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TESIS DOCTORAL
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Preface

Today complex distributed software systems, most of them based on the Internet,
are simultaneously used by hundred-thousands of people sometimes in risk real time
operations such as auctions or electronic commerce. For this kind of systems, perfor-
mance, dependability or responsiveness requirements of high quality become a must.
Nevertheless, systems are deployed without the performance expected by clients, be-
ing a common practice among developers to test the performance of their systems only
when they have been implemented. It is common to believe that powerful hardware
at minor extra cost will solve performance problems when the software is deployed.
In our opinion, the necessity to predict the performance of software systems is doubt-
less. Moreover, we consider that predictions in the early stages of the software life
cycle promote major benefits. Thus, if performance objectives are not meet, it will
be easier and less expensive to take the appropriate design decisions to solve them.

To face these problems software engineering and performance evaluation are the
scientific fields where answers should be found: The first as the discipline that studies
the systematic representation of software requirements and the second as the discipline
that proposes formalisms to represent and analyze performance models. Both fields
have met a common place, the software performance engineering, that is proposed
as a method for constructing responsible software systems that meet performance
objectives. In this work, to achieve this goal we propose to combine the use of the
Unified Modeling Language with the Petri net formalism. The Unified Modeling
Language has been adopted by the software engineering community as a “de facto”
standard, while the stochastic extension of the Petri net formalism has been proved
in the last decades as one of the most successful paradigm to evaluate performance
issues in different engineering fields.

The main contributions of this work are the definition of a compositional semantics
in terms of stochastic Petri nets for the UML state machines aimed at performance
evaluation and a performance extension of the UML notation. They together are used
to evaluate performance in the early stages of the software development process. The
semi-automatic generation of performance models from UML designs allows that as a
“by-product” of the software life cycle performance measures can be estimated; more-
over, it implies that the training of the software engineers in performance formalisms
can be relaxed. The approach has been applied to predict estimates in different real
software systems, obtain interesting results in the field of the wireless systems.
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Chapter 1

Introduction

Today the number of advances in the vast amount of technologies related with com-
puter sciences has improved the development of complex distributed software systems,
most of them based on the Internet, maybe in wireless environments, accessing com-
plex and heterogeneous data repositories and with the most sophisticated user inter-
faces. Not only the “big” companies, even small vendors can participate in the “race”,
sometimes exhibiting more successful results than the bigger ones. These software
products are used simultaneously by hundreds or thousands or hundred-thousands of
people, sometimes increasing risks as in real time operations such as auctions, elec-
tronic commerce or financial systems. Considering these facts, the deployed software
should satisfactorily fulfill an important number of requirements: Performance, de-
pendability, responsiveness, security or scalability are examples of qualities that good
software products must meet. Software engineering has been recognized as one of the
most useful disciplines in the computer science field to face all these stuff. Concern-
ing the performance requirements of the deployed systems, subject of this thesis, the
results cannot be considered extremely satisfactory. Actually, the developers are not
so worry about them, arising performance problems sometimes because it is consid-
ered that powerful hardware at minor extra cost will solve them, sometimes because
real scenarios of usage (with respect the number of users or the operation mode) are
not tested, sometimes because the training of software engineers in performance as-
sessment issues (models and techniques) are not adequate or even they lack in their
curricula. Performance evaluation is the field that studies and proposes the applica-
tion of performance models and techniques for the different engineering disciplines to
meet its performance objectives.

The following “war stories”, taken from [SS01], depict situations that unfortu-
nately cannot be considered strange in the world of the computer systems. They
show the importance of the evaluation of the performance characteristics of the soft-
ware systems.

At the Olympic Games in Atlanta, the information system developed by IBM to
evaluate individual competition results was tested by one hundred and fifty users. The

1



2 1. Introduction

system crashes during the competition since it was used by more than one thousand
people. As a result some matches were delayed and IBM suffered deep-cutting image
losses.

The luggage processing system of the Denver airport was planned for the United
Airlines terminals, during the development it was enlarged to support all the airport
terminals but without considering the new system’s workload. As a result of the inad-
equate performance characteristics of the system, the airport was opened 16 months
later, a loss of 160.000 US$ per day was recorded.

As a conclusion, the necessity to predict the performance of software systems is
doubtless, since even nowadays, systems are deployed without the performance ex-
pected by clients, being a common practice among developers to test the performance
of their systems only when they have been implemented. Performance requirements
of software systems must be considered within the software development process to
meet performance properties as soon as possible.

It should not be forgotten that performance requirements meeting for a software
system ultimately depends on the hardware platform that will support its executions.
Therefore, the performance requirements for a system should be consider as a whole,
taking into account at least the hardware, the software and the middleware. Nev-
ertheless, such an ambitious approach is out of the scope of this work, that focuses
on the software part of the system. It causes that in this work an “infinite hardware
resources” hypothesis is assumed. It will be desirable (necessary) that the results
obtained in this work will be integrated or extended by an approach of that general
form.

This thesis arises in an environment where there exists a strong experience in the
analysis of queuing network models for the computation of performance measures
(which is a well-known branch of the performance evaluation field to be applied in
software systems), as well as knowledges in the modeling of software systems. Both
areas share common interests in the software performance engineering field.

The software performance engineering (SPE) is proposed as a “method (a sys-
tematic and quantitative approach) for constructing software systems to meet perfor-
mance objectives, taking into account that SPE augments others software engineering
methodologies but it does not replace them” [Smi90]. We propose to meet these goals
by combining the use of the the Unified Modeling Language and the Petri net formal-
ism. In the following we briefly recall both disciplines.

The Unified Modeling Language (UML) is a semi formal language developed by
the Object Management Group [Obj01] to specify, visualize and document models
of software systems and non-software systems too. It is gaining widespread accep-
tance as an effective way to describe the behavior of systems. As such, it has also
attracted the attention of researchers that are interested in deriving, automatically,
performance evaluation models from system’s descriptions. Actually, in the last years
UML has become the standard notation to model software systems, widely accepted
by the software engineering community. Unfortunately, UML lacks of the necessary
expressiveness to accurately describe performance features.

Petri nets (PNs) were proposed in the literature for the modeling of concurrent
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systems and the analysis of its qualitative properties [Pet81, Sil85]. The stochastic
interpretation of the PN formalism [AMBC+95] has been shown as a suitable tool
for the performance evaluation of complex distributed systems. As an alternative to
stochastic PNs (SPNs), several performance-oriented formalisms can be considered as
underlying mathematical tools for computing performance indices of interest: Among
them, Markov chains (MCs) [Çin75], queuing networks paradigm (QNs) [Kan92], and
stochastic process algebras (SPAs) [HHM95]. The main drawback of plain MCs is
their poor abstraction level (each node of the underlying graph model represents a
state of the system). Concerning SPAs, even if they are compositional by nature, thus
specially adequate for the modeling of modular systems, the present lack of efficient
analysis algorithms and software tools for performance evaluation would make them
difficult to use in real applications. The use of SPNs rather than QNs models is jus-
tified because SPNs include an explicit primitive for the modeling of synchronization
mechanism (a synchronizing transition) therefore they are specially adequate for the
modeling of distributed software design. Even more, a vast amount of literature exists
concerning the use of PNs for both validation of logical properties of the system (e.g.,
liveness or boundedness) and quantitative analysis (performance evaluation).

The reasons to combine both formalisms (SPNs and UML) in a proposal for SPE
are given by the advantages and disadvantages they provide. A disadvantage of
SPNs is that they do not show the system load (message size, guards probability,
activities duration) as clear as UML diagrams do, since this information is hidden
in the definition of the parameters of the net transitions. Besides, much work has
been done in the software engineering area in developing methodologies [RBP+91,
JCJO92] from which UML takes profit and SPNs do not. SPNs have advantage over
UML because they can be used to obtain performance figures, due to the underlying
mathematical model; even more, there exist software tools that automatically obtain
them [CFGR95, ZFGH00]. Moreover, PNs express concurrency unambiguously, UML
does not. Finally, it can be said that the UML diagrams are considered in this work
as the documentation part of the system, being useful for the system analyst to
express in an easy way the system requirements, including performance requirements.
While SPNs are considered as the underlaying mathematical tool which represents
the performance model of the system.

The main objective of this work is to provide software engineers with the tools
to achieve performance estimates in the early stages of the software life cycle. Thus,
if performance objectives are not meet, it will be easier and less expensive to take
the appropriate design decisions to solve them. Performance evaluation often re-
quires deep knowledge in queueing theory, to avoid this necessity, it is a challenge a
hight degree of integration among the common software engineering practices and the
performance evaluation techniques. So, it is our objective that performance models
should be obtained as a “by-product” of the software life cycle, avoiding the software
engineer to perform tasks for which a strong mathematical background is required.

In the following, we recall the work developed in this thesis to summarize the
objectives and explain some details of them.

The study of the software time efficiency (response time, delays, throughput)
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requires from the software designer the most accurately possible description of the
system load and the routing rates. As previously discussed, software engineers are
not familiar with the notation of the performance theory, moreover this notation
is too far from the artifacts they use to model software systems. Our proposal to
describe the load and the routing rates in software systems considers UML as a
modeling language and augment it (using the tagged values mechanism) to introduce
these abilities at software engineer level. At the same time, it tries to be adequate to
generate performance models and to fit in the performance evaluation process that we
propose. Then we have investigated the role of all the UML behavioral diagrams with
performance evaluation purposes: Use case diagrams, interaction diagrams, statechart
diagrams and activity diagrams. These subset of UML diagrams is powerful enough
to describe the dynamics and the load of a wide range of distributed software systems.

The use case diagrams are shown as the tool to characterize the actors of the system
by the usage they perform of it. Interaction diagrams allow to describe the load of
the system when the participants exchange messages among them. The statechart
diagrams are a tool where the routing rates and the duration of the activities of the
system at high level of description can be modeled. While activity diagrams became
useful for a detailed and accurately modeling of an internal process measuring its
basics activities.

Since these diagrams lack of formal semantics then they cannot be analyzed as
a performance model to obtain estimates. Therefore we propose a translation (an
interpretation) from them into a formalism with well-known properties and able to
represent performance models capable to be analyzed using the theory in performance
evaluation, i.e. SPNs. The approach adopted in this work for the formalization of the
statecharts and the activity diagrams consists in translating the two UML notations
into SPNs separately, starting from the metamodels of the UML State Machines
and Activity Graphs packages which describe informally the semantics underlying the
statecharts and the activity diagrams, respectively. It is important to observe that:
even though each UML notation is translated in a separate way, the reference to the
UML metamodels accounts for the relations that exist among the statecharts and
the activity diagrams, since the two metamodels contain common metaclasses. The
formalization of the sequence diagrams being in the scope of our proposal [BDM02]
has not been developed in this thesis. The elements of the use case diagram do not
require of a formalization.

Given a “flat” UML state machine, the approach taken for its translation into a
SPN model, takes the following steps:

step 1 Each simple state is modeled by a SPN representing the basic elements of
states and transitions.

step 2 The initial pseudostate (if it exists) and the final states are translated. The
SPN subsystems produced in this step are composed with those of the previous
step to produce a SPN model of the entire state machine.

If the state machine is not “flat”:
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step 3 A SPN model for each concurrent region in a compound state will be obtained
proceeding as in step two.

step 4 For each composite state a SPN model is obtained either composing its con-
current regions if any or proceeding as in step 2.

If the system is described through a set of state machines, the final step composes
them:

step 5 Compose the SPN subsystems of the state machines and define the initial
marking.

For the translation of a UML activity graph a new perspective has been explored.
As an initial premise, we assume that the activity graph has exactly one initial state
plus, at least, one final state and another state from one of the accepted types (action,
subactivity or call state). The translation can then be divided in three phases, which
are presented in the subsequent paragraphs.
Pre-transformations. Before translating the activity graph, we need to apply some
simplifications: Suppression of decisions, merges, forks and joins; deducting and mak-
ing explicit the implicit control flow.
Translation process. Following three steps:

step 1 Translation of each diagram element into the corresponding stochastic Petri
net model.

step 2 Superposition of models corresponding to the whole set of each kind of dia-
gram elements.

step 3 Working out the complete model for the diagram itself by superposition of
the models obtained in the last step.

Post-optimizations. Contrasting with pre-transformations, which are mandatory,
post-optimizations are optional. Their objective is just to eliminate some spare
places and transitions in the resulting model.

The definition of a notation for some UML diagrams to describe system load as
well as their translation into SPN models are the basis to define a process to obtain
performance models that represent software systems as a “by-product” of the software
life-cycle. This process tries to bridge the gap among the software engineering prac-
tices and the performance evaluation practices. Additionally, we have explored some
ideas related with the “design patterns” to complement our approach of performance
evaluation process.

Finally, the proposal to evaluate performance of software systems has been applied
to three distributed systems. Two of them were software retrieval systems, it has
allowed to carry out a performance comparison among them.

The work proposed will allow to obtain: Compositional semantics in terms of SPNs
for the UML state machines and the activity graphs representing our interpretation of
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both tools; the definition of the performance annotations to augment the UML with
performance features as well as to define the role of each UML diagram; the definition
of a process that using the augmented UML designs and the translation procedures
generates a performance model.

This thesis comprises nine chapters including this one, the balance is as follows:

In chapter 2 the context of the work is clearly stated by defining the Petri net
formalism, revising the Unified Modeling Language and highlighting the basic prin-
ciples for the software performance engineering. The related work in the software
performance modeling field using UML is studied in order to compare the advan-
tages/disadvantages given by our proposals of annotated UML and software perfor-
mance process. Also, the pattern-based approaches for SPE are studied and compared
with ours. Finally, the related work is completed by revising some significant works
that give formal semantics either to UML state machines or UML statechart diagrams
or related formalisms such as classical Harel statecharts. It will allow to compare them
with our proposal of compositional semantics for the UML state machines.

In chapter 3 our proposal of performance annotated UML is presented. We visit
each of the UML behavioral diagrams (use cases, interactions, statecharts and activity
diagrams) to find the role that each one can play in the performance process. Then
we define for each diagram the feature/s (system load, system usage or routing rate)
that it is able to model as well as its representation by means of the tagged value
UML extension mechanism.

In chapter 4 we give a translation from the elements in the UML state machines
metamodel into the SPNs formalism. The elements taken into account are those
that conform the “flat” state machines. The translation being compositional gives
semantics to the UML state machines metamodel. Since the translation consider the
time expressed in the activities, the SPN model obtained becomes a performance
model.

In chapter 5 we give the translation into SPNs for the UML state machine ele-
ments that were not considered in the previous chapter. Then leading compositional
semantics for composite state machines.

In chapter 6 the extension of the UML state machines, i.e. the activity graphs,
is considered. Then, we extend the compositional translation for the elements in the
activity graph package that are not present in the UML state machines package.

In chapter 7 we present our process to obtain performance models from UML
annotated diagrams that represent software systems and we explore how to evaluate
performance parameters from them. The most remarkable feature of this process
is that the performance models are obtained as a “by-product” of the software life
cycle, i.e. semi-automatically from the UML models. We remark that the only con-
tribution of the process is that it makes use of both the UML annotated diagrams
and the translation proposed in the previous chapters, apart of that any proposal
of software process should be valid. The process is presented using the Antarctica
software retrieval service (designed with mobile agents within a wireless environment)
as a running example. Finally, we explore the use of the design patterns approach in
the context of the software performance.
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In chapter 8 our proposal to evaluate performance of software systems is applied
to another software retrieval system that does not use mobile agents. It will allow us
to compare some system performance parameters among different software retrieval
systems as well as the impact of the mobile and intelligent agents technology. Finally,
an Internet protocol is analyzed to test the use of the activity diagrams in our context.

In chapter 9 we present the conclusions of this work as well as the proposed future
work.



8 1. Introduction



Chapter 2

Context and State of the Art

Along this chapter and before to present our proposal to evaluate performance of
complex distributed software systems, we want to give a brief introduction of the
formalisms and notations related to our work. We start with the description of the
Petri net formalism, from its basic formulation until the stochastic interpretation, to
finalize with a discussion about the analysis of the formalism. Second, the Unified
Modeling Language is addressed by describing the semantics of the diagrams related
to our approach. Third, the software performance engineering field is contextualized
to be aware with its principles and objectives and to know the techniques and models
used in this area. Finally, we enumerate the most relevant works in the software
performance engineering as well as in the field of the formal semantics for the UML
models. Their main features are described and we compare them with our work.

2.1 Petri nets

We assume that the reader is familiarized with the basic concepts of Petri nets, for
an introduction see [Mur89, Sil85, DHP+93, Pet81]. In this section, we introduce the
notations and concepts related to Petri nets which are of interest in this work.

2.1.1 Place/Transition nets

A place/transition (P/T) net is a mathematical tool aimed to model a wide-range
of concurrent systems. In this work, we propose P/T nets to model concurrent and
distributed software systems.

A P/T net is graphically represented by a directed graph that comprises a set of
places P drawn as circles, a set of transitions T drawn as bars and arcs that connect
transitions to places and places to transitions. A formal definition of a P/T net is
thus the following [Sil85]:

Definition 2.1. A P/T net is a 4th-tuple N= 〈P, T, I,O〉 such that,
P = {p1, p2, . . . , pn}

9
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T = {t1, t2, . . . , tm}
P ∩ T = ∅
I : P × T −→ IN is the input function
O : T × P −→ IN is the output function.

Places in a P/T net may contain tokens drawn as black dots. The state of a P/T
net is defined by the number of tokens contained in each place and it is denoted by
M : P −→ IN, the net marking. The number M(p) means the local state of place p.

Definition 2.2. A P/T net system (P/T system) is a pair S= 〈N ,M0〉 where M0 :
P −→ IN is the initial marking.

A transition t is enabled in a given marking Mi if and only if for all “input”
place p, M(p) > I(p, t). The evolution of a P/T system is given by the transition
firing rule: A transition can fire in a given marking Mi producing a new marking
Mj , denoted by Mi

t
−→ Mj , if it is enabled in Mi. The new marking is obtained by

Mj(p) = Mi(p) +O(t, p) − I(p, t) ∀p ∈ P .
The firing rule gives to a P/T system dynamic behavior that allows to model

concurrent evolutions in discrete systems.

2.1.2 Stochastic Petri nets

The original definition of the Petri nets was as a causal model, explicitly neglecting
time. But being a goal in this work the performance evaluation of software systems,
the modeling of time constraints is a must.

The introduction of time into the Petri net model allows to attach it either to
places [Sif78] or transitions [Ram74]. Following the second approach, timed Petri net
models focused on performance evaluation were formerly introduced in [RH80] as a
deterministic approach and in [MF76] associating with each transition a maximum
and a minimum firing time.

Time interpretation entails difficulties in the definition of the model. Issues such
as firing policy, consistency among timing and priority, server semantics and duration
of the activities (deterministic or non deterministic) should be defined.

Atomic firing policy establishes that the input tokens of an enabled transition
remain in their places until the transition fires, then changing in zero time. Also, it
can be interpreted that the input tokens are retained when the transition is enabled
until its firing, then leading a three phases policy.

A consistent conflict resolution can be established associating priority zero to
timed transitions and priority > 0 to untimed ones, then solving conflicts between
immediate transitions associating probabilities to them. Conflicts between timed
transitions can be solved by a race policy, i.e. shortest firing delay “wins the race”.

The number of concurrent activities modeled by an enabled timed transition means
the number of concurrent servers dedicated to the transition. A timed transition
should define a “k-server” semantics, then modeling k concurrent activities, being
k ∈ [1,∞].
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As non deterministic model, stochastic Petri nets (SPNs) were initially proposed
in [BT81, Mol82, FN85] associating with each transition a random firing time with
negative exponential distribution. Formally:

Definition 2.3. A SPN is a pair 〈S, w〉 where S is a P/T system and
w : T −→ (0,∞) associates to each transition a negative exponential distributed ran-
dom variable with parameter w, i.e. its random firing time.

In this work an extension of the SPNs is considered, the class of Generalized
Stochastic Petri Nets (GSPNs) [AMBC84, AMBCC87], that are defined as follows:

Definition 2.4. A GSPN system is a 8th-tuple 〈P, T,Π, I, O,H,W,M0〉 where,
P, T, I,O,M0 as in Def. 2.2
Π : T −→ IN is the priority function that maps transitions onto priority levels
H : P × T −→ IN is the inhibition function
W : T −→ IR is the weight function that assigns rates to timed transitions and weights
to immediate transitions.

Immediate transitions (those that fire in zero time) are drawn as bars and timed
transitions (those that have associated an exponentially distributed random firing
W (t)) as boxes. Immediate transitions have priority over timed transitions defined
by Π(t). Conflicts between immediate transitions with equal priority are resolved
by W (t). Inhibitor arcs are drawn as “normal” arcs but with a circle joined to the
inhibited transition, meaning that the target transition cannot fire until the marking
in the inhibitor place is less than H(p).

2.1.3 Labeled Petri nets

Since in this work we give compositional semantics, in terms of Petri nets, to a number
of UML diagrams, it is necessary to introduce an operator to compose the GSPNs
models that represent modules of the system. Previously, to properly define such
operator, an extension of the GSPN formalism is proposed [BDM02]:

Definition 2.5. A labeled GSPN system (LGSPN) is a triplet LS = (S, ψ, λ) where,
S is a GSPN system as in Def. 2.4
ψ : P −→ LP ∪ τ is a labeling function for places
λ : T −→ LT ∪ τ is a labeling function for transitions
LT , LP and τ are sets of labels
τ -labeled net objects are considered to be “internal”, not visible from the other com-
ponents.

The previous definition differs from the original given in [DF96] since both places
and transitions can be labeled. Moreover, the same label can be assigned to place(s)
and to transition(s) since it is not required that LT and LP are disjoint.

Composition will be carry out in this work over LGSPN using the operator defined
in [BDM02] as follows:
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Definition 2.6 (Place and transition superposition of two ordinary la-
beled GSPNs). Given two LGSPN ordinary systems LS1 = (S1, ψ1, λ1) and
LS2 = (S2, ψ2, λ2), the LGSPN ordinary system LS = (S, ψ, λ):

LS = LS1 | |
LT ,LP

LS2

resulting from the composition over the sets of (no τ) labels LT ⊆ LT and LP ⊆ LP

is defined as follows. Let ET = LT ∩λ1(T1)∩λ2(T2) and EP = LP ∩ψ1(P1)∩ψ2(P2)
be the subsets of LT and of LP , respectively, comprising place and transition labels
that are common to the two LGSPNs, P l

1 (T l
1) be the set of places (transitions) of

LS1 that are labeled l and PEP

1 (TET

1 ) be the set of all places (transitions) in LS1

that are labeled with a label in EP (ET ). Same definitions apply to LS2. Then:
T = T1\T

ET

1 ∪ T2\T
ET

2 ∪
⋃

l∈ET
{T l

1 × T l
2} P = P1\P

EP

1 ∪P2\P
EP

2 ∪
⋃

l∈EP
{P l

1 ×P l
2}

The functions F ∈ {I(), O(), H()} are equal to:

F (t) =











F1(t) if t ∈ T1\T
ET

1

F2(t) if t ∈ T2\T
ET

2

F1(t1) ∪ F2(t2) if t ≡ (t1, t2) ∈ TET

1 × TET

2 ∧ λ1(t1) = λ2(t2)

where ∪ is the union over sets.
Functions F ∈ {Π(),W ()} are equal to:

F (t) =











F1(t) if t ∈ T1\T
ET

1

F2(t) if t ∈ T2\T
ET

2

min(F1(t1), F2(t2)) if t ≡ (t1, t2) ∈ TET

1 × TET

2 ∧ λ1(t1) = λ2(t2)

The initial marking function is equal to:

M0(p) =











M0
1 (p) if p ∈ P1\P

EP

1

M0
2 (p) if p ∈ P2\P

EP

2

M0
1 (p1) +M0

2 (p2) if p ≡ (p1, p2) ∈ PEP

1 × PEP

2 ∧ ψ1(p1) = ψ2(p2)

Finally, the labeling functions for places and transitions are respectively equal to:

ψ(x) =











ψ1(x) if x ∈ P1\P
EP

1

ψ2(x) if x ∈ P2\P
EP

2

ψ1(p1) if x ≡ (p1, p2) ∈ PEP

1 × PEP

2 ∧ ψ1(p1) = ψ2(p2)

λ(x) =











λ1(x) if x ∈ T1\T
ET

1

λ2(x) if x ∈ T2\T
ET

2

λ1(t1) if x ≡ (t1, t2) ∈ TET

1 × TET

2 ∧ λ1(t1) = λ2(t2).
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The relation being associative with respect to place and transition superposition,
we use also as an n-operand by writing,

LS =
k=1,..,K

| |
LT ,LP

LSk.

The previously defined operator was redefined in [LGMC02a] in order to consider
the simplification of the nets, as follows:

Definition 2.7 (Place and transition superposition and simplification of two
ordinary labeled GSPNs). Given two LGSPN ordinary systems LS1 = (S1, ψ1, λ1)
and LS2 = (S2, ψ2, λ2), the LGSPN ordinary system LS = (S, ψ, λ):

LS = LS1

⊔

LT ,LP

LS2

resulting from the composition over the sets of (no τ) labels LT and LP is defined as
follows. Let ET = LT ∩λ1(T1)∩λ2(T2) and EP = LP ∩ψ1(P1)∩ψ2(P2) be the subsets
of LT and of LP , respectively, comprising place and transition labels that are common
to the two LGSPNs, P l

1 (T l
1) be the set of places (transitions) of LS1 that are labeled

l and PEP

1 (TET

1 ) be the set of all places (transitions) in LS1 that are labeled with a
label in EP (ET ). Same definitions apply to LS2.

Then: T = T1\T
ET

1 ∪ T2\T
ET

2 ∪
⋃

l∈ET
{T l

1 × T l
2}, P = P1\P

EP

1 ∪ P2\P
EP

2 ∪
⋃

l∈EP
{P l

1 × P l
2}, the functions F ∈ {I(), O(), H(),Π(t),M 0(), ψ(), λ()} are defined

exactly as it was made for the last operator, whereas function W(t) is equal to:

W (t) =











W1(t) ift ∈ T1\T
ET

1

W2(t) ift ∈ T2\T
ET

2

W1(t1) +W2(t2) ift ≡ (t1, t2) ∈ TET

1 × TET

2 ∧ λ1(t1) = λ2(t2)

2.1.4 High level stochastic Petri nets

Stochastic Petri nets lead to models whose size is too large when modeling realistic
systems. High level Petri nets [JR91], have been proposed as a more adequate tool
to develop “compact” or “folded” models. In this work, we use a class of stochastic
high level Petri nets, the stochastic well-formed nets [CDFH93] (SWNs), which are
the stochastic extension of the family of well-formed colored nets [CDFH90].

In this work functions are defined to obtain GSPNs from UML diagrams. But
sometimes the performance models obtained are not precise enough to express same
system properties (usually instance based properties) or these models can be com-
pacted into simple ones. In such cases, we propose to color the original GSPN in
order to obtain a SWN by exploiting the analyst knowledge in the “problem do-
main”. It must be clear from the very beginning that this work does not formalize a
translation from UML diagrams into SWNs but GSPNs.

Formally a SWN is as follows [CDFH93]:
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Definition 2.8. A SWN = 〈P, T,C, J,W−,W+,Wh,Φ,Π, θ,M0〉 is made of
P, T and Π as in Def. 2.4
C a family of basic classes: C = {C1, . . . , Cn} with Ci ∩ Cj = ∅ ( I = {1, . . . , n} a
ordered set of indexes)
J : P ∪ T −→ Bag(I), where Bag(I) is the multiset on I. C(r) = CJ(r) denotes the
color domain of node r
W−,W+,Wh : W−(p, t),W+(p, t),W h(p, t) ∈ [CJ(t) −→ Bag(CJ(p))] the input,
output and inhibition functions are arc expressions
Φ(t) : CJ(t) −→ {True, False} is a standard predicate associated with the transition
t. By default it is assumed ∀t ∈ T the standard predicate Φ(t) = True
θ(t) : C̃(t) × Bag(C̃(p1)) × Bag(C̃(p2)) × . . .Bag(C̃(p|P |)) −→ IR
M0 : M0(p) ∈ Bag(C(p)) is the initial marking of p.

2.1.5 Petri nets analysis

As we stated, a goal of this work is to obtain performance models (in terms of GSPNs
or SWNs) from UML models describing software systems. Performance models can
be used to estimate some quantifiable performance measures in the first stages of the
life-cycle to evaluate alternatives for some system parameters. With this purpose a
performance model can be simulated or analyzed, but only the second approach has
been followed in the examples developed in this work (cfr. chapter 8), it does not
mean that our proposal forgets simulation techniques.

Responsiveness and utilization performance measures can be calculated, either
operationally or stochastically, see [Cam98b] for a survey. As an example, it can be
calculated for places, the average steady-state marking; for transitions, the average
steady-state enabling degree, utilization or the throughput.

The throughput of a transition, denoted by χ(t), is defined as the number of firings
per unit of time. This performance measure is the only one used in this work (cfr.
chapter 8). We refer to [Cam98b] for its calculation.

Traditionally, techniques for the analysis (computation of performance measures
or validation of logical properties) of Petri nets are classified in three complementary
groups [CTM98]: enumeration, transformation, and structural analysis:

• Enumeration methods are based on the construction of the reachability graph
(coverability graph in case of unbounded models), but they are often difficult
to apply due to their computational complexity, the well-know state explosion
problem.

• Transformation methods obtain a Petri net from the original one belonging to a
subclass easier to analyze but preserving the properties under study, see [Ber87].

• Structural analysis techniques are based on the net structure and its initial
marking, they can be divided into two subgroups: Linear programming tech-
niques, based on the state equation and graph based techniques, based on “ad
hoc” reasoning, frequently derived from the firing rule.
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(c1) µ[p] = m0[p] +
∑

ti∈•p

|fi|σ[ti] −
∑

kj∈p•

|gj |σ[kj ], ∀p ∈ P : Post[p, ti] = fi,
Pre[p, ki] = gj ;

(c2)
∑

ti∈•p

|fi| χ[ti] ≥
∑

kj∈p•

|gj | χ[kj ], ∀p ∈ P : Post[p, ti] = fi,
Pre[p, ki] = gj ;

(c′
2
)

∑

ti∈•p

|fi| χ[ti] =
∑

kj∈p•

|gj | χ[kj ], ∀p ∈ P bounded;

(c3) χ[ti]

ri
=

χ[tj ]

rj
, ∀ti, tj ∈ T : behav. free choice;

(c4) |f | χ[t] s[t] ≤ OUT (p, t) µ[p], ∀t ∈ T, ∀p ∈ •t : Pre[p, t] = f ;

(c5) αf χ[t] s[t] ≥ OUT (p, t) µ[p] − |cd(t)|(αf − 1), ∀t ∈ T persistent, age memory or
immediate: •t = {p}, Pre[p, t] =
f , A(f) = 1;

(c′
5
) χ[t] s[t] ≥ k

OUT (p, t)µ[p] + |cd(t)|(1 − kαf )

OUT (p, t) + |cd(t)|(1 − kαf )
, ∀t ∈ T persistent, age memory or

immediate: •t = {p}, Pre[p, t] =
f , A(f) = 1, ∧ k ∈ IN : kαf ≤
b[p] ≤ (k + 1)αf ;

(c6) αfχ[t] s[t] ≥ OUT (p, t)µ[p] + |cd(t)|(1 − αf )

−OUT (p, t)b[p]fq ,

where fq = |cd(t)| −
OUT(q,t)µ[q]+|cd(t)|(1−αg)

OUT(q,t)b[q]+|cd(t)|(1−αg)
, ∀t ∈ T persistent, age memory or

immediate: •t = {p, q}, b[p] ≤
b[q], Pre[p, t] = f,Pre[q, t] =
g, A(f) = A(g) = 1;

(c7) α1χ[t] s[t] ≥ OUT (p1, t)µ[p1] − |cd(t)|(−α1 + 1)

−OUT (p1, t)b[p1] max
1≤j≤n

fj ,

where fj = 1 −
OUT(pj ,t)µ[pj ]+|cd(pj)|(1−αj)

b[pj ]/|cd(pj)|−αj+1
, ∀t ∈ T persistent, age mem-

ory or immediate: •t =
{p1, . . . , pn},b[p1] ≤ b[pj ], j ∈
{2, . . . , n}, Pre[pi, t] = fi,
A(f1) = 1;

(c8) µ,χ,σ ≥ 0

Table 2.1: Linear programming problem.
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A complementary classification of the techniques for the quantitative analysis of
the SPNs based on the quality of the results obtained can be: exact, approximation
and bounds.

• Exact techniques are mainly based on algorithms for the automatic construction
of the infinitesimal generator of the isomorphic Continuous Time Markov Chain
(CTMC). Refer to [Bal98] for numerical solutions of GSPN systems. In general,
these techniques suffer the referred state explosion problem. In [Don94] the
model is decomposed for the exact computation of the steady state distribution
of the original model. Others techniques based on tensor algebra to obtain exact
solutions are proposed in [CDS99].

• Approximation techniques do not obtain the exact solution but an approxima-
tion. Some of them substitute the computation of the isomorphic CTMC by the
solution of smaller components [CCJS94]. In [PJ02] techniques based on divide
and conquer strategies are presented for the approximated computation of the
throughput.

• Finally, bounds are techniques that offer the further results from the reality.
Nevertheless, they can be useful in the early phases of the software life-cycle.
Since our work is proposed to calculate performance estimates in these prelimi-
nary stages, bound seems to be a good alternative. In the following, we explore
them.

Performance bounds

Performance bounds [Cam98a] are useful in the preliminary stages of the software
life-cycle, in which many parameters are not known accurately. Several alternatives
for those parameters should be quickly evaluated, and rejected those that are clearly
bad. The benefits of the bounds come from the fact that they require much less
computation effort than exact and approximation techniques.

As in this thesis we propose a process to estimate performance parameters in the
early stages of the software life-cycle and the complexity of this kind of systems is a
reality, the use of bounds becomes interesting in some situations to avoid the state
explosion problem.

Bounds for GSPNs can be computed from the solution of proper linear program-
ming problems (LPP), therefore they can be obtained in polynomial time on the size
of the net model, and they depend only on the mean values of service time associated
to the firing of transitions and the routing rates associated with transitions in con-
flict and not on the higher moments of the probability distribution functions of the
random variables that describe the timing of the system.

The idea, valid for GSPNs as well as for SWNs, is to compute vectors that max-
imize or minimize the throughput of a transition or the average marking of a place
among those verifying the operational laws and other linear constraints. For the case
of SWNs the LPP appear in table 2.1, for details about how to obtain each constraint
refer to [CAC+93].
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2.2 The Unified Modeling Language

In this section we assume that the reader knows the basis of the Unified Modeling
Language [BJR99] (UML). Then, we just summarize the semantics and the most
important concepts given in [Obj01] for the subset of diagrams that are related with
our proposal. For details in the descriptions or more advanced issues refers to [Obj01].

The UML is a semi formal language developed by the Object Management
Group [Obj01] to specify, visualize and document models of software systems and
non-software systems too. UML has gained widespread acceptance in the software
development process for the specification of software systems based on the object-
oriented paradigm.

UML provides several types of diagrams which allow to capture different aspects
and views of the system. A UML model of a system consists of several diagrams which
represent the functionality of the system, its static structure, the dynamic behavior
of each system component and the interactions among the system components.

UML defines twelve types of diagrams, divided into three categories: static dia-
grams, behavioral diagrams and diagrams to organize and manage application mod-
ules.

• Static diagrams are intended to model the structure (logical and architectural)
of the system. They are: Class diagram, object diagram, component diagram
and deployment diagram.

• Behavioral diagrams are intended to describe system dynamics, and they are of
five kinds: Sequence diagram, collaboration diagram, use case diagram, state-
chart diagram and activity diagram.

• Diagrams to organize modules allow to reduce complexity of the system. There
exist packages, subsystems and models.

Behavioral diagrams constitute a major aim in this work since the most perfor-
mance issues of systems can be represented by means of them.

The sequence diagram (cfr. [Obj01] section 3.60) specifies a set of partially ordered
messages, each specifying one communication, e.g. signals or operation invocations,
as well as the roles to be played by the sender and the receiver. They represent pat-
terns of interaction among the objects. The collaboration diagram (cfr. [Obj01] sec-
tion 3.65) is a non temporal view of the sequence diagram. The use case diagram
(cfr. [Obj01] section 3.54) is used to requirements gathering. The statechart diagram
(cfr. [Obj01] section 3.74) describes possible sequences of states and actions through
which the modeled element can proceed during its lifetime as a result of reacting to
discrete events (e.g., signals, operation invocations). They allow to specify the behav-
ior of individual entities of the system, such as the class objects. The activity diagram
(cfr. [Obj01] section 3.84) is a special case of statechart in which the states represent
the execution of actions.

The semantics of the behavioral UML diagrams, is specified in the Behavioral
Elements package (cfr. [Obj01] section 2.8), see Figure 2.1, which is decomposed
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State Machines

Activity Graphs

Use CasesCollaborations

Behaviour
Common

Figure 2.1: Behavioral elements package.

into the following subpackages: Common behavior, collaborations, use cases, state
machines and activity graphs.

Actually each behavioral diagram maps into one of the behavioral package in the
following fashion:

• The use case diagram maps into the use case package.

• The collaborations diagram maps into the collaboration diagram.

• The sequence diagram maps into the collaboration diagram.

• The statechart diagram maps into state machines package.

• The activity diagram maps into activity graphs package.

In the following sections we describe each one of the behavioral packages paying
special attention to the state machines package since it is the core of this work.

2.2.1 Common behavior package

The common behavior package (cfr. [Obj01] section 2.9) specifies the core concepts
to support the rest of the packages in the behavioral package.

The most important elements in this package to understand our work are the
following: signal, action, instance, link and object.

An action specifies an executable statement that results in a change in the state
of the model. It can be carried out by sending a message to an object or modifying a
link or a value of an attribute. Among the different kind of actions must be remarked
the following:
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ModelElement

(from Core)

ClassifierRole

(from Collaborations)

Message

(from Collaborations)

*

*

availableContents

sender receiver

*
predecessor

Interaction

(from Collaborations)

1..* message

interaction

base

1..* *

1

Classifier

(from Core)

11

* *

successor

*

*

action

Action

(from Common
 Behavior)1

CallAction

(from Common
Behavior)

SendAction

(from Common
Behavior)

Figure 2.2: Partial view of the UML Collaborations metamodel.

• A call action is the invocation of an operation on an instance.

• A create action creates an instance of some classifier.

• A destroy action destroys an object.

• A send action is the (asynchronous) sending of a signal.

An instance is an entity with a state that reflects the effects of its operations.
Connections between instances are links, i.e. instances of an association. A signal
is a specification of an asynchronous stimulus communicated between instances. An
object is an instance of a class and may originate from several classes. It is structured
and behaves according to its class.

2.2.2 Collaborations package

The collaborations package (cfr. [Obj01] section 2.10) provides the means to define
communication patterns performed by instances to carry out a specific task, i.e. inter-
actions. Moreover, this package allows the structural description of the participants
in the interactions, collaboration. Figure 2.2 represents a partial view of the package.
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An interaction is defined in the context of a collaboration. It specifies the commu-
nication patterns between the roles in the collaboration. More precisely, it contains
a set of partially ordered messages, each specifying one communication. A collabora-
tion may be attached to an operation or a classifier, like a use case, to describe the
context in which their behavior occurs; that is, what roles instances play to perform
the behavior specified by the operation or the use case. A collaboration is used for
describing the realization of an operation or a classifier.

A collaboration may be expressed at different levels of granularity. A coarse-
grained collaboration may be refined to produce another collaboration that has a
finer granularity.

Collaborations can be used for expressing several different things, like how use
cases are realized, actor structures of ROOM [SGW94], OOram [Ree] role models,
and collaborations defined as in Catalysis [DW98].

The most important elements together with the interactions and collaborations in
this package related to our work are the ClassifierRole and the Message.

A classifier role specifies a restricted view of a classifier, being a specific role played
by a participant in a collaboration. A message defines a particular communication
between instances that is specified in an interaction.

2.2.3 Use cases package

The purpose of a use case (cfr. [Obj01] section 2.11) is to define a piece of behavior
of a model element without revealing its internal structure. Each use case specifies
a service the model element provides to its users; that is a specific way of using
the element. A use case describes the interactions between the users and the model
element as well as the responses performed by the model element, as these responses
are perceived from the outside of the model element. A use case also includes possible
variants of this sequence (for example, alternative sequences, exceptional behavior,
error handling, etc.).

A use case can be used to specify the requirements of a system, subsystem or class
and for the specification of their functionality. Moreover, the use cases state how
the users should interact so the entity will be able to perform its services. Use cases
specifying class requirements are mapped onto operations of the classes.

An actor is a specific user of the use case that communicates exchanging message
instances that are expressed by associations between the actor and the use case.

A use case may be related to other use cases by extend, include and generalization
relationships:

• An include relationship defines that a use case contains the behavior defined in
another use case.

• An extend relationship defines that instances of a use case may be augmented
with some additional behavior defined in an extending use case.

• A generalization relationship implies that the child use case contains all the
elements defined in the parent use case and may define additional behavior.
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2.2.4 State machines package

The state machines package (cfr. [Obj01] section 2.12) (UML SMs) is a subpackage
of the behavioral elements package. It specifies a set of concepts that can be used for
modeling discrete behavior trough finite state-transition systems. These concepts are
based on concepts defined in the foundation package as well as concepts defined in
the common behavior package. This enables integration with the other subpackages
in behavioral elements. Moreover, they provide the semantic foundation for activity
graphs. This means that activity graphs are simply a special form of state machines.

UML SMs incorporate several concepts similar to those defined in ROOMcharts,
a variant of statechart defined in the ROOM [SGW94] modeling language. Actually,
UML SMs are defined as an object-based variant of Harel statecharts [Har87, HG96,
HN96], major differences are identified in [Obj01], in the following we remark the
more interesting:

• Harel statecharts specify behaviors of processes, however UML SMs specify
behavior of individual entities or interactions,

• UML SMs do not support event conjunction,

• UML SMs support the notion of synchronous communication between SMs,

• UML SMs transitions are not based on the zero-time assumption.

UML SMs can be used to specify behavior of various elements that are being mod-
eled. For example, they can be used to model the behavior of individual entities (e.g.,
class instances) or to define the interactions (e.g., collaborations) between entities.

A deep description of the UML SMs, as usual in the UML Semantics Specifica-
tion [Obj01], is given in three sections: Abstract Syntax, Well-formedness rules and
Semantics. In the following, we briefly outline them:

• Abstract syntax. The abstract syntax for UML SMs is expressed graphically
in Figure 2.3, which covers all the concepts of the state machine graphs such as
state, transitions, events.

• Well-formedness rules. The static semantics of the UML SMs, except for
multiplicity and ordering constraints, are defined as a set of invariants of an
instance of the metaclass. These invariants have to be satisfied for the con-
struct to be meaningful. The rules thus specify constraints over attributes and
associations defined in the metamodel. Each invariant is defined by an Object
Constraint Language (cfr. [BJR99] Chapter 7 or [Obj01] Chapter 6) expression
together with an informal explanation of the expression.

• Semantics. The execution semantics of UML SMs is defined using natural
language. For convenience, the semantics is described in terms of the operations
of a hypothetical machine that implements a state machine specification. This is
for reference purposes only. Individual realizations are free to choose any form
that achieves the same semantics. The key components of this hypothetical
machine are:
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Figure 2.3: UML State Machines metamodel.
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– an event queue which holds incoming event instances until they are dis-
patched

– an event dispatcher mechanism that selects and de-queues event instances

– an event processor which processes dispatched event instances. The se-
mantics of event processing is based on the run-to-completion assumption,
that means that an event can only be dequeued and dispatched if the pro-
cessing of the previous current event is fully completed (cfr. [Obj01] sec-
tion 2.12.4.7).

Elements of the state machines

The translation for the UML SMs proposed in chapters 4 and 5 is based in the UML
SMs metamodel, i.e. the abstract syntax, therefore this translation takes as input
the elements in Figure 2.3 to obtain LGSPNs in a compositional manner. In the
following we stress some important elements (classes and relations) of the UML SMs
metamodel.

A state models a situation during which some invariant condition holds. The
invariant may represent a static situation such as an object waiting for some external
event to occur. However, it can also model dynamic conditions such as the process of
performing some activity.

Some of the associations involving the class state are heavily related with the class
action (cfr. section 2.2.1). These associations are the following:

• entry : State −→ Action, is a relation that associates to s an optional Action
that is executed whenever s is entered regardless of the transition taken to
reach s. If defined, entry actions are always executed to completion prior to any
internal activity or transitions performed within s.

• exit : State −→ Action, is a relation that associates to s an optional Action that
is executed whenever s is exited regardless of which transition was taken out
of s. If defined, exit actions are always executed to completion only after all
internal activities or transitions actions have completed execution.

• doActivity : State −→ Action, is a relation that associates to s an optional
Action that is executed while being in s. The execution starts when s is entered,
and stops either by itself, or when s is exited, whichever come first.

Moreover, in order to understand the semantics of a state, the following associa-
tions must be remarked:

• internal : State −→ Transition, is a relation that associates to s a set of transi-
tions that, if triggered, occur without causing a state change. This means that
the entry or exit actions of s will not be invoked.

• outgoing : StateVertex −→ Transition, is a relation that, given a state s ∈ State
playing a StateVertex role, associates a set of transitions that, if triggered, occur
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Figure 2.4: Partial view of the UML Activity Graphs metamodel.

causing a state change. This means that the entry or exit actions of s are
invoked.

• deferrableEvent : State −→ Event , is a relation that, given a state s ∈ State,
associates a set of events that can be retained in it.

2.2.5 Activity graphs package

The activity graphs package (cfr. [Obj01] section 2.13) has few semantics of its own,
it defines an extended view of the state machine package, being a special case of a
state machine that is used to model processes involving one or more classifiers. A
partial view of the package is given in Figure 2.4.

Activity graphs can be attached to packages, classifiers (including use cases) and
behavioral features. In this work, we propose them to carry out a detailed description
of the performance features of an action in a state machine.

Most of the states in an activity graph are action states that represent atomic ac-
tions, that are specialized into call states to represent the execution of a call action as
its entry action. Subactivity states represent a nested activity that has some duration
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and internally consists of a set of actions or more subactivities. The generation of an
object by an action in an action state may be modeled by an object flow state. The
states can be organized in partitions according to a criteria.

Transitions, that are inherited from the state machines package, are triggered by:

• the completion of an action,

• the availability of an object in a certain state,

• the occurrence of a signal, or

• the satisfaction of some condition.

The translation given in chapter 6 for the elements in the activity graph meta-
model, see Figure 2.4, follows the same pattern as given in the previous section for the
UML SMs, i.e. these elements are mapped in a compositional manner into LGSPNs.

2.3 Software Performance Engineering

The term software performance engineering (SPE) was first introduced by C.U. Smith
in 1981 [Smi81]. Several complementary definitions have been given in the literature
to describe the aim of the SPE. Among them we remark the followings:

• In [Smi90], the SPE is proposed as a method (a systematic and quantitative
approach) for constructing software systems to meet performance objectives,
taking into account that SPE augments others software engineering methodolo-
gies but it does not replace them.

• SPE is defined in [SS01] as a collection of methods for the support of the
performance-oriented software development of application systems throughout
the entire software development process to assure an appropriate performance-
related product quality.

• Finally, in [Smi01] new perspectives for SPE are devised, then proposing
that SPE must provide principles, patterns [MCM00a, GM00] and antipat-
terns [SW00] for creating responsive software, the data required for evaluation,
procedures for obtaining performance specifications and guidelines for the types
of evaluation to be conducted at each development stage.

It is important to remark that the previous definitions emphasize that SPE cannot
be placed outside the context of software engineering. It contrasts with other engineer-
ing fields, such as telecommunication, where performance practices have been applied
successfully in “isolation”, i.e. not explicitly while developing the engines. Moreover
SPE, as pointed out in [SS01], reuses and enlarges concepts and methods from many
others disciplines such as: Performance management, performance modeling, software
engineering, capacity planning, performance tunning and software quality assurance.
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In this work, we emphasize the use of the SPE in the early phases of the life-cycle
effectively avoiding the “fix-it-later” approach, as well as in [Smi90], that proposes
evaluating performance of software systems in the early stages of the development
process. Thus, if performance problems are detected, it will be easier and less expen-
sive to take the appropriate design decisions to solve them. Although our proposal
focuses only in these uses of the SPE, in our opinion the use of good SPE prac-
tices must be extended along the complete development process, then facilitating to
meet performance objectives in each stage. In this way the best choices of software
architecture, design and implementation can be considered.

The SPE process that appears in Figure 2.5 was formerly proposed in [Smi90] and
still remains as reference for a very general proposal to establish the basic steps that
a SPE process should consider. In the following we recall this proposal.

Firstly, it must be defined which goals or quantitative values are of interest, ob-
viously it changes from one stage of the software life cycle to other and also among
different kind of systems. Business systems define performance objectives in terms of
responsiveness as seen by the system users while reactive systems take into account
event responses or throughput. The concept for the life cycle product also depends
on the stage of the life cycle and it refers to the software architecture, the design, the
algorithms, the code and so on. Responsive architectures and designs are conceived
by applying SPE principles, patterns and antipatterns. Subsequently, data gathering
is accomplished by defining the proper scenarios interpreting how the system will
be typically used and its possible deviations (defining upper and lower bounds when
uncertainties). The construction and evaluation of the performance model associated
with the system is one of the fundamentals in SPE. Later in this section we explore
common types of performance models proposed in the literature. In our approach the
performance model is defined in terms of GSPNs or SWNs, this kind of models can be
evaluated either by analysis or simulation. If the results obtained do not agree with
those predicted in the original concept, alternatives for improvement are considered.
If a feasible alternative exists the concept is modified, if none performance objectives
should be revised. Validation and verification of the performance model are on-going
activities of the SPE process.

Performance measures in SPE typically include resource utilizations, waiting
times, execution demands and response time. In section 2.1.5 these performance
measures were interpreted from a Petri net point of view in terms of places and
transitions.

The common paradigms of stochastic models used in SPE are recalled in the
following paragraphs.

Queuing models Queuing network modeling is defined in [LZSS84] as a particular
approach to computer system modeling in which the computer system is represented
as a network of queues which is evaluated analytically. A network of queues is a
collection of service centers, which represent system resources, and customers, which
represent users or transactions. Analytic evaluation involves using software to solve
efficiently a set of equations induced by the network of queues and its parameters.
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Queuing networks models have been extended to represent finite capacity queue
and memory constraints, simultaneous resource possession and synchronization
and concurrency constraints. Moreover, the “layered queuing network”(LQN)
model [RS95] allows client-server communication in concurrent and distributed soft-
ware systems. In a LQN model a server may become client (customer) to other servers
while serving its own client requests.

Stochastic process algebras Process algebras are abstract languages used for the
specification and design of concurrent systems, where systems are modeled as col-
lections of entities, called agents, which execute atomic actions. Stochastic process
algebras [HR98] (SPAs) incorporate the features of the process algebras to perfor-
mance modeling, being the most important, the compositionality of the models. SPAs
associate a random variable, representing duration, with each action.

Stochastic Petri nets The stochastic extension of the Petri net formalism has
been discussed in section 2.1.2. The performance models in this work are expressed
in terms of stochastic Petri nets.

2.4 Related work

In this section we revise the work in the literature related with ours, remarking its
features and comparing them with our proposals. We have tried to carry out an ex-
haustive revision by focusing on all the related areas that have arisen while developing
the work. Then we first revise the most important works in methods and method-
ologies in the software performance evaluation, second the pattern based approach
recently emarged is analyzed, third the profile adopted for the annotation of UML
design is addressed and finally the attempts to formalize some UML diagrams are
studied. In the following, we briefly put in context each one.

As we commented, the term software performance engineering was coined by C.U.
Smith in [Smi81]. In this thesis SPE is proposed to evaluate performance of software
systems in the early stages of the development process. One of the preliminary works
in SPE was [Smi90], many authors point it as the beginning of this field as it is un-
derstood today. Nevertheless, it is important to remember that other works also were
relevant in the origins of the SPE, such as [GCD73, RWS+78, SB75]. A good review
of the evolution of the SPE can be found in [Smi01]. In sections 2.4.1, 2.4.2 and 2.4.3,
the most important works in software performance engineering in the last five or six
years are analyzed and compared. Moreover, for a good survey of the different ap-
proaches for performance evaluation based on UML diagrams we recommend [BS01].
Some of these approaches augmented the notation of the UML with performance fea-
tures, this topic is addressed in section 2.4.4. The precise UML group [pUM] has as
goals to state the UML as a precise (i.e. well defined) modelling language, in this
context several works have arisen, some of them trying to give formal semantics to
the state machines and to the activity diagrams; since in this work we give formal
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semantics to these diagrams to construct a performance model, the work in this area
is revised in section 2.4.5.

2.4.1 Preliminary works in SPE

In this section we review the works that we consider as preliminary to this the-
sis. They share similarities such as: SPE is driven by models, they were proposed
before or in the first specific conference of the SPE [SWC98], they began to de-
vise UML as the design notation. Summarizing, they were the firsts attempts to
position SPE as we understand it today. Concretely, we focus on three works:
the Permabase project [WLAS97, UH97], the works developed at Carleton Univer-
sity [HRW95, WHSB98, FW98, Woo00, WHSB01] and the works by Pooley and
King [KP99, Poo99, PK99].

The Permabase project started late 1995 was jointly developed by the Univer-
sity of Kent, the BT Labs and ERA Technology. The goal of the project was to
define an architecture that enables early performance predictions of object-oriented
software designs combined with descriptions of the network configuration and sys-
tem workload. The architecture is composed by a kernel called Composite Modeling
Data Structure, by a modeling tool (Rose [Rat01]), by an execution environment
and workload tool (Configurator [Pen96]) and by engine to simulate the models (SES
Workbench [SES01]). The UML diagrams developed with Rose are augmented with
performance annotations.

Concerning to our work, the main differences are: Since our approach is also based
on UML, it can be used within the object oriented paradigm, but the Permabase
project is constrained to this paradigm. The performance annotations for the UML
models are shortly described then taking into account only the load of the messages,
the time of the methods and parameters for the hardware. It can be noted that
our approach is more elaborated in this aspect (cfr. chapter 3). The tool used for
obtaining results allows only the simulation of the models, our approach is feasible
also with simulation and analytical techniques. As our approach, Permabase has been
applied in real projects (video library retrieval system, voice-conferencing system and
cache/server example), but it has not been possible to find documentation about them
but just parts of some involved diagrams.

The works developed at the Carleton University have in common that they use
the layered queuing network [RS95] (LQN) formalism to represent the performance
model of the software system. In the following we revise the most important ones.

One of the earliest works was [HRW95]. Although some deficiencies can be identi-
fied, such as it does not use the UML, we highlight it because important features for
the SPE were devised, such as the prediction in the early stages or the automatic gen-
eration of the performance model. The process to automatically generate performance
models for distributed and concurrent software systems is proposed in five steps: a
prototype of the system is created using an object-oriented environment called MLog;
the prototype is executed to record “angio events” and “angio traces”(containing be-
havior information and dynamic details such as data dependent branching or task
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identity); the traces are reduced to “workthreads” using resource functions; the per-
formance model in terms of QNs or LQNs is constructed and evaluated; finally if the
results do not match with the objectives the design must be improved. The process
was applied to an online transaction processing system obtaining a LQN model.

The differences with our approach are the following. We consider the final system
designs to obtain the performance model but this approach works with prototypes;
we use UML in the design instead MLog; our formal performance model is in terms
of Petri nets, they use QN or LQN; they introduce concepts such as “angio traces”
and “angio events” to represent ways to execute the system that are not common in
the software vocabulary.

In [WHSB98, WHSB01] a wideband approach for the performance prediction of
software systems is presented, meaning by wideband that it can be applied to a
wide range of design descriptions and parameters, throughout the entire life-cycle.
The application domain of the proposal is restricted to the real time field using
ROOM [SGW94] as a design methodology. The performance model is created in
terms of LQNs with the information obtained from the design models, the execution
traces (“angio traces”) and the testing of the deployed system. The Performance
Analysis by Model Building tool (PAMB) assists this approach, and takes the fol-
lowing steps: Define scenarios and create the design using ObjectTime; execute the
scenarios to automatically obtain a “sub-model” for each one; enter the performance
measures, create an experiment and run the LQN solver to obtain results.

In our opinion the wideband approach is a good receipt of the strategies that
should be followed in the SPE process. But compared with our approach it lacks
of the following. It is not clear how the system load or routing rates are obtained,
nevertheless they claim that data gathering is automated by a tool. It is not explained
how the performance model is obtained but we give the functions that perform it.
The design models proposed are not enough to express all the system load. The use
of ROOM instead UML is a disadvantage in our opinion. Similarly to our proposal
the performance models can be analyzed or simulated.

Finally, we review the works of Pooley and King. They follow the approach to
annotate the UML diagrams to obtain by a translation procedure performance models
in terms of stochastic Petri nets or stochastic process algebra. In [PK99] some UML
diagrams are revised to find its role in the SPE. For the use cases, they consider that
actors may represent system workload. In the implementation diagrams they identify
servers and jobs. Sequence diagrams are considered as discrete event simulators,
while the collaboration diagram may allow steady state analysis. A combination of
the state and collaboration diagrams is pointed as the best approach to simulate
UML. In [KP99], GSPN models are produced starting from UML diagrams: the main
difference with our work is that the construction is described only at an intuitive level,
through an example, and no systematic approach to the translation is given.
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2.4.2 Approaches for SPE based on UML

In this section we focus on the contemporary works to this thesis. They explicitly con-
sider UML as the design language for the SPE process and are more mature than those
considered in section 2.4.1 since they are later in time, some of them were presented
in [WGM00] and the others even in posterior relevant conferences or journals. Con-
cretely, we focus on four works that in our opinion describe perfectly the state of the
art in the SPE field between the conferences [WGM00] and [IBB02], they are the works
of Cortellessa [CM00, CDI01], the software architecture approaches [ABI01, AABI00],
the work of De Miguel [dMLH+00] and finally the research at Carleton Univer-
sity [PS02].

Cortellessa et al. propose methods that from software models are capable to gener-
ate systematically and automatically performance models in terms of extended queu-
ing networks [Lav83] (EQN) or layered queuing networks [RS95] (LQN). In [CM00]
the methodology to obtain EQN is proposed while in [CDI01] the LQN approach is
developed. Since both approaches share commonalities, we are going to study and
compare with ours the first one [CM00]. The performance model generated consists of
two parts, the software model that is based on execution graphs [Smi90] (EG) and the
machinery model based on EQN. The combination of the EGs and the EQNs gives a
complete parametrized performance model. The methodology proposed uses the use
case diagram to derive the user profile, the sequence diagrams to derive an EG and
the deployment diagram to identify hardware/software relationships that improve the
accuracy of the performance model. The steps of the methodology are the following:
The user profile is obtained from the use case diagram; for each use case a set of
sequence diagrams are developed and processed to obtain a meta-EG, it is carried out
by means of a given algorithm; the deployment diagram is used to obtain the EQN
model of the hardware platform and to tailor the meta-EG obtaining a EG-instance;
numerical parameters are assigned to the EG-instance; finally, the EG-instance is
combined with the EQN model using the SPE approach [Smi90]. Concerning our ap-
proach, firstly we must recognize that we own to this work the annotations performed
in the use case diagram, we adopted them because in our opinion it is a clear and
nice way to define the role or the profile of the user in the system from a performance
viewpoint. Another important feature is that the use of the deployment diagram
allows to avoid the infinite resource assumption that is present in our work since
hardware resources can be modeled. On the other hand, since our approach makes
use of the statecharts and the activity diagrams the performance modeling power in
our proposal is increased, allowing to model low level description of activities as well
as reactive object behavior. The performance model in terms of queuing networks
instead of PN is a difference that has been commented previously.

In the field of software architectures [SG96] (SA) the works in [ABI01, AABI00]
are representatives for the generation of performance models in terms of queuing
networks (QN). [ABI01] proposes a method to generate the performance model from
a labeled transition system (LTS) that specifies the global dynamic behavior of a SA.
Although a LTS is not a UML diagram, the statecharts have been formalized using
LTS in [US94] then the equivalence among LTS and statecharts can be assumed. The
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methodology starts with the description of a SA by a LTS that is analyzed by a two-
phases algorithm. The first phase examines the paths in the LTS to single out the
pairs of interacting components, the second phase analyzes and compares the pairs
to derive the QN topology. After, quantitative parameters are defined to obtain the
complete QN model. Our approach is more general in the sense that it is not restricted
to only one specification tool, i.e. LTS or statecharts. In [AABI00] the QN model
is obtained exclusively from sequence diagrams, newly the approach is too restricted
in its modeling power if it is compared with ours. In an high abstraction level this
approach is quite similar to the previous one, the change is that the algorithm deals
with the sequence diagram instead with the LTS.

De Miguel developed in [dMLH+00] a UML profile for hard real time systems using
the UML extension mechanisms (stereotypes, tagged values and constraints). It was
motivated by the lack (or poor way) of UML to represent specific real time issues such
as: system load, temporal restrictions, quality of service (QoS), resource consumption
or scheduling. This profile was included in a UML based CASE tool and to identify
the extensions it takes care of the UML semantics, the automatic generation of anal-
ysis and simulation models and the software implementation of scheduling analysis
theorems. Concretely, UML is extended by means of seven constraints (periodic tim-
ing, aperiodic timing, access protocol, execution time, remote message, priority and
location) and nine new or redefined stereotypes (processor, network, cyclic, sporadic
server, concurrent, activity diagram, activity state, call state and object flow state).
As an example of constraint, the “execution time” identifies the maximum execution
time of some UML elements (Utilization Time ≤ Time), this constraint can be at-
tached to operations, call states or action states. The profile was applied to an air
traffic control system using class diagrams and activity diagrams to develop it. In
our opinion, this approach is close related with that presented in section 2.4.4 than
with ours, then some of the comments that will be given still remain valid in this con-
text. This proposal differs from ours because it is centered in hard real time domain.
The major criticism from our viewpoint is that it is omitted how the scheduling and
simulation models are obtained from the extended UML diagrams. Another point is
that statecharts are discarded because in their opinion they are more complex than
activity diagrams. Obviously we do not share this viewpoint since activity diagrams
have all the expressivity of the statecharts plus that given by the semantics of the
activity graph package.

Petriu and Shen present in [PS02] a graph-grammar based method to automat-
ically obtain performance models in terms of LQN [RS95] from UML descriptions
augmented with the UML performance profile (cfr. section 2.4.4). The work develops
an algorithm that using as input an XML file with the UML description obtains the
corresponding LQN model. Following the SPE approach [Smi90], from each perfor-
mance annotated scenario a LQN is obtained and after these models are merged. Each
LQN is obtained in two steps: The structure is obtained from the collaboration and
deployment diagrams; and the entries, phases, visit ratio parameters and execution
time demands are obtained from the activity diagrams by a translation process, this
process is studied and compared in section 2.4.5 since we have dedicated that sec-
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tion to compare our translation of state machines and activity diagrams with others.
With respect to our approach, it is similar in the sense that from the activity diagram
the performance model is obtained, but we use also the use case diagram and the
statechart diagram and they use the deployment diagram. To represent scenarios we
propose the sequence diagram while they discard it considering that it is not well
defined in UML, in our opinion this misspecification of the sequence diagram can be
avoided with a coherent interpretation.

2.4.3 Patterns and antipatterns in SPE

Design patterns [GHJV95] are “descriptions of communicating objects and classes
that are customized to solve a general design problem in a particular context”, while
antipatterns [BMMI98], being conceptually similar to patterns, document common
mistakes made during software development as well as their solutions.

Although the use of the design patterns and antipatterns with reusability or main-
tainability purposes is “classic” in the literature, the SPE field has recently payed at-
tention to them. To our knowledge only the works [MCM00a, SW00, GM00, VGNP00,
PS97] have addressed some issues and possibilities in this context. In our opinion it
is a new field where the SPE community should invest a lot of work, in the following
years, to take profit of some well-known and documented design problems and solu-
tions from the performance engineering point of view. Section 7.3 recalls our proposal
given in [MCM00a].

Smith and Williams suggest in [SW00] the use of antipatterns in the SPE field.
Concretely they propose performance antipatterns to document performance problems
and their causes found in different contexts but with the same underlying pathology.
To illustrate the use of the performance antipatterns, that work discusses perfor-
mance problems associated with the “god” or “blob” class [BMMI98] antipattern.
A “god” class is one that performs most of the work of the system creating perfor-
mance problems due to the excessive message traffic. They show that distributing
intelligence uniformly across the top-level classes provokes a performance gain such
that Ts = Ms ×O, where Ts is the processing time saved, Ms is the number of mes-
sages saved and O is the overhead for message. Moreover, they document and give
solutions for three new performance antipatterns: the Excessive Dynamic Allocation,
Circuitous Treasure Hunt and One Lane Bridge.

Concerning our approach, the antipattern proposal can be seen as “the other side
of the coin”. While we propose to enhance the pattern language with new sections
that reflect the performance objectives and workload of well-known designs, they
propose to identify performance problems also in well-know designs and give solutions
to them. In our opinion both approaches are complementary and the combined use
of performance patterns and antipatterns should lead to good software performance
practices. On the other hand, although their proposal has been applied to solve
(document) performance problems in four antipatterns, ours has been applied in a
real project, the ANTARCTICA software retrieval system (cfr. chapter 7).

Gomaa and Menascé in [GM00] propose “component interconnection patterns”
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for the performance evaluation of distributed software architectures. A component
interconnection pattern defines and encapsulates the way client and server commu-
nicate with each other. In a high abstraction level their proposal shares similarities
with ours: They start with a UML design model of the component interconnection
pattern, then provide a performance annotation of the design using XML and finally
map the design to a performance model to analyze the performance of the architec-
ture. It must be taken into account that their proposal is completely oriented to
model distributed systems using the concepts of components and connectors. In this
sense our proposal is more general since it offers the possibility to model these con-
cepts, as well as to represent the performance annotations given for these concepts.
More concretely, they use the class diagram and the collaboration diagram to model
the interconnection patterns. Although our proposal does not use the class diagram
since static features have not been addressed yet, it offers performance extensions
for all the UML behavioral diagrams, then gaining modeling power. The use of the
XML language to annotate performance features seems a good election, however the
OMG group has adopted the tagged value approach [Obj02] as our work did. Finally,
the performance models are obtained in terms of queuing networks models but it is
not given the mapping function among the two models, then being not possible to
compare it with our translation procedure.

The Maisa (Metrics for Analysis and Improvement of Software Architectures)
project [VGNP00] proposes an approach where patterns and antipatterns embedded
in the design are discovered by a mining tool directly from the activity diagrams.
A comparison with our work is not realized since in [VGNP00] the proposal is just
positioned itself.

In [PS97] a pattern language different of that considered in this work is extended
to give a set of patterns for improving the capacity of reactive systems. These pat-
terns identify some causes that limit the efficiency of distributed layered client-server
systems. Since the patterns are defined just for a subclass of reactive systems and
using a different language, this proposal is difficult to be compared with ours. But
the idea of extending a pattern language with performance features is also present.

2.4.4 UML profile for schedulability, performance and time
specification

In chapter 3 we motivate the necessity to annotate the UML diagrams with per-
formance parameters that express the load and the routing rates in the system, at
the same time we recall our proposal of performance annotated UML that was given
in [MCM00b, LGMC02a]. These concerns have provoked in the SPE community the
adoption by the OMG in March 2002 of the “UML profile for schedulability, perfor-
mance and time specification” [Obj02], that was presented in [IBB02]. In our opinion,
the adoption of this profile by the SPE community is of major importance since it
will allow to avoid individual efforts and will permit to share research results while
“speaking” the same language. This profile reuses much of the effort carried out by
the SPE community in this area, for a summary of the proposals to annotate UML
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diagrams refer to [BS01]. Taking into account these considerations, it makes sense
that in this section we compare our proposal of annotations only with the standard
profile. Nevertheless, we want to highlight the work in [CM00] where we have taken
the annotations for the use case diagram, and others good works previous to the adop-
tion of the profile such as [dMLH+00, GM00, MGD01], the first two already revised
from the methodological viewpoint and the third one as a contributor of the profile.

The UML profile for schedulability, performance and time specification [Obj02]
was adopted by the OMG with different purposes:

• to encompass different real-time modeling techniques,

• to annotate UML real-time models to predict timeliness, performance and
schedulability characteristics based on analyzing these software models.

Obviously, part of the work developed in this thesis is involved with the second
objective, but real-time modeling techniques are out of the scope of this work. Al-
though the profile is oriented to real time systems, the annotations proposed in the
performance sub-profile remain valid for more general purposes, even to specify dis-
tributed software systems in non real time environments. Here on we will study the
performance modeling sub-profile, that extends the UML metamodel with stereo-
types, tagged values and constraints to attach performance annotations to a UML
model.

The sub-profile for performance modeling provides facilities for:

1. capturing performance requirements within the design context,

2. associating performance-related QoS characteristics with selected elements of a
UML model,

3. specifying execution parameters which can be used by modeling tools to compute
predicted performance characteristics,

4. presenting performance results computed by modeling tools or found in testing.

In order to meet these objectives the performance sub-profile extends the UML
metamodel with the following abstractions. The QoS requirements are placed on
scenarios, which are executed by workloads. The workload is open when its requests
arrive at a given rate and closed when has a fixed number of potential users executing
the scenario with a “think time” outside the system. The scenarios are composed by
steps, i.e. elementary operations. Resources are modeled as servers and have service
time. Performance measures (utilizations, response times, . . . ) can be defined as
required, assumed, estimated or measured values. These concepts are represented with
stereotypes and tagged values. Concretely, the “performance values” are described
by tagged values as in our proposal. The sub-profile allows to map these concepts
either into a collaboration or into an activity graph. It allows to construct UML
performance designs by means of these two kind of diagrams.

Concerning our proposal, the first and second objectives are met in chapter 3 when
defining the performance annotations, since they allow both to annotate performance
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requirements in the design models and also QoS features. The fourth objective is
accomplished in our proposal as a result of the process given in chapter 7.

The main difference with our proposal is that we identify the role of each UML di-
agram (use cases, interactions, statecharts and activity diagrams) in the performance
process and define the performance annotations for them, while the sub-profile de-
fines a set of performance concepts and maps them into the concepts of each diagram,
but only two diagrams (collaborations and activity) have been considered. Finally,
both approaches obtain a set of annotated UML diagrams that should be the input
to create a performance model in terms of some queuing or simulation model.

2.4.5 Formal semantics for the UML state machines and the
activity diagrams

As a very important part of our proposal to study performance of software sys-
tems, in chapters 4 and 5 this thesis proposes to (semi)automatically obtain a per-
formance model in terms of GSPNs from UML state machines (UML SMs). The
performance model is created by functions that map UML state machines abstrac-
tions into GSPNs submodels and working out them taking advantage of the com-
positional properties of PNs. In short, we propose a translation (an interpreta-
tion) of the UML SMs into a mathematical formalism, i.e. PNs. Several works
can be found in the literature that translate UML SMs, or UML statecharts (its
syntactical form) or Harel statecharts (from which UML SMs are just an object-
oriented variant, cfr. section 2.2.4) into some mathematical formalisms. As an
example, several semantics for Harel statecharts have been proposed in the litera-
ture [HN96, PS91, SSBD99, US94, Lev97, Mar92, MSPT96, DJHP97], but none of
them in the context of performance evaluation. Also, a lot of works have been devoted
to give formal semantics to UML SMs or UML statecharts as [PL99, LMM99, EW00],
but in general with the aim to validate qualitative properties. To our knowledge
there does not exist another work that formalizes a translation from UML SMs into
the Petri net formalism with quantitative purposes. Translations from UML SMs to
Petri nets for the validation of qualitative properties are given in [BP01, SS00], the
closer approach to our was given in [KP99] but as we commented in section 2.4.1 it
is not possible to stablish a comparison with it since no formalization is proposed in
that work, just intuitive ideas are presented. Nevertheless, we do not want to finish
the related work of this thesis without at least comment how other authors have ad-
dressed the problem of formalizing UML SMs. Therefore, from the plethora of studies
remarked before, we want to highlight the work in [PL99] and briefly explain how the
authors formalized the UML SMs.

In [PL99], as in our work, a complete formalization of the UML SMs package is
given. Their approach is proposed in two parts: firstly the structure of the UML
SM is formalized in a rewriting system terms fashion (needed to define the transition
selection algorithm) and secondly operational semantics in terms of an execution
algorithm compliant with the run to completion step are attached to the formal
model. In our approach only the first step is necessary, i.e. to formalize the structure
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of the SM as a Petri net, since the operational semantics is implicit in our target
formalism, so taking care that the underlaying operational semantics is compliant
with the run to completion step, our approach gains in simplicity and in our opinion
is more “homogeneous” since it does not need an additional algorithm, the token
game abstracts it. In the first step in [PL99], the SM is defined as a set of states of
different kinds, then defining a state configuration as a term over a signature where
the states are operator symbols; the elements of a state (entry, exit, activity, . . . ) are
functions over a given language; each transition is a triplet (s, t, s′) where s, s′ are
terms of the signature and t is a transition name; the attributes of a given transition
(trigger, guard, . . . ) are defined as functions over the corresponding sets. In the
second step, a set of definitions (active and enable transitions, conflict transitions,
. . . ) based on the structure proposed in the first step are formalized to be used in an
algorithm that implements the run to completion step.

Concerning activity diagrams, the disquisition performed at the beginning of this
section remains valid, i.e. there exist a number of works that translate activity di-
agrams into some mathematical formalisms [PdS01, EW01, PS02]. From them, we
have considered interesting to remark the work developed in [PS02], where activity
diagrams are translated into layered queue networks (LQN) detailed features using a
graph grammar based transformation. A graph grammar is a set of production rules
that generates a language of terminal graphs and produces non terminal graphs as
intermediate results. A production rule is applied to the abstractions that represent
the activity diagram, then the activity diagram graph is parsed to check its correc-
tion and to divide it into subgraphs that correspond to the LQN elements. As it can
be seen the approach to formalize activity diagrams is absolutely different from ours
(cfr. chapter 6) that is based in the composition of the submodels obtained for each
abstraction.
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Chapter 3

UML Diagrams for
Performance Evaluation: the
pa-UML proposal

The study of the software time efficiency (response time, delays, throughput) requires
from the software designer the most accurately possible description of the system
load and the routing rates. In general, software engineers are not familiar with the
notation of performance modeling, moreover this notation is too far from the artifacts
they use to model software systems.

In the last years, the software performance engineering community [SWC98,
WGM00, IBB02] has dedicated great efforts to incorporate to the software specifi-
cation languages the abilities to describe system load in understandable terms for
software engineers. Then several proposals have been given, for a nice summary
see [BS01]. Most of the proposals have considered to augment the language nota-
tion, in different ways, to describe the system load. Also, it has been a must for the
community to consider as an important feature that the resulting language should be
able to (semi)automatically generate a performance model from which performance
predictions can be computed.

In this chapter we present our proposal to describe the load in software systems, we
will refer to it as “pa-UML” to reflect in some manner that it proposes performance
annotations in the UML [Obj01] language. The proposal takes into account the
previous principles, the ability to describe system the load and the routing rates at a
software engineer level and the adequacy to generate performance models, and tries
to be adequate for the performance evaluation process that we give in chapter 7.

Our proposal considers UML as a specification language instead of the notation
of well-established methodologies such as OMT [RBP+91], OOSE [JCJO92] or Fu-
sion [CAB+94] because UML has become a standard among the software engineering
community in the last years as a universal language to model software systems. More-
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over in the first specific conference on software performance [SWC98], it was “unan-
imously” decided that UML should be the language of reference for future work. It
has been clearly confirmed in the subsequent conferences [WGM00, IBB02].

Unfortunately, UML is not an exception among the software notations, with re-
spect to the lack of the necessary expressiveness to accurately describe the system
load and routing rates (consider that the proposal in [Obj02] was not developed when
we developed pa-UML [MCM00b]). Moreover, the language lacked also the ability to
identify which of its diagrams are relevant for performance evaluation purposes and
which of the elements in these diagrams are suitable to describe performance aspects.
These tasks are realized in this chapter by exploring the relevant UML diagrams and
by identifying the model elements of interest to which associate performance parame-
ters. We will use a UML extension mechanism, the tagged values, to associate system
load to the selected model elements.

The chapter is organized as follows. Section 3.1 identifies the UML diagrams rele-
vant for performance evaluation and explains how tagged values are used to introduce
system load. Sections 3.2, 3.3, 3.4 and 3.5 describe respectively the use case diagrams,
the interaction diagrams, the statechart diagrams and the activity diagram. For each
diagram a short description taken from the UML document [Obj01] is given, it puts
the reader in context but if more information is needed, we refer to the manual; after
that, the role of the diagram concerning performance goals is analyzed; and finally,
the performance annotations suggested for the diagram are given. The chapter ends
by giving some conclusions in section 3.6.

3.1 UML diagrams for performance evaluation

Another way to classify UML diagrams, different from that given in section 2.2,
establishes that UML comprises nine different kinds of diagrams that can be grouped
in three categories: structural diagrams, behavioral diagrams and implementation
diagrams. All of them can be related with performance aspects, it depends on the
particular use the modeler assigns to each one in the description of her/his system
and on the kind of systems to deal with. In order to have a complete performance
description of the system, the UML structural and behavioral models should be used
at “modeling” level and implementation diagrams play when configuring the hardware
platform for the system.

Among the structural UML diagrams we have focused in this work in the use
case diagrams since they will allow to model the usage of the system for each actor.
But the most important effort has been devoted to the behavioral diagrams, because
traditionally the performance of a system has been studied from its dynamic view.
Four different diagrams are proposed by UML to describe behavioral aspects: inter-
action diagrams (sequence diagrams and collaboration diagrams, both based on the
collaboration package), statechart diagrams (based on the state machines package)
and activity diagrams (based on the activity graph package, a specialization of the
state machines package).

The interaction diagrams will allow to describe the load of the messages sent
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TaggedValue.name = performance annotation

TaggedValue.dataValue = {a concrete annotation}

TaggedValue.type.name = performance annotation

TaggedValue.type.multiplicity = 1

TaggedValue.type.tagType = [system usage, system load, routing rate]

ModelElement

1

+type

*

+typedValue
dataValue : String[*]

+taggedValue +referenceTag

name : Name

(from Core)

1

*

+referenceValue

TaggedValue (from Extension Mechanisms)

multiplicity : Multiplicity

tagType : Name

(from Extension Mechanisms)

TagDefinition

**

Figure 3.1: Metamodel of the annotations proposed in pa-UML.

among the participants in the system, statecharts will be identified to be used to
describe the routing rates in the system and the load of the activities at high level.
Activity diagrams will be of interest to assign load to the basic actions in the system.

UML implementation diagrams (component and deployment) can be of interest
to evaluate some performance parameters in the latest stages of the design. In these
diagrams performance aspects depending on implementation issues such as which
database management system or which compiler is going to be used can be modeled.
These diagrams are not subject of research in this work since, as we explain in chap-
ter 7, it is focused in the early stages of the development process. Nevertheless, they
can be useful to avoid the unlimited resources assumption made in our work. As
an example of its application, in [CM00] the deployment diagram is used to obtain
a performance model in terms of extended queuing networks formalism for specific
hardware platforms.

The UML diagrams studied in this work with performance evaluation purposes
are: the use case diagrams, the interaction diagrams, the statecharts and the activity
diagrams, that all together will allow to model a wide range of distributed software
systems, those that we are focused on.

Fortunately, UML is a language that provides mechanisms to increase the modeling
power. Then we propose the use of one of the UML extensions to describe the system
load and the routing rates, the extension mechanism selected is the tagged values.
The use of the tagged values is proposed in such a way that it neither conflicts with
nor contradicts the standard UML semantics. In the following, it is explained how the
tagged values are proposed to annotate performance aspects in the UML diagrams.

Figure 3.1 shows the part of the UML metamodel concerning the definition of
the tagged values. A tagged value allows information to be attached to any model
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ANNOTATION KIND∗ REFERENCED
VALUE

USE CASE DIA-
GRAM

Probability that an ac-
tor executes a use case

A Association link

SEQUENCE DI-
AGRAM

Probability of success of
a message

B Message

Message size C Message

STATECHART
DIAGRAM

Activity duration C Action (with doActivity
role)

Probability of success of
a message

B Transition1

Message size C Event

ACTIVITY DI-
AGRAM

Activity duration C Timed transition

Probability to take the
transition

B Transition (timed or im-
mediate)

∗A=System usage, B=Routing rate, C=System load.
1It is not associated to an event since the transition can be automatic.

Table 3.1: Summary of the annotations proposed.

element in conformance with its tag definition. On the other hand, a tag definition
specifies the tagged values that can be attached to a kind of model element.

Then we introduce the tag definition named performance annotation, which also
will be the name of the tagged values. The type of the tag definition can be either
system usage or system load or routing rate. The multiplicity of the tag definition
will be 1 specifying that a concrete tagged value can have exactly one data value.
The last assumption does not restrict the number of performance annotations in a
concrete model element since the cardinality of the role +taggedValue for any model
element is *, see Figure 3.1. Finally, each concrete performance annotation in a UML
diagram will be specified as a tagged value with the attribute dataValue meaning the
annotation with the form {a concrete annotation}, i.e. a quantitative annotation inside
braces, e.g. {100K}.

For an example see in Figure 3.2 the annotation {p1} attached to the association
between the actor1 and the use case UseCase1. The annotation can be attached
to an association element because the association metaclass is a specialization of the
metaclass ModelElement as required in the metamodel in Figure 3.1. This association
element could have multiple tagged values of the type performance annotation, but
only one in the example. Then it is interpreted that TaggedValue.name = performance
annotation, TaggedValue.dataValue = {p1}, TaggedValue.type.tagType = routing rate,
TaggedValue.referencedValue = the referenced association. For each new performance
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UseCase1

UseCase2

UseCase3
actor1 actor2

{p1}

{p2}

{p3}

p1+p2 = 1

1

*

{p4}

p3+p4 = 1

frequency of usage of actor1 = 0.4
frequency of usage of actor2 = 0.6

Figure 3.2: Use case diagram with performance annotations.

annotation in this association element one tagged value is created.

The set of tagged values is open-ended in our proposal. Any value that conforms
with a performance annotation is valid.

In the following sections the pa-UML proposal for the use case diagrams, the in-
teraction diagrams, the statechart diagrams and the activity diagrams is presented
making use of the extension described. This notation will be used in chapter 7 in
conjunction with the performance process introduced in that chapter to model per-
formance in a software system. Table 3.1 summarizes for each kind of diagram the
annotations proposed in pa-UML as well as the element that affects the annotation.

Before describing which model elements in each diagram should be annotated,
we want to stress that it is of special interest for us to introduce the minimal set of
annotations possible in each diagram. It is motivated because we recognize that the
UML notation is complex and large enough to be increased and also we recognize
that the success of a modeling language should be based in its simplicity of use and
construction.

3.2 Use case diagrams

In UML a use case diagram shows actors and use cases together with their rela-
tionships. The relationships are associations between the actors and the use cases,
generalizations between the actors, and generalizations, extends and includes among
the use cases [Obj01].

A use case represents a coherent unit of functionality provided by a system, a
subsystem or a class as manifested by sequences of messages exchanged among the
system (subsystem, class) and one or more actors together with actions performed
by the system (subsystem, class). The use cases may optionally be enclosed by a
rectangle that represents the boundary of the containing system or classifier [Obj01].

In the example use case diagram in Figure 3.2 appears: two actors, three use cases
and four associations relationships between actors and use cases, like that represented
by the link between actor1 and use case UseCase1.
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Role of the use case diagram concerning performance

We propose the use case diagram with performance evaluation purposes to show the
use cases of interest to obtain performance figures. Among the use cases in the
diagram a subset of them will be of interest and therefore marked to be considered
in the performance evaluation process.

For us the existence of a use case diagram is not mandatory to obtain a perfor-
mance model. Since as it will be explained in chapter 7 a performance model for the
whole system can be obtained from the statecharts that describe the system. The role
of the use case diagram is to show the use cases that represent executions of interest
in the system. A performance model can be obtained for each concrete execution as
it will be proposed in chapter 7.

Each use case of interest should be detailed by means of a sequence diagram, which
are studied in the next section.

Performance annotations

The performance annotations for the use case diagram do not constitute a novelty
of this work since they have been taken from [CM00]. The proposal consists in the
assignment of a probability to every edge that links a type of actor to a use case,
i.e. the probability of the actor to execute the use case. The assignment induces the
same probability to the execution of the corresponding set of sequence diagrams that
describes it. Since we propose to describe the use case by means of only one sequence
diagram, we can express formally our case as follows.

Let suppose to have a use case diagram with m users and n use cases. Let pi(i =
1, . . . ,m) be the i-th user frequency of usage of the software system and let Pij be the
probability that the i-th user makes use of the use case j(j = 1, . . . , n). Assuming that
∑m

i=1 pi = 1 and
∑n

j=1 Pij = 1, the probability of a sequence diagram corresponding
to the use case x to be executed is:

P (x) =
m

∑

i=1

pi · Pix

The previous formula is important because it allows to assign a “weight” to each
particular execution of the system.

In Figure 3.2 the performance annotations introduced are: the frequencies of usage
of the system for each actor, 0,4 and 0,6, the probabilities p1, p2, p3 and p4 attached
to each association between an actor and a use case.

The relationships between the actors themselves, and between the use cases them-
selves are not considered with performance evaluation purposes.

3.3 Interaction diagrams

The description of behavior involves two aspects: 1) the structural description of the
participants and 2) the description of the communication patterns. The structure of
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Figure 3.3: Sequence diagram with performance annotations.

instances playing roles in a behavior and their relationships is called a collaboration.
The communication pattern performed by instances playing the roles to accomplish
a specific purpose is called an interaction. The two aspects of behavior are often
described together on a single diagram, but some times it is useful to describe the
structural aspects separately [Obj01].

Interaction diagrams come in two forms based on the same underlying information,
specified by a collaboration and possibly by an interaction, but each form emphasizes
a particular aspect of it. The two forms are sequence diagrams and collaboration
diagrams. A sequence diagram shows the explicit sequence of communications and
it is better for real-time specifications and for complex scenarios. A collaboration
diagram shows an interaction organized around the roles in the interaction and their
relationships [Obj01].

An interaction is defined in the context of a collaboration. It specifies the commu-
nication patterns between the roles in the collaboration. More precisely, it contains
a set of partially ordered messages, each specifying one communication. A collabora-
tion may be attached to an operation or a classifier, like a use case, to describe the
context in which their behavior occurs; that is, what roles instances play to perform
the behavior specified by the operation or the use case. A collaboration is used for
describing the realization of an operation or a classifier [Obj01].
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Sequence diagrams A sequence diagram presents two dimensions: 1) the verti-
cal dimension represents time and 2) the horizontal dimension represents different
instances. An instance is shown as a vertical dashed line called the “lifeline”. The
lifeline represents the existence of the instance at a particular time. An object symbol
is drawn at the head of the lifeline [Obj01].

An activation (focus control) shows the period during which an instance is per-
forming an action. It is shown as a tall thin rectangle whose top is aligned with its
initiation time and whose bottom is aligned with its completion time. A stimulus is
a communication between two instances that conveys information with the expecta-
tion that an action will ensure. A stimulus will cause an operation to be invoked,
raise a signal, or cause an instance to be created or destroyed. It is shown as a hor-
izontal solid arrow from the lifeline of one instance to the lifeline of another, labeled
with the name of the operation or the signal. Solid arrowhead means procedure call,
stick arrowhead means asynchronous communication, while a dashed arrow with stick
arrowhead means return from procedure call [Obj01].

Role of the sequence diagram concerning performance

It is worth to notice that, although in this thesis we focus on the sequence diagram to
study the relevance of the interactions among objects concerning performance evalu-
ation, the proposals for this diagram are valid also for the case of the collaboration
diagram, since as it has been explained they are based on the same underlaying in-
formation. By proposals we understand the performance annotations that will be
given for the diagram later in this section as well as the role of the diagram in the
performance evaluation process that will be given in chapter 7.

As it is explained, a sequence diagram represents messages sent among objects.
Also, we have remarked that for our purposes a sequence diagram should detail the
functionality expressed in one of the use cases in the use case diagram by focusing in
the interactions among its participants. We consider that it is the adequate tool to
characterize some aspects of the system load when modeling the execution of interest
that describes the corresponding use case. In the following, we remark the relevant
elements and constructions of the sequence diagram from the performance point of
view to model the load of the system.

Objects can reside in the same machine or in different machines in the case of
distributed systems. In the first case it can be assumed that the time spent to send
the message is not significant in the scope of the modeled system. Of course the
actions taken as a response of the message can spend computation time, but it will be
modeled in the statechart diagram. For the second case, those messages that travel
through the net, it is considered that they spend time, then supposing a load for the
system that should be modeled.

To each message in the diagram a condition can be attached, representing the
possibility that the message could be dispatched. Even multiple messages can leave a
single point each one labeled by a condition. From the performance point of view it
can be considered that routing rates are attached to the messages. See as an example
messages m7, m8 and m10 in Figure 3.3.
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A set of messages can be dispatched multiple times if they are enclosed and marked
as an iteration. This construction also has its implications from the performance point
of view. See as an example messages m5, m6, m7, m9 and m10 in Figure 3.3.

In chapter 7 it will be shown how the information contained in the sequence
diagram is useful to create a performance model that describes a particular execution
of the system.

Performance annotations

UML proposes a notation to deal with time based on the use of time con-
straints. This restrictions are expressed as time functions on message names, e.g.,
{(messageOne.receiveTime - messageOne.sendTime) < 1 sec.}. An open-ended set of
functions can be defined by the user, as example UML proposes the functions send-
Time (the time at which a stimulus is sent by an instance) and receiveTime (the time
at which a stimulus is received by an instance).

Without the purpose of slighting the proposal of UML and without renouncing
to it for other diagrams, we consider more realistic in this diagram to annotate the
message size instead time constraints. In this way, if for instance we consider systems
where the messages travel through the net, performance parameters for different net
speeds could be calculated or even to make different modeling assumptions for the
net.

Each message in the diagram will be annotated with its size, in Figure 3.3 message
m1 is labeled with {1 K}. It is also possible to annotate the size with a range in the
UML common way, like the message m10 with label {1K..100K}. If the message size
is unknown, the annotation is a label representing a performance parameter, e.g.
message m2 is annotated with the label {size1}, also in Figure 3.3, then leaving open
the possibility to model different sizes. The annotation will be strictly informative if
the objects that exchange the message reside on the same machine. But if they reside
on different computers, the annotation will be used to model system load, concretely
the time spent by the message traveling through the net. A simple assumption can
be that the time spent is the size of the message multiplied by the speed of the net,
we have adopted it in this work for the sake of simplicity. This time can be assumed
as the mean for all possible executions, then it can be modeled by an exponential
distribution. But more complex assumptions can be made [DFJR98, BC98].

Each condition associated to a message will have an annotation that represents a
routing rate, it expresses the event probability success. See, for instance, the prob-
ability {0.9} associated in Figure 3.3 to the condition x >= 0 in message m7. A
range is accepted too. Sometimes, it is possible that the probability is unknown when
modeling. Also, it could be that the probability a message occurs is a parameter
subject to study. In the example, the condition y > 0 associated to the message m10
is a parameter subject of study. In such situations, we will annotate an identifier,
corresponding to the unknown probability.
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Figure 3.4: Statechart with performance annotations.

3.4 Statechart diagrams

A UML statechart diagram can be used to describe the behavior of a model element
such as an object or an interaction. Specifically, it describes possible sequences of
states and actions through which the element can proceed during its lifetime as a
result of reacting to discrete events. A statechart maps into a state machine that
differs from classical Harel state machines in a number of points that can be found in
section 2-12 of [Obj01].

A state in a statechart diagram is a condition during the life of an object or an
interaction during which it satisfies some condition, perform some action, or waits
for some event. A simple transition is a relationship between two states indicating
that an object in the first state will enter the second state. An event is a noteworthy
occurrence that may trigger a state transition [Obj01].

A composite state is decomposed into two or more concurrent substates (regions)
or into mutually exclusive disjoint substates [Obj01].

Role of the statechart diagrams concerning performance

Sequence diagrams show how objects interact for a particular execution of the system.
But to take a complete view of the system behavior, it is necessary to understand the
life of the objects involved in it, since the statechart diagram is a tool that can be
used with these purposes. It is proposed to capture performance requirements at this
level of modeling. Then, for each class with relevant dynamic behavior a statechart
diagram must be specified.

In a statechart diagram the elements relevant from the performance evaluation
point of view are described in the following.

Activities represent tasks performed by an object in a given state. Such activities
consume computation time that must be measured and annotated.

Guards show conditions in a transition that must hold in order to fire the corre-
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sponding event. Then they can be considered as routing rates as in the case of the
sequence diagram.

Events labeling transitions correspond to events in the sequence diagram showing
the server or the client side of the object. Then the considerations given in the
sequence diagram for the exchange of messages among objects still remain valid for
this diagram.

Chapter 7 describes how the information related to the load of the system collected
in all the statechart diagrams is used to create a performance model that describes
all the possible executions of the system.

Performance annotations

We consider that the UML proposal based on time constraints is more appropriate
for this diagram. The annotations for the duration of the activities will show the time
needed to perform them. If it is necessary, a minimum and a maximum values could
be annotated. If different durations should be tested for a concrete activity then a
variable can be used. See, for example, labels {1sec}, {0.5sec..50sec} and {time1} in
Figure 3.4.

The annotations for the load of the messages will be attached to the transitions
(outgoing or internal) as explained for the case of the sequence diagrams. See, for
example, label {1K} associate to transition outgoing State1 with event ev1 or label
{1K..100K} associate to transition exiting also from State1 but with event ev2 in
Figure 3.4.

The probability of event success represents routing rates as in the case of the
sequence diagrams, then it will be annotated in the same way and the same consider-
ations must be taken into account. See, for instance, label {prob} joined to condition
[x > 0] in Figure 3.4.

The information provided by the last two kind of annotations, message load and
probability of event success, is relevant only to obtain a performance model that
represents the whole system. When it is desired to obtain a performance model that
represents a concrete execution of the system this information is useless, in this case
the message load and the probability of event success is given by the corresponding
sequence diagram.

3.5 Activity diagrams

Activity diagrams represent UML activity graphs, which are just a variant of UML
state machines (see [Obj01], section 3.84). In fact, a UML activity graph is a spe-
cialization of a UML state machine, as it is expressed in the UML metamodel (see
Figure 2.2). The main goal of activity diagrams is to stress the internal control flow
of a process in contrast to statechart diagrams, which represent UML SMs and are
often driven by external events.
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Figure 3.5: Activity diagram with performance annotations.

Role of the activity diagrams concerning performance

In this work the activity diagram is proposed as a tool to specify activities mod-
eled in statechart diagrams. It allows to describe detailed views of the performance
parameters of the system when they are known for the very basic actions.

According to UML specification (cfr. [Obj01], section 3.84), almost every state
in an activity diagram should be an action or subactivity state, so almost every
transition should be triggered by the ending of the execution of the entry action or
activity associated to the state. Anyway, UML is not strict at this point, so elements
from state machines package could occasionally be used. But it must be noted that in
this work when we refer to activity diagrams we only focus in those elements proper
of the activity graph package.

As far as it is concerned, our decision is not to allow other states than action,
subactivity or call states, and thus to accept only the use of external events by means of
call states and control icons involving signals, i.e. signal sendings and signal receipts.
As a result of this, events are always deferred (as any event is always deferred in
an action state), so an activity will not ever be interrupted when it is described by
an activity diagram. Further attempts to include other state machines elements are
not discarded and could be object of future work, although they introduce some new
problems. Anyway, we suggest the use of the statecharts to describe the dynamical
behavior of those parts of the system dependable of external events.

The performance model obtained from an activity diagram in terms of LGSPNs
as proposed in chapter 6 can be used with performance evaluation purposes with two
goals: A) just to obtain performance measures of the model element they describe or
B) to compose this performance model with the performance models of the statecharts
that use the activity modeled in order to obtain a final performance model of the
system described by the referred statecharts.
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Performance annotations

Annotations will be attached to transitions instead of states as in statecharts, in order
to allow the assignment of different action durations depending on the decision.

It must be noticed that, in the following, we will use the notion of not-timed
transitions in the scope of the activity diagrams to specify those arcs which have no
time annotation or to which a duration equal to zero is assigned. Doing so, we are
trying to avoid confusions with immediate transitions, as long as they are different
concepts in the domain of UML state machines.

The format suggested is the same as for the previous diagrams making use of the
tagged values, {n sec.}, {n-m sec.} and { P(k)} for timed transitions and {P(k)} for
not-timed transitions. If no probability P(k) is provided we will assume an equiproba-
ble sample space, i.e., identical probability for each ‘brother’ transition to be triggered.
As it is shown, we allow time expressed in terms of an estimated value or a range of
them. We have discarded the usage of packet size annotations as proposed for stat-
echarts due to the fact that activity diagrams are commonly used to model internal
control flow. Figure 3.5 shows some examples of annotations (in braces).

Time annotations will be allocated wherever an action is executed (outgoing tran-
sitions of such states, including outgoing transitions of decision pseudostates with an
action state as input) and probability annotations wherever a decision is taken, i.e.
next to guard conditions. It must be noticed that there is a special case where the
performance annotation is attached to the state instead of the outgoing transition:
when the control flow is not shown because it is implicit in the action-object flow.
We do so because we do not want to have performance annotations applied to it, as
it has a different semantics.

3.6 Conclusions

The achievement of a performance model for a software system requires the description
of the load and the routing rates that characterize it. We have identified the necessity
to provide the software engineers artifacts with the notations to accomplish these
tasks. The most of the proposals given have in common the use of the UML language,
the incorporation to it of annotations that describe performance aspects and the
ability to obtain (semi)automatically performance models.

In this chapter we have presented our approach to annotate system load and
routing rates in the UML proposal, leading the pa-UML notation. It takes into
account the principles required by the software performance community. At the same
time we have identified the UML diagrams relevant in the performance evaluation
process. Then we have investigated the role of the use case diagrams, interaction
diagrams, statechart diagrams and activity diagrams with performance evaluation
purposes. These subset of UML diagrams is powerful enough to describe the dynamics
and the load of a wide range of software systems, as we can discover through the non
trivial examples that we present in the following chapters.

The use case diagrams have been shown as the tool to characterize the actors of



52 3. The pa-UML Proposal

the system by the usage they perform of it. Interaction diagrams allow to describe
the load of the system when the participants exchange messages among them. The
statechart diagram is a tool where the routing rates and the duration of the activities
of the system can be modeled at high level of description. While activity diagrams
became useful for a detailed and accurately modeling of an internal process measuring
its basics activities.



Chapter 4

UML flat State Machines
Compositional Semantics

In this chapter, we give a formal semantics in terms of Labelled Generalized Stochastic
Petri Nets (LGSPNs) [DF96] to the simple states, the final states, the initial pseu-
dostates and the outgoing transitions of the state machines package of UML [Obj01].
The previous features conform what we call a “flat UML state machine”. This work
was developed in [MBCD02]. The features considered for the simple states are: En-
try actions, exit actions, activities, internal transitions, deferred events, incoming
and outgoing transitions. Therefore all the characteristics for the simple states, final
states and initial pseudostates, as given in the state machine package of UML, are
considered. Chapter 5 gives formal semantics to the rest of the elements of the state
machines package: Composite states, submachine states, pseudostates (except the
initial pseudostate), synchronous states and stub states.

In order to give a formal semantics to the UML state machines package in terms
of LGSPNs, we propose a translation from the package elements to the LGSPN ele-
ments. It must be clearly stated how we are going to refer to the elements in both
formalisms, i.e., which are the input and the output models. The input model, UML
state machines package, has been summarized in section 2.2.4 and its elements appear
in the metamodel in Figure 2.3. The output model will be a LGSPN system as given
in [DF96] (see section 2.1.3).

Therefore, the contribution of this chapter is to define the translation of a num-
ber of elementary state machine elements into LGSPNs components. Moreover it is
given how from these components the LGSPN model for a state machine is obtained.
Finally, it is formalized how to obtain a LGSPN model from a set of UML state ma-
chines (described by its corresponding LGSPN models). In the translation process
several decisions will be taken, since it implies an interpretation of the “non formally
defined” UML concepts.

We assume that a system is described by a set of UML state machines, and we
show how a LGSPN model can be generated by composing [DF96] the LGSPN models

53
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of the single UML state machines. The LGSPN models are defined compositionally
starting from the LGSPN components of each state together with its transitions. Also
these components are defined in terms of smaller LGSPNs that represent the basic
elements of a state machine: entry and exit actions, do activities, deferred events,
internal and outgoing transitions. The translation is performed taking into account
that the operational semantics of the LGSPN system must guarantee the “run to
completion assumption” of UML, that means that an event can only be dequeued
and dispatched if the processing of the previous current event is fully completed.

Given a UML state machine (cfr. section 2.2.4, chapter 2), the approach taken for
its translation into a LGSPN model consists of the following steps:

step 1 Each simple state s ∈ SimpleState is modelled by a LGSPN representing the
basic elements of states and transitions. Section 4.7 discusses this step.

step 2 The initial pseudostate (if it exists) and the final states are translated. Sec-
tions 4.8 and 4.9 discuss respectively these translations. The LGSPNs produced
in this step are composed with those of the previous step to produce a LGSPN
model of the entire UML state machine. Section 4.10 discusses this step.

If the system is described through a set of UML state machines, the final step
composes them:

step 3 Compose the Petri net subsystems of the state machines and define the initial
marking. Section 4.11 discusses this step.

To obtain a LGSPN component that interprets a simple state, see step 1, a set
of relations and functions that relate a simple state with its equivalent LGSPN com-
ponent are given in sections 4.2, 4.3, 4.4, 4.5 and 4.6. Each section deals with a
feature of the simple states and begins with the UML description of the feature and
when neccesary our interpretation. They have two main parts: An “Informal explana-
tion” of the translation and its formalization, in the paragraph “Formal translation”.
Moreover, this set of relations and functions can be seen as the formal specification
to implement a software tool, that carry out the translation process.

4.1 An example of “flat” UML state machine

A state machine sm ∈ StateMachine is basically characterized by states and transi-
tions. In the following we describe the informal semantics given by the UML state
machines package to the elements in the metamodel of Figure 2.3, considering only
those elements that are used for the definition of a “flat” state machine.

The state machine sm in Figure 4.1 is composed of three simple states M,N,K ∈
SimpleState, an initial pseudostate, represented by a black dot, ps ∈ Pseudostate,
a final state, represented by a bull eye f ∈ FinalState, and six outgoing transitions.
The state machine sm starts its execution by firing transition tr0 ∈ ps.outgoing
which means the arrival of the stereotyped event �create�, create = trigger(tr0 ) ∈
Event; as a consequence, action act0 = effect(tr0 ) ∈ Action is performed. When
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Figure 4.1: An example of “flat” state machine.

in state N , the entry action entry = entry(N) ∈ Action is executed first; after,
the execution of the activity activity = doActivity(N) ∈ Action begins. During
the activity execution the outgoing transitions for state A can ocurr, or the internal
transitions as tr4 ∈ internal(N ) or a deferred event such as e5 ∈ deferrableEvent(N ).
Outgoing transitions provoke an exit from the state and an entry into the target
state (possibly the source state itself – self-loop outgoing transitions, such as tr11 ∈
outgoing(N )). Internal transitions instead do not provoke a change of state and no
entry or exit action is executed. Deferred events are not triggered in the present state,
they are retained by the state machine. Completion of activity means the generation
of the “completion event” for the state. When an outgoing transition as tr2 from M to
K has no trigger it means that it fires when the “completion event” for its source state
source(tr2) = M is generated (they are called immediate outgoing transitions). After
visiting states M and K or just K depending on the triggered events, sm completes
when it arrives to its final state f .

4.2 Entry actions and activities

The semantics for the entry actions, given in section 2.12 of [Obj01], highlights that:
“Whenever a state is entered, it executes its entry action before any other action is
executed. If defined, the activity associated with a state is forked as a concurrent
activity at the instant when the entry action is completed”.

The semantics for the activities in a state, given in section 2.12 of [Obj01] remarks
that: “The activity represents the execution of a sequence of actions, that occurs while
the state machine is in the corresponding state. The activity starts executing upon
entering the state, following the entry action. If the activity completes while the
state is still active, it raises a completion event. In case where there is an outgoing
completion transition the state will be exited. If the state is exited as a result of the
firing of an outgoing transition before the completion of the activity, the activity is
aborted prior to its completion”.

In this section we define a system that interpretates in terms of LGSPNs the entry
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Figure 4.2: Different labelled “basic” systems for a simple state N: (a) with activity and

no immediate outgoing transition; (b) no activity and no immediate outgoing transition; (c)

with activity and immediate outgoing transition; (d) no activity and immediate outgoing

transition.

actions and the activities. The LGSPN system will be composed with other systems
that interpretate the rest of the elements in a simple state, for this reason we refer to
this system as the “basic” system for a simple state.

4.2.1 Informal explanation

For each simple state in a UML state machine is created a “basic” LGSPN system,
named LSB

i . The formal definition of LSB
i will be presented in section 4.2.2. For the

sake of simplicity, instead of using the name of the state to name the system, we use a
subindex i that represents the number of the state. Therefore i ∈ 1..n where n is the
number of simple states in the state machine. Obviously, the order of enumeration
of the states is irrelevant. The LSB

i system is the LGSPN interpretation of the
entry action and the activity for a given state i. An informal explanation of this
interpretation is given in this section in order to easily understand the formal definition
given in section 4.2.2.
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In order to obtain the LSB
i system, the UML metamodel must be taken into

account. A different system will be obtained depending on whether an activity ex-
ists or not and whether an immediate outgoing transition exists or not in the state.
Concretely, four situations can arise:

• Case A. The state has activity and no immediate outgoing transition.

• Case B. The state has not activity and no immediate outgoing transition.

• Case C. The state has activity and immediate outgoing transition.

• Case D. The state has not activity but immediate outgoing transition.

Figure 4.2 shows the four possible configurations for the LSB
i system, which are

described in detail in the following paragraphs.

Case A: Figure 4.2(a) depicts the LSB
i system when there is not an immediate out-

going transition but there is activity in the state i. The following places, transitions
and arcs must be created to obtain it:

• Transition t1 represents outgoing self-loop transitions (see formalization in Defi-
nition 4.4), therefore it may exist or not depending whether there exist self-loop
transitions. This transition puts a token in place p1, labelled with the name
of the state preceded by ini (see Definition 4.1). It means in the UML state
machine that the state has been entered and its entry action, if it exists, is going
to be executed.

• The entry action of a state in the state machine is represented in the LSB
i by

an immediate transition (see Definition 4.5). The transition is immediate due
to the fact that the duration of the entry action is considered immediate in
the scope of the modeled system. This transition has an input arc from the
place previously described. The firing of the transition represents the execution
of entry action, being an action, can belong to any of the subclasses of class
Action. In particular, if an action belongs to either the subclass SendAction
or to the subclass CallAction it will generate the corresponding events. The
interpretation of these particular cases will be given when transitions are trans-
lated, now for simplicity we assume that actions do not belong to any of these
subclasses. Also, the transitions has just an output arc to a new place, created
by the function in Definition 4.2; a token in this place represents the end of the
entry action as well as the begining of the activity.

• The activity of a state in the state machine, is represented in the LSB
i by a timed

transition (see formalization in Definition 4.6). Since it is a timed transition,
it must be associated to an exponentially distributed random variable. How to
calculate its rate will be explained in 7.2.2 (first approach), when the process is
introduced. This transition has just an input arc from the place that represents
the end of the entry action and just an output arc to a new place, created by



58 4. UML flat SM Compositional Semantics

the function formalized in Definition 4.3, that represents the completion of the
activity. This transition may:

– fire, then placing a token in the completion place. In the state machine it
means that the “completion event” for this state has been raised, therefore,
the activity has been successfully completed.

– be disabled by the firing of any of the transitions created by any of the
following functions1: Λ∗

df (i), Λ∗
ie(i), Λ∗

e(i). They represent the arrival of
a deferred event, an internal event or an event in an outgoing transition
respectively. Then the activity is aborted.

• Interface transitions. The following transitions are created to compose the
LSB

i system with the systems for the deferred events, internal transitions and
outgoing transitions.

– Deferred events: If there exist deferred events in the state then three inter-
face transitions in the LSB

i system will be created to compose it with the
system for the deferred events (see Definition 4.20). They are the following:
A transition labeled send (created in Definition 4.9) and two transitions la-
beled def (created in Definition 4.8). In Figure 4.2, see transitions t3|send,
t4|def and t5|def .

– Internal transtions: If there exist internal transitions in the state then
three interface transitions in the LSB

i system will be created to compose
it with the system for the internal transitions (see Definition 4.30). They
are the following: A transition labeled end int (created in Definition 4.10)
and two transitions labeled int (created in Definition 4.12). In Figure 4.2,
see transitions t8|end int, t6|int and t7|int.

– Outgoing transtions: The interface transitions in the LSB
i system to com-

pose it with the system for the outgoing transitions (see Definition 4.44)
are the following:

∗ Two interface transitions labelled out (created in Definition 4.13). In
Figure 4.2 see transitions t9|out and t10|out.

Case B: Figure 4.2(b) depicts the LSB
i system when there is not an immediate

outgoing transitions neither activity for the state i. The created places are those
that represent the state and the completion event. The created transitions are those
that represent the outgoing self-loop transition and the entry action. The created
interface transitions are those connected to the completion event place as explained
in case A, also a new end int interface transition is created with an output arc to the
completion event place.

Case C: Figure 4.2(c) depicts the LSB
i system when there is an immediate outgoing

transition and activity for the state i. The places, transitions and arcs created are the

1Defined in 4.2.2.
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same as in the case A except the input and output arcs connected to the completion
event place which are removed. Moreover a new interface transition, outce, is created
with an input arc from the completion event place.

Case D: Figure 4.2(d) depicts the LSB
i system for this case when there is an

immediate outgoing transition but not activity for the state i. The places, transitions
and arcs created here are the same as in case B except the input and output arcs
connected to the completion event place which are removed. Moreover a new in-
terface transition, outce, is created with an input arc from the completion event place.

Finally, it must be remarked that the LSB
i system will be composed with the

systems created in sections 4.3, 4.4 and 4.5 for the deferred events, the internal tran-
sitions and the outgoing transitions, in order to obtain a system that interpretates
the whole simple state (see Section 4.7).

4.2.2 Formal translation: The LSB

i system

In this section we give the formal definitions to obtain a LGSPN system for the entry
actions and the activities of a given state i, the LSB

i system. The system is obtained
mapping abstractions in the UML metamodel, see Figure 2.3 onto the elements of
the LSB

i system. Therefore it is necessary to clearly stablish how we are going to
refer to these abstractions in mathematical terms.

The abstractions in the UML metamodel are named as follows:

• We refer to a class by its name, e.g. the class Action is Action. The following ex-
ceptions arise: For the classes State, SimpleState, CompositeState, FinalState,
shallowHistory, Pseudostate, deepHistory Pseudostate and initial Pseudostate,
being their names too long, we use the following symbols to name respectively
each one of them, Σ,Σss,Σcs,Σfs,Σsh,Σdh,Σini.

• We adopt a functional notation to indicate the image of an element (or of a set
of elements) belonging to the domain of a certain relation, in the following we
give an example. Being doActivity an association among the classes Σss and
Action, then the image of an instance s of the class Σss, through the relation
doActivity is denoted as doActivity(s).

The elements of the resulting LGSPN (the LSB
i system) are named

as usally (cfr. Definition 2.5), i.e. LSB
i = (SB

i , ψ
B
i , λ

B
i ), with SB

i =
〈PB

i , T
B
i , I

B
i , O

B
i , H

B
i ,Π

B
i ,W

B
i ,M0

B
i 〉 the GSPN system and ψB

i , λ
B
i the labeling func-

tions.
Let us assume that:

Case A. PB
i = {ps, pen, pce}, T

B
i = {tl, ten, tdo, tdf , t

′
df , tsdf , t

′
end, tint, t

′
int, tout, t

′
out}.

Case B. PB
i = {ps, pce}, TB

i = {tl, ten, tdf , tsdf , tend, tint, tout}.
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Case C. PB
i = {ps, pen, pce}, T

B
i = {tl, ten, tdo, tce, t

′
df , tsdf , t

′
end, t

′
int, t

′
out}.

Case D. PB
i = {ps}, T

B
i = {tl, ten, tce, tsdf}.

Before to define the LSB
i system (see Definition 4.14) let us introduce the relations

between the elements in a given flat UML state machine (SM) and the places and
transitions for the LGSPN system.

Definition 4.1. Let us define a function, Ψs : Σss −→
⋃n

j=1P
B
j , from the set of sim-

ple states of SM to the set of places in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss : Ψs(s) = ps.

Definition 4.2. Let us define a partial function, Ψen : Σss ↪→
⋃n

j=1P
B
j , from the set

of simple states of SM to the set of places in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss, dA(s)2 6= ∅ : Ψen(s) = pen.

Definition 4.3. Let us define a function, Ψce : Σss −→
⋃n

j=1P
B
j , from the set of

simple states of SM to the set of places in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss : Ψce(s) = pce.

Definition 4.4. Let us define a partial function, Λl : Σss ↪→
⋃n

j=1T
B
j , from the set

of simple states of SM to the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss : ∃t ∈ out(s)3, target(t) = source(t) = s : Λl(s) = tl.

Definition 4.5. Let us define a function, Λen : Σss −→
⋃n

j=1T
B
j , from the set of

simple states of SM and the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss : Λen(s) = ten.

Definition 4.6. Let us define a partial function, Λdo : Σss ↪→
⋃n

j=1T
B
j , from the set

of simple states of SM and the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss, dA(s) 6= ∅ : Λdo(s) = tdo.

Let us introduce the following notation before the Definitions to map the interface
transitions.

Definition 4.7. Let us denote by Σ◦
ss and Σ•

ss the following sets,

Σ◦
ss = {s | s ∈ Σss ∧ ∃t ∈ TSM : source(t) = s, trigger(t) = ∅}

Σ•
ss = {s | s ∈ Σss ∧ (∀t ∈ TSM : source(t) = s) → trigger(t) 6= ∅}

Therefore, Σ◦
ss ∪ Σ•

ss = Σss ∧ Σ◦
ss ∩ Σ•

ss = ∅

2Let us use in the following, dA(s) as a shorthand notation of doActivity(s).
3Let us use in the following, out(s) as a shorthand notation of outgoing(s).
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Definition 4.8. Let us define a partial function4,
Λ∗

df : Σss ↪→ (
⋃n

j=1T
B
j ×

⋃n

j=1T
B
j ) ∪

⋃n

j=1T
B
j , from the set of simple states of

SM to the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss, dE(s)5 6= ∅ : Λ∗
df (s) =























(tdf , t
′
df ) if s ∈ Σ•

ss ∧ dA(s) 6= ∅

t′df if s ∈ Σ•
ss ∧ dA(s) = ∅

tdf if s ∈ Σ◦
ss ∧ dA(s) 6= ∅

∅ otherwise

Definition 4.9. Let us define a partial function, Λ∗
sdf : Σss ↪→

⋃n
j=1T

B
j , from the set

of simple states of SM to the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss, dE(s) 6= ∅ : Λ∗
sdf (s) = tsdf .

Definition 4.10. Let us define a partial function, Λ∗
eie : Σss ↪→

⋃n

j=1T
B
j , from the

set of simple states of SM to the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss, int(s)
6 6= ∅ : Λ∗

eie(s) =











tend if s ∈ Σss ∧ dA(s) 6= ∅

t′end if s ∈ Σ•
ss ∧ dA(s) = ∅

∅ otherwise

Definition 4.11. Let us define a function, Λ∗
ce : Σ◦

ss −→
⋃n

j=1T
B
j , between the simple

states with immediate outgoing transitions of the SM to the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σ◦
ss : Λ∗

ce(s) = tce.

Definition 4.12. Let us define a partial function, Λ∗
ie : Σss ↪→ (

⋃n
j=1T

B
j × TB

j ) ∪ TB
j ,

from the set of simple states of SM to the set of transitions in
⋃n

j=1S
B
j , such that,

∀s ∈ Σss, int(s) 6= ∅ : Λ∗
ie(s) =























(tint, t
′
int) if s ∈ Σ•

ss ∧ dA(s) 6= ∅

t′int if s ∈ Σ•
ss ∧ dA(s) = ∅

tint if s ∈ Σ◦
ss ∧ dA(s) 6= ∅

∅ otherwise

Definition 4.13. Let us define a partial function, Λ∗
e : Σss ↪→ (TB

i × TB
i ) ∪ TB

i , from
the set of simple states of SM to the set of transitions in

⋃n
j=1S

B
i , such that,

4Functions named usign an * create interface transitions.
5Let us use in the following, dE(s) as a shorthand notation of deferrableEvent(s).
6Let us use in the following, int(s) as a shorthand notation of internal(s).
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∀s ∈ Σss, out(s) 6= ∅ : Λ∗
e(s) =























(tout, t
′
out) if s ∈ Σ•

ss ∧ dA(s) 6= ∅

t′out if s ∈ Σ•
ss ∧ dA(s) = ∅

tout if s ∈ Σ◦
ss ∧ dA(s) 6= ∅

∅ otherwise

Definition 4.14. The system LSB
i = (SB

i , ψ
B
i , λ

B
i ) associated to the entry actions

and the activities of a given state i of a flat UML state machine SM with SB
i =

〈PB
i , T

B
i , I

B
i , O

B
i , H

B
i ,Π

B
i ,W

B
i ,M0

B
i 〉 is defined as follows:

PB
i = Ψs(i) ∪ Ψen(i) ∪ Ψce(i),
TB
i = Λl(i) ∪ Λen(i) ∪ Λdo(i) ∪ Λ∗

df (i) ∪ Λ∗
sdf (i) ∪ Λ∗

eie(i) ∪ Λ∗
ie(i) ∪ Λ∗

e(i),

IBi (t) =























ps if t = ten

pen if t ∈ {tdo, tdf , tint, tout}

pce if t ∈ {t′df , t
′
int, t

′
out, tce}

∅ if t ∈ {tl, tsdf , tend, t
′
end}

OB
i (t) =











































ps if t = tl

pen if t = {tdf , tend}

pen if t = ten ∧ dA(i) 6= ∅

pce if t = ten ∧ dA(i) = ∅

pce if t ∈ {tdo, t
′
df , t

′
end}

∅ if t ∈ {tsdf , tint, t
′
int, tout, t

′
out, tce}

HB
i (t) =











pen ∪ pce if t ∈ Λ∗
sdf (i) ∧ dA(i) 6= ∅

pce if t ∈ Λ∗
sdf (i) ∧ dA(i) = ∅

∅ otherwise

ΠB
i (t) =











0 if t = tdo

2 if t = tsdf

1 otherwise

WB
i (t) =

{

rdo if t = tdo

1 otherwise

ψB
i (p) =























ini st if p = ps

end entry st if p = pen

compl st if p = pce

where st = name(i)
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λB
i (t) =







































































































loop st if t = tl

λ if t = ten ∧ entry(i) = ∅

ent if t = ten ∧ entry(i) 6= ∅ ∧ ent = name(a) ∧ a = entry(i)

act if t = tdo ∧ act = name(a′) ∧ a′ = dA(i)

send if t = tsdf

def if t ∈ {tdf , t
′
df}

end int if t ∈ {tend, t
′
end}

int if t ∈ {tint, t = t′int}

ini st st if t = tini

out if t ∈ {tout, t
′
out}

outce if t = tce

where st = name(i)

4.3 Deferred events

“A state may specify a set of event types that may be deferred in that state. An
event instance that does not trigger any transitions in the current state, will not
be dispatched if its type matches one of the types in the deferred event set of that
state. Instead, it remains in the event queue while another non-deferred message is
dispatched instead. This situation persists until a state is reached where either the
event is no longer deferred or where the event triggers a transition.”. The previous
paragraph is a citation from section 2.12 of [Obj01]. As an example, in Figure 4.1 the
event ev6 in the state A is a deferred event.

It is interesting to remember that “strictly speaking”, the term event is used to
refer to the type and not to an instance of the type. However, if the meaning is clear
from the context, the term is also used to refer to an event instance.

In this section we will define a labelled system, named LSd
i , that interpretates in

terms of Petri nets the deferred events in a simple state i.

4.3.1 Informal explanation

For each state with deferred events in a flat UML state machine SM, a LSd
i sys-

tem is created (see Definition 4.19 for its formalization and Figure 4.3(b) for an
example). This system will be composed with the systems LSB

i (basic LGSPN sys-
tem), LSt

i (LGSPN system for the internal transitions) and LSg
i (LGSPN system for

the outgoing transitions) in order to give a Petri net interpretation of the simple state
i, see Section 4.7.

For practical pourposes, in order to explain how the Petri net interpretation of
the deferred events works without taking into account any other feature of the state
machine, we have created the LSD

i system. This system is the superposition of the
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mbox_e5 e_e5 e_e15

e_e5 e_e15mbox_e15mbox_e5

p2|end_entry_N

t1|entry

t2|activity

p3|compl_N

p1|ini_N

mbox_e15

t4|def

t2|send

t3|def

t44|def

t32|send

t43|def

t31|send

Π = 2

t1|send

(b)

Π = 2

(a)

DEF:e5,e15

N

t53|def t54|def

(c)

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

Figure 4.3: Translations of the deferred events of the state N.

LSB
i system and the LSd

i system using the labels {send, def}. Also for practical pour-
poses, in order to clarify the LSD

i system, the transitions {loop i, int, end int, out}
of the LSB

i are not considered (hided) in LSD
i . This system is formally defined in

Definition 4.20.

In the following, we describe informally the previous systems using Figure 4.3 as
an example. The formal definitions are given in the next section.

Step A. The LSd
i system

The LSd
i system represents the translation of all deferred events in the state i. The

example in Figure 4.3(b) represents the translation of the deferred events e5 and e15
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for the state N (extracted from Figure 4.1).
The elements of the LSd

i system are the following:

• There are as many event places, labelled e event as deferred events exist in the
state. A token in one of these places represents an instance of an event of the
type event.

• There are as many immediate interface transitions labelled def as deferred
events exist in the state. Each of them has an input arc from an event place.
Also, each of them has an output arc to the mbox event place (these transitions
are formally defined in Definition 4.17). In the example, two def transitions
have been created, one has e5 as input place and the other e15, and mbox e5
and mbox e15 as output places, respectively.

• There are as many mbox event places as deferred events exist in the state.
They represent in the LSd

i the places to store the deferred events previously
to insert them in the event queue of the SM. Each of them has an input arc
from a def transition and an output arc to the send transition (these places are
formally defined in Definition 4.15). In the example these places are mbox e5
and mbox e15.

• There are as many immediate interface transitions labeled send as deferred
events exist in the state. They are used in the LSd

i to transfer the instances of
the deferred events to the event queue. Therefore, each one has an input arc from
the mbox event place and an output arc to the place e event, which represents
the event queue of a deferred event in SM (this transition is formally defined in
Definition 4.18). In the example, two send transitions have been created, one
has mbox e5 and mbox e15 as input places, and e5 and e15 as output places.

Step B. The LSD
i system

Systems LSB
i and the LSd

i are composed using superposition of transitions leading
a new system named LSD

i . We use this system to easily explain the Petri net inter-
pretation of the deferred events. The superposition is performed using the interface
transitions labelled def and send. The composition of the LSd

N in Figure 4.3(b) and
the LSB

N in Figure 4.2(a) is shown in Figure 4.3(c). Remember that the transitions
{loop i, int, end int, out} are not taken into account in order to simplify the explana-
tion. In the following, the new system is commented stressing the composition over
the event e5.

Transitions t43|def and t53|def are the superposition of transitions t4|def (in
LSB

N ) and t3|def (in LSd
N ) and t5|def (in LSB

N ) and t3|def (in LSd
N ), respectively.

Obviously, the firing of any of these transitions represents the arrival of the deferred
event in SM.

One of these transitions, t43|def in this example, has two input arcs: One of them
from the place that represents the end of the entry action (end entry N) and the
other from the place that represents the triggered event. Also, it has two output arcs,
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one to the end entry N place and the other to the place mbox e5. The meaning of
this transition in SM is that a deferred event can be accepted while the activity is in
execution, the consequences are:

1. A token is removed from place end entry st, which means that the activity is
aborted.

2. A token is added to place mbox event, which means that an event named event
is stored in a buffer until the current state will be exited.

3. Finally, a token is inserted in the place end entry st, which means that the
activity is newly executed.

The other transition that represents the event, t53|def in this example, has also
two input arcs: One of them from the compl N place and the other from the place
that represents the triggered event. Also, it has two output arcs: one to the compl N
place and the other to placembox e5. The meaning of this transition is that a deferred
event can be accepted after the activity execution has finished. The consequence is
that a token is added to place mbox event, which means that an event named event
is stored in a buffer until the current state will be exited and a token is placed newly
in the compl state place, therefore, events can be newly accepted.

Transition t31|send is the superposition of transitions t3|send (in LSB
N ) and

t1|send (in LSd
N ). This transition transfers tokens from place mbox e5 to place

e5. If there exist a token in place end entry N , or in place completion event N , or
in any of the places in the set7 {Ψacc(N)} the transition cannot fire. It means that
the tokens are transferred only when the current state is completed. The priority of
this transitions must be greater than that of any transition created by Λex(exit(N)).

4.3.2 Formal translation

Step A. The LSd
i system

Before to define the system LSd
i = (Sd

i , ψ
d
i , λ

d
i ), with Sd

i =
〈P d

i , T
d
i , I

d
i , O

d
i , H

d
i ,Π

d
i ,W

d
i ,M0

d
i 〉 let us introduce the relations between the el-

ements in the flat state machine SM and the places and transitions for the
system.

Let us assume that P d
i = {p1, . . . , pk}, T

d
i = {t1, . . . , tk}, k = 2 ∗ |dE(i)|.

Definition 4.15. Let us define a relation, Ψm ⊆ Σss ×
⋃n

j=1P
d
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
d
j , such that,

Ψm
8 = {(s, pl) | s ∈ Σss, dE(s) 6= ∅, pl ∈ P d

s , l = 1 . . . |dE(s)|}.

7Each place in this set means that an internal transition in the state N has been accepted.
8We will use the functional notation Ψm(s) = {p1, . . . , pk} to denote the set of places related

with the state s throught the relation Ψm.
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Definition 4.16. Let us define a relation, Ψd ⊆ Σss ×
⋃n

j=1P
d
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
d
j , such that,

Ψd = {(s, pl) | s ∈ Σss, dE(s) 6= ∅, pl ∈ P d
s , l = |dE(s)| + 1 . . . 2 ∗ |dE(s)|}.

Definition 4.17. Let us define a relation, Λdf ⊆ Σss ×
⋃n

j=1T
d
j , between the set of

simple states of SM and the set of transitions in
⋃n

j=1S
d
j , such that,

Λdf = {(s, tl) | s ∈ Σss, dE(s) 6= ∅, tl ∈ T d
s , l = 1 . . . |dE(s)|}.

Definition 4.18. Let us define a relation, Λsdf ⊆ Σss ×
⋃n

j=1T
d
j , between the set of

simple states of SM to the set of transitions in
⋃n

j=1S
d
j , such that,

Λsdf = {(s, tl) | s ∈ Σss, dE(s) 6= ∅, tl ∈ T d
s , l = |dE(s)| + 1 . . . 2 ∗ |dE(s)|}.

Definition 4.19. The system LSd
i = (Sd

i , ψ
d
i , λ

d
i ) associated to the deferred

events of a given state i of a flat UML state machine SM with Sd
i =

〈P d
i , T

d
i , I

d
i , O

d
i , H

d
i ,Π

d
i ,W

d
i ,M0

d
i 〉 is defined as follows:

P d
i = Ψm(i) ∪ Ψd(i),
T d
i = Λsdf (i) ∪ Λdf (i),

Idi (t) =

{

pm ∈ Ψm(i) if t ∈ Λsdf (i)

pd ∈ Ψd(i) if t ∈ Λdf (i)
Od

i (t) =

{

pd ∈ Ψd(i) if t ∈ Λsdf (i)

pm ∈ Ψm(i) if t ∈ Λdf (i)

Hd
i (t) = ∅,W d

i (t) = 1,Πd
i (t) = 1 : ∀t ∈ T d

i

The following restriction must be fulfilled, ∀p ∈ P d
i : |•p| = |p•| = 1.

ψd
i (p) =











mbox name(ev) if p ∈ Ψm(i)

e name(ev) if p ∈ Ψd(i)

where ev ∈ dE(i)

The following restriction must be fulfilled, ∀ev ∈ dE(i) : ∃{l1, l2} ∈ ψd
i (p) : l1 =

mbox name(ev) ∧ l2 = e name(ev).

λd
i (t) =

{

send if t ∈ Λsdf (i)

def if t ∈ Λdf (i)

Step B. The LSD
i system

Definition 4.20. The system LSD
i is the superposition of LSB

i and LSd
i over the

set L of labels,

LSD
i = LSB

i ‖
L

LSd
i L = {send, def}
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but for function FD
i ∈ {WD

i (),ΠD
i ()} we define,

FD
i (t) =

{

FB
i (t) if t ∈ TB

i \TB
i,L ∪ L′

max{FB
i (t1), F

d
i (t2)} if t = (t1, t2) ∧ λB

i (t1) = λd
i (t2) ∈ L

where L′ = {int, end int, out, outce, ini i i}

4.4 Internal transitions

In a state i, it may exist a set of internal transitions, internal(i). “They are a set of
transitions that, if triggered, occur without exiting or re-entering this state. Thus,
they do not cause a state change. This means that the entry or exit condition of
the state will not be invoked”. The previous paragraph is taken from section 2.12
of [Obj01].

In an internal transition t may appear: A guard, guard(t), they are not considered
in this work; an event which triggers the transition, trigger(t); and an action as an
effect, effect(t). An internal transition can be triggered both, while the activity is in
execution, therefore it is aborted, or when the activity has finished. In both cases,
the activity is restarted when the action of the internal transition ends.

In this section we will define a labelled system, named LS t
i, that interpretates in

terms of Petri nets the internal transitions in a simple state i.

4.4.1 Informal explanation

For each state in a flat UML state machine SM with internal transitions a LS t
i system

is created (Definition 4.29 constitutes its formalization), see Figure 4.4(b) for an
example. This system will be composed in section 4.7 with the systems LSB

i (basic
LGSPN system), LSd

i (LGSPN system for the deferred events) and LSg
i (LGSPN

system for the outgoing transitions) in order to give a Petri net interpretation of the
simple state i.

For practical pourposes, in order to explain how the Petri net interpretation of the
internal transitions works without taking into account any other feautre of the state
machine, we have created the LSI

i system. This system is the superposotion of the
LSB

i system and the LS t
i system using the labels {int, end int}. Also for practical

pourposes, in order to clarify the LSI
i system, the transitions {loop i, send, def, out}

of the LSB
i are not considered (they are hided) in LSI

i .
In the following, we describe informally the previous systems using Figure 4.4 as

an example. The formal definitions are given in the next section.

Step A. The LS t
i system

The LSt
i system represents the translation of all the internal transitions in the state

i. The example in Figure 4.4(b) represents the translation of the internal transitions
e4/act4 and e14/act14 for the state N (extracted from Figure 4.1).
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t8|send t4|send e_e4

ack_e4

N_accept_e14

t6|act14

end_N_e14

N_accept_e4

t2|act4

end_N_e4

ini_N

t1|entry

end_entry_N

t2|activity

compl_N

end_N_e4

act4

N_accept_e4N_accept_e14

act14

end_N_e14

t8|send e4 ack_e4
t4|send

ack_e14

ack_e14

e14

e_e14

(a)

t5|int

t65|int

t75|int

t61|int

t71|int

t1|int

t83|end_intt87|end_int

N

t3|end_intt7|end_int

(b)

(c)

INT:e14/act14

INT:e4/act4

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

Figure 4.4: Translation of the internal transitions of the state N.
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The elements of the LS t
i system are the following:

• There are as many event places, labelled e event as internal transitions exist
in the state. A token in one of these places represents an instance of an event
of the type event. Places labelled with event names represent event queues
(observe that no policy is associated to the place, apart for the choice of the
term “queue”). These places are formally stated in Definition 4.21.

• There are as many immediate interface transition labelled int as internal tran-
sitions. Each one has an input arc from the event place, the event is obviously
that which triggers the internal transition in the SM, (see Definition 4.26).

• There are as many acknowledge places, labelled ack event as internal transitions
exist in the state. A token in one of these places represents that an instance of
an event of the type event has been consumed, (see Definition 4.22).

• There are as many st accept event places as internal transitions. Each one
represent that an event has been accepted. It has an input arc from the int
transition, (see Definition 4.23).

• There are as many immediate transition, labeled action, as internal transitions.
Each one represent the execution of the internal action in the SM. It has an
input arc from the state accept event place, (see Definition 4.27).

• A end action st event place to represent in the LS t
i that the action of the

internal transition has been completed. It has an input arc from the action
transition, (see Definition 4.24).

• An immediate interface transition labelled end int. It has an input arc from
the end action place, (see Definition 4.28).

• There are as many immediate transition, labelled send, as internal transitions.
Each one has an inhibitor arc from the state accept event place to represent
that the send transition can fire only if an internal transition has not been
accepted, (see Definition 4.25).

Step B. The LSI
i system

The LSB
i and the LSt

i systems are composed using superposition of transitions in a
new one named LSI

i . We use this system to explain the Petri net interpretation of
the internal transitions. The superposition is performed using the interface transi-
tions labeled int and end int. The composition of the LS t

N in Figure 4.4(b) and
the LSB

N in Figure 4.2(a) is shown in Figure 4.4(c), we remark that transitions
{loop i, send, def , out} from LSB

N have been hided. In the following the new system
is commented stressing the composition over the translation of the internal transition
e4/act4.

Transitions t61|int and t71|int are the superposition of the transitions t6|int (in
LSB

N ) and t1|int (in LSt
N ) and t7|int (in LSB

N ) and t1|int (in LSt
N ), respectively.
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Obviously, the firing of any of these transitions represents the trigger in the SM of
the transition caused by event e4.

Transition t61|int has two input arcs. One of them from the place that represents
the end of the entry action (end entry N) and the other from the place that represents
the triggered event. Also, it has two output arcs. One to the place named N accept e4
and the other to the place ack e4. The meaning of this transition in the SM is that an
internal transition can be accepted while the activity is in execution, the consequences
are:

1. A token is removed from place end entry state, which means that the activity
is aborted and any other internal transition, nor deferred event, nor outgoing
transition can be accepted.

2. A token is removed from place e event, which means that an instance of an
event has been accepted.

3. A token is added to place state accept event, which means that the action of
the internal transition can be carried out.

4. A token is added to place ack event, which means the acknowledge of the arrival
of the event to the action which generates it, but actually there is no way to de-
termine wheter the event has been generated by a synchronous or asynchronous
action, the only possibility is that each transition that consumes an event puts
a token into the place of label ack event .

The other transition that represents the arrival of the event, t71|int, also has two
input arcs. One of them from the place that represents the triggered event, it has the
same meaning as in the previous case; the other removes a token from the completion
event place (compl N), which means that any other internal transition, neither de-
ferred event, nor outgoing transition can be accepted. Moreover, this transition has
the same output arcs as t61|int with the same meaning.

The immediate transition in LSI
i that represents the action of the transition of

the SM has just an input arc from place state accept event and an output arc to
place end entry state. The meaning of the arc from place state accept event to the
transition is that the action is executed immediately after the internal event has been
accepted.

Transition t83|end int is the superposition of transitions t8|end int (in LSB
N ) and

t3|end int (in LSt
N ). Obviously, the firing of this transition means that when the

action has been performed the activity must be newly executed and any other event
can be accepted.

4.4.2 Formal translation

Step A. The LS t
i system

Before to define the LS t
i system let us introduce the relations between the elements

in a flat state machine SM and the places and transitions for the system. As in the
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previous sections, the notation for the LGSPN is the following, LS t
i = (St

i , ψ
t
i , λ

t
i),

with St
i = 〈P t

i , T
t
i , I

t
i , O

t
i , H

t
i ,Π

t
i,W

t
i ,M0

t
i〉.

Let us assume that P t
i = {p1, . . . , pk}, T

t
i = {t1, . . . , tk}, k = 4 ∗ |int(s)|.

Definition 4.21. Let us define a relation, Ψie ⊆ Σss ×
⋃n

j=1P
t
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
t
j , such that,

Ψie = {(s, pl) | s ∈ Σss, int(s) 6= ∅, pl ∈ P t
s , l = 1 . . . |int(s)|}.

Definition 4.22. Let us define a relation, Ψiak ⊆ Σss ×
⋃n

j=1P
t
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
t
j , such that,

Ψiak = {(s, pl) | s ∈ Σss, int(s) 6= ∅, pl ∈ P t
s , l = h+ 1 . . . 2h, h = |int(s)|}.

Definition 4.23. Let us define a relation, Ψacc ⊆ Σss ×
⋃n

j=1P
t
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
t
j , such that,

Ψicc = {(s, pl) | s ∈ Σss, int(s) 6= ∅, pl ∈ P t
s , l = 2h+ 1 . . . 3h, h = |int(s)|}.

Definition 4.24. Let us define a relation, Ψeia ⊆ Σss ×
⋃n

j=1P
t
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
t
j , such that,

Ψeia = {(s, pl) | s ∈ Σss, int(s) 6= ∅, pl ∈ P t
s , l = 3h+ 1 . . . 4h, h = |int(s)|}.

Definition 4.25. Let us define a relation, Λsi ⊆ Σss ×
⋃n

j=1T
t
j , between the set of

simple states of SM and the set of transitions in
⋃n

j=1S
t
j , such that,

Λsi = {(s, tl) | s ∈ Σss, int(s) 6= ∅, tl ∈ T t
s , l = 1 . . . h, h = |int(s)|}.

Definition 4.26. Let us define a relation, Λie ⊆ Σss ×
⋃n

j=1T
t
j , between the set of

simple states of SM and the set of transitions in
⋃n

j=1S
t
j , such that,

Λie = {(s, tl) | s ∈ Σss, int(s) 6= ∅, tl ∈ T t
s , l = h+ 1 . . . 2h, h = |int(s)|}.

Definition 4.27. Let us define a relation, Λia ⊆ Σss ×
⋃n

j=1T
t
j , between the set of

simple states of SM and the set of transitions in
⋃n

j=1S
t
j , such that,

Λia = {(s, tl) | s ∈ Σss, int(s) 6= ∅, tl ∈ T t
s , l = 2h+ 1 . . . 3h, h = |int(s)|}.

Definition 4.28. Let us define a relation, Λeie : Σss ↪→
⋃n

j=1T
t
j , between the set of

simple states of SM and the set of transitions in
⋃n

j=1S
t
j , such that,

Λeie = {(s, tl) | s ∈ Σss, int(s) 6= ∅, tl ∈ T t
s , l = 3h+ 1 . . . 4h, h = |int(s)|}.

Definition 4.29. The system LS t
i = (St

i , ψ
t
i , λ

t
i) associated to the internal

transitions of a given state i of a flat UML state machine SM with St
i =

〈P t
i , T

t
i , I

t
i , O

t
i , H

t
i ,Π

t
i ,W

t
i ,M0

t
i 〉 is defined as follows:

P t
i = Ψie(i) ∪ Ψacc(i) ∪ Ψeia(i),
T t
i = Λsi(i) ∪ Λie(i) ∪ Λia(i) ∪ Λeie(i),
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Iti (t) =











pie ∈ Ψie(i) if t ∈ Λie(i)

pacc ∈ Ψacc(i) if t ∈ Λia(i)

peia ∈ Ψeia(i) if t ∈ Λeie(i)

Ot
i(t) =

{

{pacc, piak} ∈ Ψacc(i) if t ∈ Λie(i)

peia ∈ Ψeia(i) if t ∈ Λia(i)

Ht
i (t) =

{

pacc ∈ Ψacc(i) if t ∈ Λsi(i)

∅ otherwise

W t
i (t) = 1,Πt

i(t) = 1 : ∀t ∈ T t
i

The following restrictions must be fulfilled, ∀p ∈ (Ψacc(i) ∪ Ψeia(i)) : |•p| = |p•| = 1
and ∀p ∈ Ψie(i) : |•p| = 0 ∧ |p•| = 1 and ∀p ∈ Ψiak(i) : |•p| = 1 ∧ |p•| = 0.

ψt
i(p) =































e ev if p ∈ Ψie(i)

ack ev if p ∈ Ψiak(i)

st accept ev if p ∈ Ψacc(i)

end st ev if p ∈ Ψeia(i)

where ev = name(e) ∧ e ∈ trigger(int(i)) ∧ st = name(i)

this function is injective and the following restrictions must be fulfilled,

∀t ∈ Λie(i) : ψt
i(I

t
i (t)) = e event, ψt

i(O
t
i(t)) = {st accept event, ack event} =⇒ ∃ |

tin ∈ int(i) : trigger(tin) = ev ∧ name(ev) = event

∀t ∈ Λia(i) : ψt
i(I

t
i (t)) = st accept ev, ψt

i(O
t
i(t)) = end st ev =⇒ ∃ | tin ∈ int(i) :

trigger(tin) = e ∧ name(e) = ev ∧ ((effect(tin) = a ∧ name(a) = act) ∨ (effect(tin) =
∅ ∧ act = λ)).

λt
i(t) =























send if t ∈ Λsi(i)

int if t ∈ Λie(i)

(1) if t ∈ Λia(i)

end int if t ∈ Λeie(i)

(1) =











name(a) =⇒ ∃ | tin ∈ int(i) : effect(tin) = a

∨

λ =⇒ ∃tin ∈ int(i) : effect(tin) = ∅

Step B. The LSI
i system

Definition 4.30. The system LSI
i is the superposition of LSBI

i and LSt
i over the

set L of labels,

LSI
i = LSB

i ‖
L

LSt
i L = {int, end int}
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4.5 Outgoing transitions and exit actions

In this section, we deal with the translation of the exit actions and the external
transitions together due to practical pourposes. Concretely, because exit actions
make sense in the context of outgoing transitions. An exit action is executed as a
consecuence of the trigger of an outgoing transition.

Concerning exit actions, in section 2.12 of [Obj01] the following is stated: “When-
ever a state is exited, it executes its exit action as the final step prior to leaving the
state and upon exit, the activity is terminated before the exit action is executed”.

Concerning outgoing transitions, in section 2.12 of [Obj01] it is stated: “If the
state is exited as a result of the firing of an outgoing transition before the completion
of the activity, the activity is aborted prior to its completion.”

In an outgoing transition t the following elements may appear: A guard, guard(t)
(they are not considered in this work); an event which triggers the transition,
trigger(t); and an action as an effect, effect(t). Upon the arrival of the event, the
outgoing transition can be triggered both, while the activity is in execution, therefore
it is aborted, or when the activity has finished. In both cases, the object transits to
the target state of the transition.

In this section we will define a labelled system, named LSg
i , that interpretates in

terms of Petri nets the exit action and the outgoing transitions in a simple state i.

4.5.1 Informal explanation

For each state in a given flat UML state machine SM with outgoing transitions
a LSg

i system is created (Definition 4.43 will present its formalization), see Fig-
ures 4.6(b) and 4.7(b) for an example. This system will be composed later in sec-
tion 4.7 with the LSB

i , LSd
i and LSt

i systems in order to give a Petri net interpretation
of the simple state i.

For practical pourposes, in order to explain how the PN interpretation of the out-
going transitions works without taking into account any other feautre of the state
machine, we have created the LSO

i system. This system is the superposition of
LSB

i system and LSg
i system using the labels {out, outce, loop i}. In order to clarify

the LSO
i system, the interface transitions {send, def , int, end int} of LSB

i are not
considered (they are hided) in LSO

i . Formal definitions of this system will came in
Definition 4.44.

In the following, we describe informally the previous system using Fig-
ure 4.6 and 4.7 as an example.

Step A. The LSg
i system

Depending on whether an outgoing transition is a self-loop transition (transition with
the same source and target state) or not and whether the transition is immediate
(transition without trigger) or not a different translation for the transition is proposed.
Figure 4.5 shows the four cases that can arise, supposing evx is the trigger of the
transition and actx its effect .
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(a) Outgoing 
transitions

p6|end_actx_N_evx

p3|N_accept_evx

t2|actx

t3|exit

t1|out
p1|e_evx

p7|ini_M

p2|ack_evx

(c) Outgoing self-loop
transitions

t4|loop_N

p6|end_actx_N_λ

p3|N_accept_λ

t2|actx

(d) Outgoing immediate
self-loop transitions

p6|end_actx_N_λ

p3|N_accept_λ

t2|actx

t3|exit

p7|ini_M

(b) Outgoing immediate
transitions

p6|end_actx_N_evx

p3|N_accept_evx

t2|actx

t3|exit

t1|out
p1|e_evx

p7|τ

p2|ack_evx

t4|loop_N

t3|exit

p7|τ

t1|outce

t1|outce

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

Figure 4.5: Translation of outgoing transitions.
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p7|ack_e11

p10|τ

p6|e_e11

τ

p2|ack_e1p1|e_e1

compl_N

t2|activity

end_entry_N

t1|entry

ini_N

N_accept_e1

act1

end_act1_N_e1

exit

ini_M

exit

end_act11_N_e11

act11

N_accept_e11

e_e1 ack_e1 ack_e11e_e11

p8|N_accept_e11

t6|act11

p9|end_act11_N_e11

t7|exit

p5|ini_M

t3|exit

p4|end_act1_N_e1

t2|act1

p3|N_accept_e1

(a)

e1/act1

M

N

e11/act11

(b)

t1|out t5|out

t8|loop_N

t101|out t105|out

t91|out t95|out

t118|loop_N

(c)

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

Figure 4.6: Translation of the outgoing transitions of the state N.
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end_N_

p6|N_accept_

ce

p7|end_act2_N_

compl_N

t2|activity

λ

N_accept_ λ

t1|entry

ini_N

p3|N_accept_e1

t2|act1

p4|end_act1_N_e1

t3|exit

act2

exit
ini_M

p5|ini_M

ack_e1

N_accept_e1

act1

end_N_e1

exit

ce

p1|e_e1

t6|act2

t7|exit

e_e1

p2|ack_e1

end_entry_N

λ

t1|out

(b)

t91|out

(a)

M

N

/act2 e1/act1

t5|out

(c)

λ

t125|out

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

Figure 4.7: Translation of the outgoing transitions of the state N (with an immediate

outgoing transition.
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The LSg
i system represents the translation of all the outgoing transitions in the

state i. In Figure 4.6(b), we represent the translation of the outgoing transitions
e1/act1 and e11/act11 for the state N in Figure 4.6(a) (extracted from Figure 4.1).
The example in Figure 4.7(b) represents the translation of the outgoing transitions
e1/act1 and /act2 for the state N in Figure 4.7(a) (also extracted from Figure 4.1,
but we have added the transition /act2).

The elements of the LSg
i system are the following:

• There are as many event places, labelled e event and representing event queues,
as outgoing transitions with trigger exist in the state. A token in one of these
places represents an instance of an event of the type event. These places are
formally introduced in Definition 4.37.

• There are as many immediate interface transition labelled out as outgoing tran-
sitions with trigger . Each of them has an input arc from an e event place and
an output arc to the ack event place, the event is obviously that which triggers
the transition in the SM. Definition 4.39 includes their formalization.

• There are as many acknowledge places, labelled ack event as outgoing tran-
sitions exist in the state. A token in one of these places represents that an
instance of an event of the type event has been consumed, (see Definition 4.38).

• If the state has an immediate outgoing transition, there is in the system an
immediate interface transition labelled outce, (see Definition 4.39).

• There are as many state accept event places as outgoing transitions with
trigger . Each one represents in the LSg

i that the event has been accepted.
Each place has an input arc from an out transition, (see Definition 4.33).

• There is a state accept λ place if an immediate outgoing transition exists. It
represents in the LSg

i that the completion event has been created. This place
has an input arc from an outce transition, (see Definition 4.33).

• There are as many immediate transition, labelled action or λ, as outgoing tran-
sitions. Each one represents either the execution of the action of the outgo-
ing transition, if it exists, or nothing. Each one has an input arc from the
state accept event or state accept λ place, (see Definition 4.40).

• There are as many end action state event places as outgoing transitions. Each
one represents in the LSg

i that the action of the outgoing transition has been
completed. Each place has an input arc from an action or λ transition if there
does not exist any action for the transition, (see Definition 4.34).

• There is a end state λ place if an immediate outgoing transition exists. It repre-
sents in the LSg

i that the action of the outgoing transition has been completed.
Each place has an input arc from an action or λ transition if there does not
exist any action for the transition, (see Definition 4.34).



4.5. Outgoing transitions and exit actions 79

• There are as many immediate transition, labelled exit or λ, as outgoing transi-
tions. Each of them represents in the LSg

i the execution of the exit action of the
state. Each transition has an input arc from the end action state event place
or the end action state λ place, (see Definition 4.41).

• There is one place labelled ini target for each state that is target of any outgoing
transition. If two outgoing transitions have the same target only one place is
created. Even if there exist self transitions, no place will be created for state i.
These places become interface places to compose the system of the state i with
the system of the target state, (see Definition 4.35).

• There are as many places labelled τ and as many transitions labelled loop state
as loop-transitions in the SM. The places are just buffers for the transitions.
The transitions are used as interface transitions to compose this system with
the “basic” system for the state i representing a re-entrance in the state i, (see
Definition 4.42 and Definition 4.36, respectively).

Step B. The LSO
i system

The LSB
i and the LSg

i systems are composed using superposition of transitions in a
new one named LSO

i in order to easily explain the PN interpretation of the outgoing
transitions. The superposition is performed using the interface transitions labeled
out, outce and loop i.

The composition of the LSg
N in Figure 4.6(b) and the LSB

N in Figure 4.2(a)
is shown in Figure 4.6(c). We remark that transitions {send, def, int, end int} have
been hided. In the following, the new system is commented stressing the composi-
tion over the translation of the outgoing transition e1/act1. The composition of the
LSg

N in Figure 4.7(b) and the LSB
N in Figure 4.2(c) is shown in Figure 4.7(c), this

system includes an immediate outgoing transition, it will not be described because
its interpretation is straightforward considering the previous one.

Transition t91|out (t101|out) is the superposition of the transitions t9|out in LSB
N

and t1|out in LSg
N (t10|out in LSB

N and t1|out in LSg
N ). Obviously, the firing of

this transition represents the arrival of the transition’s event, e1 (e11), in SM.

Transition t91|out has two input arcs: One of them from the place that represents
the end of the entry action (end entry st) and the other from the place that represents
the triggered event. Also, it has an output arc to a new place, named the st accept ev.
The meaning of this transition is that an event can be accepted while the activity is
in execution. The consequences of its firing are:

1. A token is removed from place end entry st, which means that the activity is
aborted and SM cannot accept internal transitions, nor outgoing transitions
nor deferred events.

2. A token is added to place st accept ev, which means that the effect of the
outgoing transition can be carried out.
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Transition t101|out also has two input arcs: One of them from the place that rep-
resents the completion event of the state (compl st) and the other from the place that
represents the triggered event. Also, it has an output arc to the place st accept ev.
The meaning of this transition in the SM is that the event that triggers the outgoing
transition can be accepted after the activity execution has finished, the consequences
are the same as those caused by t91|out but the activity is not aborted because it was
completed.

Transitions act1 and exit represent the execution of the action associated to the
outgoing transition and the execution of the exit action in the source state of the
outgoing transition.

The place ini M represents in the SM the entrance in the state M as a conse-
quence of the execution of the event e1.

The interface transition t118|loop N represents in the SM that the state N is
exited and newly entered, as a consequence of the execution of the event e11.

4.5.2 Formal translation

Step A. The LSg
i system

Before to define the LSg
i system let us introduce the relations between the elements

in a given flat UML state machine SM and the places and transitions for the system.
As in previous sections, the notation for the LGSPN system is LSg

i = (Sg
i , ψ

g
i , λ

g
i ),

with Sg
i = 〈P g

i , T
g
i , I

g
i , O

g
i , H

g
i ,Π

g
i ,W

g
i ,M0

g
i 〉.

Definition 4.31. Let us define a partial function, targets : Σss ↪→ Σss ∪ Σfs, such
that, ∀s ∈ Σss, out(s) 6= ∅ : targets(s) = {s′ : ∃t ∈ out(s) ∧ target(t) = s′ ∧ s′ 6= s}

Definition 4.32. Let us define a partial function, OUTloop : Σss ↪→ TSM, such
that, ∀s ∈ Σss, out(s) 6= ∅ : OUTloop(s) = {tr ∈ out(s) : source(tr) = target(tr) = s}

Let us assume that P g
i = {p1, . . . , pl},

l = (4 ∗ |out(s)|) + |targets(s)| + |OUTloop(s)| ∧ @t ∈ out(s) : trigger(t) = ∅
∨ l = (4∗ |out(s)|)+ |targets(s)|+ |OUTloop(s)|−1 ∧ ∃ | t ∈ out(s) : trigger(t) = ∅.

Let us assume that T g
i = {t1, . . . , tk}, k = (3 ∗ |out(s)|) + |OUTloop(s)|.

Definition 4.33. Let us define a relation, Ψace ⊆ Σss ×
⋃n

j=1P
g
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
g
j , such that,

Ψace = {(s, pl) | s ∈ Σss, out(s) 6= ∅, pl ∈ P g
s , l = 1 . . . h, h = |out(s)|}.

Definition 4.34. Let us define a relation, Ψea ⊆ Σss ×
⋃n

j=1P
g
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
g
j , such that,

Ψea = {(s, pl) | s ∈ Σss, out(s) 6= ∅, pl ∈ P g
s , l = h+ 1 . . . 2h, h = |out(s)|}.

Definition 4.35. Let us define a relation, Ψoi ⊆ Σss ×
⋃n

j=1P
g
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
g
j , such that,

Ψoi = {(s, pl) | s ∈ Σss, out(s) 6= ∅, pl ∈ P g
s , l = 2h+ 1 . . . q, q = |targets(s)| + 2h}
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Definition 4.36. Let us define a relation, Ψb ⊆ Σss ×
⋃n

j=1P
g
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
g
j , such that,

Ψb = {(s, pl) | s ∈ Σss, out(s) 6= ∅, pl ∈ P g
s , l = q + 1 . . . r, r = |OUTloop(s)| + q}

Definition 4.37. Let us define a relation, Ψo ⊆ Σss ×
⋃n

j=1P
g
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
g
j , such that,

Ψo = {(s, pl) | s ∈ Σss, out(s) 6= ∅, pl ∈ P g
s , l = r + 1 . . . t} ∧

((t = |out(s)| + r ∧ @t ∈ out(s) : trigger(t) = ∅)

∨ (t = |out(s)| + r − 1 ∧ ∃ | t ∈ out(s) : trigger(t) = ∅))

Definition 4.38. Let us define a relation, Ψoak ⊆ Σss ×
⋃n

j=1P
g
j , between the set of

simple states of SM and the set of places in
⋃n

j=1S
g
j , such that,

Ψoak = {(s, pl) | s ∈ Σss, out(s) 6= ∅, pl ∈ P g
s , l = t+ 1 . . . r} ∧

((r = |out(s)| + t ∧ @t ∈ out(s) : trigger(t) = ∅)

∨ (r = |out(s)| + t− 1 ∧ ∃ | t ∈ out(s) : trigger(t) = ∅))

Definition 4.39. Let us define a relation, Λe ⊆ Σss ×
⋃n

j=1T
g
j , between the set of

simple states of SM and the set of transitions in
⋃n

j=1S
g
j , such that,

Λe = {(s, tl) | s ∈ Σss, out(s) 6= ∅, tl ∈ T g
s }} ∧

tl = tce ∪ {t2, . . . , th}, h = |out(s)| if s ∈ Σ◦
ss

tl = {t1, . . . , th}, h = |out(s)| if s ∈ Σ•
ss

Definition 4.40. Let us define a relation, Λa ⊆ Σss × T , between the set of simple
states of SM and the set of transitions in

⋃n

j=1S
g
j , such that,

Λa = {(s, tl) | s ∈ Σss, out(s) 6= ∅, tl ∈ T g
s , l = h+ 1 . . . h, h = |out(s)|}

Definition 4.41. Let us define a relation, Λex ⊆ Σss × T , between the set of simple
states of SM and the set of transitions in S , such that,

Λex = {(s, tl) | s ∈ Σss, out(s) 6= ∅, tl ∈ T g
s , l = 2h+ 1 . . . 3h, h = |out(s)|}

Definition 4.42. Let us define a relation, Λol ⊆ Σss ×
⋃n

j=1T
g
j , between the set of

simple states of SM and the set of transitions in
⋃n

j=1S
g
j , such that,

∀s ∈ Σss, OUTloop(s) 6= ∅ : Λol(s) = {t3h+1, . . . , tk}, k = |OUTloop(s)| + 3h
Λol = {(s, tl) | s ∈ Σss, out(s) 6= ∅, tl ∈ T g

s , l = 3h+ 1 . . . k, k = |OUTloop(s)| + 3h}

Definition 4.43. The system LSg
i = (Sg

i , ψ
g
i , λ

g
i ) associated to the outgoing tran-

sitions and exit actions of a given state i of a flat UML state machine SM with
Sg

i = 〈P g
i , T

g
i , I

g
i , O

g
i , H

g
i ,Π

g
i ,W

g
i ,M0

g
i 〉 is defined as follows:
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P g
i = Ψo(i) ∪ Ψoak(i) ∪ Ψace(i) ∪ Ψea(i) ∪ Ψib(i),
T g
i = Λe(i) ∪ Λa(i) ∪ Λex(i) ∪ Λol(i),

Igi (t) =































∅ if t = tce

po ∈ Ψo(i) if t ∈ (Λe(i) − tce)

pee ∈ Ψee(i) if t ∈ Λa(i)

pace ∈ Ψace(i) if t ∈ Λex(i)

pib ∈ Ψib(i) if t ∈ Λol(i)

Og
i (t) =























pace ∈ Ψace(i) if t = tce

pace ∈ Ψace(i) ∪ poak ∈ Ψoak(i) if t ∈ (Λe(i) − tce)

pea ∈ Ψea(i) if t ∈ Λa(i)

pib ∈ Ψib(i) if t ∈ Λex(i)

Hg
i (t) = ∅,Πg

i (t) = 1,W g
i (t) = 1 : ∀t ∈ T g

i

the following restrictions must be fulfilled, ∀p ∈ (Ψace(i) ∪ Ψee(i) ∪ Ψea(i)) : |•p| =
|p•| = 1 and ∀p ∈ Ψo(i) : |•p| = 0 ∧ |p•| = 1 and ∀p ∈ Ψoak(i) : |•p| = 1 ∧ |p•| = 0
and ∀p ∈ Ψoi(i) : |•p| ≥ 1 ∧ |p•| = 0 and ∀p ∈ Ψb(i) : |•p| = 1 ∧ |p•| = 1.

ψg
i (p) =















































































































e ev if p ∈ Ψo(i)

ack ev if p ∈ Ψoak(i)

st accept ev if p ∈ Ψace(i)

end act st ev if p ∈ Ψea(i)

ini st′ if p ∈ Ψoi(i) ∧ i 6= i′

τ if p ∈ Ψb(i) ∧ i = i′

where:

st = name(i) ∧ st′ = name(i′) ∧

∃ | tout ∈ out(i) : (target(tout) = i′) ∧

((ev = λ if trigger(tout ) = ∅) ∨

(ev = name(evt) if trigger(tout ) = evt)) ∧

((act = λ if effect(tout = ∅) ∨

(act = name(a) if effect(tout = a))

this function is injective and the following restrictions must be fulfilled,

ψg
i (O

g
i (tce)) = st accept λ.

∀t ∈ Λe(i) − tce : ψg
i (I

g
i (t)) = e ev, ψg

i (O
g
i (t)) = {st accept ev, ack ev} =⇒ ∃ |

tout ∈ out(i) : trigger(tout ) = evt ∧ name(evt) = ev.
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∀t ∈ Λa(i) : ψg
i (I

g
i (t)) = st accept ev, ψg

i (O
g
i (t)) = end act st ev =⇒ (∃ | tout ∈

out(i) : trigger(tout ) = e ∧ name(e) = ev ∧ ((effect(tout ) = a ∧ name(a) =
act) ∨ (effect(tout ) = ∅ ∧ act = λ))) ∨ (∃ | tout ∈ out(i) : trigger(tout ) = ∅ ∧ ev =
λ ∧ ((effect(tout ) = a ∧ name(a) = act) ∨ (effect(tout ) = ∅ ∧ act = λ))).

∀t ∈ Λex(i) =































ψg
i (I

g
i (t)) = end act st ev, ψg

i (O
g
i (t)) = ini st′ =⇒

(∃ | tout ∈ out(i) : (e1) ∧ (e3)) ∨ (∃ | tout ∈ out(i) : (e2) ∧ (e3))

∨

ψg
i (I

g
i (t)) = end act st ev, ψg

i (O
g
i (t)) = τ =⇒

(∃ | tout ∈ OUTloop(i) : (e1)) ∨ (∃ | tout ∈ OUTloop(i) : (e2))

(e1) = (trigger(tout ) = evt ∧ name(evt) = ev)).
(e2) = (trigger(tout ) = ∅ ∧ ev = λ).
(e3) = (st′ = name(s′) ∧ s′ = target(tout)).

λg
i (t) =































outce if t = tce

out if t ∈ Λe(i) − tce

(e4) if t ∈ Λa(i)

(e5) if t ∈ Λex(i)

loop st if t ∈ Λol(i) ∧ st = name(i)

(e4) =











name(a) if exit(i) 6= ∅ ∧ a = exit(i)

∨

λ if exit(i) = ∅

(e5) =











name(a) =⇒ ∃ | tout ∈ out(i) : effect(tout ) = a

∨

λ =⇒ ∃tout ∈ out(i) : effect(tout ) = ∅

Step B. The LSO
i system

Definition 4.44. The LSO
i system is the superposition of LSB

i and LSg
i over the

set L of labels,

LSO
i = LSB

i ‖
L

LSg
i L = {out, outce, loop i}

4.6 Actions

Actions are specifications of executable states and can be realized by:
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t1’|E_actx

p1|e_evx

t1|S_actx

p1’|ack_evx

p1|e_evx

t1|actx

t1|actx

p2

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

Figure 4.8: Translation of the different types of actions.

A) modifying a link or a value (actions that do not belong to subclass CallAction
or SendAction),

B) generating one or more events (actions belonging to the subclass CallAction or
SendAction). Moreover, they are characterized by the attribute isAsynchronous
that allows to specify if the dispatched stimulus is asynchronous or not, where
synchronous means that the action will not be completed until the event even-
tually generated by the action is not consumed by the receiver.

In the following, we show how actions must be translated depending on whether
they belong to the case A or B. Figure 4.8 shows the different translations of an
action:

A) Figure 4.8(a) shows how an action, actx, belonging to case A is translated just
as a transition labelled with its name.

B.1) Figure 4.8(b) shows how an action, actx, belonging to case B and being asyn-
chronous is translated. A transition is created to represent the action. Moreover,
as many places are created as events exist in the set operation(signal(actx ))
if actx ∈ CallAction or in the set ocurrence(signal(actx )) if actx ∈
SendAction. Each place has an input arc from the transition. In Figure 4.8(b)
ocurrence(signal(actx )) = {evx}
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e2/act2

e3/act3

e11/act11

e1/act1

e1/act1

e3/act3 K

MN
entry

DO: Activity

exit

INT:e4/act4

DEF:e5 DEF:e5

INT:e4/act4

exit

DO: Activity

entry

/actλM
N

(a) (b)

K

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

Figure 4.9: Examples of simple states (a)From Fig. 4.1 but adding transition e2/act2,

(b)From Fig. 4.1 but adding transition /actλ.

B.2) Figure 4.8(c) shows how an action, actx, belonging to case B and being syn-
chronous is translated. Note that only transitions belonging to class CallAction
can be synchronous. Transition t1|S actx represents the start of the action and
transition t2|E actx the end. As in the previous case, as many places are cre-
ated as events are generated. Moreover, for each event place an acknowledge
place has been added, in this place a token will be added when the target object
executes the corresponding operation letting to finish the action. Place p2 acts
as a buffer.

Finally, we recall that different kinds of actions can appear in a state: entry
actions, exit actions, doActivities and the effect of a transition. For the sake of
simplicity, we have proposed in the previous sections to translate them as if they
belong to the case A. On the contrary, if they belong to cases B.1 or B.2, it is
straightforward to devise its formalization taking into account the description given
in this section.

4.7 The model of a simple state

The labelled systems obtained in the previous sections can be composed using the op-
erator in Definition 2.6 (cfr. chapter 2). The resulting labelled system LS i interprets
a simple state i together with its outgoing transitions. Obviously, the interest of this
system is not to perform any kind of analysis but to establish the fine grain unit to
compose state machines (together with the labelled systems for the initial pseudostate
and the final states).

According to the translations defined up to now, given a state i with internal
transitions, deferred events, and outgoing transitions, we get four labelled systems
(one for each feature and the “basic” system) that need to be combined to get a
model of the state i.



86
4
.
U

M
L

fl
a
t

S
M

C
o
m

p
o
sitio

n
a
l
S
em

a
n
tics

t17|out

N_accept_e3

t22|act3

t32|exit

N_accept_e2

t21|act2

end_act2_N_e2

t26|exit

ini_K

end_act3_N_e3

t25|exit

end_act1_N_e1

N_accept_e1

end_entry_N

ini_N

t3|entry

e_e11e_e3e_e1
e_e2

ack_e4e_e4e_e5mbox_e5

end_act4_N_e4

t13|act4

ack_e3 ack_e11ack_e2

t1|loop_N

t4|activity

compl_N

ini_M

t20|act1

ack_e1

N_accept_e4

t27|exit

end_act11_N_e11

t23|act5

N_accept_e11

t15|out

Π=2

t5|def

t14|def

t34|send_e5

t10|outt9|out

t18|outt16|out

t12|int

t35|end_int

t6|int t8|out
t7|out

τ

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

LSN = ((LSt
N | |LevP LSd

N) | |LevP LSg
N) | |LtrT LSB

N

F
ig

u
r
e

4
.1

0
:

T
ra

n
sla

tio
n

o
f
th

e
sim

p
le

sta
te

N
in

F
ig

u
re

4
.9

(a
).



4
.7

.
T

h
e

m
o
d
el

o
f
a

sim
p
le

sta
te

87

N_accept_

end_act2_N_

t20|act

ce

ini_K

t27|exit

end_act3_N_e3

t22|act3

N_accept_e3

end_act1_N_e1

N_accept_e1

t25|exit

e_e1 ack_e3e_e3ack_e1

t4|activity

t3|entry

end_entry_N

t13|act4

N_accept_e4

mbox_e5_N

e_e5 e_e4

end_act4_N_e4

compl_N

ack_e4

ini_M

t21|act1

t26|exit

λ

λ

λ

t9|out

t6|int
t5|def

Π=2

t1|loop_N

ini_N

t34|send_e5

t7|out t8|out

t35|end_int

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

LSN = ((LSt
N | |LevP LSd

N) | |LevP LSg
N) | |LtrT LSB

N

F
ig

u
r
e

4
.1

1
:

T
ra

n
sla

tio
n

o
f
th

e
sim

p
le

sta
te

N
in

F
ig

u
re

4
.9

(b
).



88 4. UML flat SM Compositional Semantics

<<create>>/act1

ps

N

f

p5|ini_N

t2|act1

p4|ps_accept_create

p1|ini_ps

t1|out

p3|ack_create

p1|ini_f

(b)

p2|create

(a) (c)

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
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LSN = ((LSt
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LSps LSf

Figure 4.12: Translation of the initial pseudostate and the final state.

Definition 4.45. The system LS i = (Si, ψi, λi) that represents the state i is defined
as follows,

LSi = ((LSt
i | |

LevP

LSd
i ) | |

LevP

LSg
i ) | |

LtrT

LSB
i

where LevP is the set of labels of event and event acknowledge places,
LevP = {e evx,∀evx ∈ Ev}

⋃

{ack evx,∀evx ∈ Ev} with Ev is the set of events pro-
duced/consumed by i . Moreover, LtrT = {int, end int, def, send, out, outce, loop i}.

Figures 4.10 and 4.11 show two examples of the system that models a simple
state. The main difference among them is that the first system has not an immediate
outgoing transitions while the second one has.

4.8 Initial pseudostates

In a flat UML state machine at most one initial pseudostate can appear, let us name
it ps by convention. An initial pseudostate is graphycally depicted by a black dot and
represents the starting point of the state machine. In the metamodel, it belongs to
the class Pseudostate that is a subclass of the class StateVertex.

From the well-formedness rules of the state machines package [Obj01] is interesting
to note that:

• An initial vertex can have at most one outgoing transition and no incoming
transitions,
(self .kind = #initial) implies

((self .outgoing → size ≤ 1 ) and (self .incoming → isEmpty))

• An initial transition at the top most level either has no trigger or it has a trigger
with the stereotype “create”,
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self.source.oclIsKindOf(Pseudostate) implies
(self.source.oclAsType(Pseudostate).kind = #initial) implies

(self.source.container = self.stateMachine.top) implies
((selftrigger → isEmpty) or

(self.trigger.stereotype.name = ′create′))

In this section we will define a labelled system, named LSps, that interpretates in
terms of Petri nets an initial pseudostate ps.

4.8.1 Informal explanation

For the initial state of a given flat UML state machine SM the labelled system
LSps is created (Definition 4.52 will present its formalization). Figure 4.12 depicts
an example. This system represents the interpretation of the initial pseudostate and
its outgoing transition. An informal explanation of this interpretation is given in
this section by using the proposed example in order to easily understand the formal
definition give in the next section.
The elements of LSps are the following:

• A token in place p1 represents a resource waiting for an instance event of type
“create”. A formal definition will be given in Definition 4.46.

• The places labelled create and ack create represent, respectively, the queue of
the event that creates instances and the acknowledge of its arrival. They will
be formalized in Definition 4.47.

• The firing of the immediate transition, labeled out, represents the arrival of the
event that fires the outgoing transition in SM, (see Definition 4.50).

• The place, labelled ps accept create represents in the LSps that the event has
been accepted, (see Definition 4.48).

• The immediate transition t2 represents the execution of the action if it is labelled
with the effect or nothing if it is labelled λ, (see Definition 4.51).

• After completion of the action, a token in place p5 means the completion of the
initial pseudostate therefore the entry in state N , (see Definition 4.49).

4.8.2 Formal translation

The LSps system

Before to define the LSps system let us introduce the relations between the ini-
tial pseudostate of a given flat UML state machine SM and the places and tran-
sitions for the system. As in previous sections, LSps = (Sps, ψps, λps), with Sps =
〈Pps, Tps, Ips, Ops, Hps,Πps,Wps,M0ps〉.

Let us assume that Pps = {pi, pc, pcak, pa, pi′}, Tps = {tine, tina}.
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Definition 4.46. Let us define a function, Ψi : ps −→ Pps, from the initial pseu-
dostate of SM to the set of places in Sps, such that,

Ψi(ps) = pi.

Definition 4.47. Let us define a partial function, Ψc : ps ↪→ Pps × Pps, from the
initial pseudostate of SM to the set of places in Sps × Sps,such that,

Ψc(ps) =

{

{pc, pcak} if ∃ | t ∈ TSM : t ∈ out(ps) ∧ trigger(t) 6= ∅

∅ otherwise

Definition 4.48. Let us define a function, Ψa : ps −→ Pps, from the initial pseu-
dostate of SM to the set of places in Sps, such that,

Ψa(ps) = pa.

Definition 4.49. Let us define a function, Ψi′ : ps −→ Pps, from the initial pseu-
dostate of SM to the set of places in Sps, such that,

Ψi′(ps) = pi′ .

Definition 4.50. Let us define a function, Λine : ps −→ Tps, from the initial pseu-
dostate of SM to the set of transitions in Sps, such that,

Λine(ps) = tine.

Definition 4.51. Let us define a function, Λina : ps −→ Tps, from the initial pseu-
dostate of SM to the set of transitions in Sps, such that,

Λina(ps) = tina.

Definition 4.52. The system LSps = (Sps, ψps, λps) for an initial pseudostate with
Sps = 〈Pps, Tps, Ips, Ops, Hps,Πps,Wps,M0ps〉 is defined as follows:

Pps = Ψi(ps) ∪ Ψc(ps) ∪ Ψa(ps) ∪ Ψi′(ps),
Tps = Λine(ps) ∪ Λina(ps),

Ips(t) =

{

{pi, pc} if t = tine

pa if t = tina

Ops(t) =

{

{pcak, pa} if t = tine

pi′ if t = tina

Hps(t) = ∅,Πps(t) = 1,Wps(t) = 1 : ∀t ∈ Tps
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ψps(p) =































































ini ps if p = pi

create if p = pc

ack create if p = pcak

ps accept create if p = pa

ini st if p = pi′

where:

st = name(state) ∧

∃ | tout ∈ out(i) : target(tout) = state

λps(t) =

{

out if t = tine

(e1) if t = tina

(e1) =











name(a) =⇒ ∃ | tout ∈ out(i) : effect(tout ) = a

∨

λ =⇒ ∃ | tout ∈ out(i) : effect(tout ) = ∅

4.9 Final states

In the UML metamodel, a final state is a special kind of state that can appear in a
flat UML state machine meaning that the entire state machine has completed. The
final state is graphycally represented by a bull eye and cannot have any outgoing
transition.

In our interpretation we do not consider a final state as a processing state, as in
the UML metamodel. For us, it is just a quiescent state meaning that the entire state
machine has completed. Therefore, we do not allow entry actions, nor exit actions,
nor activities, nor internal transitions nor deferred events. Moreover, we consider that
it is an error in the UML metamodel to allow to process in the final states since it
makes no sense to wait for internal transitions or deferred events after completion; on
the other hand, entry actions, exit actions or activities can be modeled by means of
other constructs without loosing modeling capabilities.

Although we allow that in a “flat” SM several final states can appear, from the
above it can be assumed that actually there are not differences between them because
they represent the same final quiescent state. The fact that a SM can be completed
in different ways is represented by the transitions arriving to final states and not by
the final states themselves, meaning each one a different way to complete it. Let us
denote all the final states f by convention.

According to our interpretation, we propose to translate all the final states of a
flat UML state machine in only one labelled system LS f which is composed by only
one place labelled ini f . Figure 4.12(c) shows an example of the LS f system. The
LSf system will be composed, using the operator defined in Chapter2 (Definition 2.6),
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with the systems that model the simple states, then it will represent in the new net
the finalization of the state machine. Section 4.10 shows how this composition is
performed.

4.10 The model of a state machine

The labelled system LSsmthat interpretates the a whole flat UML state machine
(Definition 4.53 below) is obtained by composing the systems that interpretate the
simple states (LS i systems) the system for the initial pseudostate (LSps) and the
system for the final states (LS f).

Let Ev be the set of events produced/consumed by the flat UML state ma-
chine sm and LevP the set of labels of event and event acknowledge places,
LevP = {e evx,∀evx ∈ Ev}

⋃

{ack evx,∀evx ∈ Ev}. Let States be the set of the
simple states of sm, and LstateP the set of labels of places representing the entrance
into states, LstateP = {ini target,∀target ∈ States}, then the complete model for
the i simple states that compose sm is:

LSstates =
i∈States

| |
LevP ∪LstateP

LSi

and the labelled system for the whole state machine is given in the following definition.

Definition 4.53. The system LSsm = (Ssm, ψsm, λsm) that represents the flat UML
state machine sm is defined as follows,

LSsm = (LSstates | |
LiniP

LSps) | |
{ini f}

LSf

where LiniP = {ini state : state = name(st), st = target(tini), tini ∈ out(ps)}.
Figure 4.13 shows the LSsm system that represents the interpretation of the of

the flat UML state machine sm in Figure 4.1.

4.11 The model of a UML system

This section explains how to create an analysable model for a system assuming it
is described as a set of flat UML state machines. By analysable model we mean a
labelled system that includes the behaviour of the state machines that describe it
on which we can compute logical properties and/or performance results: we have
therefore to define how the labelled system components are composed, what is the
initial marking and the performance indices.

We assume that the system is described for k state machines {sm1, . . . , smk} which
interact by exchanging synchronous and asynchronous messages through actions of
the type CallAction and SendAction. Let {LSsm1

, ...,LSsmk
} be the labelled systems

of the k state machines produced according to the Definition 4.53.
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A complete formal model for the system is obtained by superposition over event
and event acknowledge places of the k state machines.

Let Evj be the set of events produced/consumed by smj and LevP
j the set of labels

of event and event acknowledge places, LevP
j = {evx,∀evx ∈ Evj}

⋃

{ack evx,∀evx ∈

Evj}, and LevP =
⋃

j∈{1,...,k} Lev
P
j , then the complete model of the k state machines

is given by the labelled system

LS′ =
j=1,..,k

| |
LevP

LSsmj

LS′ can contain acknowledge places that are sinks (indeed all transitions that
represent the consumption of an event send an acknowledge back since it is not defined
if the event is synchronous or asynchronous), but if the event is generated by an
asynchronous action no acknowledge is ever consumed and therefore the corresponding
places should be removed. Let Pack be the set of sink places with label of type ack evx,
then the model is given in the next definition.

Definition 4.54. The system LS(S, ψ, λ) modelling k “flat” state machines is defined
as follows:

LS = LS′ \ Pack

where A \B removes from net A all places in B and their incidence arcs.

From the LS system a GSPN model that represent the UML system can be ob-
tained as it will be explained in chapter 7 section 7.2.2.

4.12 Conclusions

In this chapter we have given a formal semantics in terms of labeled generalized
stochastic Petri nets (LGSPNs) to a subset of UML elements that conform what we
call “flat” state machines. In the following we briefly comment the translation given
for each element.

The most relevant element formalized in this chapter has been the “simple state”.
For a simple state we have proposed a “basic” LGSPN system that interpretes its
entry action and activity. This “basic” system also offers interface transitions to
compose it with the Petri net systems for its deferred events, its internal transitions
and its outgoing transitions.

The main characteristic of the deferred events system is that a mbox event place
stores tokens meaning event instances that are dispached to the corresponding event
place when the “basic” system is exited. The internal transitions provoke the restart of
the exponentially distributed firing time of the transition that represents the activity
of the simple state.
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The outgoing transitions and the exit actions of a simple state are translated into
a LGSPN system that has a different configuration depending on the existence of
self-loop transitions and/or immediate outgoing transitions.

A section is devoted to study how different LGSPN models are obtained from the
different kind of actions: call actions, send actions and the rest of actions, taking into
account if the call action is synchronous or not.

Translations for the initial pseudostates and the final states into LGSPN models
are proposed. These ones composed with the models for the simple states give a
LGSPN system for a entire “flat” UML state machine. Finally, an analysable model
for a software system assuming it is described as a set of “flat” UML state machines
is obtained by the superposition of the models of the state machines.
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Chapter 5

UML Composite State
Machines Compositional
Semantics

In this chapter, we give formal semantics in terms of Labeled Generalized Stochas-
tic Petri Nets (LGSPNs) [DF96] to a number of elements the UML state machines
package [Obj01]. Concretely, those elements that were not previously discussed in
chapter 4: Composite states, submachine states, history pseudostates, fork and join
pseudostates, junction and choice pseudostates, synchronous states and stub states.

This formal semantics will be obtained in the same way that we proposed in
chapter 4 for the elements of the “flat” state machines: by translating each element
of the UML meta model, the input model, into a LGSPN model, the output model.
As in the previous chapter the translation forces to perform an interpretation of the
“non formally defined” UML concepts. Also, it will be studied how the LGSPN
models obtained from the previous elements can be composed to achieve a LGSPN
system representing a state machine. Moreover, it will be detailed how a LGSPN that
represents a software system described by means of a number of a state machines can
be obtained, obviously by composing the models of the individual state machines.

Therefore, the contribution of this chapter is to define the translation of a number
of elements in the UML meta model into LGSPN models and to define the rules to
compose them to obtain a LGSPN that represents a software system. The difference
with respect to the previous chapter is that now we are not restricted to “flat” state
machines.

5.1 Composite states

Composite states can be concurrent or not, in this section we study composite states
without concurrency, the next section explores this quality of composite states. Now

97
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act_en = entry(C)
activity = doActivity(C)
act_ex = exit(C)
{tr5} = internal(C)
trigger(tr5) = ev5
effect(tr5) = act5
{ev6} = deferrableEvent(C)
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DO:activityB
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C
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/act9 F
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DO:activityA
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DO:activity
act_ex

/act1
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Figure 5.1: A composite state.

we succinctly recall how a composite state is defined in the UML meta model. “A
composite state cs ∈ CompositeState is a state that contains other state vertices.
The association between the composite and the contained vertices is a composition
association. Hence, a state vertex can be a part of at most one composite state. Any
state enclosed within a composite state is called a substate of that composite state.
It is called a direct substate when it is not contained by any other state; otherwise it
is referred to as a transitively nested substate” [Obj01] section 2.12.

Furthermore, it is interesting to highlight from the UML Well-FormednessRules
for the composite states that:

• A composite state can have at most one initial vertex,

self .subvertex → select(v | v .oclIsKindOf (Pseudostate)) →
select(p : Pseudostate | p.kind = #initial) → size ≤ 1

• The substates of a composite state are part of only that composite state,
self .subvertex → forAll(s | (s.container → size = 1 ) and (s.container =
self ))

5.1.1 Informal interpretation

In this section our interpretation of a non concurrent composite state is given. Forces,
compositionality [US94] is a challenge in the sense that we try to interpret the concepts
of the composite states as homogeneously as possible with the interpretation of the
simple states given in chapter 4, with the goal of obtaining compositional models.

UML allows three ways to enter in a composite state: explicitly, using a history
pseudostate, or by default. An explicit entry is graphically indicated by an incoming
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transition that goes to a direct substate of the composite state or to a transitively
nested substate. In our interpretation this way to enter a composite state should be
forbidden because it provokes crossing boundaries and hence models without compo-
sitional properties as it is discussed in [Sim00]. Later in this section we come back
to this discussion. The entry in a composite state by means of a history (shallow
or deep) vertex will be discussed in section 5.4 where the reasons that motivate our
rejection to this kind of entry are given. Last, the default entry in a composite state
is graphically indicated by an incoming transition that terminates on the outside edge
of the composite state, see transition ev7/act7 in Figure 5.1 as an example. In this
case the default transition (the transition exiting from the initial pseudostate) is taken
and if there is a guard on this transition it must be enabled (true). A disable default
transition is an ill-defined execution state and its handling is not defined.

Concerning the termination of a composite state, UML allows either explicit or
default exit. Explicit exit is represented by a transition that, outgoing one of its
substates (direct or nested), crosses the boundaries of the composite state to reach
an outside state. Obviously this kind of exiting is forbidden in our interpretation for
the same reason as the explicit entry: the drawback over the compositionality. It
will be discussed later in this section. Default exit is represented by any transition
that arrives to a final state inside the composite state at the top most level, see for
an example Figure 5.1 where transition ev4/act4 arrives to final state f . When this
kind of exit occurs it is mandatory, in our interpretation, that the composite state has
an immediate outgoing transition, that will be taken after the final state is reached.
See in Figure 5.1 the transition /ev9 outgoing the state C which will be taken after
the state f is reached. Later in this section, this interpretation is discussed in detail.
Finally, it must be noticed that the exit is possible from a substate using an outgoing
transition of the composite state since they are inherited, this interpretation will be
explained in depth in this section.

In the following, we are going to describe the behaviour of the composite state C
in Figure 5.1. It will allow us to introduce our interpretation for the composite states.
The interpretation is “informally” explained in this section and its formalization given
in the next section. The composite state C can be entered by default by the transition
ev7/ac7. On entering, the entry action act en is executed and, when it completes, the
activity starts its execution. In the meantime, the deferred events and the internal
transitions belonging to the composite state, ev6 and ev5/act5 in the example, can
be accepted causing the finalization of the activity. If a deferred event or an internal
transition is accepted, it performs its execution model as explained in chapter 4.
When the activity has completed, the default transition /act1 is taken. The execution
of the “flat” state machine enclosed in the composite state is interpreted as given in
chapter 4. But it must be taken into account that each substate apart from its deferred
events, internal transitions and outgoing transitions inherits those of its container
states in a transitively fashion. If the enclosed state machine is not “flat”, i.e., it
contains same composite state, then these states are interpreted as we are explaining
in this paragraph, therefore providing a recursive interpretation. On completion of
the enclosed state machine, i.e., the arrival to the final state f , the composite state
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Figure 5.2: Default exit for composite states A and B.

must take its immediate outgoing transition /act9, then act9 is executed and after
the exit action, act ex, of the composite state C is executed. When the state A or
B is active, transition ev8/act8 can be taken on arrival of event ev8, in this case the
execution sequence is as follows: act8, exit activity of A or B and the exit of the
composite state.

From the explanations given above to describe the behavior of the composite state
C in Figure 5.1 it is obvious that our interpretation of a composite state differs from
that of UML in a number of points. The restrictions that we impose are convenient
to achieve compositional semantics and some of them come from [Sim00] while others
differ considerably. In the following we give “informally” our interpretation of a
composite state:

1. Transitions crossing boundaries of composite states are not allowed in any clean
compositional model. This restriction is largely discussed in [Sim00] and we
assume it in order to ensure encapsulation in hierarchical state machines. It
must be noticed that by forbidding crossing boundaries then the explicit entry
and the explicit exit in a composite state are not possible. We recognize that by
doing so, it is not possible to properly represent more than one distinct accept
states to indicate distinct outcomes in a composite state [SG99]. Neverthe-
less, we assume this drawback in our interpretation to guarantee compositional
models.
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2. In our interpretation, a composite state must have exactly one initial vertex.
This fact differs from the UML standard since it allows at most one initial
vertex. By forcing the existence of an initial state the default entry is guaranteed
(remember that it is the only one that we allow) and by forcing the existence of
only one the indeterminism upon entrance is avoided. The transition outgoing
from an initial vertex, that must be unique since we do not allow guards, does
not have trigger. Remember that in the UML model this kind of transitions
can be triggered only by an event stereotyped create and obviously the object is
created by the transition exiting from the initial state at the top most level. This
transition will be taken always upon entry in the composite state independently
of which incoming transition has fired the entry in the composite state. Its
related action will be performed after the execution of the entry action and the
activity of the composite state. Concerning the activity of the composite state,
it can be aborted by any of the outgoing transitions of the composite state, the
same as for the simple states.

3. Concerning final states, in our interpretation a composite state can have zero or
more final states as in the UML standard. The discussion presented in chapter 4
when our interpretation of final states in the context of “flat” state machines
was introduced is completely valid in the context of composite states and it
differs from that given in UML. We recall the main conclusions but applied to
this context:

– a final state in a composite state means that the entire state has completed;

– a final state is not considered as a processing state;

– although we allow several final states inside a composite state, actually
there are not differences between them because they represent the same fi-
nal quiescent state. Therefore they will be represented by the same LGSPN
model.

4. For us, like in the UML standard, states inside a composite state inherit outgoing
transitions from its composite state in a transitively manner, except immediate
outgoing transitions and those transitions fired by an event that also fires any
outgoing transition, internal transition or deferred event in the substate. By
doing so the following interpretations are gained:

– It is ensured that a composite state behaves as a reactive state instead as
a lock-in process [Sim00]. Note that if the substates of a composite state
react only to the transitions exiting its own boundaries then the enclosed
state machine completes only when it arrives to any of its final states
showing a lock-in process behaviour. Reactive behavior is highly desirable
because we have interpreted simple states in chapter 4 also as reactive
states, therefore the same behavior is expected for every kind of states.

– Moreover, when the enclosed state machine is interpreted as the descrip-
tion of the activity performed by the composite state then the possibility
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Figure 5.3: Exit of the composite state A from the substate C.

to accept exits from the boundaries means that this activity could be in-
terrupted by the outgoing transitions of its composite state, which also
is compliant with the interpretation given in chapter 4 for the activities
inside simple states. Note that different interpretations can be associated
with the composite state.

– “Two transitions are said to conflict if they both exit the same state, or,
more precisely, that the intersection of the set of states they exit is non-
empty” [Obj01]. Avoiding the inheritance of transitions triggered by an
event that triggers a deferred event or an internal or outgoing transition
is important because it implies that “conflicting transitions” cannot occur
in our models.

– The fact that immediate outgoing transitions are not inherited is a draw-
back for our interpretation, since the rest of the transitions are inherited.
Furthermore, it unables the reactive behavior of the composite state in
some manner [Sim00] because the enclosed substates do not react to the
free transition. But if this kind of inheritance were allowed then it would
not be possible the interpretation given previously in point 3 (where we
associated immediate outgoing transitions of composite states to the de-
fault exit). So, we recognize an asymmetry in the interpretation of the
inheritance of the outgoing transitions.

5. The exit of a composite state in our interpretation can be either by default or by
firing any of the transitions in its boundaries. In the following, both possibilities
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are discussed:

– The existence of a final state in a composite state means that default exit
is possible and it implies that the composite state must have an immedi-
ate outgoing transition. This transition will be immediately taken after
the composite state reaches one of its final states. The execution model
that we propose is as follows: after the final state is reached the action
of the immediate outgoing transition is performed, if it exists, and after
the exit action of the composite state, also if it exists. Notice that this
interpretation of the immediate outgoing transitions in the boundaries of
a composite state differs from that given by us in chapter 4 for immediate
outgoing transitions in the boundaries of a simple state, but actually it is
not desirable since an homogeneous interpretation would be nice. But if
we interpret that this transition is taken immediately after the activity has
complete then the enclosed state machine is never executed, which makes
no sense.

For an example in which several default exits are nested see Figure 5.2
(a). In Figure 5.2 (b) the part of the LGSPN model that represents the
exits is shown. In it can be observed that the sequence transition action
and exit action is successively performed from the innermost state to the
outermost.

– On the other hand, as the outgoing transitions are inherited by the sub-
states, it is possible to exit a composite state from any of its substates. The
example in Figure 5.3 is going to be used to explain our interpretation of
execution model for this kind of exit, for simplicity the example shows just
the exit. Each exit action is executed innermost to outermost until the top
most state is reached, where first the action of the transition is executed
and after the exit action of the state. Although in the UML interpretation
this point is not very clear, we deduce that first the action of the transition
is executed and after every exit action (innermost to outermost) until the
top most state is reached, it obviously differs from our interpretation.

6. Finally, it must be noticed that in our interpretation each substate inherits the
internal transitions as well as the deferred events from its composite state in a
transitively manner and as it has been explained for the outgoing transitions in
the point 4 of this relation. Moreover, they are interpreted as it was explained
in chapter 4 for the simple states.

The LGSPN in Figure 5.4 represents the state machine in Figure 5.1 upon our
interpretation. It has been obtained by applying the formalization given in chapter 4
for a “flat” state machine with slight differences that are formalized in the next section.
This differences are enumerated in the following:

• To represent the default entry, the following decisions have been taken: it has
been added the arc from transition t2|activity to place p12|ini ps. Notice that
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the place labelled compl C has been removed and also the arc from it to the
transition labeled outce. It interprets the point number 3 in the above enu-
meration list, in this way when the activity of the composite state finishes the
immediate outgoing transition is not taken but the default transition.

• To represent the default exit, an arc from place p33|ini f to transition t10|outce

has been added. It interprets the first part in point number 5 of the above
enumeration list, therefore it makes possible to take the immediate outgoing
transition after the final state has been reached.

• To represent the exit from a substate (say A) taking an outgoing transition of
the composite state (say ev8/act8), the following decisions have been taken: the
transition that represents the action act8 and the place that represents its final-
ization end act8 A ev8 are removed from the net that represents the enclosed
state (say A). Finally, an arc is added from the transition that represents the
exit action (t27|λ) to the place that represents the acceptation of the event in
its container state (p6|C accept ev8). It interprets the second part in the point
number 5 of the above enumeration list.

5.1.2 Formal translation

For the sake of clarity, the formal translation is divided in two parts. Firstly, the case
of a composite state that encloses a “flat” state machine is formalized (cfr. Definition
5.1). In the second part the previous definition is used to recursively define the
general case, i.e a composite state that encloses either a “flat” state machine or a
state machine with composite states (cfr. Definition 5.2).

Part I

To obtain the LGSPN system LSflat
C = (Sflat

C , ψflat
C , λflat

C ) that represents a composite
state C that encloses a “flat” state machine, the following facts must be taken into
account:

• The system for the initial state in C, LSps, is obtained as given in Defini-
tion 4.52.

• The system for the final states in C, LSf , is obtained as given in section 4.9.
Moreover, a transition labeled outce and an arc from the place labeled ini f to
this transition must be added.

• Each simple state s ∈ subvertex(C) inherits all the deferred events, internal
transitions and outgoing transitions from C, even those that have been inherited
by C, except those (deferred, internal or outgoing) whose trigger event is present
in its own list of deferred, internal or outgoing. Formally,
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out(s) = {t ∈ Transition | (t ∈ outgoing(s))
∨ (t ∈ (out(C) − {t′ | trigger(t′) ∈ Triggers(s)})}

int(s) = {t ∈ Transition | (t ∈ internal(s))
∨ (t ∈ (int(C) − {t′ | trigger(t′) ∈ Triggers(s)})}

def(s) = {e ∈ Event | (e ∈ deferrableEvent(s))
∨ (e ∈ (def(C) − {e′ | e′ ∈ Triggers(s)})}

Triggers(s) = {e ∈ Event | (e ∈ deferrableEvent(s))
∨ (∃t ∈ (outgoing(s) ∪ internal(s)) : trigger(t) = e)

By doing so, it is guaranteed that when two events (that trigger outgoing tran-
sitions, internal transitions or deferred events) are in conflict then the priority
policy decides for the innermost one.

LSs system is obtained as given in Definition 4.45. But taking into account
that in LSg

s the transitions that represent an action of an inherited transi-
tion (say act8 in Figure 5.4) and the place that represents its acceptation (say
A accept ev8) must be removed and a new place representing the acceptation
in the composite state (say C accept ev8) and a new arc to it from the place of
the exit action must be added.

• Once defined the systems for the initial pseudostate, the final states and the
simple states, then a labeled system LS ′

C that represents the enclosed “flat”
state machine can be obtained by applying Definition 4.53. Figure 5.4(b) shows
LS′

C for the enclosed state machine of state C in Figure 5.1.

• To represent the composite state itself (with its deferred events, internal tran-
sitions and outgoing transitions) a labeled system LS ′′

C is obtained by applying
Definition 4.45 to the composite state supposing that it has an immediate out-
going transition (even in the case it is not true). Moreover, the place labelled
compl C must be renamed to ini ps being ps the name of the initial pseudostate
in C, and removing all the arcs exiting from this place. Figure 5.4(a) shows LS′′

C

for the enclosed state machine of state C in Figure 5.1.

Definition 5.1. The system LSflat
C = (Sflat

C , ψflat
C , λflat

C ) that represents the composite
state C which encloses a “flat” state machine is defined as follows,

LSflat
C = LS′

C | |
L

LS′′
C

L = {ini ps} ∪ {outce} ∪ Laccept

Laccept = {C accept evx,∀evx ∈ out(C)}
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Figure 5.5: (a) A concurrent composite state. (b) LS ′′
C (a part of the labelled system for

the concurrent composite state C).
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Part II

The labeled system, LSC, that interpretates a composite state C, cfr. Definition 5.2,
is the labeled system defined in 5.1 if C has a “flat” state machine enclosed or the
labeled system defined in Definition 5.2 composed with the labeled systems for the
composite states in CompositeStatesC otherwise.

Let Ev be the set of events produced/consumed by the composite state C and
LevP the set of labels of event and event acknowledge places, LevP = {e evx,∀evx ∈
Ev}

⋃

{ack evx,∀evx ∈ Ev}.
Let be StatesC = {s ∈ State,∀s container(s) = C} and let CompositeStatesC =

{s ∈ CompositeState,∀s container(s) = C}, obviously CompositeStatesC ⊂
StatesC .

Let LstateP be the set of labels of places representing the entrance into the
states in StatesC , LstateP = {ini target,∀target ∈ StatesC}, and let LstcomP

be the set of labels of places representing the entrance into the composite states in
CompositeStatesC , LstcomP = {ini target,∀target ∈ CompositeStatesC}.

Definition 5.2. The system LSC = (SC, ψC, λC) that represents the composite
state C is defined as follows,

LSC =







LSflat
C (Def. 5.1) if C has a “flat” state machine enclosed

LSflat
C | |

LevP ∪LstateP

LSCompo otherwise

where

LSCompo =
j∈CompositeStateC

| |
LevP ∪LstcomP

LSj

When the composite state has not a “flat” state machine enclosed, therefore it has
composite states enclosed, then we understand by LSflat

C a labeled system as in Defi-
nition 5.1 which does not take into account the composite states.

Figure 5.4 shows the LSC system that represents the interpretation of the com-
posite state C in Figure 5.1 which encloses a “flat” state machine.

5.2 Concurrent states

“Composite states in UML have a derived boolean attribute that indicates whether
it is a substate of a concurrent state. If it is true then this composite state is a direct
substate of a concurrent state” (section 2.12 in [Obj01]).

It is interesting to emphasize the following two properties of the concurrent states
from the Well-FormednessRules:

• There have to be at least two composite substates in a concurrent composite
state,
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(self .isConcurrent) implies
(self .subvertex → select

(v | v .oclIsKindOf (CompositeState)) → size ≥ 2 )

• A concurrent state can only have composite states as substates,

(self .isConcurrent) implies
(self .subvertex → forAll(s | s.oclIsKindOf (CompositeState)))

5.2.1 Informal interpretation

In the following, we are going to describe the behavior of the concurrent composite
state C in Figure 5.5(a). It will allow us to introduce our interpretation for the con-
current composite states. In this subsection we give our “informal” interpretation of
the concurrent composite states. As in the previous section first we study an example,
after that the interpretation is “informally” explained and finally its formalization is
given in the next subsection. The concurrent composite state C in Figure 5.5(a) can
be entered only by default through the transition ev7/ac7. On entering, the entry
action act en is executed and when it finishes, the activity starts its execution. In the
meantime, the deferred events and the internal transitions belonging to the composite
state, ev6 and ev5/act5 in the example, can be accepted causing the finalization of
the activity. If a deferred event or an internal transition is accepted it performs its
execution model as explained in chapter 4. The deferred events, internal transitions
and outgoing transitions are inherited by each substate. So far the interpretation
is the same as for non concurrent composite states. But when the activity has com-
pleted, the two regions R1, R2 must be entered, region R1 taking its default transition
/act1 and region R2 its own one /act10, from now onwards each region is executed
concurrently. The execution of each region continues like a non concurrent composite
state, as explained in section 5.1.1, until completion. On completion of one of the
regions, say R1, i.e. the arrival to the final state, it must wait until completion of
the other region, R2. It means that when a region has reached a final state it is
mandatory for the concurrent state to complete using default exit, therefore inher-
ited transitions cannot be taken. When R1 and R2 have reached their final states,
the concurrent composite state must take the immediate outgoing transition /act9,
then act9 is executed and after the exit of the composite state C, act ex. The other
possibility to exit C is to take transition ev8/act8 when the state is in any of the
following configurations A−G, A−H, B −G or B −H. In this case the execution
sequence is as follows in our interpretation: the exit activity of each enclosed state
in the active configuration is performed, possibly concurrently, after that the action
act8 is executed and finally the exit of the concurrent composite state.

As in the case of non-concurrent composite states, our interpretation differs from
that of UML in a number of points. In the following we give “informally” our inter-
pretation of concurrent composite state by focusing in its own aspects and assuming
that the interpretation given in section 5.1.1 for the composite states is valid for each
region of the concurrent state:
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Figure 5.7: Exiting from configuration A-G of the concurrent composite state C in Fig-

ure 5.5.
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1. In UML the regions that conform a concurrent state are considered each one
a composite state. This means that a region can have its own entry, exit, do
Activity, deferred events and internal transitions. For us this modeling power
is outlandish and it can be achieved by using the existing concepts. Therefore
for the sake of simplicity, in our interpretation regions are not proper composite
states. They are just a conventional notation to refer sets of orthogonal states
that can be concurrently executed in a composite state, but without additional
semantics. Implications of this decision are clear in the execution model of a
concurrent state. The entry and exit of a concurrent composite state do not
take care about new actions nor activities. Moreover, upon this interpretation
the previous well-formed rules should be rewritten to:

– There have to be at least two regions in a concurrent composite state.

– A concurrent state can only have regions as substates.

2. “Whenever a concurrent composite state is entered, each one of its regions is
also entered, either by default or explicitly. If the transition terminates on the
edge of the composite state, then all the regions are entered using default entry.
If the transition explicitly enters one or more regions (in case of fork), these
regions are entered explicitly and the others by default” [Obj01]. In order to be
congruent with the interpretation given in section 5.1.1, concurrent composite
states can be entered only by default, i.e. entering transitions must terminate
on the edge of the composite state. Once the composite state has been entered,
the default entry of each region is taken.

3. “When exiting from a concurrent state, each of its regions is exited. After
that the exit actions of the regions are executed” [Obj01]. Obviously, in our
interpretation exit actions for regions are not executed. Depending on the kind
of exit the following execution models are performed in our interpretation:

– Upon exit taken an inherited transition, the actions of the substates in the
active state configuration are executed, after the action of the transition
and finally the exit action of the concurrent composite state. Exiting taken
an inherited transition is possible only in an stable state configuration, the
possible state configurations are the Cartesian product of the states in the
orthogonal regions (A − G A − H B − G or B − H in the example in
Figure 5.5). In Figure 5.6 the four possible exits are abstracted in the four
dotted boxes, for clarity only in the first box, the entries and the exits
have been represented arriving to the box. Figure 5.7 shows the details
of the exit of this configuration, which is the same for all the possible
exits with inherited transitions. The exit is represented by four transitions
in the LGSPN (t25, t25′, t25′′ and t25′′′) representing each one an stable
configuration.

– Upon default exit, the action of the transition is executed and after that,
the exit action of the concurrent composite state. In our interpretation if a
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Figure 5.8: Default exit of the concurrent composite state C in Figure 5.5.
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Figure 5.9: A concurrent composite state with conflicting transitions.

region reaches its final state it implies that the concurrent composite state
will be exited by default, then it is expected that the rest of the regions
reach their own final states. When all the regions have reached their final
state the immediate outgoing transition must be taken. This implies that
when any region has reached its final state, no of the other regions can
accept inherited outgoing transitions. This behavior is achieved in our
LGSPN model by inhibiting the inherited transitions by the place that
represents the final states, see Figure 5.8.

4. “Only transitions that occur in mutually orthogonal regions may be fired si-
multaneously” [Obj01]. An example of this kind of transitions is represented in
Figure 5.9 by transition ev1. In our interpretation only one of these transitions
can fire. It is motivated because an event is represented by a token which is
used to fire only one of the two conflicting transitions with the same probability.

Summarizing, the firing policy in our interpretation is as follows:

– Conflicts among transitions at different levels in the state hierarchy are not
possible since we do not allow to inherit confliting transitions, see point
4 in section 5.1.1. Therefore our policy consists in the selection of the
innermost transition.

– The conflict among transitions in orthogonal regions is probabilistically
resolved (all transitions have the same probability).

The LGSPN in Figures 5.5(b) and 5.6 represents the concurrent composite state
in Figure 5.5(a) upon our interpretation. It has been obtained by applying the for-
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malization given in section 5.1.2 for the composite states with slight differences that
are formalized in the next section. These differences are enumerated in the following:

• In order to represent the default entry, arcs must be added from transition
t2|activity to each place that represents the enter in a region, places p42|ini ps2
and p12|ini ps1 in the example.

• For the default exit, the arc from the place that represents the final state of the
regions to the transition that represents the completion of the composite state
is labelled with the number of concurrent regions. In the example, the arc from
p33|ini f to the transition t10|outce. Therefore, there are as many tokens as
regions to fire the default transition, which means that the state is not exited
until all regions complete.

• In order to represent the exit taking a transition on the boundaries of the con-
current composite state, the following decisions have been taken: the arcs from
t7 to p6 and from p6 to t8 are labelled with the number of concurrent regions,
which means that the state is not exited until all regions complete; for each sub-
state, the transitions in the set out(substate) (see section 5.1.2) that represent
inherited transitions are removed and substituted by the transitions represented
in the box of the Figure 5.7, these transitions are inhibited by the place that
represents the final state, as can be seen in Figure 5.8.

5.2.2 Formal translation (sketch)

In order to translate a concurrent composite state C into a LGSPN, Definition 5.2 is
used with the following modifications:

• In the system LS′′
C as many places labeled ini ps must be created (where ps is

the name of the initial state in each region) as concurrent regions.

• Also in the system LS′′
C the arc entering the transition out ce must be labelled

with the number of regions. The arcs entering and exiting places that represent
the acceptation of outgoing transitions are also labelled with the number of
regions.

• In the systems LSs (system for each substate) the out transitions that represent
inherited transitions are removed. For each stable configuration (cartesian prod-
uct of the states in orthogonal regions) a system as that presented in Figure 5.7
must be created, taking into account that each transition has an inhibitor arc
from the place that represent the final state.

Taking into account the modifications introduced for LS ′′
C and LSs systems, Def-

inition 5.2 gives the LGSPN model for a concurrent composite state C.
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Figure 5.10: (a)A submachine state. (b)The referenced state machine. (c)The state ma-

chine inside the composite state.

5.3 Submachine states and stub states

“A submachine state is a syntactical convenience that facilitates reuse and modular-
ity. It is a shorthand that implies a macro-like expansion by another state machine
and is semantically equivalent to a composite state. The state machine that is in-
serted is called the referenced state machine while the state machine that contains
the submachine state is called the containing state machine. The same state machine
may be referenced more than once in the context of a single containing state machine.
In effect, a submachine state represents a “call” to a state machine “subroutine” with
one or more entry and exit points. The entry and exit points are specified by stub
state. It may have entry and exit actions, internal transitionss, and activities” (taken
from section 2.12 in [Obj01]).

“A stub state can appear within a submachine state and represents an actual
subvertex contained within the referenced state machine. It can serve as a source or
destination of transitions that connect a state vertex in the containing state machine
with a subvertex in the referenced state machine” (section 2.12 in [Obj01]).

From the Well-FormednessRules for the submachine states:

• Only stub states are allowed as substates of a submachine state.

self .subvertex → forAll(s | s.oclIsKindOf (StubState))
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Figure 5.11: (a)A submachine state. (b)The referenced state machine. (c)The state ma-

chine inside the composite state.

• Submachine states are never concurrent.

self .isConcurrent = false

Figure 5.10 shows an example of the combined use of the submachine states
togheter with the stub states. In Figure 5.10(a) the submachine state A is depicted
where the states that act as entry points (sub1 and sub1 :: sub12) and exit points
(subEnd) can be identified as stub states. Figure 5.10(b) shows the referenced state
machine SM1 where the states corresponding to the stub states can be seen. Finally,
in Figure 5.10(c) the referenced state machine inside the submachine state linking by
the stub states has been depicted.

The interpretation given for the composite states affects in different ways to the
interpretation of the submachine states since these are just an specialization of the
first ones. The implicit entry and exit were forbidden for the composite states. It
is the same case for the submachines states since they are semantically equivalent.
Therefore the default entry is the only entry addmited and the default exit and the
exit from the boundaries of the submachine states the only exits allowed. This means
that any of the states in the referenced state machine can be used neither for the
entry nor the exit, therefore stub states make no sense in our interpretation. This
restrictions convert submachine states in our interpretation in states that reference
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a state machine that is entered by its initial state and exited by default or taking
any transition in its boundaries. Figure 5.11 shows an example of the use of the
submachine states with the restrictions of our interpretation.

To translate submachine states into LGSPNs we propose that, previously, the
referenced state machine is enclosed into the state, as in Figure 5.11(c). Then the
translation can be performed as if the state was a composite state and its formal
translation used. In this way the modeller can use the syntactical convenience of the
submachine states and when the analysis must be performed the substitution can be
done.

5.4 History pseudostates

Two kind of history pseudostates are allowed in UML, deepHistory and shallowHis-
tory. They represent different ways to enter in a composite state. These are the
sentences of UML that explain them: “deepHistory is used a shorthand notation that
represents the most recent active configuration of the composite state that directly
contains this pseudostate; that is, the state configuration that was active when the
composite state was last exited. A composite state can have at most one deep his-
tory vertex. A transition may originate from the history conector to the default deep
history state. This transition is taken in case the composite state had never been
active before or the most recently active configuration was the final state”. Which
concerns shallowHistory the difference is that “it represents the most recent active
configuration of its containing state (but not the substates of that substate)”.

Furthermore, it is interesting to highlight from the Well-FormednessRules for the
composite states that:

• A composite state can have at most one deep history vertex,

self .subvertex → select(v | v .oclIsKindOf (Pseudostate)) →
select(p : Pseudostate | p.kind = #deepHistory) → size ≤ 1

• A composite state can have at most one shallow history vertex,

self .subvertex → select(v | v .oclIsKindOf (Pseudostate)) →
select(p : Pseudostate | p.kind = #shallowHistory) → size ≤ 1

The use of history pseudostates presents a major drawback from the composition-
ality point of view: It implies to cross the boundaries of the composite state that
includes the history pseudostate since the transition that indicates its entrance must
arrive to it, in other case (if the transition stops on the boundary of the composite
state) it is not possible to distinguish it from the transitions that indicate the default
entry. As it was discussed in section 5.1, boundary crossing is not allowed in any
clean compositional model because it violates encapsulation.
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Moreover, as it is discussed in [SG99], the history pseudostates correspond to a
“repeated duplication of the entire composite state, once for each alternative remem-
bered substate. It blinds most developers to the real complexity of what they have
created”.

From the point of view of the compositionality, the violation of the encapsulation
makes impossible to formalize a composite state that includes a history pseudostate
since the expected behaviour of the composite state does not depend on its own. Nev-
ertheless, the use of this kind of pseudostates could be necessary to model interrupts
and co-routines [SG99]. Therefore we propose an example, see Figure 5.12, that sug-
gests the translation of a composite state with a history pseudostate into the LGSPN
formalism. This example does not try to promote the use of history states, on the
contrary we adhere to the advise of discouraging the use of the history pseudostates
given in [SG99]. On the other hand, the example does not intent any kind of formal-
ization, it is given just at descriptive level, but it could be useful when the use of an
history state is interesting for a modeler.

The example in Figure 5.12(a) is the same as in Figure 5.1 but the initial pseu-
dostate has been changed by a shallow history state that enters substate B and
therefore the composite state C. For simplicity we have avoided to rewrite the ac-
tivities, entry actions etc, but the translation takes them into account, so we refer to
Figure 5.1 for details. The elements modified with respect to the LGSPN in Figure 5.4
to obtain the new translation are in bold face in Figure 5.12, they are the following:

• A new place for each state (History A,History B). They have a token when
the corresponding state must be entered.

• A new transition for each state (History A,History B)). They represent the
entrace in the corresponding state.

• A new place (τ) to distinguis between different entrances.

• Arcs to connect the history places and the history transitions.

• Arcs to connect the place with the history places.

• Arcs to connect the transitions that represent the exit of the states with the
history places.

• The arc from t2|activity to p12|ini ps has been removed to avoid immediate
entrance in state A.

• A token is added to the place that represents the history default state
(History B)).

5.5 Fork and join pseudostates and join

UML proposes to use a join pseudostate to “merge several transitions emanating from
source vertices in different orthogonal regions” and to use a fork pseudostate to “split
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an incoming transition into two or more transitions terminating on orthogonal target
vertices” (see section 2.12 in [Obj01]). To ultimately understand the role of this kind
of pseudostates in UML, the following Well-FormednessRules are given:

• A join vertex has at least two incoming transitions and exactly one outgoing
transition.

(self .kind = #join) implies
((self .outgoing → size = 1 ) and (self .incoming → size ≥ 2 ))

• A fork vertex must have at least two outgoing transitions and exactly one in-
coming transition.

(self .kind = #fork) implies
((self .incoming → size = 1 ) and (self .outgoing → size ≥ 2 ))

• A fork segment should not have guards or triggers.

(self .source.oclIsKindOf (Pseudostate)
and not oclIsKindOf (self .stateMachine,ActivityGraph)) implies
((self .source.oclAsType(Pseudostate).kind = #fork) implies

((self .guard → isEmpty) and (self .trigger → isEmpty)))

• A join segment should not have guards or triggers.

(self .target .oclIsKindOf (Pseudostate)
and not oclIsKindOf (self .stateMachine,ActivityGraph)) implies
((self .target .oclAsType(Pseudostate).kind = #join) implies

((self .guard → isEmpty) and (self .trigger → isEmpty)))

• A fork segment should always target a state.

(self .stateMachine → notEmpty
and not oclIsKindOf (self .stateMachine,ActivityGraph)) implies

self .source.oclIsKindOf (Pseudostate) implies
((self .source.oclAsType(Pseudostate).kind = #fork) implies

((self .target .oclIsKindOf (State)))

• A join segment should always originate from a state.

(self .stateMachine → notEmpty
and not oclIsKindOf (self .stateMachine,ActivityGraph)) implies

self .target .oclIsKindOf (Pseudostate) implies
((self .target .oclAsType(Pseudostate).kind = #join) implies

((self .source.oclIsKindOf (State)))
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Figure 5.13: Fork and join pseudostates.

• All transitions outgoing a fork vertex must target states in different regions of
a concurrent state.

(self .kind = #fork
and not oclIsKindOf (self .stateMachine,ActivityGraph)) implies
self .outgoing → forAll(t1 , t2 | t1 6= t2 implies

(self .stateMachine.LCA(t1 .target , t2 .target).
container .isConcurrent)

• All transitions incoming a join vertex must originate in different regions of a
concurrent state.

(self .kind = #join
and not oclIsKindOf (self .stateMachine,ActivityGraph)) implies
self .incoming → forAll(t1 , t2 | t1 6= t2 implies

(self .stateMachine.LCA(t1 .source, t2 .source).
container .isConcurrent)

As in the case of history pseudostates, the use of fork and join pseudostates
presents a major drawback from the compositionality point of view since it implies
crossing boundaries. Nevertheless, fork and join pseudostates as defined in UML are
actually syntactical conventions but they do not add new semantics. Fork is proposed
to enter orthogonal regions, by means of a triggered event, in composite states and
the join to exit these regions by means of completion. This behaviour can be obtained
using some of the UML elements studied so far, without using fork and join pseu-
dostates. Figure 5.13 will help us to understand why fork and join are just syntactic
sugar and crossing boundaries avoided.

In Figure 5.13(a) a fork substate can be seen with an incoming transition (as it is
mandatory) and two outgoing transitions arriving states in orthogonal regions (more
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than two outgoing transitions are allowed but our example does not loose generality).
The incoming transition is triggered by an event (it is not mandatory) but the outgoing
transitions must not have event labels nor guards. The join pseudostate has two
incoming transitions from orthogonal regions and an outgoing transition that must
target a state, none of the transitions can be labelled with triggers or guards.

Figure 5.13(b) has the same meaning as Figure 5.13(a) but it does not use fork nor
join pseudostates. From Figure 5.13, it is easy to infer a set of rules that transform
a model that uses forks and joins into a model that eliminates them and therefore it
can be translated applying the formalization given in this chapter. In this way the
modeler can use fork and join as a syntactical convenience when desired but before
to translate the model into a LGSPN the following rules must be applied:

• A transition must be added: It must exit from the state origin of the fork and
must target the concurrent state which is the least common ancestor of the
regions entered. It will be labelled with the trigger of the fork if it exists.

• Each region entered by the fork must add a default entry for each entered state
at any level. See Figures 5.13(c) and (d).

• Each region exited by the join must add a default exit for each state exited at
any level. See Figures 5.13(c) and (d).

• A transition must be added: It must exit from the concurrent state which is the
least common ancestor of the regions entered and must target the target of the
join.

• The fork and join pseudostate and its outgoing and incoming transitions must
be eliminated.

5.6 Junction and choice pseudostates

In UML, junction pseudostates “are semantic-free vertices that are used to chain to-
gether multiple transitions. They are used to construct compound transitions paths
between states. They realize static conditional branch” [Obj01]. However choice pseu-
dostates “when reached, result in the dynamic evaluation of the guards of its outgoing
transitions” [Obj01]. Moreover the following Well-FormednessRules are given in UML:

• A junction vertex must have at least one incoming and one outgoing transition.

(self .kind = #junction) implies
((self .incoming → size ≥ 1 ) and (self .outgoing → size ≥ 1 ))

• A choice vertex must have at least one incoming and one outgoing transition.

(self .kind = #choice) implies
((self .incoming → size ≥ 1 ) and (self .outgoing → size ≥ 1 ))
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Figure 5.14: Fork and join pseudostates.

Junction pseudostates are defined as “semantic-free”, but it is very common to use
them as a syntactical convenience to reuse guards. In Figure 5.14(a), State2 is reached
from State0 when the guard [b < 0] and the guard [a < 0] are true. It must be taken
into account that the guards are evaluated in State0 performing “static conditional
branch”. This behaviour is the same as in Figure 5.14(b) but without reusing guards.
Therefore the purpose of the junction pseudostate is just guard conjunction. As we
have decided that guards are out of the scope of our work, as it was explained in
chapter 4, then the use of the junction pseudostates makes no sense in our models.

Choice pseudostates differ from junction pseudostates only because the guards of
the outgoing transitions are evaluated “at the time the choice point is reached”. In
Figure 5.14(c), if the guard [b < 0] is evaluated to true then the action a := f(m) is
performed and the choice point reached, then the guard [a < 0] is evaluated and if
it is true State2 is reached. This behaviour implies that the meaning of the choice
pseudostate is not guard conjunction but a simple state without procesing capabilities
where evaluate guards, Figure 5.14(d) shows its equivalent. Newly this model element
is discarded in our models since guards are not allowed.

5.7 Synchronous states

A synchronous state “is used for synchronizing two concurrent regions of a state
machine. It is different from a state in the sense that it is not mapped to a boolean
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Figure 5.15: Synchronous state: limited bound to two.

value (active, not active), but an integer. It is used in conjunction with forks and
joins to ensure that one region leaves a particular state or states before another
region can enter a particular state or states. The integer that it is mapped to, the
bound attribute, means the difference between the number of times the incoming and
outgoing transitions are fired” [Obj01]. The Well-FormednessRules in UML are the
following:

• The value of the bound attribute must be a positive integer, or unlimited.
(self .bound > 0 ) or (self .bound = unlimited)

• All incoming transitions to a synchronous state must come from the same region
and all outgoing transitions must go to the same region.
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Figure 5.18: Synchronous state with multiple joins and forks.

5.7.1 Informal interpretation

In the following, the most remarkable points of the interpretation of the synchronous
states are broached stressing how the LGSPN obtained by the translation given in
the next section solves each one of them:

1. “When the source region reaches a synchronization fork, the target states of
that fork become active, including the synch state” [Obj01]. The fact that the
synchronization fork is reached is represented in our LGSPN by a token in the
state ini fork (see in Figure 5.16(b) place p5). Also it can be observed that
a token in this place is used to fire the transitions that enter the target state
ini B and the synch state SynchState.

2. “When the target region reaches the corresponding synchronization join, it is
prevented from continuing unless all the states leading into the synchronization
join are active, including the synch states” [Obj01]. See in Figure 5.16(c) that
this behaviour is obtained in our model by transition t23 whose input places are
SynchState and ini join1.

3. Since the synchronized regions do not need to be siblings, they only must have a
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common ancestor state, models such that depicted in Figure 5.17 are allowed in
UML. But allowing to synchronize not siblings regions the problem of boundary
crossing arises newly, violating encapsulation with the consequent drawback
over the compositionality. Therefore we deal only with the case of synchronising
siblings regions.

4. “Synch states keep count of the difference between the number of times their
incoming and outgoing transitions are fired. When an incoming transition is
fired, the count is incremented by one, unless its value is equal to the value
defined in the bound atributte. In that case, the count is not incremented.
When an outgoing transition is fired the count is decremented by one. An
outgoing transition may fire only if the count is greater than zero, which prevents
the count from becoming negative” [Obj01]. This behaviour is obtained in our
models by two different realizations depending on if the value of attribute bound
of the synchronous state, its size, is unlimited or has any integer value. See
Figure 5.16(b,c) and Figure 5.15(b,c) respectively.

5. “A synchronous state may have multiple incoming and outgoing transitions,
used for multiple synchronization points in each region” [Obj01]. Our interpre-
tation, that is consistent with that of UML but without ambiguities, shows a
clear “Petri net style”: Any fork can increase the value of the count and any
join decrease it. Figure 5.18 shows clearly this behaviour through transitions
t6, t11 that increase this counter by means of increasing the number of tokens
in place p40|SyncState and through transitions t23, t27 that decrease it.

6. “The count is automatically set to zero when its container state is ex-
ited” [Obj01]. This behaviour is obtained in our models by two different re-
alizations depending on if the size of the synchronous state is unlimited or has
any integer value. See transitions t32, t33 in Figure 5.16(d) for the first case
and transitions t33, t40 in Figure 5.15(d) for the second case.

Summarizing, in our interpretation synchronous states are allowed with one or
multiple incoming forks and with one or multiple outgoing joins but taking into ac-
count that all of them must belong to siblings regions. Moreover, it must be remem-
bered that outgoing transitions from a fork and outgoing and incoming trasitions from
and to a join can not be labelled with guards nor events nor actions.

5.7.2 Formal translation

In this section the formal translation of the synchronous states is given. Since
different systems are obtained for the synchronous states depending on their
size (bounded/unbounded), we propose the translation in two different subsec-
tions. Finally, a new subsection is introduced to interpret the synchronous states
(bounded/unbounded) in the context of the composite states.
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A. UnBounded synchronous states

To obtain a labeled system LSu
syn that represents an unbounded synchronous state syn

(cfr. Definition 5.7) it is necesary to compose the labeled systems that interpretate its
incoming forks, LSFu

syn(Definition 5.4), and its outgoing joins, LSJu
syn(Definition 5.6).

The following systems must be formalized: The labelled system, LS fu
fork, that

interpretates one incoming fork (Definition 5.3) and the labelled system, LS ju
join, that

interpretates one outgoing join (Definition 5.5).

Definition 5.3. The system LS fu
fork = (Sfu

fork, ψ
fu
fork, λ

fu
fork) that interpretates one in-

coming fork of an unbounded synchronous state is defined as follows,

For the LGSPN system Sfu
fork = 〈P fu

fork, T
fu
fork, I

fu
fork, O

fu
fork, H

fu
fork,Π

fu
fork,W

fu
fork,M0

fu
fork〉 we

define,

P fu
fork = {p1, p2} ∪ {p}ini, T

fu
fork = {t1},

the functions I fufork(), O
fu
fork(), H

fu
fork(),W

fu
fork(),Π

fu
fork() are:

I fufork(t1) = {p1}, Ofu
fork(t1) = {p2} ∪ {p}ini, H

fu
fork(t1) = ∅,Πfu

fork(t1) = 1,W fu
fork(t1) = 1

The labelling function for places is:

ψfu
fork(p) =































ini fork if p = p1 ∧ fork = name(fork)

synch if p = p2 ∧ ∃t ∈ out(fork) : target(t) = synchst ∧

synchst ∈ SynchState ∧ synch = name(syncst)

ini state if p ∈ {p}ini ∧ ∃tst ∈ out(fork) : target(tst) = st ∧

st ∈ State ∧ state = name(st)

The labelling function for transitions is λfu
fork(t1) = τ .

Definition 5.4. The system LSFu
syn = (SFu

syn, ψ
Fu
syn, λ

Fu
syn) that represents all the incom-

ing forks of the unbounded synchronous state syn is defined as follows,

LSFu
syn =

fork∈Fork syn

| |
{syn}∪Lini

LSfu
fork

Where Fork syn = {fork,∀fork ∈ Pseudostate : ∃t ∈ Transition, sync =
target(t) ∧ fork = source(t)} and Lini = {ini st,∀st ∈ State : ∃t ∈
Transition, source(t) ∈ Fork syn ∧ st = target(t)}

Definition 5.5. The system LS ju
join = (Sju

join, ψ
ju
join, λ

ju
join) that interpretates one out-

going join of an unbounded synchronous state is defined as follows,

For the LGSPN system Sju
join = 〈P ju

join, T
ju
join, I

ju
join, O

ju
join, H

ju
join,Π

ju
join,W

ju
join,M0

ju
join〉 we

define,
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P ju
join = {p1, p2} ∪ {p}ini, T

ju
join = {t1},

the functions I jujoin(), Oju
join(), H ju

join(),W ju
join(),Πju

join() are:

I jujoin(t1) = {p1, p2}, Oju
join(t1) = {p}ini, H

ju
join(t1) = ∅,Πju

join(t1) = 1,W ju
join(t1) = 1

The labelling function for places is:

ψju
join(p) =































synch if p = p1 ∧ ∃t ∈ in(join) : source(t) = synchst ∧

synchst ∈ SynchState ∧ synch = name(synchst)

ini join if p = p2 ∧ join = name(join)

ini state if p ∈ {p}ini ∧ ∃tst ∈ out(join) : target(tst) = st ∧

st ∈ State ∧ state = name(st)

The labelling function for transitions is λju
join(t1) = τ .

Definition 5.6. The system LSJu
syn = (SJu

syn, ψ
Ju
syn, λ

Ju
syn) that represents all the outgo-

ing joins of the unbounded synchronous state syn is defined as follows,

LSJu
syn =

join∈Join syn

| |
{syn}∪Lini

LSju
join

Where Join syn = {join,∀join ∈ Pseudostate : ∃t ∈ Transition, syn =
source(t) ∧ join = target(t)} and Lini = {ini st,∀st ∈ State : ∃t ∈
Transition, join ∈ Join syn ∧ st = target(t) ∧ }

Definition 5.7. The system LSsyn = (Ssyn, ψsyn, λsyn) that represents an unbounded
synchronous state syn is defined as follows,

LSu
syn = LSFu

syn | |
{syn}

LSJu
syn

The system in Definition 5.7 represents a synchronous state syn with unbounded
size that synchronizes several siblings regions in a composite state. But upon exiting
the composite state it is possible that the place syn has tokens and they must be
removed. Figure 5.16(d) shows the elements that must be added to each outgoing
transition of the composite state, they are: a new transition with an input and an
output arc from and to the place that represents the end of the action of the transition
and an input arc from the syn place. Finally an inhibitor arc to the place that
represents the exit of the composite state to the syn place must be added.

B. Bounded synchronous states

To obtain a labeled system LSb
syn that represents a bounded synchronous state syn

(Definition 5.12), it is necesary to compose the labeled systems that interpretate its
incoming forks LSFb

syn (Definition 5.9) and its outgoing joins LSJb
syn (Definition 5.11).
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Definitions 5.8 and 5.10 formalize the following labeled systems: LS fb
fork that inter-

pretates one incoming fork (Definition 5.8) and LS jb
jointhat interpretates one outgoing

join (Definition 5.10).

Definition 5.8. The system LS fb
fork = (Sfb

fork, ψ
fb
fork, λ

fb
fork) that interpretates one in-

coming fork of a bounded synchronous state is defined as follows,

For the LGSPN system Sfb
fork = 〈P fb

fork, T
fb
fork, I

fb
fork, O

fb
fork, H

fb
fork,Π

fb
fork,W

fb
fork,M0

fb
fork〉 we

define,

P fb
fork = {p1, p2, p3, p4} ∪ {p}ini, T

fb
fork = {t1, t2, t3},

the functions I fbfork(), O
fb
fork(), H

fb
fork(),W

fb
fork(),Π

bf
fork() are:

I fbfork(t) =











p1 if t = t1

p4 if t = t2

p3, p4 if t = t3

Ofb
fork(t) =











p4, p5 if t = t1

∅ if t = t2

p2 if t = t3

H fb
fork(t) =

{

p3 if t = t2

∅ otherwise

Πfb
fork(t1) = 1,W fb

fork(t1) = 1

The labelling function for places is:

ψfb
fork(p) =



















































ini fork if p = p1 ∧ fork = name(fork)

synch if p = p2 ∧ ∃t ∈ out(fork) : target(t) = synchst ∧

synchst ∈ SynchState ∧ synch = name(syncst)

count synch if p = p3

τ if p = p4

ini state if p ∈ {p}ini ∧ ∃tst ∈ out(fork) : target(tst) = st ∧

st ∈ State ∧ state = name(st)

The labelling function for transitions is λfb
fork(t) = τ,∀t ∈ T fb

fork.

Definition 5.9. The system LSFb
syn = (SFb

syn, ψ
Fb
syn, λ

Fb
syn) that represents all the incom-

ing forks of a bounded synchronous state syn is defined as follows,

LSFb
syn =

fork∈Fork syn

| |
{syn}∪{count syn}∪Lini

LSfb
fork

Where Fork syn and Lini are defined as in Definition 5.4.

Definition 5.10. The system LS jb
join = (Sjb

join, ψ
jb
join, λ

jb
join) that interpretates one

outgoing join of a bounded synchronous state is defined as follows,
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For the LGSPN system Sjb
join = 〈P jb

join, T
jb
join, I

jb
join, O

jb
join, H

jb
join,Π

jb
join,W

jb
join,M0

jb
join〉 we

define,

P jb
join = {p1, p2, p3} ∪ {p}ini, T

jb
join = {t1},

the functions I jbjoin(), Ojb
join(), H jb

join(),W jb
join(),Πjb

join() are:

I jbjoin(t1) = {p1, p2}, Ojb
join(t1) = {p3} ∪ {p}ini,

H jb
join(t1) = ∅, Πjb

join(t1) = 1, W jb
join(t1) = 1

The labelling function for places is:

ψjb
join(p) =











































synch if p = p1 ∧ ∃t ∈ in(join) : source(t) = synchst ∧

synchst ∈ SynchState ∧ synch = name(synchst)

ini join if p = p2 ∧ join = name(join)

count synch if p = p3

ini state if p ∈ {p}ini ∧ ∃tst ∈ out(join) : target(tst) = st ∧

st ∈ State ∧ state = name(st)

The labelling function for transitions is λjb
join(t1) = τ .

Definition 5.11. The system LSJb
syn = (SJb

syn, ψ
Jb
syn, λ

Jb
syn) that represents all the out-

going joins of the bounded synchronous state syn is defined as follows,

LSJb
syn =

join∈Join syn

| |
{syn}∪{count syn}∪Lini

LSjb
join

Where Join syn and Lini are defined as in Definition 5.6.

Definition 5.12. The system LSb
syn = (Sb

syn, ψ
b
syn, λ

b
syn) that represents a bounded

synchronous state syn is defined as follows,

LSb
syn = LSFb

syn | |
{syn}∪{count syn}

LSJb
syn

The system in Definition 5.12 represents a synchronous state syn with bounded
size that synchronizes several siblings regions in a composite state. But upon exiting
the composite state it is possible that: a) the place syn has tokens and they must be
removed, b) the place count syn must have as many tokens as the size of the state.
Figure 5.15(b,d) shows the elements that must be added to each outgoing transition
of the composite state, they are: a new transition with an input and an output arc
from and to the place that represents the end of the action of the transition and an
input arc from the syn place and an output arc to the count syn place. Finally an
inhibitor arc to the place that represents the exit of the composite state to the syn
place must be added.
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C. The model of a composite state with synchronous states

Definition 5.13. The system LSC = (SC, ψC, λC) that represents the composite
state C that can contain k synchronous states is redefined from Definition 5.2 as
follows,

LSC =







LSflat
C (Def. 5.1) if C has an enclosed “flat” state machine

LSflat
C | |

LevP ∪LstateP

LSCompo | |
LstateP

LSSYN
C otherwise

where
LSSYN

C = LSBOUND
C | |

LstateP

LSUNBOUND
C

LSBOUND
C =

syn∈C

| |
LstateP

LSb
syn LSUNBOUND

C =
syn∈C

| |
LstateP

LSu
syn

The labels not defined are the same as in Definition 5.2.

5.8 The model of a state machine

As well as in UML, in our interpretation a state machine is make up of just one
composite state, the top state. The top state cannot have containing states nor source
transitions. This interpretation allow us to say that a state machine sm with top
state top is represented by the LGSPN obtained by applying Definition 5.13 to top,
i.e. LStop .

5.9 The model of a UML system

In order to create an analysable model for a system assuming that it is described
as a set of k state machines, the discussion given in section 4.11 for the “flat” state
machines is valid, but assuming that the labelled systems for the k state machines
are not produced according to the Definition 4.53 but as given in section 5.8. From
this system a LGSPN model that represent the UML system can be obtained as it
was explained in chapter 7 section 7.2.2.

5.10 Conclusions

In this chapter we have given a formal semantics in terms of LGSPNs to a set of UML
elements not dealed so far. In the following we briefly comment each of them.

Composite states have been translated taking into account that outgoing transi-
tions are inherited by the substates avoiding lock-in process interpretation; internal
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transitions and deferred events are also inherited. Only the default entry is allowed
since the other kinds of entries violate encapsulation and therefore compositionality
cannot be used. Default exit and exit taken inherited transitions are valid but the
other kinds are not due to the same reasons given for the forbidden entries. The
inheritance policy described causes that in case of potencial conflicting transitions in
the UML model our LGSPN model selects the innermost transition.

For the concurrent composite states, as well as for the non-concurrent, only default
entry and default exit and exit taking inherited transitions are allowed. Regions are
not interpreted as composite states since the additional modelling power is outlandish.
The firing policy causes that conflicting transitions in mutually orthogonal regions are
fired with the same probability.

Submachine states are just a syntactical convenience to abstract the state machine
that they represent. They must be substituted by the referenced state machine and
translated to the corresponding LGSPN.

Motivated by [Sim00] we discourage the use of the history pseudostates since they
create complex models. Moreover, it is not possible to formalise them upon our
perspective of compositionality since they provoke crossing boundaries. Nevertheless,
we have given an example of translation at descriptive level.

Fork and join pseudostates are just syntactical conventions. They present the
drawback of crossing boundaries, but they are equivalent to other concepts whose
translation has been given. We have proposed a set of rules to convert fork and join
into tractable structures.

The main motivation of junction pseudostates is to reuse guards while choice
pseudostates are quiescent vertices where evaluate guards. Since we have discarded
the use of guards these model elements are out of the scope of our work.

Synchronous states to synchronize not sibling regions are not allowed in our in-
terpretation since crossing boundaries should be necessary. We have proposed two
different translations for the synchronous states, the first one for synchronous states
whose size is limited and the second one for unlimed synchronous states. It is moti-
vated because each case corresponds with a different synchronization policy.

By composing the translation of the elements presented so far, a LGSPN model
for an entire state machine is obtained. Moreover, by composing the models that
represent several state machines it can be obtained a LGSPN model that represents
a software system described by the mentioned state machines.
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Figure 5.19: Summary of the translation of synchronous states: unlimited bound.
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Figure 5.20: Summary of the translation of synchronous states: limited bound.



Chapter 6

UML Activity Graphs
Compositional Semantics

Chapter 3 stated our proposal of extension of UML semantics for some diagram types
and in chapters 4 and 5 a complete method to translate state machines into GSPN
models was presented. Here we will focus on activity graphs (AG) (the package that
gives semantics to activity diagrams (AD)). A semantics for them will be presented in
terms of labelled generalized stochastic Petri nets (LGSPNs), while we explain their
link with other UML diagrams such as statecharts so as to amplify the expressivity
at system description. This work has been developed in [LGMC02a, LGMC02b].

Activity diagrams represent UML activity graphs and are just a variant of UML
state machines (cfr. [Obj01], section 3.84). In fact, a UML activity graph is a special-
ization of a UML state machine (SM), as it is expressed in the UML metamodel (see
Figure 2.4). The main goal of ADs is to stress the internal control flow of a process
in contrast to statechart diagrams, which represent UML SMs and are often driven
by external events.

It must be noted that in this chapter we only focus in those elements that are
proper of ADs. Remember that when we studied the role of the AD in chapter 3,
we remarked that almost every state in an AD should be an action or subactivity
state, so almost every transition should be triggered by the ending of the execution
of the entry action or activity associated to the state. Anyway, UML is not strict at
this point, so elements from state machines package could occasionally be used when
modeling activities using the AD. Also, we recall that in chapter 3 we decided to
disallow other states than action, subactivity or call states, and thus to accept only
the use of external events by means of call states and control icons involving signals,
i.e. signal sendings and signal receipts. So an activity will not ever be interrupted
when it is described by an AD.

The performance model obtained from an activity diagram in terms of LGSPNs
can be used with performance evaluation purposes with two goals: A) just to obtain
performance measures of the model element they describe or B) to compose this
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performance model with the performance models of the statecharts that the modeled
activity uses in order to obtain a final performance model of the system described by
the referred statecharts.

The chapter is organized as follows. Section 6.1 enumerates the main rules of
the translation method. Section 6.2 analyzes the translation of each element in the
activity graph package into an LGSPN model. Section 6.3 discusses how the stochastic
Petri net model for the whole activity diagram can be obtined and how this model
can be composed with the ones obtained for the state machines. Finally, section 6.4
summarizes the work realized in this chapter.

6.1 Translation rules and formal definitions

A brief description of each AG element and their translation to LGSPNs is presented
in the next section. Section 6.3 illustrates the method to compose those LGSPNs
to obtain the whole model for a concrete AD according to our proposed semantics.
We must note that, in the following, we suppose that every object derived from
ModelElement metaclass has an unique name within its namespace, although it could
be not explicitly shown in the model.

As a rule, the translation of each one of the AG elements can be summarized as a
three-phased process:

step 1 The translation of each outgoing and self-loop transition. It is applicable to
action, subactivity and call states, and to fork pseudostates. Depending on the
kind of transition, a different rule must be applied (see Figures 6.1 and 6.3).

step 2 Composition of the LGSPNs corresponding to the whole set of each kind of
transitions considered in step 1. It is applicable to action, subactivity and call
states, and to fork pseudostates.

step 3 Working out the LGSPN for the element by superposition of the LGSPNs
obtained in the last step (if any) and, occasionally, an additional LGSPN cor-
responding to the entry to its associated state.

The formal definition of one of the LGSPN systems shown in Figure 6.1 is stated
below. The rest of the cases in Figures 6.1 and 6.3 are straightforward derived from
this one, so they will not be explicitly illustrated.

A system for an outgoing timed transition ott of an action state AS (see Figure 6.1,
case 1.a) is an LGSPN LSott

AS
= (Sott

AS
, ψott

AS
, λott

AS
) characterized by the set of transitions

T ott
AS

= {t1, t2}, and the set of places P ott
AS

= {p1, p2, p3}. The input and output
functions are respectively equal to:

Iott
AS

(t) =

{

{p1}, if t = t1

{p2}, if t = t2
Oott

AS
(t) =

{

{p2}, if t = t1

{p3}, if t = t3

There are no inhibitor arcs, so Hott
AS

(t) = ∅. The priority and the weight functions
are respectively equal to:
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Πott
AS

(t) =

{

0, if t = t2

1, if t = t1
W ott

AS
(t) =











rott, if Πott
AS

(t) = 0

pcond, if λott
AS

(t) = cond ev

1, otherwise

where, in this case, rott is the rate parameter of the timed transition t2 and pcond is
the weight of the immediate transition t1.

The weight pcond is assigned the value of the probability annotation attached to
the AD transition ott. If there is not such annotation, pcond is equal to 1/nt, where
nt is the number of elements in the set AS .outgoing.

The rate rott is equal to 1/n if the time annotation attached to the AD transition
is expressed in the format {n sec.}, or equal to 2/n+m if it is expressed in the format
{n−m sec.}.

The initial marking function is defined as ∀p ∈ P ott
AS

: Mott0
AS

(p) = ∅. Finally, the
labeling functions are equal to:

ψott
AS

(p) =











ini AS if p = p1

execute if p = p2

ini nextx if p = p3

λott
AS

(t) =

{

cond ev if t = t1

out λ if t = t2

where, for abuse of notation, AS = AS.name and nextx = ott.target.name.

As they are profusely used in next section, we also define AG as the activ-
ity diagram, LstvertexP the set of labels of state vertices in it, LstvertexP =
{ini target,∀target ∈ AG .transitions→target.name} and LevP as the set of events
in the system, LevP = {e evx,∀evx ∈ Ev} ∪ {ack evx,∀evx ∈ Ev}.

6.2 Translating activity graph elements

The following subsections are devoted to translate each package element into an
LGSPN; the composition of these nets (section 6.3) results in a stochastic Petri net
system that will be used to obtain performance parameters for the modeled element
or to combine it with the stochastic Petri net of the statechart that uses the modeled
action.

6.2.1 Action states

An action state is ‘a shorthand for a state with an entry action and at least one outgo-
ing transition involving the implicit event of completing the entry action’ (cfr. [Obj01],
section 3.85). According to this definition and the translation of simple states in
chapter 4 we should interpret the action as atomic and therefore represent it by an
immediate transition within the LGSPN corresponding to the state. However, if we
considered every action immediate (for action states), then most of the activities mod-
elled by ADs would be immediate too, when they are expected to have a concrete
duration. So we will distinguish between timed and not-timed transitions (in ADs)
to determine the type of transition needed –timed or immediate– and its associated
rate in the resulting LGSPN.
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Translating an action state into LGSPN formalism takes the three steps expressed
in section 6.1. Given an action state AS let q be the number of outgoing timed
transitions OTi of the state (which do not end in a join pseudostate), q′ the number
of outgoing not-timed transitions ONj (which do not end in a join pseudostate), r the
number of outgoing timed transitions OTJm that end in a join pseudostate, r′ the
number of outgoing not-timed transitions OTNn that end in a join pseudostate, s the
number of self-loop timed transitions STk and s′ the number of self-loop not-timed
transitions SNl .

Then for each outgoing or self-loop transition t, we have an LGSPN LSt
AS

=
(St

AS
, ψt

AS
, λt

AS
) as shown in Figure 6.1, cases 1.a-1.f. This fact results in a set of

q + q′ + r + r′ + s + s′ LGSPN models that must to be combined to get a model of
the state AS, LSAS = (SAS, ψAS, λAS).

Firstly we must compose the submodels of the transitions of the same type. Note
that the operators given in Definitions 2.6 and 2.7 are used:

LSOT

AS
=

i=1,...,q

| |
LstvertexP

LSOT i

AS
LSON

AS
=

j=1,...,q′

| |
LstvertexP

LS
ONj

AS

LSST

AS
=

k=1,...,s

| |
ini AS

LSST k

AS
LSSN

AS
=

l=1,...,s′

⊔

ini AS ,out λ

LSSNl

AS

LSOTJ

AS
=

m=1,...,r

| |
ini AS

LSOTJm

AS
LSONJ

AS
=

n=1,...,r′

| |
ini AS

LSONJn

AS

Again, by composing the subsystems just shown, the LGSPN model LSAS is now
defined by:

LS
AS

= ((((LSSN

AS
| |

ini AS

LSST

AS
) | |

ini AS

LSON

AS
) | |

LstvertexP

LSOT

AS
)

| |
ini AS

LSOTJ

AS
) | |

ini AS

LSONJ

AS

Finally, we must remember that UML lets any kind of action to be executed inside
an action state. This means that we might find a CallAction or a SendAction there.
However, UML syntax provides two concrete elements for this type of states: call
states and signal sending icons. We suggest their use, but if an action state is used
instead, then we should apply the translation method described for the equivalent
element (call state or signal sending control icon).

6.2.2 Subactivity states

A subactivity state always invokes a nested AD. Its outgoing transitions do not have
time annotations attached, as the duration activity can be determined translating the
AD and composing the whole system.

The translation of a subactivity state into an LGSPN takes the three steps ex-
pressed in section 6.1. Notice that there is an additional LGSPN that corresponds
with the entry to the state, called basic.
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Then, given a subactivity state SS let q be the number of outgoing transitions Oi of
the state (which do not end in a join pseudostate), r the number of outgoing transitions
OJk that end in a join pseudostate, and s the number of self-loop transitions Sj . Also
let AG ′ be the nested activity diagram and top the name of the first element of AG ′,
top = AG ′.top.

According to the translations shown in Figure 6.1, cases 2.a-2.d, we have a basic
LSGPN LSB

SS
= (SB

SS
, ψB

SS
, λB

SS
) and one LGSPN for each outgoing or self-loop tran-

sition t, LSt
SS

= (St
SS
, ψt

SS
, λt

SS
). Therefore, we have q + r + s + 1 LGSPN models

that need to be combined to get a model of the state SS, LSSS = (SSS, ψSS, λSS).
The LGSPNs corresponding to each set of kind of transitions are now obtained by
superposition:

LSO

SS
=

i=1,...,q

| |
LstvertexP ,end AG

LSOi

SS
LSS

SS
=

j=1,...,s
⊔

end AG,out λ,ini SS

LS
Sj

SS

LSOJ

SS
=

k=1,...,r

| |
end AG

LSOJk

SS

And the final LGSPN model LS
SS

for the subactivity state is defined by:

LS
SS

= ((LSOJ

SS
| |

end AG

LSS

SS
) | |

end AG

LSO

SS
) | |

ini SS

LSB

SS

6.2.3 Call states

Call states are a particular case of action states in which its associated entry action is
a CallAction, so translation of these elements is quite similar. It must be noted that
when a CallAction is executed a set of CallEvents may be generated. For the sake of
simplicity, we assume that at most one event is generated, but the definition can be
extended by adding new places in the LGSPN, in order to consider that possibility
as well.

Besides, the CallAction may be synchronous or not depending on the value of
its attribute isAsynchronous, where synchronous means that the action will not be
completed until the event eventually generated by the action is not consumed by
the receiver. In that case, we need a new place and transition in the corresponding
LGSPN to model the synchronization (see Figure 6.1, cases 3.a, 3.c and 3.e).

To translate a call state, steps to follow are similar to those described in section 6.1.
Given a call state CS,

• If it verifies S.entry.IsAsynchronous = false (i.e., its associated CallAction is
a synchronous call) we will define u as the number of outgoing transitions OSi

of the state (which do not end in a join pseudostate), v the number of outgoing
transitions OJSk that end in a join pseudostate and w the number of self-loop
transitions SSm .

• If it verifies S.entry.IsAsynchronous = true (i.e., its associated CallAction is
an asynchronous call) we will define u′ as the number of outgoing transitions
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OAj of the state (which do not end in a join pseudostate), v′ the number of
outgoing transitions OJAl that end in a join pseudostate, and w′ the number
of self-loop transitions SAn .

Also let evx be an event generated by the call action, evx = S.entry.operation→
ocurrence. Considering this, we have one LGSPN for each outgoing or self-loop
transition t, LSt

CS
= (St

CS
, ψt

CS
, λt

CS
), as shown in Figure 6.1, cases 3.a-3.f. Therefore,

we have either u+ v+w or u′ + v′ +w′ LGSPN models that need to be combined to
get a model of the state CS, LSCS = (SCS, ψCS, λCS). The LGSPNs corresponding to
each set of kind of transitions are now obtained by superposition:

LSOS

CS
=

i=1,...,u

| |
LstvertexP ,LevP

LSOSi

CS
LSOA

CS
=

j=1,...,u′

| |
LstvertexP ,LevP

LS
OAj

CS

LSOJS

CS
=

k=1,...,v

| |
ini CS ,LevP

LSOJSk

CS
LSOJA

CS
=

l=1,...,v′

| |
ini CS ,LevP

LSOJAl

CS

LSSS

CS
=

m=1,...,w

| |
ini CS ,LevP

LSSSm

CS
LSSA

CS
=

n=1,...,w′

| |
ini CS ,LevP

LSSAn

CS

The final LGSPN for the state LS
CS

is defined by one of the two following equa-
tions, depending on whether the action was synchronous or not:

LS
CS

= (LSSS

CS
| |

ini CS ,LevP

LSOS

CS
) | |

ini CS ,LevP

LSOJS

CS
(synchronous)

LS
CS

= (LSSA

CS
| |

ini CS ,LevP

LSOA

CS
) | |

ini CS ,LevP

LSOJA

CS
(asynchronous)

6.2.4 Decisions

Decisions are preprocessed before the AD translation, as it will be mentioned in sec-
tion 6.3.1. They are substituted by equivalent outgoing transitions on action states (as
shown in Figure 6.2), preserving the properties inherent in performance annotations.
Therefore, they do not have to be translated.

6.2.5 Merges

Merges are used to reunify control flow, separated in divergent branches by deci-
sions (or outgoing transitions of states labelled with guards). Often they are just a
notational convention, as reunification may be modelled as ingoing transitions of a
state.

The translation of a merge pseudostate M depends on the kind of target element
of its outgoing transition. Figure 6.3 (cases 5.a and 5.b) shows the direct translation
of the model LS

M
, according to the condition expressed below.
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(a) LS
M

= LS′
M

⇐⇒ (PS .outgoing.target 6∈ Pseudostate ∨
PS .outgoing.target.kind 6= join) (to join)

(b) LS
M

= LS′′
M

⇐⇒ (PS .outgoing.target ∈ Pseudostate ∧
PS .outgoing.target.kind = join) (not to join)

6.2.6 Concurrency support items

UML provides two elements to model concurrency in an AD: forks and joins. Their use
and meaning do not need further explanation, as they have been commonly explained
in classic literature. Translation into LGSPN models is quite simple in both cases.

Given a join pseudostate J , it is translated into the labelled system LS
J

, shown
in Figure 6.3, case 4.c.

To translate forks, three steps must be followed:

• Given a fork pseudostate F let q be the number of its outgoing transitions
Oi. Then, according to the translations shown in Figure 6.3, we have a basic
LSGPN LSB

F
= (SB

F
, ψB

F
, λB

F
) (case 4.a in the Figure) and one LGSPN (case 4.b)

for each outgoing transition t, LSt
F

= (St
F
, ψt

F
, λt

F
). Therefore, we have q + 1

LGSPN models that need to be combined to get a model of the pseudostate,
LSF = (SF , ψF , λF ).

• The LGSPNs corresponding to each set of kind of transitions are obtained by
superposition:

LSO

F
=

i=1,...,q

| |
do fork,LstvertexP

LSOi

F

• And the final LGSPN LS
F

is composed following the expression:

LS
F

= LSB

F
| |

do fork

LSO

F

6.2.7 Initial and final states

Initial pseudostates and final states are elements inherited from UML state machines
semantics. However, unlike it happened on UML state machines (cfr. chapter 4) the
initial pseudostate is not translated into an LGSPN model when translating an AG,
as no action can be attached to its outgoing transition. On the other hand, final states
are translated, but the resulting LGSPN is different from that shown in chapter 4.

Given a final state FS, the LGSPN model LS
FS

= (S
FS
, ψ

FS
, λ

FS
) equivalent to

the state is defined according to the translation shown in Figure 6.3, case 6.a.
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6.2.8 Signal sending and signal receipt

Signal sending and signal receipt symbols are control icons. This means that they are
not really necessary, but they are used as a notational convention to specify common
modeling matters. In our specific case, these symbols are the only mechanisms we
allow to model the processing of external events, and are equivalent to labelling the
outgoing transition of a state with a SendAction corresponding to the signal as an
effect or with the name of the SignalEvent expected as the trigger event, respectively.

As these symbols are control icons, there is not a metaclass corresponding to
these elements in UML metamodel. Therefore, we assume that, before translating
the diagram, a unique identificator is assigned to each one of these elements. So,
when we say t.target.name, where t is a incoming transition of the control icon, we
are refering to this identificator (instead of the name of the real target StateVertex
according to the metamodel).

Given a signal sending/receipt symbol CS , the translation of the symbol depends
on whether this target element is a join pseudostate or not:

• If the symbol is a signal sending, then let SIGS be its pre-assigned identificator.
Its translation into an LGSPN model LS

SIGS
is shown in Figure 6.3, cases

7.c-7.d.

• If the symbol is a signal receipt, then let SIGR be its pre-assigned identificator.
Its translation into an LGSPN model LS

SIGR
is shown in Figure 6.3, cases

7.a-7.b.

It must be noted that, as far as signal sendings is concerned, we have assumed
that at most one event is generated for simplicity, but definition can be extended by
adding new places in the LGSPN to consider that possibility as well.

6.3 The system translation process

In the previous section we have presented our method to translate every AG element
into LGSPN models. Here, we will focus on the whole system translation process,
presenting an overview of the steps to follow and allocating the ideas already pre-
sented in their own timing. The process includes the complete translation method for
AGs and the way to integrate the resulting LGSPN with the ones obtained from the
translation of UML state machines in chapter 5.

6.3.1 Translating activity diagrams into GSPN

As an initial premise we assume that every AG in the system description has exactly
one initial state plus, at least, one final state and another state from one of the
accepted types (action, subactivity or call state). The translation of an AG can then
be divided in three phases, which are presented in the subsequent paragraphs.
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Pre-transformations

Before translating the AG into an LGSPN model, we need to apply some simplifica-
tions to the diagram in order to properly use the translations given in section 6.2.
These simplifications are merely syntactical so the system behaviour is not altered.
Most relevant ones are:

• Suppression of decisions. Figure 6.2 shows a particular case of this kind of
transformation. New decisions could be found in any branch of the chaining
tree, but the Figure has been simplified for the sake of simplicity.

• Suppression of merges / forks / joins chaining, bringing them together into a
unique merge / fork / join pseudostate.

• Deducting and making explicit the implicit control flow in action-object flow
relationships, where aplicable.

• Avoidance of bad design cases (e.g., when the target of a fork pseudostate is a
join pseudostate).

Translation process

Once pre-transformations have been applied we can proceed to translate the diagram
into an LGSPN model. This is done following three steps:

step 1 Translation of each diagram element, as shown in section 6.1.

step 2 Superposition of the LGSPNs corresponding to the whole set of each kind of
diagram elements:

LSactst

AG
=

AS∈ActionStates

| |
LstvertexP

LS
AS

LSsubst

AG
=

SS∈SubactivityStates

| |
LstvertexP

LS
SS

LScalst

AG
=

CS∈CallStates

| |
LstvertexP ,LevP

LS
CS

LSmerge

AG
=

M∈Merges

| |
LstvertexP

LS
M

LSfork

AG
=

F∈Forks

| |
LstvertexP

LS
F

LSjoin

AG
=

J∈Joins

| |
LstvertexP

LS
J

LSfinst

AG
=

FS∈FinalStates

| |
end AG

LS
FS

LSsigse

AG
=

SIGS∈SignalSendings

| |
LstvertexP ,LevP

LS
SIGS

LSsigre

AG
=

SIGR∈SignalReceipts

| |
LstvertexP ,LevP

LS
SIGR

step 3 Working out the LGSPN for the diagram itself by superposition of the
LGSPNs obtained in the previous step:
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LS
AG

= (((((((LSsigre

AG
| |

LstvertexP ,LevP

LSsigse

AG
) | |

LstvertexP

LSfinst

AG
)

| |
LstvertexP

LSjoin

AG
) | |

LstvertexP

LSfork

AG
) | |

LstvertexP

LSmerge

AG
)

| |
LstvertexP ,LevP

LScalst

AG
) | |

LstvertexP ,end AG

LSsubst

AG
) | |

LstvertexP

LSactst

AG

Thanks to this compositional approach, all kind of legal dependencies between
diagrams (as looping dependencies) can be processed. E.g., let AG1 be an activity
graph where SS is a subactivity state in it, SS ∈ AG1.transitions.source, and let AG2

be the activity graph that the state invokes, AG2 = SS.submachine. Also let SS ′ be
a subactivity state in AG2, SS ′∈ AG2.transitions.source, which invokes AG1, AG1 =
SS ′.submachine. The superposition operators allows the performance engineer to deal
with such syntactical issues.

Post-optimizations

Contrasting with pre-transformations, which are mandatory, post-optimizations are
optional. Their objective is just to eliminate some spare places and transitions in
the resulting LGSPN so as to make it more attractive without altering its semantics.
One example of this kind of transformations would be (in subnets of the LGSPN
corresponding to outgoing timed transitions of action states LSOT

AS
) the removal of

the superfluous immediate transitions (and their output and input places) in case of
no conflict.

6.3.2 Composing the whole system

As it has been stated before, in terms of performance evaluation goals we use UML
AGs exclusively to describe doActivities in SCs or activities inside subactivity states
of others AGs. Hence, the merging of nets corresponding to SCs and AGs will be
dealt with first.

Let d be the number of AGs used at system description and LinterfacesP =
{Lini topP , LevP , Lend AGP }, where Lini topP is the set of initial places of the
LGSPNs corresponding to the AGs and Lend AGP is the set of final places of those
nets. Now, we can merge the referred LGSPNs by superposition (of places):

LSad =
AG∈ActivityDiagrams

| |
LinterfacesP

LS
AG

Now let LS′′
sc be the LGSPN corresponding to the translation of the set of SCs

in the model. LS′′
sc was previously obtained by composition (superposition of places)

of the nets obtained for each SC and subsequent removal of sink acknowledge places
(cfr. chapter 4).

Then let T act be the set of transitions in LS ′′
sc labelled activity (cfr. chapter 4)

which represent activities that are described with activity graphs. LSsc is the result
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of that labelled system with the removal of this set of transitions, LSsc = LS′′
sc \

T act. Ingoing places for these transitions (labelled end entry A in LS ′′
sc) will be

now labelled ini top, where top is the name of the first element of the activity graph
AG ′ that represents the activity, top = AG ′.top.name. Similarly, outgoing places
(labelled compl A) will be now labelled end AG ′.

Once done, we can merge the LGSPN systems LSsc and LSad:

LSsc−ad = LSad | |
LinterfacesP

LSsc

The resulting net LSsc−ad often represents the whole system behavior.
A sample case of the translation of a very simple system is illustrated in Figure 6.4.

A state machine and an AG models for the system are presented on the left side of
the Figure. We have obviated some diagrams of the system description so only part
of the resulting LGSPN is included on its right side. That fact results in the lack of
tokens in the initial marking of the net.

The state machine in Figure 6.4 represents the life-cycle of an object from the class
car wash machine, that can be either working or inactive (i.e, waiting for a new car to
be washed). The activity performed by the machine when it is working is described
by the AG below. As it is shown, the machine works in a different way depending on
the amount of money spent by the driver, and can do some tasks simultaneously.

It must be noted that the LGSPN subsystem for the state machine has been
simplified. In order to proceed to the composition of the LGSPN corresponding to
the whole system we should eliminate the transition t1 and change the labels of the
places p2 and p3 to ini weighcoins and end wash car, respectively.

6.4 Conclusions

The main contributions of this chapter can be summarized as follows. We have
given a translation of the activity graph (that models a doActivity) into a labelled
generalized stochastic Petri net model. In this way, it can be composed with any
other labelled generalized stochastic Petri net model that represents a state machine
that uses the doActivity. A formal semantics for the activity graphs is achieved
in terms of stochastic Petri nets. They allow to check logical properties as well
as to compute performance indices. Obviously, this formal semantics represents a
particular interpretation of the “informally” defined concepts of the UML activity
graphs package. Our interpretation is focused on the basis that the activity diagram
is meant for the description of the doActivities in a state machine. A very simple
example of the application of the proposed translation has been developed, it models
a car wash machine.
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Figure 6.4: Car wash machine example



Chapter 7

Software Performance Process

Once the UML diagrams related with performance modeling have been identified and
a notation to describe system load and routing rates has been introduced, it seems
necessary to study how these diagrams should be used to obtain a performance model
from the information they contain.

In this chapter we present a process to obtain performance models that represent
software systems and we explore how to evaluate performance parameters from them.
These issues have been developed in [MCM00b, MCM01b]. The process makes use
of the notation given in chapter 3 to model the system and also it profits from the
translation of these diagrams into stochastic Petri nets introduced in chapters 4 and 5.
As we will see, an interesting characteristic of the process is that the formal model, in
terms of stochastic Petri nets, can be obtained semi-automatically inside the software
development process from the pa-UML models. In this way, without much effort,
the process allows to obtain a performance model as a by-product of the software
life-cycle.

Moreover, to complement our approach of performance evaluation process, we
present the ideas given in [MCM00a]. They explore the use of the “design pat-
terns” [GHJV95] in the performance evaluation process.

The chapter is organized as follows. Section 7.1 presents an example of software
system that will be used in later sections to model and evaluate performance aspects.
The importance of the example comes from its implementation domain, mobile agents,
it is a research area where performance aspects are of special interest. In section 7.2
we present our proposal to evaluate performance of software systems and in section 7.3
the complementary approach based on “design patterns”. These two sections use the
previously mentioned software system as a running example. Some conclusions are
presented in section 7.4.
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Figure 7.1: Architecture for the ANTARCTICA SRS.

7.1 Example: software retrieval service

Before to show our proposal of a process to evaluate performance of software systems,
we present an example of software system. It will be used as a running example in
the next section to illustrate the different steps that conform the process.

The example we are going to deal with belongs to the ANTARCTICA1 sys-
tem [VGGI98, GIM+01] that has been developed by the Interoperable Database
Group [Gru].The ANTARCTICA system has been designed to provide mobile com-
puter users with different software services that enhance the capabilities of their com-
puters. The use of the mobile agents [HCK97, PS98, KRR98] technology plays a
prominent role in the ANTARCTICA system.

Software design and implementation using mobile agents are nowadays involved in
a skepticism halo. There are researchers who question its utility because it could be
a new technology that does provide new skills but it could introduce new problems,
such as the inappropriate use of the net resources. Security and performance are the
most critical aspects for this new kind of software. Therefore the design of software
systems that make use of mobile agents technology is of special importance for us
since the study of performance in this research field becomes crucial.

From the different services developed in the ANTARCTICA project we concen-
trate on the Software Retrieval Service [MIG00b, MIG00a, MIG00c], ANTARCTICA
SRS. The goal of the ANTARCTICA SRS is to provide mobile computer users with
a service to select and download software in an easy and efficient way. Efficient be-

1Autonomous ageNT bAsed aRChitecture for cusTomized mobIle Computing Assistance.
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cause the system optimizes battery consumption and wireless communication costs.
Then the aim of this service is to propose an alternative method to the current web-
based software retrieval systems like [Inc99d, Inc99a, Inc99b, Inc99c]. In chapter 8
a performance comparison among the ANTARCTICA SRS and an approach that is
not based on agents will be presented. The ANTARCTICA SRS provides several
interesting features:

• The system manages the knowledge needed to retrieve software without user
intervention, using an ontology.

• The location and access method to remote software is transparent to users.

• There is a “catalog” browsing feature to help user in software selection.

• The system maintains up to date the information related to the available soft-
ware.

Some of the advantages of the use of mobile agents, related to accessing remote
information, are the following:

• They encapsulate communication protocols.

• They do not need synchronous remote communications to work.

• They can act in an autonomous way and carry knowledge to perform local
interactions at the server system instead of performing several remote procedure
calls.

• They can make use of remote facilities and perform specific activities at different
locations.

System description and modeling assumptions

The ANTARCTICA SRS is situated in a concrete server called the GSN2. Agents are
executed in contexts denominated places [MBB+98]. Mobile agents can travel from
one place to another. The service incorporates two places: one place on the user
computer called the Mobile User place, and other situated on the GSN, called the
Software place (see Figure 7.1).

The procedure that the ANTARCTICA SRS supports for the software retrieval
process is the following: the user sends requests for software to an agent (Alfred). The
request is sent to the GSN and an agent (the browser) is created. The user receives
the visit of the browser, which helps her/him to select the most appropriate software
by browsing a catalog customized to that concrete user. The user can request more
detailed information until s/he finally selects a piece of software. Then a new agent
arrives to the user computer (the salesman) with the selected piece of software.
In the following such agents are described, grouped in two categories:

2The Gateway Support Node is the proxy that provides services to computer users.
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1. The user agent. Alfred is an efficient majordomo that serves the user and is in
charge of storing as much information about the user computer, and the user
her/himself, as possible.

2. Information exploitation. The software manager agent creates and provides
the browser agent with a catalog of the available software, according to the
needs expressed by Alfred (on behalf of the user), i.e., it is capable to obtain
customized metadata about the underlying software. For this task, the software
manager consults an ontology. The software itself can be either stored locally
on the GSN or accessible through the web in external data sources. Thus,
the GSN can have access to a great number of distinct software for different
systems, with different availability, purpose, etc. The goal of the browser agent
is to interact with the user in order to refine a catalog of software until the user
finally chooses a concrete piece of software. When this is done, the salesman
agent carries the program selected by the user to her/his computer, performs
any electronic commerce interaction needed (which depends on the concrete
piece of software), and installs the program, whenever possible.

The following modeling assumptions must be taken into account:

• It must be considered that the user spends some time reading the catalog
presented by Alfred, an exponentially distributed random variable with rate
λobserve (λobserve is obtained as the inverse of the time in seconds) will be used
to model several kinds of users.

• The number of catalogs that the user must navigate until s/he finds the software
is difficult to estimate (it depends on her/his experience), the probability that
the user finds the software by selecting n catalogs models different kind of users,
from naive users, those who need to visit many catalogs to find the software, to
expert users, those who find the software visiting very few catalogs.

• Whenever the user requests a catalog or a concrete piece of software, the software
manager consumes time consulting an ontology to create the catalog or to find
the piece of software. These activities are modeled by variables with rates
λfindCat and λfindFile

• Some of the messages sent among the browser, the software manager, the sales-
man and Alfred travel through the net. A variable with rate λmi

models the
time spent by the message i navigating through the net. Notice that local
messages do not consume net resources.

• As the browser is an intelligent agent, sometimes it does not ask for information
to the software manager, but if it does it, then it will performed using remote
procedure call (RPC) or traveling through the net; the size of the catalog could
be parameterized.

The ANTARCTICA SRS was proposed in [MIG00b] using different technologies,
namely CORBA [Obj99], HTTP and mobile agents. Some performance tests were
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applied to different implementations, in order to select the best way of accessing
remote software. Conclusions were the following:

• Time corresponding to CORBA and mobile implementations are almost identi-
cal for a wide range of files to be downloaded.

• Mobile agent approaches are fast enough to compete with client/server ap-
proach.

Although considering the importance and the relevance of the results of the work
[MIG00b], we would like to stress the enormous cost of implementing different proto-
types in order to evaluate the performance of the different alternatives.

7.2 A process to evaluate performance of software
systems

In chapter 2 we analyzed the requirements that a software performance process should
satisfy. In this section we present our proposal to evaluate performance of software
systems. It tries to be compliant with the principles given in chapter 2.

“Large software systems are the most complex artifacts of human civiliza-
tion” [Bro87], even more if they are distributed systems, the kind of systems for
which we are interested to evaluate performance aspects. In our opinion complex
systems need formal models to be properly modeled and analyzed, also if the kind
of analysis to accomplish is with performance evaluation purposes. Then the use of
formalisms in our proposal is a must.

Two kind of techniques based on models have been proposed and largely discussed
in the literature to evaluate performance: simulation and analytic techniques [Jai91].
But there is a gap in the connection of these techniques with the classical proposals
for software development [You89, PJ80, RBP+91, JCJO92, CAB+94, Mes00] or more
recent design techniques such as design patterns [GHJV95]. Neither of these proposals
for software development deal with performance analysis, at most they propose to de-
scribe some kind of performance requirements. So, it could be argued that there does
not exist an accepted process to model and study system performance in the software
development process. Moreover, this lack implies, as it was identified in chapter 3,
that there is not a well-defined language or notation to annotate system load, system
delays and routing rates in the context of software modeling. Nevertheless, in the last
years a research community has emerged concerned with this kind of problems as it
was commented in chapter 2 when the state of the art was analyzed. Works that are
not based in the UML language also address the problem of the software performance
process, such as [MJP02].

We consider that a proposal to evaluate performance in software systems must
accomplish with both, the notation and the process. The notation should be ex-
pressive enough to identify all the relevant performance parameters in the system
but introducing the minimal set of elements to describe them. In our opinion, the
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performance notation should be part in some sense of the notation used by the soft-
ware designer to model software systems, then trying to avoid the introduction of
new models that represent the load orthogonally to those that describe the dynamics
and the functionality of the system. The notation that we propose to be used in
the process is pa-UML, the extension given in chapter 3 to deal with performance
features at the design stage. Remember that we identify UML as a de facto standard
among the software engineering community, but unfortunately it lacks of the neces-
sary expressiveness to accurately describe the system load, which is needed to obtain
performance figures. To bridge the gap, pa-UML was introduced.

The process should propose the steps to follow to obtain a performance model
and it should give trends to analyze this model. In our opinion, a process to evaluate
software performance should be “more or less transparent” for the software designer.
By “transparent” we mean that the software designer should be concerned as less as
possible to learn new processes since the analysis and design task already implies the
use of a process. Therefore, ideally the process to evaluate performance of software
systems should not exist, it should be integrated in the daily practices of the software
engineer. We have tried that our proposal of process can be used together with any
software life-cycle, and the performance model can be semi-automatically obtained
as a “by-product” of the software life-cycle. Obviously, the proposal is not absolutely
“transparent” for the software engineer but it goes in this direction. Another re-
quirement for the process is that the performance model should be obtained in the
early stages of the software life-cycle. In this way proper actions to solve performance
problems take less effort and less economical impact.

Concerning the steps of the process, we propose the following ones:

1. Model software requirements using the desired software life cycle paradigm,
meaning statecharts the description of the behavior of the active classes of the
system, meaning activity diagrams the refinement of the activities in the state-
charts and the sequence diagrams concrete executions of interest in the context
of the system. While developing the models, the pa-UML proposal must be
used to describe performance requirements or parameters.

2. Apply the translation functions and compositions rules given in chap-
ters 4, 5 and 6 to the pa-UML models to obtain a performance model in terms
of stochastic Petri nets. The functions and compositions rules can be used in
two different ways depending if it is desired to obtain a performance model for
the whole system or for a concrete execution, section 7.2.2 gives the steps to
follow for both approaches. Translation and composition rules can be embeded
in an augmented CASE tool.

3. Define the parameters to be computed and the experiments to test the sys-
tem. Apply (analytical or simulation) techniques to solve the formal model.
This phase can be made easier by integrating the augmented CASE tool with
stochastic Petri net analysers.

In the following, some aspects of the previous steps are detailed. In the first step
the UML diagrams that must be taken into account are at least those included in the
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pa-UML proposal: the use case diagram, the statechart diagram, the activity diagram
and the sequence diagram which allow to model a wide range of distributed software
systems driven by events. Implementation diagrams have not been considered yet
in the process, but as explained in chapter 9 they can be useful to model system
resources, then avoiding the unlimited resources assumption made in our work. A
set of modeling assumptions that parametrize the system should be introduced, see
section 7.1 for different modeling assumptions in the context of the ANTARCTICA
SRS.

Once the pa-UML models have been developed, it should be nice to obtain per-
formance indices for the modeled system from them. As UML lacks of the necessary
formal semantics to apply (simulation or analytical) techniques to obtain performance
figures, we need to provide the language with it. We use Petri nets with this purpose,
Petri nets are a widely used formal paradigm for the modeling and validation of con-
current systems and provided with a stochastic time interpretation [AMBC+95], they
are suitable for performance evaluation. Therefore in the second step, we propose an
automatic translation from the pa-UML diagrams into stochastic Petri nets or what
it is the same to provide pa-UML diagrams with a unique and consistent interpreta-
tion. This interpretation avoids ambiguities introduced by UML in some specification
aspects, for example concurrency, which is fundamental for performance evaluation.
From stochastic Petri nets models, performance indices may be computed by apply-
ing techniques already developed in the literature. In this way, our proposal can deal
with simulation and analytic techniques since stochastic Petri nets are a formalism
that admit them, nevertheless the examples developed in our works have explored
only the second ones. The techniques that we will use in our examples to analyze the
Petri nets models are those implemented in the GreatSPN tool [CFGR95].

Finally, in the third step performance parameters to be computed must be iden-
tified (througput, response time, delays) togheter with the transitions and/or places
in the stochastic Petri net that are involved in their computation. By asigning differ-
ent values to the parameters identified in the modeling assumptions proposed for the
system in the first step, the software analyst can obtain the testbed to be aplied to
the performance model. To modify a parameter of the model it must be taken into
account that each one will be related with a place and/or a transition or with a set
of places and/or transitions. Then to assign a value to a parameter of the model con-
sists in the addition of tokens to a place/s, to modify the probability of an immediate
transition or to change the rate parameter of a timed transition.

We think that an important issue of the approach is that the obtention of a formal
performance model does not imply an additional effort for the software engineer (aside
to describe the performance requirements using pa-UML) since it is obtained as a “by-
product” of the software life-cycle. Therefore the software engineer does not need to
know how to model complex systems using stochastic Petri nets since the nets that
represents the statatecharts and the activity diagrams, component nets, are obtained
automatically by applying the formalization given in chapters 4 and 5. After, by
means of a set of rules, given in section 7.2.2, the sequence diagram will be used to
compose the component nets, obtaining a net that represents the performance model.
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This net will be marked and some of its transitions modified according the third step,
gaining the performance model.

Another advantage of the approach is that it can be integrated in any CASE
tool that supports UML notation. The pa-UML annotations should be introduced as
tagged values as explained in chapter 3. The stochastic Petri nets can be automatically
obtained by implementing the formalization given in chapters 4 and 5 and the rules
in section 7.2.2. We suggest that the implementation of the translation takes as input
model the UML model in XMI [OMG99] format, the standard metadata exchange
format, since the most case tools try to be compliant with it, then an added value is
gained.

Figure 7.2 shows graphically the steps of the proposed approach. The interest of
the figure is to show a general view of the approach, it is not of interest the concrete
information it contains, therefore it does not matter that the details are not legible.
Figure 7.2(a) represents the problem domain (any software system), Figure 7.2(b)
means that the software engineer has modeled the UML diagrams for the system using
the performance annotations proposed in pa-UML (step 1), Figure 7.2(c) reflects that
the formal model in terms of stochastic Petri nets has been obtained (steps 2 and 3),
Figure 7.2(d) is an abstraction of the performance results (step 3) obtained for the
system that will be used by the software engineer to take decisions in the problem
domain in order to obtain the best configuration. Therefore, the approach allows
the software engineer to perform what-if analysis, for example in the ANTARCTICA
SRS: What if the service is attended by two majordomos?, what if there exist five or
fifty users connected to the system?.

In the following subsections the steps of our approach are applied to the example
presented in section 7.1. Section 7.2.1 is devoted to the first step, the modeling using
pa-UML, it will let us to remember the role of each diagram in the performance
process. The section 7.2.2 details the second step of the process explaining the two
different ways to obtain a performace model but applying only one of the proposals
to two different cases. Finally, step three is accomplished in section 7.2.3. How
to perform the analysis for the ANTARCTICA SRS is explained as a guide for the
analysis of others systems.

7.2.1 Modeling the system using pa-UML

In this section we address the first step of the approach, also the pa-UML models for
the running example are going to be developed.

The first step proposes to model software requirements using the desired software
life cycle paradigm with UML notation and the performance annotation given in the
pa-UML proposal. We suggest that the first pa-UML diagram to model should be
the use case diagram, in this way the scenarios (use cases) of interest for the system
are specified. As it was mention in chapter 3 for each use case that describes (a part
of) the system, the probability of its usage by each actor must be annotated. Each
use case j with probability to occur must be described by a sequence diagram with
performance purposes; probability to occur means that there exist at least one actor



160 7. Software Performance Process

{0}

{1}

{0}
User

Electronic
Commerce

Show
Services

Service

Software
Retrieval

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

LSN = ((LSt
N | |LevP LSd

N) | |LevP LSg
N) | |LtrT LSB

N

LSps

LSf

LSf

fork1

LSf

fork2

LSF
Syn1 = LS

f
fork1

‖L LS
f
fork2

L = {Syn1, ini B}

LSj
join1

LSj
join2

LSJ
Syn1 = LS

f
join1

‖L LS
f
join2

L = {Syn1, ini B}

LSSyn1 = LSF
Syn1 ‖L LSJ

Syn1 L = {Syn1}

LSf

fork1

LSf

fork2

LSF
Syn1 = LS

f
fork1

‖L LS
f
fork2

L = {Syn1, ini B}

LSj
join1

LSj
join2

LSJ
Syn1 = LS

f
join1

‖L LS
f
join2

L = {Syn1, ini B}

LSSyn1 = LSF
Syn1 ‖L LSJ

Syn1 L = {Syn1}

Figure 7.3: Use Cases

i in the system such that its probability to make use of the use case Pij is greater
than zero. Each sequence diagram in the previous set will be modeled taking into
account that it represents a concrete execution of interest in the context of the system
by means of the exchange of messages among objects. Therefore, they are useful
from the performance evaluation point of view only when figures for the particular
execution they represent are of interest. If it is desired to obtain figures for the
behavior of the whole system then sequence diagrams are not necessary. The figures
can be obtained from the information available in the statecharts. In the sequence
diagrams the routing rates for the messages and its size will be annotated. After, a
statechart diagram for each active class in the system should be modeled, meaning its
behavior. Each statechart will be annotated with the duration of the activities, the
routing rates for the messages and the size of them. Last, if it is of interest to detail
some of the activities in the statecharts, then an activity diagram for each activity
will be modeled. They will be annotated with the duration of the fine grain activities
and the probabilities in the transitions.

The models developed following this first step do not express concurrency sat-
isfactorily. For example, in the running example that we are treating we have not
decided a priori how many requests should attend a majordomo. Moreover, we can-
not parametrize the system to answer questions such as how many concurrent users
can use the system, etc. These reasons, among the previously explained, provoke the
necessity to obtain a formal model that solves the ambiguities. The next step (sec-
tion 7.2.2 proposes the translation of the models obtained in this step into stochastic
Petri nets.

Use Cases

Figure 7.3 shows the use cases needed to describe the dynamic behavior of the
ANTARCTICA SRS system and the unique actor that interacts with the system,
the “user”. The system deals with three different use cases: “show services”, “soft-
ware retrieval service” and “e-commerce”. Among the uses cases that describe the
system, it is of interest to evaluate performance figures only for the software retrieval
service use case, since it is the unique that has an association link with an actor with
probability to be used, concretely 1. The use cases are described in the following.
Show services use case description.
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Figure 7.4: Sequence diagram for the Software Retrieval Service use case

• Principal event flow: the use case goal is to show to the user the available
services that the system offers. The Software Retrieval Service is one of those
services and it is also described as a use case.

• Probability to be executed by the user: 0 (since it is not of interest to evaluate
performace figures in this use case).

Software retrieval service use case description.

• Principal event flow: the user requests the system for the desired software. The
browser gets a catalog and the majordomo, Alfred, shows it to the user, who
selects the software s/he needs.

• Exceptional event flow: if the user is not satisfied with the catalog presented,
s/he can ask for a refinement. This process could be repeated as many times as
necessary until the user selects a concrete piece of software.

• Probability to be executed by the user: 1.

Electronic commerce use case description.
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Figure 7.5: Statechart diagram for the user

• Principal event flow: the goal is to provide the user an e-commerce activity and
the download of the software selected in the software retrieval service use case.

• Probability to be executed by the user: 0.

Sequence diagrams

In a sequence diagram two kind of messages were distinguished: Those that do not
consume time and those that do. In a mobile agent system, messages sent among
objects on the same computer are considered of the first kind and messages sent
among objects on different computers as the second kind.

The annotations proposed in chapter 3 to model the load of the messages and
its routing rates are used in the sequence diagram that models the running example,
see Figure 7.4. For an example of the first kind of annotations see message m1
that is labeled with {1 Kbyte}. For this message the annotation is interpreted as
a tagged value in the following way, TaggedValue.name = performance annotation,
TaggedValue.dataValue = {1 Kbyte}, TaggedValue.referencedValue = m1. The second
kind of annotations is illustrated by the message that has associated the refine catalog
event whose probability of success is equal to {1-p}.

Statechart diagrams

The statecharts modeled for the ANTARCTICA SRS (Figures 7.5 to 7.9) show the
guards attached to the transitions, but only with documentary purposes since they
will not be translated to a guard language in the formalization proposed in chap-
ters 4 and 5.

Three kinds of annotations were proposed for the statecharts in chapter 3: the
duration of the activities, the size of the messages and the routing rates. As an exam-
ple of the first kind see label {time} associated to the activity observe in Figure 7.5.
This annotation means a variable that will allow to parametrize the system to study
it taking into account users that spend different amounts of time observing a catalog.
The annotation is interpreted as follows, TaggedValue.name = performance annota-
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Figure 7.6: Statechart diagram for Alfred
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Figure 7.7: Statechart diagram for the Software Manager
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Figure 7.8: Statechart diagram for the Browser
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Figure 7.9: Statechart diagram for the Salesman

tion, TaggedValue.dataValue = {time}, TaggedValue.referencedValue = act, act.name =
observe.

We now present the statechart diagrams for our example using the pa-UML
notation.
User statechart diagram. In Figure 7.5 the behavior of a user is represented. The
user is in the wait state until s/he activates a select sw service event. This event
sets the user in the waiting for catalog state. The observe GUI catalog event, sent by
Alfred, allows the user to examine the catalog to look for the desired software. If
it is in the catalog, the users selects the select sw event, otherwise s/he selects the
refine catalog event.

Alfred statechart diagram. The example supposes that Alfred is always present in the
system, no creation event is relevant for our purposes (Figure 7.6). Alfred’s behavior
is typical for a server object behavior. It waits for an event requesting a service
(select sw service, show catalog GUI, refine catalog or select sw). For each of these
requests it performs a concrete action, and when it is completed, a message is sent
to the corresponding object in order to complete the task. After the message is sent,
Alfred returns to its wait state to serve another request. The stereotyped transition
� more services � means that Alfred may attend other services that are not of
interest here.

Software manager statechart diagram. Like Alfred, the Software Manager behaves
as an server object. It is waiting for a request event (more information, get catalog,
request) to enable the actions to accomplish the task. Figure 7.7 shows its statechart
diagram; it is interesting to note the actions performed to respond the get catalog
request. First, an ontology is consulted and, after that, two different objects are
created, those involved in task management.

Browser statechart diagram. The statechart diagram in Figure 7.8 describes the
Browser’s life. It is as follows: once the Browser is created it must go to the
MU Place, where it invokes Alfred’s shows catalog GUI method to visualize the previ-
ously obtained catalog. At this state it can attend two different events, refine catalog
or select sw. If the first event occurs there are two different possibilities: first, if the
Browser has the necessary knowledge to solve the task, a refinement action is directly
performed; second, if it currently has not this background, the Browser must obtain
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information from the Software Manager, by sending a more information request or
by traveling to the software place. If the select sw event occurs, the Browser must
create a Salesman instance and die.

Salesman statechart diagram. The Salesman’s goal is to give e-commerce services,
as we can see in Figure 7.9. After its creation it asks the Software Manager for sale
information. With this information the e-commerce can start. This is a complex task
that must be described with its own use case and sequence diagram and it is not
developed in this work.

7.2.2 Modeling with Petri nets

At this point, we have modeled the ANTARCTICA SRS system with pa-UML nota-
tion, taking into account the load of the system in the use cases, sequence diagrams
and the statechart diagrams. So, a pragmatic model of the system has been obtained.
But this representation is not precise enough to express the requirements proposed for
the system since it is desired to predict the system behavior in different ways. First,
we want to study how the system works with only one user served by one majordomo.
On the other hand, it is also of our interest to know the system behavior when sev-
eral users are served by only one majordomo, or by several majordomos. In order to
obtain answers to these questions, performance (analytical or simulation) techniques
should be applied to the developed pa-UML diagrams, but as we have explained, there
is a lack in this field because no performance model exist for UML. Moreover, the
pragmatic model is not expressive enough to describe system concurrency as needed
to represent for example the existence of several majordomos (since UML models con-
currency in a very poor way). To solve these lacks, our proposal chooses stochastic
Petri nets as formal model, because it has the remarked capabilities and also there are
well-known techniques to analyze system performance of such models models. Thus,
without increasing the modeling effort, it could be possible to avoid the necessity of
implementing the system for predicting performance figures.

Two different approaches to create a final analyzable model of the system in
terms of stochastic Petri nets can be devised. The first approach will be used
when performance figures for the whole system must be computed and the second
one when performance figures for a concrete execution of the system must be obtained.

First approach
The method to create a stochastic Petri net that represents the behavior of the

whole system (i.e. all the possible execution paths in the system) is formalized in
chapters 4 and 5 for the case of “flat” state machines and “non-flat” state machines
respectively. In the following we describe informally the proposed strategy, consider-
ing that there do not exist activity diagrams. If there exist activity diagrams we refer
to chapter 6.

• First, for each statechart a “component” net (a stochastic Petri net) is obtained
by applying the definitions in chapters 4 and 5 to each element (action, activity,
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transition, . . . ) of the statechart.

• When each component net has been obtained they must be composed to create
another stochastic Petri net that represents the whole system, the “system”
net. The composition is performed by applying Definition 4.54 for the case of
“flat” state machines and following the steps in section 5.9 for “non-flat” state
machines. But this net cannot be analyzed yet since the issues in the following
steps must be considered:

1 If the analysis will be performed in the steady-tate, then it must be guaranteed
that the “system” net is live and cyclic. To achieve it, each component net must
be live. A component net is live when its corresponding statechart has not sink
states, i.e. each state can be reached from any state. For example, nets that do
not agree with this requirement are those obtained from a statechart with final
state at the top most level. In this case, a transition must be created with an
input arc from the place that represents the final state of the statechart and an
output arc to the place that represents the initial state of the statechart. As an
example we are going to describe how to perform it in the component Petri net
for the salesman, see Figure 7.12. It must be created a new transition with an
arc from place P157|ini f, that represents the final state of the salesman, and an
arc to place P132|ini ps, that represents the initial state. The addition of this
new transition and arcs means in the statechart that when an object (resource)
is destroyed, immediately a new one of the same kind is created. It must be
remembered that out proposal assumes the hypothesis of “infinite resources”
in the system. Obviously, these changes must be realized in the component
net when it belongs to the “system” net, but we have illustrated them over an
isolated component net for simplicity.

As a conclusion, statecharts with sink places cannot be analyzed, they mean
that the system cannot evolution at a certain point.

2 The initial marking for the system net must be defined. The tokens should
represent the population (resources) of the system. We suggest that the places
that represent the initial pseudostates at the top most level in each statechart
will be marked placing as many tokens as instances (resources) of the class
should be considered. For those statecharts without initial pseudostate, a state
of the diagram should be chosen for this purpose, then marking its corresponding
place in the net.

For the ANTARCTICA SRS users/requests are represented by tokens in the
place P1|ini wait, see Figure 7.10; instances of Alfred are represented by tokens
in the place P30|ini wait, see Figure 7.13; instances of software manager are
represented by tokens in the place P164|ini wait, see Figure 7.14 and finally
salesmen are modeled by tokens in place P132|ini ps in Figure 7.12.

Since the resources of the system should be changed to represent different tests
for the system, the initial marking can change for different experiments (one
user and one majordomo), (one majordomo and several user, etc.).
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3 For the transitions created by Definition 4.6, i.e., those that represent activity
duration, it must be calculated the rate rdo of the exponentially distributed
random variable that models its duration. As an example, see in Figure 7.7 the
activity create browser in the state E5 with a duration of {1 sec.}. The time
is converted into msec., 1000 msec., and the inverse 0.001 is the rate of the
transition T160|create browser in the net of the Figure 7.14.

4 Some of the immediate transitions may be in conflict because they represent
outgoing transitions exiting from the same state in a statechart either labeled
with the same event or they are immediate outgoing transitions. A probabil-
ity to occur must be assigned to each one of them. As an example, see in
Figure 7.8 the immediate transitions exiting from the state E3. They are rep-
resented in Figure 7.11 by transitions t77|info nt, t|info nl and t79|not info n.
Normally, these situations are related with a modeling assumption, in this case
these transitions model assumption 4 in section 7.1.

5 For each message sent among remote objects, the time spent by the message
traveling through the net must be modeled with a timed transition. For example,
the message create salesman sent by the browser to the salesman (see Figure 7.4)
is modeled in the system net (see Figure 7.15) by a new transition T173 and
a new place P196. The place is connected to the transition by an output arc.
The place has an input arc from the transition t69|S createS that represents the
departure of the message and the new transition has an output arc to the place
P134|e createS that represents the arrival of the message. The arc that connects
the transition t69|S createS to the place P134|e createS must be removed. The
rate of the transition is calculated depending on the speed of the net and the
size of the message. Being 1 Kbyte the size of the create salesman message and
100 Kby/sec. the speed of the net, it will arrive in 0.01 seconds supposing that
the net has not fails. Then, in this example the rate of the transition T173 will
be 100. By modifying the speed of the net, several tests can be created.

It could be argued that exponential assumption is not realistic for the modeling
of network delays, and that heavy tailed distributions would be better. However,
a performance model must many times lose in accuracy of the representation of
reality in order to be able to be analyzed.

Therefore the information contained in the statecharts is enough to create a
performance model, the “system” net, for the whole system. Nevertheless, we
have modeled a sequence diagram for the ANTARCTICA SRS that represents the
complete execution of the system with illustrative purposes, since it is easier to
understand the behavior of the system from only one diagram, the sequence diagram,
than from several diagrams, the statecharts. But we want to remark that in this
case the sequence diagram does not represent a particular execution but a complete
execution of the system. It is important to emphasize that because the second
approach uses the sequence diagram as a tool to represent particular executions of
the system.
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Second approach
A performance model, in terms of Petri nets, to compute indices for particular

executions of the system can also be obtained, in contrast to the complete execution
of the system described by the first approach.

A concrete execution of the system can be modeled in UML by means of a sequence
diagram. The LGSPN that represents the execution of interest of the system is
obtained from the “component” nets, as in the first approach, but also using the
target sequence diagram to compose them. In this case the performance annotations
modeled in the sequence diagram (load and routing rates) will be of interest instead
of the annotations in the statecharts.

This approach is part of the work developed in [BDM02] but it is out of the scope
of this work.

Once the LGSPN that represents the performance model of the system or a
concrete execution of it has been obtained (either by using the first or the second
approach) then it could be necessary to transform it into a stochastic well formed
net [CDFH93]. It occurs when different kinds of resources in the net should be syn-
chronized. An example will be seen for the ANTARCTICA SRS later in this section.
Also, it must be decided which places and/or transitions are of interest to compute
performance indices, as we will see in the next section when performance results are
presented.

Returning to the ANTARCTICA SRS system, the design proposed in [MIG00b]
deals with one user and one majordomo. Petri nets allow to represent cases such as:

1. One user and one majordomo.

2. Several users served by one majordomo.

3. Many users served by many majordomos, once per request.

In the following, we model the first two proposed systems, which are illustrative
enough to apply the proposal and to introduce the stochastic well formed nets. For
the first system –one user and one majordomo– GSPN have the expressive power
to accomplish the task. To study the second system, several users served by one
majordomo, stochastic well-formed colored Petri nets [CDFH93] are of interest since
each request is associated to a browser along the software retrieval process. Once
the systems are modeled, we use analytic techniques implemented in GreatSPN
[CFGR95] tool to obtain the target performance requirements.

Petri net model for a system with one majordomo and one user

Figures 7.10, 7.13, 7.14, 7.11 and 7.12 model the component nets of the system,
i.e. the LGSPNs for the user, Alfred, the software manager, the browser agent and
the salesman, respectively. They have been obtained by applying the definitions given
in chapters 4 and 5 for each element in a statechart (activities, outgoing transitions,
. . . ).

In the following, we remark some important aspects of these nets.
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Figure 7.10: User LGSPN component

User component net. The number of tokens in place P1|ini wait models how many
users supports the system. This parameter cannot be modeled in the UML diagrams.
The assumption, λexamine (cfr. section 7.1) is modeled in transition T12|observe. The
choice between transitions t13 and t14 models the assumption about the probability
that the user finds the software by selecting n catalogs.

Browser component net. Despite the difficult readability of this net, it must be
pointed out that, among others, it reflects the important assumption that states that
sometimes the browser does not ask for information to the software manager, but if
it does it, then it will performed using RPC or traveling through the net. Transitions
t77, t78 and t79, are involved in its modeling.

Alfred component net. It is important to note that all the transitions labeled
add infoX model the activities performed by Alfred to manage the information.

Software manager component net. The third modeling assumption, that expresses
that the software manager consumes time consulting an ontology to create the
catalog or to find the piece of software, is modeled by the transition T135|get info.
The number of tokens in place P164|ini wait models how many browsers the software
manager can attend. This parameter cannot be modeled in the UML diagrams.

From these component nets and applying the steps for the first approach, a
performance model has been obtained that represents the execution of the whole
system. The performance model is represented by the LGSPN shown in Figure 7.15.

Petri net model for a system with one majordomo and several users

The goal, as in the previous case, is to obtain the LGSPN that model the compo-
nents and the execution of the system. In order to model with LGSPNs the situation
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Figure 7.12: Salesman LGSPN component

of several users being served by one majordomo, it is necessary to mark some places
in the component nets with several tokens.

Let us begin with the component nets. As in the previous system, the component
nets are those obtained by applying the definitions given in chapters 4 and 5 for each
element in a statechart. The LGSPNs for Alfred and the software manager will be
the same as in the previous system, because only one instance of each is present in the
system. On the contrary, the system will have as many instances of users, browsers
and salesmen as required, suppose five for the example. For instance, in the net for
the user, each token in the place wait UserforService will represent a request to the
system.

Moreover the system must distinguish between different tokens (they represent
different requests), then we add a color domain for the requests, thus leading to
stochastic well-formed colored Petri nets [CDFH93].

Now, pay attention on Figure 7.16, which represents the well-formed colored Petri
net for the user. The R color means that the system deals with one to five requests
and the initial marking m1 in place wait for service denotes that all class instances
will be used. Moreover, all the places in the net have color R and the arcs are labeled
with the identity function (<x>), in this way only one request could be fired once a
time.

Figure 7.17 shows the well formed colored Petri net for the browser. Initial marking



172 7. Software Performance Process

P32|e_gC

P28|end_gC_info1_ce

P27|info1_accept_ce

P26|compl_info1

P25

P24|ini_info1

P61

P56

P55

P52

P51|ini_EC

P63|e_rCb

P60

P58

P56|compl_info2

P54

P52|ini_info2

P61|e_sSb P59

P57

P55|compl_info3

P53

P51|ini_info3

P50|ack_rC

P42

P41

P40|compl_create

P39

P38|ini_create

P31|compl_wait

P8|ack_sSs

P10|e_oGc

P30|ini_wait

P34|e_sC
P35|ack_sC

P36|wait_accept_sC

P37|end_l_wait_sC

P43|wait_accept_sSs

P44|end_l_wait_sSs

P43|wait_accept_sS
P44|wait_accept_rC

P45 P46

P47|e_sS P48|ack_sS
P49|e_rC

P47

P48

P49|e_eC
P50|ack_sSs

T22|add_info1

t46|elec_commerce
T46|add_info2T45|add_info3

T32|create_GUI

t25|l

t24|gC

t23|out_ce

t21

t49|l

t48|l

t47|ce

t45

t52|l

t50|rCb

t48|out_ce

t44

t51|l

t49|sSb

t47|out_ce

t43

t42

t35

t34

t43|lt42|l

t41t40

t39t38

t38|l
t35|l

t34|oGc

t33|out_ce

t31

t37

t36

t30|l

t29

t28

t27

P
S
fr

ag
re

p
la

ce
m

en
ts

L
S

d N

L
S

D N
=

L
S

B N
‖ L

L
S

d N
L

=
{s
en
d
,d
ef

}
L
S

t N

L
S

I N
=

L
S

B N
‖ L

L
S

t N
L

=
{i
n
t,
en
d
in
t}

L
S

g N

L
S

O N
=

L
S

B N
‖ L

L
S

g N
L

=
{o
u
t,
ou
t c

e
,l
oo
p
N
,e
n
d
in
t}

L
S

N
=

((
L
S

t N
|
| L

e
v

P
L
S

d N
)
|
| L

e
v

P
L
S

g N
)
|
| L

tr
T
L
S

B N

L
S

p
s

L
S

f

L
S

f f
o

r
k
1

L
S

f f
o

r
k
2

L
S
F S
y
n
1

=
L
S
f fo

r
k
1

‖
L

L
S
f fo

r
k
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S

j j
o

i
n
1

L
S

j j
o

i
n
2

L
S
J S
y
n
1

=
L
S
f jo

in
1

‖
L

L
S
f jo

in
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S
S
y
n
1

=
L
S
F S
y
n
1

‖
L

L
S
J S
y
n
1

L
=

{
S

y
n
1
}

L
S

f f
o

r
k
1

L
S

f f
o

r
k
2

L
S
F S
y
n
1

=
L
S
f fo

r
k
1

‖
L

L
S
f fo

r
k
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S

j j
o

i
n
1

L
S

j j
o

i
n
2

L
S
J S
y
n
1

=
L
S
f jo

in
1

‖
L

L
S
f jo

in
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S
S
y
n
1

=
L
S
F S
y
n
1

‖
L

L
S
J S
y
n
1

L
=

{
S

y
n
1
}

Figure 7.13: Alfred LGSPN component

m1 in place P1 shows that a maximum of five browsers could be created, one for each
users request. Salesman well-formed colored Petri net (see Figure 7.18) has been
designed in the same way.

Now, we are going to focus on the complete well-formed colored net for the system,
see Figure 7.19. The same steps given when the first approach was presented must
be taken into account. In addition, the following rules will be applied concerning the
colors:

Rule 1. All colors and markings defined for the component nets will appear in the
net system.

Rule 2. The places with color and/or markings in the components nets will appear
in the net system in the same way.

Rule 3. The arcs labeled in the component nets will appear in the net system in the
same way.

Rule 4. Conflicting arcs are those that appear labeled in a component net but not
in the component net which it is synchronized. When conflicting arcs appear, the net
system must have the two arcs labeled, preserving in this way the richest semantic.



7.2. A process to evaluate performance of software systems 173

P177|e_replySal

P178|end_replySal_E3_ce

P176

P175|compl_E3

P174

P173|ini_E3

P183

P182

P181

P180

P179|ini_E4

P189

P188

P187

P186

P185

P184|ini_E5

P171|end_l_wait_gC

P170|wait_accept_gC

P38|ack_gC
P32|e_gC

P142|ack_r

P169|end_l_wait_r

P168|wait_accept_r

P141|e_r

P167|end_l_wait_mI

P166|wait_accept_mI

P111|ack_mIP110|e_mI

P165|compl_wait

P164|ini_wait

P112|e_reply

P163|end_reply_E1_ce

P162

P161|compl_E1

P160

P159|ini_E1

T150|add_info4 T155|create_catalog

T160|create_browser

T135|get_info

t153|l

t152|replySal

t151|out_ce

t149

t158

t157|createCat

t156|out_ce

t154

t164|l

t163|E_createB

t162|S_createB

t161|out_ce

t159

t148|l

t147

t142

t146|l

t145

t141

t144|l

t143

t140

t139

t138|l

t137|reply

t136|out_ce

t134

P
S
fr

ag
re

p
la

ce
m

en
ts

L
S

d N

L
S

D N
=

L
S

B N
‖ L

L
S

d N
L

=
{s
en
d
,d
ef

}
L
S

t N

L
S

I N
=

L
S

B N
‖ L

L
S

t N
L

=
{i
n
t,
en
d
in
t}

L
S

g N

L
S

O N
=

L
S

B N
‖ L

L
S

g N
L

=
{o
u
t,
ou
t c

e
,l
oo
p
N
,e
n
d
in
t}

L
S

N
=

((
L
S

t N
|
| L

e
v

P
L
S

d N
)
|
| L

e
v

P
L
S

g N
)
|
| L

tr
T
L
S

B N

L
S

p
s

L
S

f

L
S

f f
o

r
k
1

L
S

f f
o

r
k
2

L
S
F S
y
n
1

=
L
S
f fo

r
k
1

‖
L

L
S
f fo

r
k
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S

j j
o

i
n
1

L
S

j j
o

i
n
2

L
S
J S
y
n
1

=
L
S
f jo

in
1

‖
L

L
S
f jo

in
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S
S
y
n
1

=
L
S
F S
y
n
1

‖
L

L
S
J S
y
n
1

L
=

{
S

y
n
1
}

L
S

f f
o

r
k
1

L
S

f f
o

r
k
2

L
S
F S
y
n
1

=
L
S
f fo

r
k
1

‖
L

L
S
f fo

r
k
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S

j j
o

i
n
1

L
S

j j
o

i
n
2

L
S
J S
y
n
1

=
L
S
f jo

in
1

‖
L

L
S
f jo

in
2

L
=

{
S

y
n
1
,
in

i
B
}

L
S
S
y
n
1

=
L
S
F S
y
n
1

‖
L

L
S
J S
y
n
1

L
=

{
S

y
n
1
}

Figure 7.14: Software manager LGSPN component

As an example of rule 3 see outgoing arcs for the synchronized transitions select sw
and alfred.select sw in Figures 7.13 and 7.16 respectively.

We remark that the complete well-formed colored net for the system describes
concurrency at the same level as the complete net for the system given in the previous
section. Moreover, it introduces a new level of concurrency. The use of colored
tokens models concurrent user requests of a complete service, as it can be seen in the
select sw service transition, that can fire several tokens from place wait UserforService
representing several user requests.

7.2.3 Performance results

In the last step of the process, the LGSPN or the SWN nets models that represent the
execution of the complete system or the execution of a concrete scenario of interest
are the input models to obtain performance figures. It will be achieved by applying
analytical or simulation techniques to solve the formal model. The places and/or
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Figure 7.16: User SWN component

transitions that compute parameters of interest for the system must be identified
(response time, delays, throughput). The modeling assumptions for the system must
be taken into account in order to study the parameters.

The results for the ANTARCTICA SRS have been obtained from the complete
nets that model the examples; the complete net that models the case in which the
system is used by one user, who is attended by only one majordomo (Figure 7.15) and
the complete net that models the case in which the system is used by several users,
which are attended by only one majordomo (Figure 7.19).

In the case of the ANTARCTICA SRS, it is of interest to study the system re-
sponse time in the presence of a user request. To obtain the response time, first the
throughput of the t6|E sSs transition, that represents the end of the select sw service
message in the net system, will be calculated by computing the steady state distri-
bution of the isomorphic Continuous Time Markov Chain (CTMC) with GreatSPN
[CFGR95]; finally, the inverse of the previous result gives the system response time.
Moreover it is important to know which are the bottlenecks of the system and identify
their importance. There are two possible parts which can decrease system perfor-
mance. First, the trips of the Browser from the “user place” to the “software place”
(and way back) in order to obtain new catalogs. Second, the user requests for catalog
refinements, because s/he is not satisfied with it.

In order to study the system response time and the two possible bottlenecks, the
modeling assumptions described in section 7.1 must be considered. Then we have
developed a test taking into account the following possibilities:

1. When the browser needs a new catalog (under request of the user) there are
several possibilities:

• The browser has enough information to accomplish the task or it needs
to ask for the information. It is measured by the t79|not info need tran-
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Figure 7.18: Salesman SWN component

sition. We have considered an “intelligent browser” which does not need
information the 70% of the times that the user asks for a refinement.

• When the browser needs information to perform the task, it may request
it by a remote procedure call (RPC) (represented in the net system by
the t78|info need local transition) or it may travel through the net to the
Software place (represented in the net system by the t77|info need travel
transition) to get the information and then travel back to the MU Place.
In this case, we have considered two scenarios. First, a probability equal to
0.3 to perform a RPC, so a probability equal to 0.7 to travel through the
net. Second, the opposite situation, a probability equal to 0.7 to perform
a RPC, therefore a probability equal to 0.3 to travel through the net.

2. To test the user refinement request, we have considered two different possibili-
ties. An “expert user” requesting a mean of 10 refinements, and a “naive user”
requesting a mean of 50 refinements. Transitions t14|rC that represents the mes-
sage refine catalog and transition t15|sS that represents the message select sw
model this behavior.

3. The size of the catalog obtained by the browser can also decrease the system
performance. We have used five different sizes for the catalog: 1 Kbyte, 25
Kbytes, 50 Kbytes, 75 Kbytes and 100 Kbytes.

4. The speed of the net is very important to identify bottlenecks. Also the time
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spent by sending remote messages depends on the speed of the net. It must be
measured as explained in step 5 in the previous section. We have considered
two cases: a net with a speed of 100 Kbytes/sec. (“fast” connection speed) and
a net with a speed of 10 Kbytes/sec. (“slow” connection speed). The messages
sent between Alfred and the software manager, the browser and the software
manager, and the browser and the salesman are those that travel through the
net. They are represented by the transitions get catalog, more information, reply
and create salesman.

5. The time spent reading the catalog is measured by the transition T12|observe.
We have supposed an “expert user” who reads the catalog in ten seconds.

One user and one majordomo

Figure 8.13(a) shows system response time (in minutes), for the net in Figure 7.15,
supposing “fast” connection speed, “expert user” and an “intelligent” Browser. One
of the lines represents a probability equal to 0.7 to travel and 0.3 to perform a RPC,
the other line represents the opposite situation. We can observe that there are small
differences between the RPC and travel strategies. Such a difference is due to the
round trip of the agent. As the agent size does not change, this difference is not
relevant for the global system performance. Thus, we show that the use of mobile
agents for this task does not decrease the performance.

Figure 8.13(b) shows system response time (in minutes), supposing “fast connec-
tion”, “intelligent” Browser, “naive user”. The lines have identical meaning than in
Figure 8.13(a). The two solutions still remain identical.

Someone could suspect that there exist small differences because of the net speed.
So, we have decreased the net speed to 10 Kbytes/sec., (Figures 8.13(c) and 8.13(d)).
It can be seen how the differences still remain non significant.

Several user requests served by one majordomo

Figure 7.21 represents a test for an “intelligent Browser”, an “expert” user, a
probability for RPC equal to 0.7 and equal to 0.3 to travel. Now, we have tested the
system for a different number of requests ranging from 1 to 4, thus the colored model
in Figure 7.19 has been used. Observe that when the number of requests is increased,
the response time for each request increases, i.e., tasks cannot execute completely
in parallel. Alfred and the Software Manager are not duplicated with simultaneous
requests. Thus, they are the bottleneck for the designed system with respect to the
number of concurrent requests of the service and the impact of such bottlenecks can
be evaluated using our approach.

7.3 On the use of the design patterns in the software
performance process

In this section we explore the use of the design patterns [GHJV95] and its possible
benefits in the process to evaluate performance for software systems. As we explained
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in [MCM00a], we do not pretend to introduce a new orthogonal proposal to that
explained in section 7.2 and developed in [MCM00b, MCM01b]. On the contrary,
our idea is to begin to study how new approaches in software design such as design
patterns [GHJV95], can be integrated into the software performance process. The
novelty of these disciplines (both new software design techniques and software per-
formance) causes that less effort has been dedicated to merge them. Therefore we
consider important to begin to consider this task opening possibilities to future re-
search. Among the wide range of design techniques, we explore the convenience of
the design patterns mainly motivated by their success in the last years. Since benefits
from design patterns come from their ability to achieve software reuse, in the same
way, we claim for reuse in performance modeling.

7.3.1 Basics on design patterns

The idea of the design patterns was formulated initially in the architecture3 field in
[AIS+77] as “Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the
same way twice”. This way to use and document designs was rapidly accepted in most
of the engineering fields and concretely in the software design field was formulated in
[GHJV95] as “descriptions of communicating objects and classes that are customized
to solve a general design problem in a particular context”. We assume that the reader
is familiar with the patterns language as proposed in [GHJV95], where twenty three
design patterns, that solve a wide range of software design problems, are proposed.
This language describes each pattern using the “sections” that appear in table 7.1.

7.3.2 Patterns and software performance

It is widely recognized that software design is a hard task that requires a significant
amount of effort and experience. Most of the “classical” paradigms for the software
development process have recognized and identified as a goal the necessity of reuse in
all the stages of the development process. So, software reuse [JGJ97] has become a
must to increase software productivity. The object-oriented approach is the represen-
tative paradigm to develop software, if it is considered that software reuse is a must.
This is because the concepts underlying object-oriented paradigm promote reuse in all
stages of the software life cycle better than the rest of the paradigms. The proposal
of the design patterns [GHJV95] has been successfully applied as a way to reuse at
the design stage in the context of the object-oriented paradigm.

We have considered that software performance must be accomplished in the early
stages of the software life-cycle when proper actions to solve performance problems
take less effort and less economical impact. Then the design stage where patterns are

3The art and science of designing and making buildings. Not the hardware or software architecture
field.
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Section name Section description

Pattern name Conveys the essence of the pattern succinctly.

Intent The problem that the pattern addresses.

Motivation A scenario that illustrates how the pattern

solves the problem.

Applicability Situations in which the pattern can be applied.

Structure Representation of the classes in the pattern

(using OMT notation).

Participants Classes/objects participating in the design pattern and

their responsibilities.

Collaborations How the participants collaborate.

Consequences Trade-offs of using the pattern.

Implementation Techniques to be used when implementing the pattern.

Sample code Code fragments that illustrate how you might implement

the pattern in C++ or Smalltalk.

Known uses Examples of the pattern found in real systems.

Related patterns Patterns closely related to this one.

Table 7.1: Sections of the design patterns language.

used seems to be a good point to address performance evaluation. So, we consider to
take into account to bring together software reuse and software performance.

The language proposed in [GHJV95] to describe design patterns deals with the
structural and behavioral aspects of the software and also gives trends to accomplish
the implementation phase. In the next section, we propose the enrichment of this
language with performance skills, describing for each pattern its performance goals.
In spite of design patterns use the OMT [RBP+91] notation to describe the structure
and behavior of the design, we will use pa-UML notation.

7.3.3 Adding performance skills to design patterns: leading
performance patterns

The three steps process presented in section 7.2 still remains valid to be combined
with a pattern approach. It is necessary to identify where and how to use patterns
inside the process.

The first step of the process proposes to model software requirements using the
desired software life-cycle with pa-UML. Then design patterns can be used in this
stage. If design patterns include the ability to express performance parameters as
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well as performance assumptions, it will be achieved a model expressed in pa-UML
with all the required information to accomplish the second step of the proposal.

In this section, we give a proposal of enlargement of the design patterns language
in order to describe performance skills. First, we propose the improvement of the
“Collaborations” and “Participants” sections. Later, new sections for the design
patterns language are proposed.

The “Collaborations” section of the language is enhanced as follows. Currently,
this section is described in some patterns using a sequence diagram, the rest of the
patterns describe it in a textual way. We propose the use of a sequence diagram in all
the patterns to describe the section. In this way, a sequence diagram will be used to
annotate the message load among objects and the probability for the guards success
using pa-UML.

The “Participants” section, which describes the classes/objects participating in the
pattern, must be also enhanced. A statechart for each participant must be modeled.
These diagrams represent the life of objects. The statechart will be annotated with
the events load, the probabilities of the guards and the time to perform the actions
using pa-UML.

The meaning of the annotations in the diagrams, the techniques to obtain them,
the distinction between messages sent among objects residing on the same machine or
on different machines together with the problems encountered to develop the process
were largely explained in section 7.2, so we do not extend here on them.

Now, we are going to extend the design patterns language with new sections.
These sections taken from [Smi90] are those that we consider necessary to reach a
complete description of the pattern performance skills:

• Performance goals: the pattern performance objectives will be expressed:
response time, delays, throughput or utilization.

• Workload definitions: such as request arrival rates or the number of concur-
rent users.

The sections proposed in [GHJV95] together with the enhancement of the “Col-
laboration” and “Participants” sections and the new sections proposed, define a “per-
formance pattern”. A “performance” pattern should be the description of the relevant
performance characteristics of a general design problem that can be customized in a
particular context.

The task of identifying “performance patterns” in the real word is not an easy
task. Experience obtained from the modeling process in the performance field is the
best feedback to detect and propose them.

The catalog presented in [GHJV95] contains twenty three design patterns. It
would be very interesting to introduce performance skill in all of them. So, they
could become “performance patterns”.
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7.4 Conclusions

In this chapter we have presented a process to evaluate performance of software sys-
tems. The gap among the software engineering practices and the performance eval-
uation practices causes that there does not exist a well-accepted process to evaluate
performance of software systems.

The process tries to exploit the software life-cycle by annotating the designs using
the proposal given in chapter 3, pa-UML. After that, the automatic translation process
given in chapters 4 and 5 gains a stochastic Petri net that represents the behavior of
the whole system. The steps proposed in section 7.2.2 give the appropriate decisions
to convert this net in the performance model of the system, this is why we consider
the process as semi-automatic instead automatic. Finally, the experiments to test the
system are developed an applied to the stochastic Petri net.

As relevant features of our proposal we want to underline that it tries to obtain
the performance model as a by-product of the software life-cycle. Then no additional
efforts should be made by the software designer aside to annotate the system load. Any
CASE tool that supports UML notation can be integrated in the process, since the
annotations are introduced as tagged values. The UML diagrams can be translated
into the standard format XMI, which can be used as input language to apply the
translation rules give in chapters 4 and 5 to obtain the stochastic Petri nets. It
is also important to remark that “what-if” analysis is possible to accomplish since
performance results can be obtained in the early stages of the software life-cycle when
the economical impact and the effort to change system requirements is less important.

An example from the mobile agents research area has been used as a running
example to explain the process. We believe that the interest of the example is true
since the performance is a subject of study in this area.

The proposal to include patterns in software performance prediction has been ap-
plied only to the ANTARCTICA SRS system in [MCM00a], but we do not include
it here since much of it repeats the diagrams developed previously for the system.
Being applied to only one experiment is not enough for us to conclude about its ap-
plicability. Nevertheless, in our opinion, the main benefit of the use of design patterns
in the software performance process should be the possibility to reuse performance
aspects for specific software designs. In short, a “performance” pattern should be
the description of the relevant performance characteristics of a general design prob-
lem that can be customized in a particular context. To our knowledge only the
works [GM00, SW00, VGNP00] have studied how to combine patterns and software
performance evaluation.

During the process, several modeling assumptions have been taken. Among them,
that which refers to model the time spent by the messages traveling through the net
with an exponential distribution could cause some critics. However, to lose represen-
tation reality to obtain an analyzable model can be necessary many times. Anyhow,
the possibility of representing network delays with non-exponential distributions could
be considered in the future if simulation techniques are used instead of the analytic
approach followed here.



Chapter 8

Additional Experiences in the
use of the Software
Performance Process

Our proposal to evaluate performance of software systems was applied in chapter 7
to the ANTARCTICA SRS, that was introduced as a running example, to obtain
performance indices for a distributed software system. Once the applicability of the
approach has been showed, we propose in this chapter to intensify its use. It will
be performed by realizing an analysis of another software retrieval system, that also
is a distributed system; by realizing a performance comparison of both systems (the
ANTARCTICA SRS and the new one) and finally by analyzing a software Internet
protocol.

For each one of the two new proposed systems we will apply: (a) the performance
annotations (introduced in chapter 3) to the UML diagrams that describe the new
system; (b) the automatic translation for the statecharts and the activity diagrams
proposed in chapters 4, 5 and 6; (a) and (b) guided by the process given in chapter 7.

The software retrieval system that is going to be analyzed in this chapter is actually
a simplification of a family of software retrieval systems, that we will call later on
Tucows-like [Inc99d] systems. The ANTARCTICA SRS was proposed as an agent-
based alternative to this kind of systems, then both proposals share the same goal:
to retrieve software in an easy and efficient way. Since Tucows-like systems are not
designed using mobile agents, it will be of interest to compare both designs in order to
know how much time the network connection needs to be open to retrieve a software
product and also the impact of the mobile agents in the design of a software retrieval
system.

The performance comparison among the ANTARCTICA SRS and the Tucows-
like systems will be important both to discuss performance criteria about the use
of the mobile agents paradigm in the context of software retrieval systems and to

185
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show new perspectives in the use of our proposal. All in all, we will able to reason
about the applicability of our proposal beyond an isolate but complex example. The
analysis of the Tucows-like system and the performance comparison were developed
in [MCM01a, MCM03].

The second system analyzed in this chapter is a well-know protocol to manage mail
in remote hosts, the POP3 mail protocol. By introducing this example we intend to
test completely our proposal, since two important features have not been used in the
previous examples. Therefore, we will test the translation proposed for the activity
diagrams in chapter 6 and also we want to test the second approach in the step
of the stochastic Petri net modeling presented in section 7.2.2 of chapter 7, i.e. to
obtain a performance model for a particular scenario of the system. This example
was developed in [LGMC02c].

The chapter is organized as follows. Section 8.1 presents the requirements and
modeling assumptions for the Tucows-like systems, while they are modeled and ana-
lyzed by means of our approach in section 8.2, where we present the results for the
same experiments realized for the ANTARCTICA SRS in chapter 7. The performance
comparison of both systems is realized in section 8.3, where interesting conclusions
about the use of the mobile agents in the design of software retrieval systems are
obtained. The POP3 protocol will be studied and performance results for it obtained
in section 8.4. Finally, section 8.5 summarizes the contributions of this chapter.

8.1 Tucows-like software retrieval systems

There exist a variety of software retrieval systems, as the popular web sites Tu-
cows.com [Inc99d], Download.com [Inc99a] or Gamecenter.com [Inc99c], that provide
Internet users with facilities to retrieve and install software. These systems allow
users to find software in two different ways, by using a keyword-based search engine
and by navigating through categories especially designed to make this task easier.

The software architecture of these kind of systems for the navigation facility shares
commonalities. Therefore, it is possible to model how these kind of systems work,
making a number of assumptions, without losing reality with respect to performance
aspects. We refer to these kind of systems as Tucows-like systems.

The keyword-based search engine helps users that know some features of the
wanted software. This search facility will not be considered in this work since it
has not its counterpart in the ANTARCTICA SRS (defined in chapter 7) and more-
over it can not be used by naive users that do not known the concrete software that
they need.

The navigation facility consists of several web pages residing on a server and
organized as categories linked between them in a way that guides the user to find
the software. For instance, a number of these systems present an initial web page
where the categories correspond to different operating systems, say Windows 2000,
Windows 95/98, Linux or Unix. The user selects the desired category and a new web
page with several topics like multimedia, browsers or Internet tools is loaded; in this
way the user can continue the search of the software. As we saw in chapter 7, the



8.1. Tucows-like software retrieval systems 187

ANTARCTICA SRS offers a mechanism to retrieve software similar to the navigation
facility, but it makes use of mobile agents to perform the task, therefore a performance
comparison can be realized between the two systems.

Our goal of study in depth the application of our proposal is accomplished by eval-
uating performance indices for a Tucows-like system in order to compare them with
those obtained for the ANTARCTICA SRS in chapter 7. Basically, taking advantage
of our proposal that consists of the description of the functional and performance re-
quirements by means of the pa-UML proposal, given in chapter 3; the automatic trans-
lation of the obtained models in a labelled generalized stochastic Petri net (LGSPN)
that represents the behavior of the whole system, by applying the transformations
given in chapters 4 and 5; and the iteration of the process presented in chapter 7 to
semi-automatically obtain the LGSPN system that represents the performance model
of the system and the possibility of realize the tunning of the system if it is desired.

In the following, we describe the navigation facility of the Tucows-like systems.
The next section is devoted to model and analyze the system, according to our ap-
proach, by performing the same experiments applied to the ANTARCTICA SRS,
while in section 8.3 the desired comparison with the systems will be performed .

System description and modeling assumptions

In a Tucows-like system, the user navigates, with the help of a browser, different
HTML pages (representing software categories and descriptions of concrete pieces of
software) until s/he finds a piece of software that satisfies her/his needs. Then, that
piece of software is downloaded.

In short, the process of selecting software by navigating HTML pages behaves as
follows: The user “clicks” on a category, then the browser requests the web server
for the corresponding HTML page. The web server returns the HTML page to the
browser, which presents it to the user. After reading this page, the user can “click”
on another link in order to access a new web page with other categories or a list of
software under the current category. This process is repeated until the user finds a
software that fulfills her/his needs. Then the browser requests the selected software,
which is downloaded into the user computer.

In the following we give the modeling assumptions taken into account for the
Tucows-like system. It is easy to see that each one has its counterpart in the
ANTARCTICA SRS, in this way the experiments proposed for the ANTARCTICA
SRS can be reproduced in the context of the Tucows-like system:

• It must be considered that the user spends some time reading the information
presented by the system. An exponentially distributed random variable with
rate λexamine (λexamine is obtained as the inverse of the time in seconds) will
be used to model several kinds of users.

• The number of HTML pages that the user must navigate until s/he finds the
software is difficult to estimate (it depends on her/his experience). The proba-
bility that the user finds the software by selecting n categories models different
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kinds of users, from naive users, those who need to visit many categories to
find the software, to expert users, those who find the software visiting very few
categories.

• Whenever the user requests an HTML page or a concrete piece of software, the
web server must perform the corresponding activities to find the page or the
piece. The time consumed by these activities will be modeled by variables with
rates λfindHTML and λfindFile.

• The browser, on the client machine, sends messages through the net to the web
server on the server machine and vice versa. A variable with rate λmi

models
the time spent by the message i navigating through the net. Notice that local
messages sent among the user and the browser do not consume net resources.

As in the case of the ANTARCTICA SRS (chapter 7), it is assumed that the
network delays are modeled by exponentially distributed random variables. As we
discussed for the ANTARCTICA SRS, it could be argued that exponential assump-
tion could be not realistic in some circumstances for the modeling of network traffic,
and that heavy tailed distributions would be better. The reasons given previously
remain valid in this context and it is interesting to remember that the possibility of
representing delays with non-exponential distributions could be considered if simula-
tion techniques are used instead of the analytic approach followed in our examples,
which is not incompatible with the process presented in chapter 7.

8.2 Analysis of the Tucows-like systems

Once the requirements of the Tucows-like system have been proposed, we start its
performance analysis using our proposal. Therefore, in this section we apply the
three steps given in chapter 7. First, a pragmatic modeling is given using the pa-
UML notation to describe performance requirements. Second the performance model
in terms of LGSPNs is obtained for two cases of interest: a Tucows-like system with
one user and one browser and a Tucows-like system with several users and several
browsers. And finally, some tests based on the modeling assumptions are defined to
compute performance figures over the performance models.

8.2.1 Modeling the system using pa-UML

In this section we accomplish the first step of the process presented in chapter 7,
then we model the dynamic view of the Tucows-like system using pa-UML notation
as proposed in chapter 3.

Use Cases

The use case diagram in Figure 8.1 shows the actor that interacts with the system,
the “user”, and the two possible use cases for the system: the “navigation facility”
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Figure 8.1: Use cases for the Tucows-like system.

and the “keyword-based search engine”. It is important to remember that in this
diagram we follow the notation given in [CM00] where the tagged values mean
the probability that the user executes the scenario attached to the link where the
probability is annotated. We assume that p=1 in the link among the user and the
navigation facility use case because we are not interested in computing indices for
the keyword-based search engine, in this way all user executions correspond to the
navigation facility. These use cases are described in the following.

Navigation facility use case description.

• Principal event flow: the user requests the system with the URL that contains
the wanted software. The browser sends the request to the web server, who
searches and selects the software on behalf the browser that finally obtains it to
install it in the client machine.

• Exceptional event flow: if the user is not satisfied with the information presented
in the HTML page, i.e. it does not contain an entry with the wanted software,
s/he can ask for a new one. This process could be repeated as many times as
necessary until the user selects an entry in the HTML page that corresponds
with a software .

• Probability to be executed by the user: 1.

Keyword-based search engine use case description.

• Principal event flow: in this case the system offers a widget where the user asks
directly the browser for the wanted software using a simple query language. It
is an alternative given by the Tucows-like systems to retrieve remote software.

• Probability to be executed by the user: 0.

Sequence diagram

As proposed in our approach, each use case relevant to compute performance indices
must be detailed. Then, the sequence diagram in Figure 8.2 shows a detailed de-
scription of the “navigation facility” use case. It shows the messages sent among
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Figure 8.2: Sequence diagram for the navigation facility use case.

the objects in the system with the purpose to retrieve the piece of software that
the user needs. Being in a distributed system, two different kinds of messages were
distinguished, those that travel through the net (sent between the browser and the
web server) and those that do not (sent between the user and the browser). As it is
known, this feature will be relevant in the final performance model in order to calcu-
late the rate of the transitions that represent messages sent through the net, taking
into account the assumptions considered.

The sequence diagram begins with a select category(url) message, being its size
{1 Kbyte}, sent by the user to the browser. It represents the “click” performed by the
user in the browser to select a category in an HTML page. The rest of the diagram
describes the steps explained in the description of the system for selecting software.

Statechart diagrams

In order to get a complete description of the Tucows-like system dynamics and its load,
we are going to develop a statechart for each class with relevant dynamic behavior.

As in the ANTARCTICA SRS, the guards in the diagrams will be used to assign
probabilities to the corresponding transitions in the performance model, i.e. routing
rates, since a guard language is not introduced. Remember that the annotations in
these diagrams correspond to the duration of the activities, the size of the messages
and the routing rates. In the following each statechart is described.
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Figure 8.3: Statechart diagram for the user.

User statechart diagram.
Figure 8.3 shows this statechart, i.e. the behavior of a user of the system is repre-
sented. The user is in the wait state until s/he activates the select category event.
This event sets the user in the wait for HTML page state. The observe event, sent
by the browser, allows the user to perform the examine activity that has associated
the label {time}. This label models the time that the user spends reading the HTML
page. This activity will be translated in the performance model in a timed transition,
and by modifying its rate different kinds of users can be modeled, according with
the λexamine assumption pointed out in the previous section. Once the activity is
performed two situations can arise:

• If the requested software is not present in the current HTML page the user
returns to the wait state.

• In other case, the user sends the select sw(url) message to the browser, where url
means the web address where the software is located in the server, and enters
in the wait for download state. When the browser fulfills the necessary activities
to complete the download, it sends to the user the succ install() message and
the user returns to the wait state.

Browser statechart diagram.
Figure 8.4 shows the browser’s statechart. The browser behaves as a server object: it
is waiting for user’s requests, represented by select category and select sw events.

When a select category event arrives requesting a URL, the browser sends to the
web server the select URL message and waits for a new HTML page. When the web
server obtains it, then it triggers the get event attaching the new HTML page, whose
estimated size is {20K..30K}. Since this message is sent through the net, it will be
interpreted in the performance model as a transition with rate λmget

, as we pointed
out in the previous section. After that, the HTML page is shown to the user.

When a select sw event arrives requesting a URL that contains a piece of software,
a download message with the URL is sent to the web server. The browser waits
for the reply message that contains the requested file with size file size, it will be
translated in the performance model in a transition with rate λmreply

. Finally, the
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Figure 8.4: Statechart diagram for the browser.

file is installed (succ install).

Web server statechart diagram.
As the browser, the web server behaves as a server object. It is waiting for a request
(select URL and download) from the browser. For each request, the web server per-
forms the corresponding actions to serve it (find html page and find file). When the
actions are completed, it sends the corresponding message to the browser. Figure 8.5
shows the web server’s statechart diagram.

8.2.2 Modeling with LGSPNs

It is well-known that the pa-UML models designed in the previous step do not repre-
sent accurately some system features such as concurrency. As an example, we could
not distinguish in these diagrams, a Tucows-like system that represents one user and
one browser from the other that represents several users and several browsers, the
two scenarios that we propose as examples.

Then, in this section we accomplish the second step of our process given in chap-
ter 7, that achieves a performance model in terms of LGSPNs for each one of the
previous scenarios. Concretely, we are going to apply the “first approach” given for
this step, that allows to obtain performance indices for the whole system.

First step of the first approach

We begin with the first step of the selected approach, therefore we are going to apply
to each statechart the translations proposed in chapter 4, since all of them are “flat”,
to obtain a component LGSPN from each one. In the following we comment the
relevant aspects of these component nets.

Figures 8.6, 8.7 and 8.8 depict the component nets of the system, i.e. the LGSPN
for the user, the browser and the web server, respectively.

User component net.
The number of tokens in the place P1|ini wait models how many concurrent users
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Figure 8.5: Statechart diagram for the web server.

supports the system. This parameter cannot be modeled in the UML diagrams.

The firing of the transition t3|S sC models the dispatch of the select category mes-
sage to the browser to specialize the current HTML page, since the transition t4|E sC
models its acknowledge. The firing of the transition t11|examine models the time
spent by the user reading the information presented in the new HTML page. After
the end of the reading, a choice will determine whether the user is satisfied with any
of the products shown (firing of the immediate transition t13|out ce), or not (firing of
the immediate transition t12|out ce).

The firing of the immediate transition t21|out models the arrival of the message
succ install to confirm that the retrieval of the software has been successfully
completed.

Browser component net.
The number of tokens in the place P1|ini wait models how many concurrent browsers
can access to the system. This parameter cannot be modeled in the UML diagrams.

The firing of the transition t4|out models the arrival of the message select category
from the user requesting for a specialization of the category that s/he has examined.
The request will be sent to the web server by firing the transition t23|S sURL. The
firing of the transitions t27|out and t32|S observe model, respectively, the arrival of
the message get, then obtaining a new HTML page with new categories, and the
dispatch to the user of the message observe to read the HTML page.

The firing of the transition t2|out models the arrival of select sw messages from the
user requesting a concrete piece of software. The request will be sent to the web server
by firing the transition t13|S download. The firing of the transition t3|out models the
arrival of the message reply that obtains the file requested. Finally, the firing of the
transition t8|S sI models the message succ install which is the advertisement to the
user that the retrieve of the software has been successfully completed.

Each place labeled e eventname or ack eventname will be superposed in the
complete net with the places in the user component net with the same name.

Web server component net.
The number of tokens in the place P9|ini wait models how many concurrent processes
the web server has launched to attend browser’s requests. This parameter could not
be modeled in the UML diagrams.

The firing of the transition t9|out models the arrival of the message select URL
to request for a new HTML page, since the firing of the transition t8|out models the
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Figure 8.6: User LGSPN component
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Figure 8.7: Browser LGSPN component.
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Figure 8.8: Web server LGSPN component.

arrival of the download message to request for a concrete piece of software. Transition
T15|find HTML models the completion of the search for a new HTML page, since
transition T2|find file models the completion of the search for a requested piece of
software. The firing of the transition t17|get models the dispatch of the HTML page
to the browser. Finally, the firing of the transition t4|reply models the dispatch of the
file to the browser.

Places labeled e eventname and ack eventname will be superposed in the complete
net with the places in the browser component net with the same name.

These component nets are useful for the system with one user and one browser.
But for the system with several users and browsers, we will convert them in a stochas-
tic well-formed net (SWN), as we will explain.

Second step of the first approach

When the component nets have been obtained, the first step of the “first approach”
has been completed. In the following we comment how to apply the second step of
the “first approach” to obtain the LGSPN for the system, the “system” net. This net
represents the execution of the whole system and its performance model.

As the statecharts modeled are “flat”, Definition 4.54 must be applied. This
definition performs a composition of the component nets to obtain a first version of
the net for the whole system. But remember that five sub-steps must be taken into
account:

1. The statecharts have not sink states, then the “system” net is live.

2. Tokens in places P9|ini wait, P110|ini wait and P113|ini wait, Fig-
ures 8.9 and 8.12, represent instances of users, browsers and web server



196 8. Additional Experiences in the use of the SPP

P110|ini_wait

P210|compl_wait

P310|wait_accept_ce

P49

P51|end_sC_wait_ce

P61|ini_WfHTML

P71|compl_WfHTML

P81|e_observe

P91|WfHTML_accept_observe

P101|end_l_WfHTML_observe

P111|ini_examine

P121

P131|compl_examine

P141|examine_accept_l
P151|examine_accept_l

P161|end_l_examine_ce P171

P191|end_sSw_examine_ce

P201|Wfdownload

P211|compl_Wfdownload

P231|Wfdownload_accept_sI

P241|end_l_Wfdownload_sI

P112|wait_accept_sC

P82|ack_sC
P72|e_sC

P52|e_reply

P102|wait_accept_replyP92|wait_accept_sSw

P311|e_sSw

P212|compl_wait

P113|ini_wait
P122|ini_E5

P132|compl_E5

P142|E5_accept_ce

P152

P162|e_sI

P172|ack_sI

P181|end_sI_E5_ce

P192|ini_E4

P202|compl_E4

P213|E4_accept_ce

P222

P232|end_download_E4_ce

P262|end_l_wait_sSw
P27|end_l_wait_reply

P28|end_l_wait_sC

P29|ini_E1

P30|compl_E1

P31

P32

P33|end_sURL_E1_ce

P36|ini_E2

P37|compl_E2

P38|e_get
P39|ack_get

P40|E2_accept_get

P41|end_l_E2_get

P42|ini_E3

P43|compl_E3

P44|E3_accept_ce

P45

P46|end_observe_E3_ce

P1|ini_find

P2

P3|compl_find

P4|find_accept_ce

P5

P6|end_reply_find_ce

P9|ini_wait

P10|compl_wait

P11|wait_accept_download

P12|e_download

P14|e_sURL

P15|ack_sURL

P16|end_l_wait_download

P17|wait_accept_sURL

P18|end_l_wait_sURL

P19|ini_findH

P20

P21|compl_findH

P22|findH_accept_ce

P24

P26|end_get_findH_ce

P84

P85

P86

P87

T2|find_file

T78

T76

T77

t11|examine

T15|find_HTML

T79

t21|out
t13|outt12|out

t6|out

t23|l

t19|l

t8|l t16|l t17|E_sSw

t15|S_sSw

t9|l

t4|E_sC

t3|S_sC

t2|out_ce

t22

t20

t14

t10

t7

t5t1

t27|out

t4|outt3|outt2|out

t34|l

t33|E_observe

t32|S_observe

t31|out_ce

t30

t29|l

t28

t26

t20|lt18|lt16|l

t15|lt10|l

t25|l

t24|E_sURL

t23|S_sURL

t22|out_ce

t21

t19t17

t14|E_download

t13|S_download

t12|out_ce

t11

t9|E_sI

t8|S_sI

t7|out_ce

t6

t5

t1

t9|outt8|out

t18|E_get

t17|S_get

t16|out_ce

t19

t14

t13|l

t12

t11|l

t10

t7

t6|l

t5|E_reply

t4|S_reply

t3|out_ce

t1

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

LSN = ((LSt
N | |LevP LSd

N) | |LevP LSg
N) | |LtrT LSB

N

LSps

LSf

LSf

fork1

LSf

fork2

LSF
Syn1 = LS

f
fork1

‖L LS
f
fork2

L = {Syn1, ini B}

LSj
join1

LSj
join2

LSJ
Syn1 = LS

f
join1

‖L LS
f
join2

L = {Syn1, ini B}

LSSyn1 = LSF
Syn1 ‖L LSJ

Syn1 L = {Syn1}

LSf

fork1

LSf

fork2

LSF
Syn1 = LS

f
fork1

‖L LS
f
fork2

L = {Syn1, ini B}

LSj
join1

LSj
join2

LSJ
Syn1 = LS

f
join1

‖L LS
f
join2

L = {Syn1, ini B}

LSSyn1 = LSF
Syn1 ‖L LSJ

Syn1 L = {Syn1}

Figure 8.9: The LGSPN for the whole system.
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process, respectively. They must be populated according with the experiment,
then the number and color of these tokens will change from the first experiment
(one user and one browser) to the second (several users and browsers).

3. The rate of the transitions t11|examine (t111|examine), T2|find file and
T15|find HTML that represent activities must be calculated as it was explained
in chapter 7. The first transition models the first modeling assumption (cfr. Sec-
tion 8.1), since the second and the third refer to the third modeling assumption
(cfr. Section 8.1).

4. It must be assigned probability to transitions t12|out and t13|out in Figure 8.9
(t121|out and t131|out in Figure 8.12). They refer to the second modeling as-
sumption (cfr. Section 8.1), then they model different kind of users. Depending
on the experiment, these values should change.

5. For each message exchanged between the browser and the web server
(select URL, get, download and its reply), a new place and a new timed transi-
tion must be created to represent the network delay, in the way explained in
chapter 7. These places are respectively P84, P85, P86 and P87 in Figure 8.9
(P103, P104, P102 and P91 in Figure 8.12). The transitions are T76, T77, T78
and T79 in Figure 8.9 (T77, T78, T76 and T79 in Figure 8.12). The rate of the
timed transitions refer to the fourth modeling assumption (cfr. Section 8.1).

In the following we comment the particularities of each one of the systems
proposed, since the nets change from one to another.

LGSPN model for a system with one user and one browser
The LGSPNs in Figures 8.6, 8.7 and 8.8, that have been obtained by applying

directly the translations proposed in chapter 4, model the component nets for the
user, the browser and the web server, respectively. Then, it is not necessary to
perform any change in them.

When these nets are composed, using Definition 4.54 over the set of places e event
and ack event, the “system” net is obtained. According to sub-step 2 (defined in the
first approach of section 7.2.2), the places P9|ini wait, P110|ini wait and P113|ini wait
must be populated with one token each one to represent one user, one browser and
one web server process. Figure 8.9 represents the “system” net for this case.

LGSPN model for a system with several users and several browsers
The component LGSPNs for the user and the browser, that have been obtained

by applying directly the translations proposed in chapter 4, must be converted into
SWN. In this way when a colored token in the user net matches with a colored token
in the browser net, it means that this user request will be served by this browser
instance and never by another one. This behavior is achieved by marking, in the user
net, place P110|ini wait with the number of concurrent users that can access to the
system; and by marking in the browser net, place P113|ini wait with the number of
concurrent browsers that can access to the system. The color is the same in both



198 8. Additional Experiences in the use of the SPP

P1|ini_wait
Rm1

P2|compl_wait R

P3|wait_accept_ce
R

P4
R

P5|end_sC_wait_ceR

P6|ini_WfHTML

R

P7|compl_WfHTML R
P8|e_observe

R

P9|WfHTML_accept_observeR

P10|end_l_WfHTML_observeR

P11|ini_examine

R

P12 R

P13|compl_examine R

P14|examine_accept_l RP15|examine_accept_lR

P16|end_l_examine_ce R P17R

P19|end_sSw_examine_ceR

P20|Wfdownload

R

P21|compl_Wfdownload R
P22|e_sI

R

P23|Wfdownload_accept_sI
R

P24|end_l_Wfdownload_sI
R

P24|e_sC
R

P25|ack_sC

R
P26|e_sSw
R
P27|ack_sSw
R

t11|examine
t21|out

t13|outt12|out

t6|out

t23|l

t19|l

t8|l

t16|l t17|E_sSw

t15|S_sSw

t9|l

t4|E_sC

t3|S_sC

t2|out_ce

t22

t20

t14

t10

t7

t5t1 <x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>
<x>

<x>
<x>

<x>
<x>
<x>

<x>
<x><x>

<x>

<x>
<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x> <x>

<x>

<x>

<x>

<x>
<x>

<x> <x>
<x>

R:c
request:c
S:m
m1:m

PSfrag replacements

LSd
N

LSD
N = LSB

N ‖L LSd
N L = {send, def}

LSt
N

LSI
N = LSB

N ‖L LSt
N L = {int, end int}

LSg
N

LSO
N = LSB

N ‖L LSg
N L = {out, outce, loop N, end int}

LSN = ((LSt
N | |LevP LSd

N) | |LevP LSg
N) | |LtrT LSB

N

LSps

LSf

LSf

fork1

LSf

fork2

LSF
Syn1 = LS

f
fork1

‖L LS
f
fork2

L = {Syn1, ini B}

LSj
join1

LSj
join2

LSJ
Syn1 = LS

f
join1

‖L LS
f
join2

L = {Syn1, ini B}

LSSyn1 = LSF
Syn1 ‖L LSJ

Syn1 L = {Syn1}

LSf

fork1

LSf

fork2

LSF
Syn1 = LS

f
fork1

‖L LS
f
fork2

L = {Syn1, ini B}

LSj
join1

LSj
join2

LSJ
Syn1 = LS

f
join1

‖L LS
f
join2

L = {Syn1, ini B}

LSSyn1 = LSF
Syn1 ‖L LSJ

Syn1 L = {Syn1}

Figure 8.10: User colored LGSPN component
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Figure 8.11: Browser colored LGSPN component.
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Figure 8.12: The colored LGSPN for the whole system.
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Figure 8.13: Response time of the Tucows-like system for different scenarios. (a) and (b)

represent a “fast” connection speed, (c) and (d) a “slow” connection speed; (a) and (c) an

“expert user” and (b) and (d) a “naive user”.

places, then identifying each browser with a concrete user. Figures 8.10 and 8.11
represent these component nets.

On the other hand, the LGSPN for the web server remains as in the previous case
since only one web server process is active.

In order to create the “system” net the rules one to four given in chapter 7 must
be taken into account. The final net is shown in Figure 8.12.

8.2.3 Performance results

In this section we realize the last step of the process presented in chapter 7. As for the
ANTARCTICA SRS, it is of our interest to obtain the system response time in the
presence of a user/s request/s. Therefore the results do not correspond to a concrete
scenario but to the whole system, then they have been obtained from the “system”
nets in Figures 8.9 and 8.12 that represent the performance models of the two cases
under study (one user and one browser and several users and browsers).

The transition whose throughput must be computed is t21|out since when it fires
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Figure 8.14: Response time of the Tucows-like system for “fast” connection speed, “expert

users” and different number of requests.

a complete download has been performed. From this value, the response time is
calculated in the same way as it was explained for the case of the ANTARCTICA
SRS.

In the following, we describe the tests performed by giving concrete values to each
one of the modeling assumptions presented in section 8.1. Obviously, each one has its
counterpart in the ANTARCTICA SRS, then we have used the same values:

1. We have considered an “expert” user that spent 10 sec. reading an HTML page.
Transition t11|examine (t111|examine) model this behavior.

2. We have tested an “expert” user that request a mean of 10 categories until s/he
finds the desired software and a “naive” user that tests a mean of 50 categories.
Transitions t12|out and t13|out (t121|out and t131|out) represent this behavior.

3. We have taken into account two cases for the net speed: a net with a speed
of 100 Kbytes/sec. (“fast” connection speed) and a net with a speed of 10
Kbytes/sec. (“slow” connection speed). They are modeled by transitions T76,
T77, T78 and T79 (T77, T78, T76 and T79).

One user and one browser
Results have been obtained from the net in Figure 8.9. Although the tests performed
are the same as in the ANTARCTICA SRS, only one curve for each experiment is
obtained. It is a consequence of considering the system designed without using mobile
agents, then it makes no sense to change the probability to perform either RPC or
travel as in the ANTARCTICA SRS.

It can be observed in Figure 8.13 that the results follow the same trends as in
the ANTARCTICA SRS but smaller response times are obtained. Then it can be
concluded that with the assumptions given, the Tucows-like approach behaves better
with respect to response time than the ANTARCTICA SRS.
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Several users request several browsers
In this case the results have been obtained from the performance model given in
Figure 8.12. They are presented in Figure 8.14 for a test that represents“fast” con-
nection speed, three different sizes of categories (1Kbyte, 50 Kbytes and 100 Kbytes)
and several “expert” users (until four users requesting for pieces of software). It can
be observed that when the number of requests is increased, the response time is also
increased. Nevertheless this increment is not proportional, which allows to think that
some parallelism among the tasks can be achieved.

It could be argued that all the tests performed are favorable to the Tucows-like
approach since all the scenarios presented are faster in the Tucows version. Actually,
the ANTARCTICA SRS has been designed for wireless connection systems, then high
speed connection time is a drawback for this approach. In the next section a more
realistic performance comparison is realized.

8.3 Performance comparison

As we pointed out in the introduction of the chapter, it is of our interest to compare
the proposed designs for the ANTARCTICA SRS and the Tucows-like systems in
order to know how much time the network connection needs to be open to retrieve a
software product and also the impact of the mobile and intelligent agents in the design
of a software retrieval system. In this section we consider scenarios closely related to
the wireless environments, i.e. slow network connection speed, in contrast to the tests
performed in section 7.2.3 for the ANTARCTICA SRS and in section 8.2.3 for the
Tucows-like system. In this way the comparison can be performed in the field where
the ANTARCTICA SRS has been proposed.

The results presented in this section have been obtained from the SWNs which
model the Tucows-like system and the ANTARCTICA SRS (Figures 8.12 and 7.19
respectively).

8.3.1 Study of the network connection time

So, we want to study how much network connection time is necessary to download
a software product, network time. As in the previous analysis, by computing the
steady-state distribution of the isomorphic Continuous Time Markov Chain (CTMC)
with GreatSPN [CFGR95], the throughput of the target transitions is obtained. The
inverse of the previous result gives the network time. Remember that these transitions
are t6|E sSs in the ANTARCTICA SRS and t21|out in the Tucows-like system.

To study the network time in both systems, we have developed a test taking into
account the following scenarios:

1. Two different kinds of users have been considered: a user who spends 10 sec. to
study the information presented by the system (web page or a software catalog)
and a user who spends 60 sec. in that task (modeling the information processing
speed of the user).
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Figure 8.15: Network time for different scenarios: (a) and (b) represent a net speed of 1

K/sec., (c) and (d) represent a net speed of 5 K/sec., (a) and (c) represent a “user delay” of 10

sec., (b) and (d) represent a “user delay” of 60 sec. The intelligence of the ANTARCTICA’s

browser has been set to 70%.

2. To test the user refinement request, we have considered six different possibilities.
A user requesting a mean of 5, 10, 20, 30, 40 and 50 refinements1 (modeling
different expertise of the user).

3. We have considered two cases for the net speed : 1 K/sec. and 5 K/sec. By
considering these low speed values we want to compare the performance of both
approaches in a wireless computing environment (real GSM network speed is
around 800 bytes/sec.).

For the ANTARCTICA SRS, we have also considered:

1. A browser which does not need to ask for information to the software manager
agent the 70% of the times that the user asks for a refinement. When the
browser needs information, it requests the information by a remote procedure
call (RPC).

1We mean by refinement a category selection in a Tucows-like system and a catalog refinement
in the ANTARCTICA SRS.
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Figure 8.16: (a) and (b) represent the same scenarios than Figures 8.15.a and 8.15.b,

respectively, but varying the intelligence of the ANTARCTICA SRS browser.
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2. The size of the catalog obtained by the browser is 50 K.

Figure 8.15 shows network time (in minutes) for the Tucows-like system and the
ANTARCTICA SRS in different scenarios. Concretely in Figure 8.15.b we can ob-
serve that when the net speed is 1 K/sec., the user is naive and performs 50 refine-
ments (the worst case), then the ANTARCTICA SRS is more than ten minutes faster
than the Tucows-like system. The same results are obtained if the user is expert,
see Figure 8.15.a. However, when the net speed is increased to 5 Kbyte/sec. (see
Figure 8.15.d), the differences decrease, and if the user performs more than thirty
refinements the ANTARCTICA SRS behaves worse. In conclusion, we can say that
the ANTARCTICA approach behaves much better than a Tucows-like system for low
network speed. Differences between the two approaches become less significant for a
higher network speed. Taking this analysis as basis we could estimate which approach
is better for a given situation.

8.3.2 Comments on the impact of the mobile agents

The study of the impact of the mobile and intelligent agents in the design of a software
retrieval system in our context can be enunciated as “how much intelligent the browser
agent in the ANTARCTICA SRS must be in order to obtain the same or better results
than the Tucows-like system”.

About the intelligence of the ANTARCTICA SRS browser agent, Figure 8.16 gives
us interesting results. This figure shows the same scenarios as Figure 8.15.a and 8.15.b,
but varying the intelligence of the ANTARCTICA SRS browser, from a browser that
needs to ask for information the 100% of the times (dummy browser) to a browser
that needs to ask for information the 0% of the times (oracle browser). When the
intelligence of the browser is less than 40 (it does not need to ask for information
the 40% of the times) the ANTARCTICA SRS behaves worse than the Tucows-like
system. However, when the intelligence of the browser does not need to ask for
information the 40% of the times or more, then ANTARCTICA SRS obtains similar
or better results than a Tucows-like system.

8.3.3 Conclusions

As a conclusion of the tests performed in the previous sections, we can affirm that
the ANTARCTICA SRS behaves better than the Tucows-like system when the speed
of the net is slow, less than 1 Kbyte/sec.. So, the ANTARCTICA SRS is more
appropriate than the Tucows-like system to retrieve software efficiently in wireless
environments. It must be also taken into account that the intelligence of the browser
agent is a must, because if this agent does not solve the requests of the user at least
the forty per cent of the times, then the ANTARCTICA SRS cannot obtain better
results than the Tucows-like system.
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8.4 The POP3 mail protocol

This example has as a novelty value with respect to the other examples: it incorporates
the use of the activity diagram in the pa-UML stage of our proposal to model the
details of a concrete activity. Also, a performance model will be obtained not only
for a complete execution of the system but for a particular execution of it, which also
constitutes a novelty in this work, leading the “second approach” of the “modeling
with stochastic Petri nets” stage of our approach as described in chapter7.

The Post Office Protocol Version 3 [MR94] (POP3 protocol) specifies an Internet
standard track protocol for the Internet community. In short, the POP3 protocol
permit a client host to dynamically access a mail on a server host in a useful fashion.

In the following the POP3 protocol is modeled and analyzed using our proposal.
Since the previous examples were developed following in detail each step of the pro-
posal, this one will be addressed assuming that the reader is already familiarized with
the proposal.

8.4.1 Modeling the system

It must be assumed the existence of a user in a client host trying to check her/his
mail that resides in a remote host, the POP3 server host.

The behavior of the system is rather intuitive. Upon the arrival of the user’s
request to check her/his mail; first, the client host tries to establish a TCP connection
with the server via port 110. If succeeds (reception of a greeting message), both
(client and server hosts) begin the authentication (authorization) phase. The client
host sends the username and his/her password through a USER and PASS command
combination. For the sake of simplicity, usage of the APOP command has not been
contemplated here.

If the server host has answered with a positive status indicator (“+OK”) to both
messages, then the POP3 session enters the transaction state (phase). Otherwise
(e.g., the password doesn’t match the one specified for the username), it returns to
the beginning of the authorization phase.

In the transaction phase, the client host checks for new mail using the LIST
command. If there is any, the client host obtains every e-mail by means of the RETR
and DELE commands. It must be noted that, for simplicity, potential errors have not
been considered here; thus, no negative status messages (“-ERR”) are modeled.

Once every e-mail has been downloaded, the mail client host issues a QUIT com-
mand to end the interaction. This provokes the POP3 server host to enter the update
state and release any resource acquired during the transaction phase. The protocol
is ended with a goodbye (“+OK”) message.

pa-UML models

The behavior of the three participant objects, the user, the client host and the server,
host has been modeled through the statecharts in Figures 8.17(a),(b) and (c), respec-
tively.
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Figure 8.17: Statecharts for: (a) the user, (b) the client host, (c) the server host.
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Figure 8.18: Activity diagram for the authorization activity in the server host.

• The statechart of the user shows that the system can be parametrized to obtain
different performance figures varying the probability of execution of the check
mail event (send check mail).

• The statechart of the client host introduces the following performance param-
eters: first, the probability to find new messages in the transaction phase
(ok[new]); second, the probability to find a new message while the retrieving
process (ok[messages left]).

• The statechart of the server host with respect to performance allows to
model different distributions in the number of messages (text or attach)
(send text message and send attach message). Moreover, the activity Authoriza-
tion is rather relevant to the system performance. Therefore, it is necessary to
model the actions performed within. Here we will use an activity diagram (see
Figure 8.18), although it may be more useful in cases where there is not such
a strong external event dependence (e.g., ‘internal’ operations). The activity
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Figure 8.19: Sequence diagram for a particular execution of the POP3 protocol system.
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could have been described extending the statechart but, in general, activity
diagrams provide some additional expressiveness [LGMC02a] for certain tasks.

Finally, we use a sequence diagram to obtain performance analytical measures in
a certain context of execution. Figure 8.19 shows an example of interaction between
both the server and the client hosts. Some results for this particular scenario will be
obtained in section 8.4.2. As we said, the analysis performed for the ANTARCTICA
SRS and the Tucows systems do not make use of this feature of our approach.

LGSPN models

From the statecharts in Figures 8.17(a),(b) and (c), the component LGSPNs for the
user, the client host and the server host can be obtained. Since all the statecharts are
“flat” (i.e. they do not include any of the features that were developed in chapter 5),
then these component nets are obtained from the translation given in chapter 4.
Figures 8.20, 8.22, 8.23 show respectively the component nets for the user, the client
host and the server host.

The activity diagram that represents the specification of the server::Authorization
activity (see Figure 8.18) must be also translated into a component LGSPN. In this
case the translation proposed in chapter 6 is of interest. Figure 8.24 shows the com-
ponent LGSPN obtained for this activity diagram.

Following our proposal, all these component nets must be composed in order to
obtain a LGSPN that represents a performance model. For this system we are going
to use the first and the second approaches proposed in section 7.2.2, i.e. applying the
first approach a LGSPN will be obtained that represents a performance model for the
whole system, while applying the second approach it will be obtained a LGSPN that
represents a performance model for a particular execution of the system, concretely
the execution performed by the sequence diagram in Figure 8.19. These nets are not
included in figures since the high number of places, states and transitions make too
difficult to read them, it is necessary the GreatSPN front-end (or a similar one) to
manage them.

8.4.2 Performance results

Once the final LGSPN models are obtained, performance estimates can be computed
leading the third step of the approach. The results presented in this section have
been obtained from the LGSPN that represents the whole system behavior and from
the LGSPN that represents the concrete scenario. Figure 8.21 shows some results for
both cases.

The analysis performed for the first approach (whole system behavior) is shown
in Figure 8.21.a. The graph represents the effective transfer rate of the client when
checking mail (maximum transfer rate: 56 Kbps). Note that higher amounts of data
minimizes the relative amount of time spent by protocol messages.

On the other hand, the analysis performed for the second approach (execution of
the sequence diagram in Figure 8.19) is shown in Figure 8.21.b. This graph represents
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Figure 8.20: User LGSPN component.
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Figure 8.21: Results for the POP3 protocol.
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Figure 8.22: Client host LGSPN component.
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Figure 8.23: Server host LGSPN component.
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Figure 8.24: Authorization activity LGSPN component.

the time cost of executing the interaction in function of different attach file sizes
and maximum network speeds. As it could be supposed, high performance networks
respond in a better way to the increment of the file size. Obviously, the results are
close to the reality.

8.5 Conclusions

In this chapter we have applied the software performance process given in this thesis
to two software systems, therefore obtaining performance models for both systems.

The conclusions for this chapter can be summarized as follows. Firstly, our in-
tention to completely apply the proposal developed in this work has been reached.
We say “completely” because introducing the POP3 protocol, the translation of the
activity diagrams and the performance model gain for a particular scenario have been
applied.

Secondly, the performance analysis carry out to compare the software retrieval
systems and to study the POP3 protocol have been interesting enough to obtain
conclusions in both fields, that can be summarized as follows.

The performance comparison between the ANTARCTICA SRS and the Tucows-
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like system has shown that:

• Software proposals for specific fields, such as ANTARCTICA SRS to retrieve
software in wireless media, can be of importance. But performance analysis
is necessary to find the benefits they can promote, and our proposal is right
enough to be used with this purpose, at least to find the trends given by the
systems. Concretely, through our proposal a threshold has been found over
which the ANTARCTICA SRS behaves worst than conventional software re-
trieval systems.

• The use of mobile and intelligent agents in the field of software retrieval systems
is of interest, but it is of importance to determine how much “intelligent” the
agents should be in order to obtain acceptable results. Our approach has been
shown suitable for this task.

The performance analysis of the POP3 mail protocol has been useful to confirm
analytically the results obtained every day when checking mail: Higher amount of
data minimize the relative amount of time spent by protocol messages and high per-
formance networks behave better when file size is increased.

Finally, the use of the approach with exact techniques of analysis shows that in
some cases they cannot scale fine when colored nets represent the system perfor-
mance model. Therefore, the use of the approximate analysis techniques and bounds
commented in chapter 7 could be of interest.



216 8. Additional Experiences in the use of the SPP



Chapter 9

Final conclusions and future
work

At the beginning of this work, we formulated as a main objective “to provide soft-
ware engineers with the tools to achieve performance estimates in the early stages of
the software life cycle”. It was also an objective that these tasks were accomplished
by software engineers with nothing (or minimum) training in the underlaying mathe-
matical formalisms that are commonly used to represent performance models (Markov
chains, queuing networks, stochastic process algebra, stochastic Petri nets). Also, we
cited that if we were able to obtain these performance models as a “by-product” of
the software life-cycle, much effort would be avoided for the software and performance
engineers.

Considering the previous premises, the novel contributions of this thesis to the
state of the art can be summarized as follows:

1. A compositional semantics in terms of stochastic Petri nets for the UML state
machines has been gained. This semantics actually represents our interpreta-
tion of the UML state machines. In the same fashion, semantics for the UML
activity graphs has been obtained. Since the semantics is aimed at performance
evaluation, it is possible to analyze system quantitative properties as well as to
validate qualitative properties, when the system is described as a set of state-
charts and its activities detailed as activity diagrams.

2. Quantitative and qualitatively properties can also be validated for particular
executions of the system. That is possible when these executions are represented
by sequence diagrams.

3. A language to describe performance features of software systems has been given
by increasing the UML notation. It allows to model the dynamics and the load
of a wide-range of complex software systems.
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4. This language together with the translation of the UML behavioral diagrams
allow software engineers to obtain performance models as a “by-product” of the
software life cycle, since they are combined in a software performance engineer-
ing process that builds on them. A pattern-based extension of the process has
also been proposed.

5. The application of the previous contributions to the study of performance issues
in the field of the mobile and intelligent agents has given interesting results about
the design of software retrieval systems in a wireless environment.

All these contributions have been obtained by the individual realizations of each
chapter in the following manner.

In chapter 3, the role of the UML behavioral diagrams related to performance
evaluation was studied. Then in this chapter, our contribution to augment the UML
notation to represent performance parameters was presented as well as the possibilities
and constraints of each diagram to represent system load, system usage or routing
rates. Also, our functional interpretation of each diagram was given.

In chapters 4 and 5, the translation functions from the abstractions in the UML
state machines metamodel into the GSPNs elements were given.

In chapter 6, the translation functions for the elements in the activity graph pack-
age into the GSPN formalism were given.

In chapter 7, the steps to obtain a performance model from the augmented UML
designs were shown. Two approaches were given: First, when the system is repre-
sented by a set of statecharts (may be its actions refined with activity diagrams) then
the performance model represents a complete execution of the system; second, when
the system is modeled by a set of sequence diagrams and a set of statecharts (may
be its actions refined with activity diagrams), then the performance model allows to
obtain performance measures for the particular execution of the system represented
by a sequence diagram. The complementary approach of the design patterns was also
presented.

In chapter 8, the approach was applied to different real systems.
The work detailed in this thesis has been the subject of several publications in

international workshops, conferences, book chapters and journals. In the following
we enumerate them in a chronological order.

The article in [MCM00b] developed the preliminary ideas of the translation of the
UML state machines and the sequence diagram into stochastic Petri nets, also with
that pragmatic approach the Antarctica SRS was analyzed. The application of the
design patterns to model software performance issues was given in [MCM00a], leading
the “performance patterns” proposal. The work in [MCM01b] improved some aspects
of the approach given in [MCM00b] concerning the number of elements considered
and the notation. Different features of the Antarctica SRS were compared, using the
previous proposals, with the Tucows-like system in [MCM01a] to obtain performance
results in wireless media. The previous work was selected to submit an extended
version to a special issue of a journal [MCM03]. In [MBCD02] the formalization
of the translation of the “flat” UML state machines into stochastic Petri nets was
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formulated. The concepts related with the composite states have not been published
yet. The composition of “flat” UML state machines by means of the sequence diagram
in a formalization using stochastic Petri nets has been presented in [BDM02]; the part
of this work that accomplishes the formal translation from the sequence diagram into
a stochastic Petri net is not included in this thesis. The work in [LGMC02c] presents
the analysis of an Internet protocol using the entire approach (translation of the state
machines, sequence diagrams and activity diagrams). The formalization of the activity
diagrams together with the definition of its performance role have been established
in [LGMC02b].

Now we present some issues that can be addressed in the future to improve our
approach from three different points of view: related to the UML diagrams, related
to the pattern approach and concerning the notation to represent performance pa-
rameters. They are the following:

1. UML diagrams related improvements. Although our proposal includes an im-
portant number of UML diagrams used to model performance requirements (as
we shown in chapter 2 when the state of the art was revised), it is true that the
study and integration in the proposal of the following ones would improve it.
Concretely:

• The “infinite hardware resources” hypothesis implicit in our proposal could
be avoided by modeling different hardware aspects of the system. Then the
component and the deployment diagrams play a prominent role, since they
offer the possibility to model issues such as the distribution of the software
components in the hardware platform, the distribution of the hardware
platform itself or the operative system resources. Therefore by modeling
consistently these features of the system with the rest of the proposal, this
hypothesis would be overcame.

• The class diagram can be exploited to represent some aspects of the load
of the population in the system.

• With respect to activity diagrams, conditional forks and more complex ex-
ternal event processing support, especially important to resolve the prob-
lem of ‘uninterruptible’ activities due to the use of action states, can be
studied.

2. Design patterns related improvements. The “performance patterns” proposal
is open to be improved from several perspectives. Performance features of the
design patterns in the literature can be studied and augmented. Patterns to
solve concrete and common performance problems in software design could be
addressed.

3. Notation related improvements. The extension of the UML to represent more
performance issues, is in our opinion open. We suggest that this work should be
followed from the UML performance profile viewpoint [Obj02]. It does not mean
that our proposal is not able to address new challenges but as we declare, we
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advocate for the standards. Therefore we think that that work can be continued
or even merged with ours to define role of performance of some other diagrams
in that proposal.
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[GIM+01] A. Goñi, A. Illarramendi, E. Mena, Y. Villate, and J. Rodŕıguez.
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