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Abstract—Generalized Stochastic Petri Nets (GSPN), with immediate transitions, are extensively used to model concurrent systems

in a wide range of application domains, particularly including software and hardware aspects of computer systems, and their

interactions. These models are typically used for system specification, logical and performance analysis, or automatic code generation.

In order to keep modeling separate from the analysis and to gain in efficiency and robustness of the modeling process, the complete

specification of the stochastic process underlying a model should be guaranteed at the net level, without requiring the generation and

exploration of the state space. In this paper, we propose a net-level method that guides the modeler in the task of defining the priorities

(and weights) of immediate transitions in a GSPN model, to deal with confusion and conflict problems. The application of this method

ensures well-definition without reducing modeling flexibility or expressiveness.

Index Terms—Stochastic Petri nets, priorities, conflict, confusion, modeling methodology.
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1 INTRODUCTION

PRIORITIES were early introduced as an extension to Petri

nets (PN) [1], [2]: Transitions can be classified into
priority classes with an absolute priority level or a relation

between transitions can be specified [3], [4]. In any case,

priorities modify the enabling rule by preventing a

transition firing when another transition having priority

over it is also enabled. Priorities were originally introduced

with the aim of enlarging the expressive power of the

formalism, but they have found another important motiva-

tion in the case of generalized stochastic PN (GSPN) [5], [6]:
Time delays of very different magnitude caused computa-

tional and numerical problems for the solution that could be

avoided by assuming that “fast” transitions occurred

immediately; this implies that immediate transitions always

occur before timed transitions, that is, they have priority.
The introduction of immediate transitions was not so

immediate as it seemed to be at first sight. Due to their zero
delay, conflicts between immediate transitions could not be
resolved by a race policy (as conflicts between timed

transitions were). Random switches were specified by
assigning weights to potentially conflicting immediate

transitions, but the appropriate weight assignment became
a major modeling issue since it required the knowledge of

the reachable markings in order to know the conflict
situations that could arise. Particularly, we often face the

problem of confusion [7] between immediate transitions, that

typically leads to an incomplete specification of the

stochastic process. A common way to break confusion is

introducing priorities among potentially confused immedi-

ate transitions. On the other hand, different priority levels

lead to more intricate behaviors, particularly to indirect

conflicts [8].
With the incorporation of the convenient immediate

transitions and priorities, with high-level extensions (see for

instance [9]), and with the availability of tools (see http://

www.daimi.au.dk/PetriNets/tools/), GSPN have become

an attractive formalism for performance, or performability,

modeling and evaluation (see, for instance, [8], [10], [11]),

with applications in diverse fields, particularly software

and computer systems, typically distributed software, and

multiprocessor or networked computers [5], [12], [13], [14],

[15], [16], [17], but also manufacturing systems [18], phased-

mission systems [19], etc.
The problem of a complete and correct specification of

the stochastic process underlying a model described using

different flavors of stochastic PN with immediate transi-

tions, has been tackled in several directions:

. In [8], [6], net-level reasoning is used to detect
stochastic confusion and to signal which immediate
transitions might become in direct or indirect
conflict. This approach has been followed exten-
sively and is incorporated in most tools because it
exhibits the two appealing features of net-level, or
structural, reasoning: efficiency because it works on
the net, not on the state space, and robustness, that
means that, typically, the correct model is correct for
“any” property that we might want to analyze, and
it is still correct if we change the timing and
probabilities information, and even, to some extent,
the initial state. Unfortunately, it was found recently
[20] that the current net-level definition of GSPN is
not complete, in the sense that there is a (somehow
weird) situation that it does not take into account.
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. In [21] and [22] state space, reasoning is used to detect
problems: The complete and correct specification of
the model is checked during the construction of the
underlying stochastic model. The main advantage of
thismethod is that it only signals actually problematic
situations that affect the properties under analysis.
Themain drawback is the computational cost because
it requires some state space generation and analysis,
whichmight ormight not be useful for the subsequent
analysis of the model. Actually, this drawback is
particularly relevant when the analysis technique
does not require a complete state space generation, as
it happens, for instance, with simulation.

. In [20], we proposed a net-level restriction to the
priority specification to prevent the problems, by
using a subclass of nets were they cannot appear.
The “subclasses approach” had not been generally
advised, due to the fact that topological subclasses
being confusion free (e.g., free choice nets) are very
limited from a modeling point of view, namely, to
model mutual exclusion in the access to shared
resources [7]. Nevertheless, in [20], completely
general net topologies are allowed, only the
priorities are restricted so that immediate transi-
tions not intended to be in effective conflict have
different priorities, hence only the firing of transi-
tions which are intended to be in conflict need a
probabilistic specification. This leads to the class of
detached priorities GSPN, which cannot exhibit sto-
chastic confusion or indirect conflicts, what was
considered a desired feature. The question was
how to assign different absolute priorities from as
few as necessary relative modeling considerations,
for which we outlined a method that was the seed
of our current proposal.

Our position is that the possibility of some spurious
warnings due to the use of net-level reasoning is a low price
to pay for the efficiency and robustness that is gained. Going
one step further, we would say that no net-level warning is
completely spurious: if a net shows a potential problem that
happens to be irrelevant in the actual behavior, perhaps that
net is not “the” good model of the system, or the particular
initial marking does not show a problem that with another
marking would appear. A major advantage of nets is that
they provide a concise and clear representation of systems
whose state space is large and complex; the state space,
which might be very valuable for some analytical purposes,
is intentionally hidden to the user, who is supposed to
produce and/or understand the net. The separation of (net-
based) modeling and (possibly state space based) analysis
becomes crucial in compositional modeling when we try to
reuse models, e.g., of parts, or aspects in a system to
produce models of the whole system. It is a desired feature
that the effort devoted to obtain correct submodels reduces
the effort to ensure that the complete model is correct. In this
respect, net-level preventive methods show a potential to
advance step-by-step [20].

The paper is organized as follows: Section 2 introduces
some preliminary notions, among which the notion of well-
defined GSPN (inspired by [21]) is defined for the first time

in this paper. The situations leading to non-well-defined
model and different ways to solve them are illustrated in
Section 3. A net-level method to specify the solution of
possible conflict and confusion situations by means of
priorities and/or probabilities is introduced and illustrated
in Section 4. In Section 5, it is proven that the method
always produces well-defined GSPN, which is the main
result of the paper. The application of the method is
illustrated with an example in Section 6, where some of the
advantages of the net-level approach are shown. Several
remarks and directions of future work in Section 7 conclude
the paper.

2 PRELIMINARIES

2.1 The GSPN Formalism

The fundamentals of PN and GSPN are well-known [2], [6].
GSPN have been successfully used for the performance
modeling and analysis of systems from diverse application
fields. For simplicity, inhibitor arcs are omitted; in this work,
a GSPN system is a 7-tuple hP; T ;Pre;Post;pri;w;m0i,
where P and T are the sets of places and transitions, Pre and
Post are jP j � jT j-dimensional arrays representing the pre
(post) incidence functions, pri is a jT j-dimensional array
representing absolute transition priorities (0 for timed
transitions, and positive for immediate transitions), w is a
jT j-dimensional array of weights, that are to be interpreted as
rates for (exponentially) timed transitions and as weights
for immediate transitions to be used in probabilistic conflict
resolution, and m0 is a jP j-dimensional array representing
the initial marking. For pre (post) sets, the conventional dot
notation is used, e.g., �� is the set of input places of the
transitions in � � T . Concerning arrays, subscripting with
elements and/or sets is flexibly used, e.g., Pre½�; t� is a
subarray ofPrewith rows corresponding to places in � � P
and column corresponding to transition t 2 T .

A transition t has concession at marking m when m �
Pre½P; t� (componentwise). The concession degree quantifies
it: maxfk 2 INþ j m � k �Pre½P; t�g. If no higher priority
transitions have concession, then it can occur or fire, and we
say t is enabled. Its occurrence yields marking m½ti ¼
mþPost½P; t� �Pre½P; t�. The occurrence of a sequence � of
transitions enabled at m yielding m0 is denoted similarly:
m½�im0. If � would be enabled at m disregarding priorities,
then we say � has concession atm. We denote the multiset of
transitions occurring in a sequence � by k � k . When
k � k¼k �0 k , � is a permutation of �0. The length of a
sequence � is denoted by j�j.

2.2 The Current Net-Level Definition of GSPN

According to [8], [6], the definition of a GSPN model
requires that the user assigns absolute priorities to all
immediate transitions, although no indications are given on
how to define these priorities. Once they are assigned, the
computation of probability for conflict resolution among
immediate transitions requires the definition of the so called
extended conflict sets (ECS) and the definition of weights for
all immediate transitions. Intuitively, ECS are (transitive
closures of) subsets of potentially conflicting equal priority
transitions and they are computed automatically by apply-
ing structural conflict analysis on the net with priorities. In
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absence of confusion (structural methods have been defined
to check this), the idea is that all ECS are independent so
that their relative firing order is not relevant from the point
of view of the solution. (Unfortunately, this might not be
true due to pseudoconflicts [20], and this is why the current
definition is not complete; ECS could be redefined to
include this case, but we propose here another option.) This
presumed independence allows to arbitrarily order differ-
ent ECS with the same assigned priority before starting the
reachability graph construction step. For instance, this can
be achieved introducing new priorities, compatible with the
user priority definition, so that the different ECS are always
fired in a predefined order rather than trying all possible
interleavings. This allows one to keep the number of
vanishing markings under control.

Once ECS are computed and relatively ordered, the
weights of transitions within the same ECS can be used to
compute conflict resolution probabilities: These are function
of the current marking and the transitions weights. Since
the weights assigned to immediate transitions are not
constrained to be within a certain range, to transform them
into probabilities it is necessary to perform a normalization
step among all enabled transitions in each ECS.

2.3 The Relative Priority Specification

An alternative way of specifying priorities of immediate
transitions is by means of a binary relation. We write
priðtiÞ > priðtjÞ or prii > prij and we draw a directed arc
from ti to tj, when it is specified that ti has priority over tj; we
write prii ¼ prij and we draw an undirected arc joining ti
and tj when it is specified that they have the same priority.
Therefore, the priority specification can be represented as a
graph having the immediate transitions as nodes and
directed or undirected arcs joining them when the
corresponding relations are specified, as shown in Fig. 1,
where it is specified that: priðtiÞ>priðtj1Þ, priðt0jÞ ¼ priðtj1Þ,
priðtj1Þ ¼ priðtj2Þ, and priðtj2Þ ¼ priðtjÞ.

A priority specification need not be complete: For instance,
the relation might specify that priðtiÞ > priðtjÞ and
priðtjÞ > priðtkÞ, but not that ti has priority over tk. In such
case, we say that the latter relation is deduced, due to the
transitive nature of the priority relation. Deduced relations
affect the enabling just the same as specified relations, but it
is important to make a distinction between them for the
purpose of this work. In the example of Fig. 1, it can be
deduced that ti has priority over tj, but this is not explicitly
specified. In the graph, we draw arcs only for specified
priorities; the remaining priority relations can be deduced
following the graph paths. (In order to further emphasize
the distinction specified/deduced, we shall denote by
priðtiÞ > priðtjÞ, or similar expressions, only the specified
relations, not the deduced ones.)

We denote by ½t� the class of transitions with priority
(either specified or deduced) equal to that of t. In the
example of Fig. 1, there are two classes: ½ti� ¼ ftig and
½tj� ¼ ft0j; tj1; tj2; tjg.

For a given marking m, we denote by ðtÞ, or by ðtÞm
when m is not obvious from context, a maximal subclass of
½t�, containing t, whose transitions are enabled and they are
connected through undirected arcs. Similarly, considering
concession instead of enabling, we define ððtÞÞ, or ððtÞÞm. In
graph terms, a ððtÞÞm is a connected component in the graph
representing the priority specification after deleting the
transitions without concession at m, and the directed arcs.
In the example of Fig. 1, for the depicted marking, ðtiÞ ¼
ððtiÞÞ ¼ ftig and ððtjÞÞ ¼ ftjg.

We say that the priority relation between two sets
(typically subclasses) of transitions is specified when it is
specified between at least two transitions, one in each set. In
the example of Fig. 1, we would say that the priority
relation between ftig and ft0j; tj1; tj2; tjg is specified, but not
the priority relation between ftjg and ft0j; tj1g.

At each vanishing marking, we may have several
subclasses ððtÞÞ with concession. Notice that it is even
possible that two disjoint ððtiÞÞ; ððtjÞÞ � ½tk� have concession.
Among the subclasses with concession, only those with no
other subclass having priority over them (specified or
deduced) are enabled. Consider now the marking yielded
by the occurrence of ti in the example of Fig. 1; both ðt0jÞ ¼
ft0jg and ðtjÞ ¼ ftjg are enabled.

Now, that we have defined relative priorities, let us
discuss how it is possible to turn a model with relative
priorities into an equivalent model with absolute priorities.
The motivation for this could be the availability of tools
working only with absolute priorities (e.g., GreatSPN). The
problem here is how to order any pair of transition classes,
½t� and ½t0�, which are not related in the relative priority
definition. Notice that not being related is not the same as
having equal priority: In the former case, we do not assume a
probabilistic firing policy, as we shall do when the priority is
equal (see below). Therefore, the firing order between
nonrelated transitions should not be relevant; otherwise, the
model would not be well-defined (see below the formaliza-
tion of this concept). In case the model is well-defined, any
firing order of nonrelated transitions produces the same
effect; hence, nonrelated transitions can be relatively
ordered in whichever way. The most convenient choice is
to arbitrarily pick one class and say that it has priority over
the other. This choice allows one to avoid considering
useless interleavings when generating the vanishing por-
tion of the reachability graph, hence reducing the number of
irrelevant vanishing markings. This idea of introducing
artificial priorities has been exploited for the generation of
reduced reachability graphs in timed and untimed PN [8],
[23], as commented in the previous subsection.

Finally, once priority classes are defined, the probability
of firing one transition, belonging to one of the enabled
subclasses, at a marking m is computed (normalization
step) using the weights of the transitions in its subclass:

Probðt;mÞ ¼ wðtÞP
t02ðtÞm wðt0Þ :
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Notice that the weights do have a meaning locally, that is,
within each subclass. Compared to the normalization step
in the current definition of GSPN that always involves all
enabled transitions within an ECS, now we can avoid the
generation of some useless vanishing markings when two
disjoint subclasses ðtÞ and ðt0Þ, included in the same priority
class ½t�, are enabled: In this case, the transition weights in
the two subsets can be normalized independently, and their
relative firing order can be chosen arbitrarily. In the
example (after firing ti), both firings of tj or t0j can occur,
independently or concurrently, each of them with prob-
ability one.

The probability of firing sequence � at m, Probð�;mÞ, is
the product of the probabilities of the successive occur-
rences of its transitions.

2.4 Well-Defined GSPN

Our definition of a well-defined model is based on the
algorithmic definition in [21]. Given a model and a
vanishing marking m, the algorithm in [21] recursively
builds all possible immediate firing sequences starting in m
and reaching a tangible marking, and decides on-the-fly
whether the model is well-defined with respect to m: If
there are several tangible markings reachable from m
through some immediate sequences, then it is checked
whether the model contains enough information to com-
pute the probability of reaching each of those tangible
markings. Moreover, if the measures to be computed from
the model depend on the set of transitions fired to reach a
marking (that is, if we are not only interested in the
markings that can be reached but also how they are
reached), then the model is well-defined when it contains
enough information to compute the probability of each
sequence (or set of sequences, equal up to a permutation). If
all immediate sequences are finite and acyclic when all
vanishing markings have been checked, the algorithm can
guarantee that the model is well-defined, or warn the
modeler that it is not.

We rephrase this algorithmic definition by a bijection
between some sets of tuples (tangible marking reached,
sequence, probability of the sequence). For a (vanishing)
marking m where an immediate transition t is enabled,
we denote by Pm;t the set of all tuples ðm; �; �Þ where m
is tangible, the immediate sequence � starts with t, and
m½�im occurs with probability �. For sets of transitions:
Pm;� ¼

S
t2� Pm;t.

Definition 1. A (vanishing) marking m is well-defined iff for
every pair of different ðtÞ and ðt0Þ enabled at m:

Pm;ðtÞ 	 Pm;ðt0Þ

meaning that a bijection exists between the two sets, such that
the correspondence between a ðm; �; �Þ 2 Pm;ðtÞ and a
ðm0; �0; �0Þ 2 Pm;ðt0Þ entails:

. m ¼ m0,

. k � k¼k �0 k ,

. � ¼ �0.

In such case, we define Pm ¼ Pm;ðtÞ, for an arbitrary ðtÞ.
A GSPN is well-defined when every reachable vanishing

marking is.

Let m½tim0; the sets Pm;t can be defined constructively as
follows:

if m0 is tangible

then Pm;t ¼ fðm0; t;Probðt;mÞÞg
else Pm;t ¼

S
ðm;�;�Þ2Pm0 fðm; t�;Probðt;mÞ � �Þg

Notice that Pm;t can only be (recursively) computed when
all successor markings of m½ti are well-defined.

Later on, in Sections 3 and 4, several examples of well-
defined and non-well-defined models will be shown.

For the interested reader, compared to the algorithmic
approach of [21], we abstract from the details that do not
apply to GSPN (the definition in [21] applies to a much
larger class of timed PN), and we strengthen some
requirements, necessary to fit a structure based approach
as the one presented in Section 4. While in [21], the weight
classes are sets of transitions that the modeler assumes might
be concurrently enabled and whose relative firing order
may affect the system behavior, here they are deduced from
the priority specification and the net structure; while the
algorithm in [21] checks whether such assumptions of the
modeler are correct, taking into account the particular
performance measures of interest and the initial marking,
here we prove that following the structural method in
Section 4 to specify priorities the model is well-defined for
any performance measures (based on probabilities of
markings and/or firing count vectors), and this is why
our definition must consider every sequence and marking.

2.5 The Conflict and Causality Structure of a Net

Transition ti is said to be in effective conflict relation with tj at
marking m (where they are both enabled), denoted
Confðti; tj;mÞ, when m½tiim0 and the concession degree of
tj decreases from m to m0. The notion of (effective) conflict
is dynamical, it depends on the marking. The static
structure of the net contains information on the potential
dynamic conflicts. The very basic net construct used to
model conflicts is a place with more than one output
transition. Transition ti is said to be in structural conflict
relation with tj, denoted SConfðti; tjÞ, when �ti \ �tj 6¼ ;.

Transition ti is said to be causally connected to tj at
marking m (where ti is enabled) when m½tiim0 and the
concession degree of tj increases from m to m0. The very
basic net construct used to model causality is a place
connecting two transitions. Transition ti is said to be
structurally causally connected to tj when ti

� \ � tj 6¼ ;. For
our purpose, causal connection from ti to tj at marking m is
particularly relevant in the case that a third transition, tk,
has concession at m, together with ti, while tj has not
concession at m, denoted Caustkðti; tj;mÞ. This is because
this is the situation that originates the confusion and
indirect conflict problems (see Section 3), when the firing
of ti produces the enabling of tj, which (ultimately) disturbs
the previous enabling of tk. The structural version of this
connection holds iff a marking exists where tk has
concession and tj has not, and tj gets concession by the
occurrence of ti. Formally:

Definition 2. A transition ti is structurally causally connected to
tj conditioned to tk, denoted SCaustkðti; tjÞ iff ti

� \ �tj 6¼ ; and
not Pre½ti� \ �tj; tj� 
 Pre½ti� \ � tj; tk� (componentwise).
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For convenience, in running text, we often say ti is upstream

tj (conditioned to tk).
The relations above are intended for nets without

priorities. Priorities may break some of the conflict relations

or conditioned causality connections, by removing the

enabling of one of the transitions involved. Therefore, in a

net with priorities, we don’t usually say there is a conflict

between ti and tj when either ti has priority over tj or

viceversa (e.g., a timed transition is never said to be in

conflict with an immediate one, even if they share some

input place). Similarly, Caustkðti; tjÞ is only meaningful

when neither ti has priority over tk nor viceversa.

3 CONFLICTS AND CONFUSION

Let us illustrate, first of all, the notions of direct and indirect

conflicts, and confusion, the reason why, when these

situations arise, there is a need to specify the firing policy

to obtain a well-defined model, and some ways of

specifying this policy. We use as running example the net

shown in Fig. 2. It models a concurrent program consisting

of three cyclic processes (A, B, C) that are synchronized as

follows:

. The actions “t3” in A and C (respectively the actions
“t7” in B and C) represent a synchronous (or
rendezvous) communication between both processes.

. The critical sections of A and B, ðt1; t2Þ and ðt5; t6Þ,
respectively, represent the access to a shared
resource, and must be executed in mutual exclusion.

Each process contains an action (t2, t6, t4, respectively) that

takes some time to complete (a computation, or an access to

a database), while the communication between processes or

the arbitration of accesses is assumed to be instantaneous.

3.1 Example of Direct Conflict

Assume first that no priorities are specified at all (other than

that of immediate transitions over timed ones), so ½t� ¼ ftg
for all (immediate) t. At the (vanishing) initial marking, a

conflict is effective: Both t1 and t5 are enabled and,

depending on which one fires, two different tangible

markings are reached: m1 ¼ p2 þ p3 þ p6 þ p7 and m2 ¼
p1 þ p2 þ p7 þ p8, respectively. The conflict is neither solved

by priorities nor by probabilities (we assumed that only

conflicts between transitions with equal priority can be

solved by probabilities), so the model is, obviously, not

well-defined.

Two ways to specify the solution of the conflict, either
probabilistic or by priorities, are possible, depending on the
actual behavior of the system:

. If pri1 ¼ pri5, the conflict is solved by probabilities,
after assigning suitable w1 and w5, and now

Pm0
¼ m1; t1;

w1

w1þw5

� �
; m2; t5;

w5

w1þw5

� �n o
.

. If, say, pri1 > pri5 the conflict disappears, only t1 is
enabled and then Pm0

¼ fðm1; t1; 1Þg.
In any case, from m0 to the next tangible markings the
behavior is well-defined. But, other problems can arise later
on, depending on how the solution of the conflict was
specified. In fact, it is worth noticing that, despite the fact
that, in this example, the initial conflictive marking is
(vanishing and) transient, the decision to assign equal or
different priorities to t1 and t5 does affect the behavior later
on (see below), so the matter is not at all irrelevant.

3.2 Example of Confusion

Assume we decided pri1 ¼ pri5 and consider the (vanish-
ing) marking m (see Fig. 3), where Caust5ðt3; t1;mÞ and,
naturally, SCaust5ðt3; t1Þ. From m, two tangible markings
can be reached after some immediate firings. The marking
m2 can be reached by the firing of either t5 followed by t3,
without effective conflicts, or t3 followed by t5 winning its
conflict with t1; so, depending on which sequentialization of
t3 and t5 is taken, the probability to reachm2 varies, what in
GSPN terminology is called stochastic confusion. Moreover, if
t5 is fired first, before becoming in conflict with t1, the
marking m1 cannot be reached, while it is reachable after
the firing of t3, if t1 wins the subsequent conflict. In
summary, Pm;ðt3Þ 6	 Pm;ðt5Þ, so the model is not well-defined.
(The same problem arises with the other upstream transi-
tion, t7, at a corresponding marking.)

Two ways to specify the solution of the confusion, either
probabilistic or by priorities, are possible, depending on the
actual behavior of the system:

. If ft1; t3; t5; t7g have equal priority, so they form a
class, the confusion is solved by probabilities and
now

Pm ¼ m1; t3t1;
w3

w3 þ w5
� w1

w1 þ w5

� ��
;

m2; t3t5;
w3

w3 þ w5
� w5

w1 þ w5

� �
; m2; t5t3;

w5

w3 þ w5

� ��
:

. If, say, pri3 > pri5 (and correspondingly pri7 > pri1),
the confusion disappears, only t3 is enabled atm and
then
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Pm ¼ m1; t3t1;
w1

w1 þ w5

� �
; m2; t3t5;

w5

w1 þ w5

� �� �
:

The current practice in GSPN modeling is breaking
confusion by use of priorities (the net-level GSPN definition
requires absence of stochastic confusion and the definition
of dpGSPN [20] enforces absence of confusion). This is a
sensible option because it is likely that the confused
transitions, say t3 and t5 in the example, are not intended
to be in conflict, so confusion is signaled as a “modeling
mistake.” But, all in all, it is a question of representing the
actual system, so, if the modeler requires a probabilistic
solution of the confusion situation, this should be allowed,
perhaps after a warning.

3.3 Example of Indirect Conflict

Assume now that we decided pri1 > pri5. (In Fig. 3, the arc
from p1 þ p5 þ p6 þ p7 þ p11 to m2 disappears, everything
else remains unchanged.) In such case, at m, if t3 is fired,
then t1 becomes enabled and, having priority over t5, it fires
removing concession from t5. In GSPN terminology, it is
said that t3 is in indirect conflict relation with t5: From the
point of view of t5, it is like t3 was in conflict with it because,
after the choice of firing t3, the token in p11 is removed
without a chance for t5 to grab it.

Formally, we find that the model is not well-defined
because Pm;ðt3Þ 6	 Pm;ðt5Þ. Therefore, the modeler should
specify a conflict resolution policy between t3 and t5. Two
ways to do so, either probabilistic or by priorities, are
possible, depending on the actual behavior of the system:

. If pri3 ¼ pri5, they form a class, the indirect conflict
is solved by probabilities, and now

Pm ¼ m1; t3t1;
w3

w3 þ w5

� �
; m2; t5t3;

w5

w3 þ w5

� �� �
:

. If, say, pri3 > pri5, the indirect conflict disappears,
only t3 is enabled atm, and then Pm¼ fðm1; t3t1; 1Þg.

The same as we would recommend breaking confusion
with priorities in case it fits the modeling needs, we would
also recommend breaking indirect conflicts with priorities
and modeling actual conflicts of the system with direct
conflicts of the net.

3.4 Pseudoconflict: A Weird Sort of Indirect Conflict

Indirect conflicts such as the above one are taken into
account in the definition of extended conflict sets (ECS) in
GSPN (see [8], [6]). But, there is another (weird) sort of
indirect conflict that was not taken into account and which
was first signaled in [20]. Assume that pri1 ¼ pri5 and, in
order to break confusion, we assigned pri3 < pri5 and
pri7 < pri1. Although t3 and t7 appear to be independent (in
GSPN terminology, they are in different ECS), it can be
easily checked that their firings are not at all independent.
Consider the (vanishing) marking m (see Fig. 4), from
which two tangible markings can be reached after some
immediate firings. Due to the higher priority of t1 and t5,
transitions upstream, t3 and t7, happen to be in a sort of
indirect conflict relation: Depending on which one fires
first, a different higher priority transition is fired, leading to

different tangible markings. This situation was called
pseudoconflict in [20] because, despite the firing of one
transition not reducing the concession degree of the other,
the final effect is very much like they were in conflict, as the
reachability graph clearly shows.

Formally, again the model is shown to be non-well-
defined because Pm;ðt3Þ 6	 Pm;ðt7Þ. Therefore, the modeler
should either solve the pseudoconflict by probabilities, after
assigning pri3 ¼ pri7, or by priorities, e.g., pri3 > pri7.

Observe that no pseudoconflict would appear if the
priorities of t3 and t7 were higher than the priorities of both
t1 and t5 because they both would fire before the conflict
downstream was solved, or said in other words, they would
“push” tokens towards the conflict. The same as we would
recommend breaking confusion and indirect conflicts with
priorities, in case it fits the modeling needs, we would
recommend also the “pushing” orientation, to avoid
pseudoconflicts.

4 A METHOD TO ASSIGN PRIORITIES

All situations above share a common pattern: Two transi-
tions which are not intended to interfere, not in priority
relation (hence, their relative firing policy is not specified),
happen to become enabled at the same time, and the firing
order is relevant. More precisely, in all cases, we find some
structurally conflicting immediate transitions and either one
or both are preceded by different immediate transitions
upstream. Moreover, the problems can propagate upstream,
depending on how we solve them (see the example in Fig. 6
later on).

Here, we propose a method to specify (relative) priorities
that guarantees that the model is well-defined. The basic
method is Algorithm 3, which works as follows: While there
are required priorities, the modeler chooses the orientation
for one of them; depending on the choice taken, it might be
required to specify also the priorities between transitions
upstream, either to break a possible confusion or a possible
indirect conflict, except in the case that such specifications
had already been introduced (they are in pri). At the
beginning, it is only required to specify the priority of
transitions in structural conflict, to solve direct conflicts.

Algorithm 3 (Method to specify priorities)

Input - hP; T ;Pre;Post;pri;w;m0i
% pri indicates only the timed transitions

% w of timed transitions are defined
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Fig. 4. Part of the reachability graph of the GSPN in Fig. 2.



Output - pri (and w) for immediate transitions

Req ¼ fðti; tjÞ j SConfðti; tjÞg % the required priorities,

% initially all pairs of transitions in structural conflict

ToProp ¼ ; % the specifications that originate propagation

% upstream, initially empty

while Req 6¼ ; do

User_modeling: The user specifies for a ðti; tjÞ 2 Req

prii > prij, prii < prij, or prii ¼ prij
not contradicting previous specifications;

move ðti; tjÞ from Req to ToProp

Propagation: foreach ðti; tjÞ 2 ToProp do

if prii � prij then

Req ¼ Req [ fðtk; tjÞ j SCaustjðtk; tiÞg � pri

if prii 
 prij then

Req ¼ Req [ fðtk; tiÞ j SCaustiðtk; tjÞg � pri

remove ðti; tjÞ from ToProp

(foreach ½t� 6¼ ftg do Require_weights_assignment)

In Section 5, we prove that this method always produces
a well-defined model. Notice that, since the method works
at the net level, without even considering the initial
marking, well-definition is guaranteed for every initial
marking.

Concerning modeling flexibility, it can be observed in the
algorithm that it is allowed to specify probabilistically the
solution of indirect conflicts, and even stochastic confusion,
differently from current GSPN practice. We insist once
more that we would not recommend this in general because
we believe that it is good modeling practice to reflect all
conflicts or decisions in the system by structural conflicts of
the net, but we admit that some particular modeling case
might require it. If, following this recommendation, it is only
specified that priðtiÞ ¼ priðtjÞ in cases where SConfðti; tjÞ,
then the obtained net is a dpGSPN [20]. We recommend
also to take the “pushing” orientation (the transition

upstream has priority over the transition downstream)
whenever possible, to reduce the number of required
specifications.

Only the essentials of the method are shown in
Algorithm 3, although, of course, any practical user-friendly
implementation of this method in a tool should also
provide, together with a graphic interface:

. Automatic verification of coherence. If a user
specification at some point violates the transitive
nature of the priority relation (what can be detected
as a cycle in the priority graph), the user should be
informed, showing up the cycle. Alternatively, only
the “legal” options could be allowed. In particular,
if a required specification can be deduced from
previous ones (see a couple of cases along the
explanation of the example in Fig. 5), then the tool
could inform the user and merely wait for
confirmation.

. Undo capability. Assuming that the user might
make a mistake and later realize it when another
specification shows up an incoherence, a “design
history” should be kept during the process to allow
undoing a wrong specification together with all the
others motivated by it.

. (Optional) Recommendations. To use the “pushing”
orientation, or not to solve stochastic confusion by
probabilities.

Let us show now how the method works on the example
of Section 3, see Fig. 5. Only a few cases are shown. Initially,
the specification of ðt1; t5Þ is required (Fig. 5a). If pri1 > pri5,
then ðt3; t5Þ is required (Fig. 5b) to break the indirect
conflict. If we choose the “pushing” orientation, pri3 > pri5
(Fig. 5c), we are done. If instead we take the “nonpushing”
orientation, pri3 < pri5, a pseudoconflict might appear
between t3 and t7, so ðt3; t7Þ is required (Fig. 5d) and, after
deciding a specification for it, we finish. Now, consider the
case that we initially choose pri1 ¼ pri5. The specification of
both ðt3; t5Þ and ðt1; t7Þ is required (Fig. 5e) to break the
confusion. If we take the “pushing” orientation for both
(Fig. 5f), we are done, but if we decide, e.g., pri3 < pri5, the
specification of ðt3; t7Þ is required to break a potential
pseudoconflict (Fig. 5g). If we decide pri1 < pri7, then
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Fig. 5. Several intermediate and final steps in the application of the

method to the net in Fig. 2. Dashed lines indicate required orderings.

Undirected arcs mean equal priority, while a directed arc from t to t0

means that t has priority over t0.

Fig. 6. An example showing the need of the iterative propagation

upstream.



necessarily pri3 < pri7, but if we take instead the “non-

pushing” orientation, i.e., pri1 > pri7 it is still required to

specify ðt3; t7Þ (Fig. 5h). As another case, if in Fig. 5e,

we decide pri1 ¼ pri7 and pri3 ¼ pri5, then necessarily

pri3 ¼ pri7.
The example in Fig. 6 illustrates the necessity of the

propagation and the diversity of situations that we might

reach depending on how the required priorities are

specified. Initially, it is required to specify ðti; tjÞ. We

decide prii > prij and then ðti1; tjÞ is required to break a

potential indirect conflict (Fig. 6a). If we take the “pushing”

orientation, prii1 > prij, ðti2; tjÞ is required to break another

potential indirect conflict (Fig. 6b). If we take again the

“pushing” orientation, prii2 > prij, we are done: We need

not specify the priority of tj1 and tj2 because no matter that

they occur before or after ti2 and ti1, the token they give

shall wait in front of tj until these have occurred.
Assume now that, after Fig. 6a, we decide to take the

“nonpushing” orientation, prii1 < prij. Now, it is required

to specify ðti1; tj1Þ to break a potential pseudoconflict

(Fig. 6d). We can decide, for instance, that prii1 < prij1,

and then ðti1; tj2Þ is required (Fig. 6e). Finally, deciding

prii2 < prij1, for instance, leads to a well-defined model

(Fig. 6f).
One interesting thing to observe in this example is that,

although different, and among many other possibilities that

the reader might want to try, both models in Figs. 6c and 6f

are well-defined (so the method led to correct models in a

flexible way), but none of the others is (so the propagation

was necessary). It is also worthwhile commenting on the

case of Fig. 6f, where we started not taking the “pushing”

orientation, so we had to solve a pseudoconflict between ti1
and tj1. We did in this case by priorities: The solution of the

pseudoconflict upstream overrides the policy given for the

actual conflict; actually, in this case, the token in the right

side always “wins,” although, in the actual conflict, it is the

left side that has the priority! (It would have been the same

if the actual conflict was solved by probabilities or by the

reverse priorities because the fact is that this conflict never

becomes effective.)

5 THE METHOD PRODUCES WELL-DEFINED

MODELS

In order to prove that application of Algorithm 3 always

produces a well-defined model, we first show a basic

property of this algorithm. This property states how the

firing of a transition in one subclass with concession can

modify the concession of other subclasses.

Property 4. Let m be a vanishing marking where ððtiÞÞm 6¼ ; and

ððtjÞÞm 6¼ ;. Let m0 ¼ mþPost½P; t0i� �Pre½P; t0i� for an

arbitrary t0i 2 ððtiÞÞm (i.e., m0 ¼ m½t0ii if t0i was enabled).

If Algorithm 3 did not require to specify a priority between

ððtiÞÞm and ððtjÞÞm, then ððtjÞÞm0 ¼ ððtjÞÞm.

Moreover, if ððthÞÞm ¼ ; but ððthÞÞm0 6¼ ; and th has

priority over tj, then Algorithm 3 did not require to specify a

priority between ððthÞÞm0 and ððtjÞÞm.

Proof. No t0j 2 ððtjÞÞm loses concession by the firing of t0i
because this implies SConfðt0i; t0jÞ, hence the specification

of ðt0i; t0jÞ was required, contradiction.

No t00j 2 ððtjÞÞm0 � ððtjÞÞm exists. This would mean that

Caust0jðt
0
i; t

00
j Þ, so SCaust0jðt

0
i; t

00
j Þ, for every t0j 2 ððtjÞÞm

particularly for the one such that ðt0j; t00j Þ was specified

(as equal priority). But, then the propagation phase of
Algorithm 3 would have required the specification of

ðt0i; t0jÞ, contradiction.
Finally, assume t0h 2 ððthÞÞm0 and Algorithm 3 required

the specification of t0h and t0j 2 ððtjÞÞm (and priðt0hÞ >
priðt0jÞ was assigned). Since Caust0jðt

0
i; t

0
hÞ, it follows that

SCaust0jðt
0
i; t

0
hÞ, hence Algorithm 3 would have required

the specification of ðt0i; t0jÞ, contradiction. tu

It is worth noticing that we did not require t0i to be actually

enabled at m, only that it had concession, which is more

general, and this is what we are going to use in the proof of

Theorem 5, themain result of the paper, which states that the

application of the method guarantees well-definition.

Theorem 5. If hP; T ;Pre;Post;pri;w;m0i is a GSPN where

pri (and w) was obtained by application of Algorithm 3, then

it is well-defined.

Proof. For any vanishing marking m where two different

ðtiÞ 6¼ ; and ðtjÞ 6¼ ; are enabled, we prove thatm is well-

defined, that is, for arbitrary t0i 2 ðtiÞ and t0j 2 ðtjÞ, we can

build two sequences, starting with t0i or t0j respectively,

which are a permutation of each other, with the same

probability.
Actually, we prove a slightly more general result,

namely, we prove it for ððtiÞÞ 6¼ ; and ððtjÞÞ 6¼ ; with
concession at m, with no specified priority between them,
and such that no transition in a ½th� with specified higher
priority over at least one of them has concession.

In what follows we denote by mðtim0 the occurrence
of a transition t having concession at m when no
transition in a ½t0� with specified priority over ððtÞÞ has
concession. So to say, mðtim0 is a “relaxed version” of
enabling and occurrence, where only specified priorities
are taken into account, and not deduced ones. A
sequence � of occurrences of this kind is denoted
similarly: mð�im0. Abusing notation, we denote by
Probð�;mÞ the probability of firing the sequence with
respect to this “relaxed version” of enabling.

We fix an arbitrary tangible marking m and we define
the “distance” from a vanishing marking m to m as the
length of the longest sequence from m to m using the
“relaxed version” of enabling, that is, Distanceðm;mÞ
¼ maxfj�j j mð�img. (Notice that all, but not only, the
sequences that are actually enabled—taking also deduced
priorities into account—are included.) We prove the
result, for a fixed m, by induction on this distance, �.
Once this is proven for whichever tangible marking (m
arbitrary), performing the union on the different reach-
able m yields the result.

The property to prove is Propertyðm;mÞ: If ððtiÞÞ 6¼ ;
and ððtjÞÞ 6¼ ; have concession at m, the priority between

them is not specified and there is no transition with

concession in a ½th� with specified higher priority over at
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least one of them, then, if mðt0i�iim for some t0i 2 ððtiÞÞ,
there exist a t0j 2 ððtjÞÞ and a �j such that mðt0j�jim,

k t0i�i k ¼ k t0j�j k , and Probðt0i�i;mÞ ¼ Probðt0j�j;mÞ.
The property holds trivially in the base case � ¼ 1

because, if mðt0iim, since m is tangible, clearly ððtjÞÞ has
lost concession by the firing of t0i and then SConfðt0i; tjÞ, so
they are required to be specified by Algorithm 3 to solve
the conflict.

For the step of the induction, consider Distanceðm;mÞ
¼ �. Let mð�im, with j�j ¼ �, and starting with a

t0i2ððtiÞÞ, i.e., �¼ t0i�i. Let m
0 ¼mðtii. Clearly, Probð�;mÞ

¼ Probðt0i;mÞ � Probð�i;m
0Þ. Due to Property 4, we know

that the same ððtjÞÞ with concession at m still has

concession at m0; moreover, some other class ððtkÞÞ may
have concession at m0, but surely not with specified

higher priority over ððtjÞÞ. The first transition in �i might

be a t0j 2 ððtjÞÞ or instead a t0k 2 ððtkÞÞ. In any case, by the

induction hypothesis (notice that Distanceðm0;mÞ < �,

otherwise Distanceðm;mÞ > �; actually, Distanceðm0;mÞ
¼ �� 1 because j�ij ¼ �� 1), there surely exists a

sequence starting with a transition t0j 2 ððtjÞÞ, t0j�x, such

that k t0j�x k ¼ k�i k and Probðt0j�x;m0Þ ¼ Probð�i;m
0Þ.

Therefore, we have mðt0it0j�xim. Let m00 ¼ mðt0it0ji.
Clearly, mðt0jt0iim00 too, hence mðt0jt0i�xim, with k t0jt0i�x k
¼ k�k , and Probðt0jt0i�x;mÞ ¼ Probð�;mÞ, due to the

preservation of the classes with concession, so we are

done. tu
Observe that once we have proven Propertyðm;mÞ,

showing that for any ððtiÞÞ and ððtjÞÞ with concession at m

there exist t0i�i and t0j�j with concession that both reach m

with the same firing count vector and probability, it is easy

to see that this property is true in particular for those ðtiÞ
and ðtjÞ that are enabled at m. It is then possible to apply

again the same reasoning to the (shorter) sequence �i (or �j).

Hence, proceeding step by step and choosing each time one

of the enabled sets for the first firing in the sequence, we can

incrementally build the sought enabled firing sequences.

6 AN APPLICATION EXAMPLE

Typically, the situations that are found in real application

cases, where immediate transition subnets use to be small

parts in a large model, do not illustrate the subtleties of

immediate transitions better than the small examples

shown in the paper do. Nevertheless, the method is

intended to be applied whenever GSPN (with immediate

transitions) are used to model systems from whichever
application domain.

In this section, we present an example to illustrate the
application of the method and also to summarize its main
features. The net in Fig. 7 models the behavior of a version
of the well-known readers and writers system, adapted
from [6, Fig. 57], where n processes may access a common
database for either reading or writing. Up to m 
 n readers
may access the database concurrently; instead, a writer
requires exclusive access to the resource. A process can
either execute in its local memory for a while before
requesting a new access or immediately proceed to the next
access. A local area network (LAN) transfer phase follows
each read or write access to the shared memory. In order to
guarantee the access to writers, whenever k < n or more
processes are waiting to write no new readers are granted
access. (Typically, k ¼ 1, so whenever some processes are
waiting to write they get the resource, one after the other,
immediately after all current readers finish.)

Something that a software engineer might want to
analyze is, for instance, the performance effects of design
decisions such as the number of processes allowed in the
system (to avoid bottlenecks), the number of concurrent
database accesses (perhaps related with the availability of
licenses), or the number of waiting writers that block
readers (in order to get a good compromise between the
readers and writers “satisfaction”). Therefore, typically, we
want to perform several analysis or simulations with the
same net but different initial markings and of course we
need to be sure that the model is well-defined in all cases.

In the model shown in Fig. 7 all activities that take a
significant amount of time to complete (private executions,
database accesses, and LAN accesses) are modeled as paths
tact ! pact ! Tact, where the subindex “act” refers to the
corresponding activity:

. Immediate transition tact. Its occurrence represents
the start of an activity of the corresponding kind.

. Place pact (the label is not shown in the figure). Its
marking represents the number of activities of the
same kind progressing in parallel.

. Timed transition Tact. Its occurrence represents the
completion of an activity; the transition rate para-
meter, wðTactÞ, is the inverse of the average time;
infinite server semantics is used since all activities
proceed in parallel.

The immediate transitions, including the ones that
represent activity initiations, allow to model the routing
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Fig. 7. A GSPN model of a readers and writers system.



aspects of the system. Depending on the intended behavior,

the routing decisions will either be modeled probabilisti-

cally, computed from the conflicting transition weights, or

by priority relations. This must be established.
Following the method introduced in the paper, initially it

is required to specify the following relations, corresponding

to five structural conflicts in the net:

ðtexec; treaccessÞ; ðtreq write; treq readÞ; ðtnext write; treadÞ;
ðtwrite; treadÞ; and ðtLAN w; tLAN rÞ:

A reasonable specification (of course not the only one, it all

depends on the intended behavior of the system) proceeds

as follows:

1. On the average, each process needs to reaccess
without first executing in local memory a given
percentage of times, so probabilities will decide the
free choice between texec and treaccess: priðtexecÞ ¼
priðtreaccessÞ. Similarly, priðtreq writeÞ ¼ priðtreq readÞ.

2. Although it is not a free choice, we also take
priðtLAN wÞ ¼ priðtLAN rÞ because the LAN is allo-
cated to any waiting process with equal probability
whether it just read or wrote. (Nevertheless, the
average time to complete the LAN access does
depend on the kind of access, and this is why we
could not model LAN accesses by a mere timed
transition with single server semantics.)

3. In order to satisfy the specification that a number of
writers waiting block readers, it is clear that we
should finish counting waiting writers before grant-
ing access to new readers, so priðtnext writeÞ >
priðtreadÞ. This specification “propagates upstream”
(subsequently) requiring ðtreq write; treadÞ and ðtreaccess;
treadÞ. In both cases, the “pushing” orientation is
reasonable to give the opportunity to processes to
issue immediate writing requests before granting
access to new readers: priðtreq writeÞ > priðtreadÞ and
priðtreaccessÞ > priðtreadÞ.

4. The nonfree choice between twrite and tread is never
effective when k ¼ 1, what can be easily detected
reasoning on the place invariant involving pallow read

and pnext write. Although in that case the requirement
to specify a relation between twrite and tread would be
spurious (and easily avoidable with net-level tech-
niques), it is not so if we want a specification that is
valid independently of the initial marking, as we do.
Since whenever the conflict is effective there are less
than k writers waiting, let probabilities decide:
priðtwriteÞ ¼ priðtreadÞ. This specification “propagates
upstream” requiring (subsequently) ðtreq read; twriteÞ
and ðtreaccess; twriteÞ, which can both be deduced from

previous specifications. (Propagation would require
also ðtnext write; treadÞ, but it is already specified.)

The result of the specification is shown in Fig. 8, where
also one possible absolute priority assignment is shown. (By
the way, the resulting net is a dpGSPN [20].) Now, the
weights to allow computing probabilities in random
switches would be required for the four resulting (non-
trivial) priority classes. For instance, if one out of ten times a
reaccess is needed, then wðtreaccessÞ ¼ 1 and wðtexecÞ ¼ 9; if
5 percent accesses are to write, then wðtreq readÞ ¼ 5 and
wðtreq readÞ ¼ 95; if the probability to access the database for
writing or reading is equal (unless there are k or more
writers waiting), then wðtwriteÞ ¼ wðtreadÞ ¼ 1; finally, if the
LAN is allocated to any waiting process with equal
probability, then wðtLAN wÞ¼mðpwait LAN wÞ and wðtLAN rÞ
¼ mðpwait LAN rÞ. (See [6, pp. 103, 120] for the topic of
marking dependency of transition weights. Following the
proof of Theorem 5, the interested reader can observe
that even immediate transition weights dependent on the
ðtÞ 2 ½t� that is enabled can be safely allowed.)

This completes the (net-level) modeling of the system.
Now, any performance index can be safely analyzed for any
values of the parameters and with any analysis or
simulation technique.

Compared to state space methods to check well-defini-
tion, first of all, it is worth noticing that, even in this small
example, the state space becomes large as the different
parameters grow. Table 1 shows in a few cases the number
of tangible and vanishing markings, what gives an impres-
sion of the complexity that state space methods would face.
Observe that, since many irrelevant vanishing markings are
avoided by fixing an arbitrary ordering between nonrelated
classes, the number of vanishing markings that are dealt
with after applying net-level methods is smaller than that
produced by purely state space-level methods (in Table 1
they appear in the last two columns, labeled “with pri” and
“without pri,” respectively).

Besides the state space size, which in some cases needs
not be checked completely to analyze well-definition, there
are several more reasons why state space methods can
perform worse:
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Fig. 8. A relative (and absolute) priority specification for the readers and

writers system.

TABLE 1
Some State Space Sizes in the Example



. Each time that a state space check finds a problem
and some specification is added to solve it, the check
should be restarted again because one cannot be sure
that the new specification has no effect on the
behavior previously explored.

. If problems (confusion, indirect conflict, etc.) can be
effective, then they could be detected very late in the
reachability graph generation process, and require to
start all over again. Even worse, in the case of
simulation, if the marking where the problem arises
has low probability to be reached, then it could be
detected very far away from the beginning of
simulation.

. Even when problems are never effective, if there are
many unrelated transitions that may be concurrently
enabled in many markings (e.g., they are in different
subnets of immediate transitions, a situation that is
common in large examples), then the state-level
methods would check these situations over and over
again, leading to a significant overhead (especially in
simulation).

. A state-space check would be required for any new
initial marking because one cannot be sure that a
specification that is complete for one marking is
also for another, as it happens with the case k ¼ 1
versus k > 1 in the example.

7 DISCUSSION AND CONCLUDING REMARKS

The method introduced in this paper guides the modeler in
the task of defining the priorities (and weights) of

immediate transitions in a GSPN model. The essential

features of this method are:

. The resulting model is well-defined, i.e., the under-
lying stochastic process is unambiguosly defined.
This is unfortunately not true for all models built
according to the current net-level definition of
GSPN, which is implemented in most tools.

. The method works at the net level, with the
consequent efficiency and robustness, keeping (net
based) modeling and (possibly state space based)
analysis separate. Even in the cases where the state
space is used for the analysis, the method is useful
because it allows to reduce the number of vanishing
markings by appropriately exploiting the indepen-
dence of unrelated transitions.

. Modeling flexibility or expressiveness are not di-
minished; the modeler can even decide to break
stochastic confusion by probabilities if the system
under study requires it (the current net-level defini-
tion of GSPN forces to break confusion by priorities).

A potential disadvantage of net-level methods is the

possibility of spurious warnings (i.e., requiring the speci-

fication of priorities between transitions when it is actually
irrelevant). In some cases, those apparently spurious

warnings are actually important (e.g., the case k ¼ 1 versus

k > 1 in Section 6). In any case, we believe that all warnings

are somehow useful because they force the modeler to

better understand the model and perhaps they serve as a

suggestion to modify it so that transitions who are in fact

independent appear to be so looking at the net. Anyway,
net-level techniques considering also the initial marking can
be applied to reduce the number of such spurious warnings,
particularly taking into account mutual exclusion relations
that can be deduced from net invariants, and which modify
the conflict relations [8], [6]. (The case of k ¼ 1 in Section 6 is
an example.) We did not consider them in this work for
simplicity, but there is no conceptual problem to do so.

Also, for simplicity, we considered GSPN without in-
hibitor arcs, although themethod can be extended to this case
by appropriate modification of the basic conflict and causal
relations, as is done in [8], [6]. Trying to extend themethod to
apply it also to the high level, or colored, extensions of GSPN
[9] is a direction of immediate future work.

We propose to apply this method whenever GSPN (with
immediate transitions) is used to model systems from
whichever application domain. Therefore, the method should
be automatically supported by modeling tools, a task we are
currently undertaking. A prototype implementation (in
Java) to be integrated within the GreatSPN package has
been developed. It loads a net designed with GreatSPN that
is initially considered as having no defined priorities. The
tool then shows on the model the transitions pairs for which
a priority specification is required, and then the modeler
can specify them graphically. As a required arc is specified,
the algorithm is called, and the new required arcs are
computed and visualized. When all required arcs have been
specified by the user, the net can be saved, and the tool
chooses a total ordering among transitions consistent with
the partial order specified by the modeler. Currently, the
tool allows stochastic confusion to be resolved using
probabilities, although, in this case, the solution algorithms
of GreatSPN cannot be used (updating these solution
modules is also in progress).

Concerning the relative versus absolute definition of
priorities, we have already pointed out that, once the model
with relative priorities is well-defined, absolute priorities
can be assigned in any coherent way to get a standard
GSPN to input to an existing tool, and to reduce the number
of vanishing markings due to irrelevant interleavings. In
any case, relative priorities appear to be better suited to
compositional modeling, where well-definition problems
are particularly severe [13], as it was discussed in [20].
Therefore, another direction of future work is the develop-
ment of compositional modeling methodologies based on
the new net-level definition of GSPN presented here.
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