diagram

Initial state PAinitial- PAinitialState $true or State in the SC and AD
Condition $false

Resident classes GRMcode - - Deployment

3 Software Architecture

ArgoSPE follows the architecture proposed in the UML-SPT [4], see Figure 1.
The ArgoUML [14] CASE tool works as the Model Editor, while the ArgoSPE
modules implement and coordinate the Model Configurer and the Model Pro-
cessor (Model Convertor, Model Analyzer and Results Convertor) functions.
Figure 3 depicts the ArgoSPE menu inside the menu bar of ArgoUML.

3.1 Model Editor

The Model Editor is used to create and modify performance-annotated UML
diagrams.

ArgoUML allows to model and to annotate the UML diagrams involved in
the translation process [9, 10, 11]. ArgoUML, as most CASE tools, exports UML
models into XMI [17] files, allowing the standard exchange of information with
another tools.

From the performance-annotated UML diagrams, ArgoSPE creates a param-
eterized XMI file, that will be an input for the Model Configurer. This XMI file
contains the modeling and performance information of: the statecharts, describ-
ing the behavior of the classes in the system; the activity diagrams, specifying the
activities of the statecharts; the deployment diagram, that gathers information
about physical nodes location and network transmission speed; the class diagram
with information about the system workload and the collaboration diagram.

406 E. Gómez-Mart́ınez and J. Merseguer

ArgoSPE

Performance
annotation

Fig. 3. ArgoSPE menu inside ArgoUML

3.2 Model Configurer

The Model Configurer functionality, see Figure 1, consists in converting a pa-
rameterized UML model in XMI format, into a configured UML model using
a configuration data set. The main target is to substitute in the XMI file, the
tagged values written in TVL with parameterized expressions that represent the
performance annotations, for the equivalent evaluated expressions.

The first task is to parse the XMI file, obtaining a tree structure, called
Document Object Model (DOM) [18]. This one is visited recursively from its
root node into their children nodes to search for performance annotations. So,
a list of XMI identifiers with known stereotypes is extracted. For each element
in that list, a TVL expression is obtained, some of them with variables, that
will be evaluated, then modifying the tree. At the same time, a symbol table is
created containing the performance annotations. Finally, the tree is serialized to
an XMI file.

Since the TVL expressions can contain variables, ArgoSPE prompts the user
to choose a configuration file containing a configuration data set. An example of
this kind of file is depicted in Figure 4.

#A very simple configuration file written in Perl

$value=5;

$value2=10;

$value3=($value<40)?100-$value2:100;

Fig. 4. A configuration file

ArgoSPE: Model-Based Software Performance Engineering 407

ArgoSPE evaluates this file by invoking a Perl interpreter to get the actual
value for variables and expressions. Then, for a performance annotation like
<<PAstep>>{PArespTime=($value,’s’)} the variable $value will be evaluated
and replaced according to the configuration file (e.g. the one in Figure 4), so the
evaluated expression will be <<PAstep>>{PArespTime=(5,’s’)}. Multi-valued
expressions are supported by ArgoSPE.

3.3 Model Processor

The Model Processor turns the configured model, obtained from the Model Con-
figurer, into an analyzable model (GSPN model), analyzes it and returns the re-
sults. These tasks are respectively addressed by the Model Convertor, the Model
Analyzer and the Results Convertor.

Model Convertor. The Model Convertor module encapsulates the translation
process from the configured model into the target performance formalism. There-
fore, in ArgoSPE it is a heavy process that implements the translation theory
proposed in [9, 10, 11, 12]. The GSPN models are obtained in the GreatSPN file
format [7].

The high-level algorithm implemented in the tool for the Model Convertor is
illustrated in Algorithm 1. Note that it needs as inputs not only the configured
XMI, as proposed in the UML-SPT, also the symbol table, that allows to speed
up the translation process, but it increases the module coupling.

The lines 2 to 14 correspond to the translation process of the statecharts and
its associated activity diagrams. Then, a GSPN, called SysGSPN, that models the
whole system behavior is obtained by merging the Petri nets of the classes (line
26). The translation of the collaboration diagrams is described from lines 17 to
24. The result is a set of GSPNs, ScenarioiGSPN, each one modeling the scenario
specified by the collaboration diagram i.

Model Analyzer. The Model Analyzer implements the performance queries
described in sections 2.1 and 2.2. Concretely, the queries for the statecharts are
computed using the SysGSPN net. While the Response time query for a collabo-
ration diagram i is computed in the ScenarioiGSPN net.

The Model Analyzer invokes the GreatSPN programs to get the answers to
the queries. ArgoSPE currently uses the GreatSPN programs that implement
analytical/numerical techniques. The use of GreatSPN simulation techniques
will be considered to complement the results.

Results Convertor. The main function of the Results Convertor is to convert
the results of the analysis back to the UML Model Editor, in a way that a
software engineer can interpret them easily.

In the current version of ArgoSPE, the returned results are directly displayed
by the Model Editor in a simple message window, then not directly in the UML
models.

408 E. Gómez-Mart́ınez and J. Merseguer

Algorithm 1. Model Convertor
Require: A configured XMI file and a symbol table
Ensure: A set of GreatSPN models (SysGSPN, ScenarioiGSPN)
1: UML diagrams ← XMI file
2: for all class c ∈ Class diagram do
3: if c has Statechart then
4: node ← Locate node in Deployment diagram(c)
5: A ← Activity diagrams associated with c
6: for all Activity ac ∈ A do
7: pa ← Annotations associated with ac ∈ symbol table
8: acGSPN[j] ← TranslateToGSPN(ac,pa)
9: end for

10: sc ← Statechart associated with c
11: pa ← Annotations associated with sc ∈ symbol table
12: scGSPN ← TranslateToGSPN(sc,pa,node)
13: clGSPN[k] ← Merge(scGSPN, acGSPN[])
14: end if
15: end for
16: SysGSPN ← Merge(clGSPN[])
17: for all class c ∈ Class diagram do
18: C ← Collaboration diagrams associated with c
19: for all Collaboration co ∈ C do
20: pa ← Annotations associated with co ∈ symbol table
21: coGSPN[i] ← TranslateToGSPN(co,pa)
22: ScenarioiGSPN ← Merge(SysGSPN,coGSPN[i])
23: end for
24: end for

4 Related Work

A number of performance evaluation tools based on Petri nets have been devel-
oped in the last decade, such as Möbius [6], GreatSPN [7] or TimeNET [8]. But
in this work, we only revise and compare those tools that focus in the SPE field.

DSPNexpress-NG [19], proposed by Lindemann et al., constitutes a framework
that can evaluate both discrete-event systems specified as Petri nets and UML
system models. It uses UML statecharts which are not annotated according to
the UML-SPT, and transforms them into deterministic and stochastic Petri nets
(DSPNs) to obtain numerical solutions.

Distefano et al. [20] developed a performance plug-in for ArgoUML. Follow-
ing the UML-SPT, they focuss on use cases, deployment and activity diagrams
and introduce an intermediate model, which is used to gather performance in-
formation. This intermediate model is transformed into SPN and analyzed with
a web-based non-markovian Petri net tool.

Using formalisms different from Petri nets, Petriu and Shen [21] propose an
algorithm to transform activity diagrams into LQN models. They obtain the
XML files from existing UML tools, and change them by hand in order to add
performance annotations to the different model elements. The tool of Gilmore

ArgoSPE: Model-Based Software Performance Engineering 409

and Kloul [22] uses ArgoUML to compile statecharts and collaboration diagrams
through a process algebra language. D’Ambrogio [23] introduces a framework to
automatically translate LQN models from annotated activity and deployment
diagrams. Cortellessa et al. [24] propose a tool that in two phases gets a pa-
rameterized QN from use cases, sequence diagrams and deployment diagrams.
Marzolla and Balsamo [25] transform annotated use case, deployment and ac-
tivity diagrams into a discrete-event simulation model.

5 Conclusion and Further Work

Petri nets are recognized as a useful modeling paradigm for the performance
evaluation of a wide range of systems. Nevertheless, most software engineers do
not feel comfortable far from their pragmatic (non formal) modeling languages,
such as UML. Moreover, engineers find easier and more productive to use only
one modeling paradigm for all the project stages. Since ArgoSPE obtains GSPNs
as a by-product of the software life-cycle, software engineers can use their UML
models to assess system performance properties.

A number of new features can improve the tool: First, the more system prop-
erties assessed the more useful the tool become. New performance queries have
to be implemented. Second, a standard format, PNML [26], could be the target
file format, then gaining the possibility to use other Petri net analyzers.

Acknowledgments. The authors would like to thank Aitor Acedo, Borja
Fernández, Luis Carlos Gallego, Álvaro Iradier, Juan Pablo López-Grao and
Isaac Trigo for their work in the development of this tool. Finally, thanks to Si-
mona Bernardi for her useful paper corrections and for her work testing the tool.

Availability. ArgoSPEisGNUsoft.Downloadat:http://argospe.tigris.org.

References

1. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Transactions
on Computers 31(9) (1982) 913–917

2. Smith, C.U.: Perf. Engineering of Software Systems. Addison–Wesley (1990)
3. Unified Modeling Language Specification. (http://www.uml.org) Version 1.4.
4. UML Profile for Schedulabibity, Performance and Time Specification.

(http://www.uml.org) Version 1.1.
5. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-Based Performance

Prediction in Software Development: A Survey. IEEE Trans. Software Eng. 30(5)
(2004) 295–310

6. The Möbius tool (http://www.mobius.uiuc.edu/)
7. The GreatSPN tool (http://www.di.unito.it/~greatspn)
8. The TimeNET tool (http://pdv.cs.tu-berlin.de/~timenet/)
9. Merseguer, J., Bernardi, S., Campos, J., Donatelli, S.: A compositional semantics

for UML state machines aimed at performance evaluation. (In: IEEE WODES’02)
295–302

410 E. Gómez-Mart́ınez and J. Merseguer

10. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and
statecharts to analysable Petri Net models. (In: ACM WOSP’02.) 35–45

11. López-Grao, J.P., Merseguer, J., Campos, J.: From UML Activity Diagrams to
Stochastic Petri Nets: Application to Software Performance Engineering. (In: ACM
WOSP’04) 25–36

12. Merseguer, J.: Software Performance Engineering based on UML and Petri nets.
PhD thesis, University of Zaragoza, Spain (2003)

13. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley Series (1995)

14. The ArgoUML project (http://argouml.tigris.org)
15. Bernardi, S., Merseguer, J.: QoS assesment of fault tolerant applications via

stochastics analysis. IEEE Internet Computing (2006) Accepted for publication.
16. Merseguer, J., Campos, J., Mena, E.: Analysing internet software retrieval systems:

Modeling and performance comparison. Wireless Networks 9(3) (2003) 223–238
17. XML Metadata Interchange (XMI) (http://www.omg.org)
18. Java Tecnology (http://java.sun.com)
19. DSPNexpressNG (http://www.dspnexpress.de)
20. Distefano, S., Paci, D., Puliafito, A., Scarpa, M.: UML Design and Software Per-

formance Modeling. (In: ISCIS’04, vol. 3280 of LNCS.) 564–573
21. Petriu, D., Shen, H.: Applying the UML performance profile: Graph grammar-

based derivation of LQN models from UML specifications. (In: TOOLS’02, vol.
2324 of LNCS.) 159–177

22. Gilmore, S., Kloul, L.: A unified tool for performance modelling and predicition.
(In: SAFECOMP’03, vol. 2788 of LNCS.) 179–192

23. D’Ambrogio, A.: A model transformation framework for the automated building
of performance models from UML models. (In: ACM WOSP’05.) 75–86

24. Cortellessa, V., et al.: XPRIT: An XML-Based Tool to Translate UML Diagrams
into Execution Graphs and Queueing Networks. (In: IEEE QEST’04.) 342–343

25. Marzolla, M., Balsamo, S.: UML-PSI: The UML Performance Simulator. (In: IEEE
QEST’04.) 340–341

26. PNML (http://www.informatik.hu-berlin.de/top/pnml/about.html)

	Introduction
	ArgoSPE Features
	Queries in the Statechart Diagram
	Queries in the Deployment and Collaboration Diagrams
	Performance Annotations

	Software Architecture
	Model Editor
	Model Configurer
	Model Processor

	Related Work
	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

