
A Pattern-based Approach to Model Software Performance Using UML and Petri
Nets: Application to Agent-based Systems∗

José MERSEGUER, Javier CAMPOS, Eduardo MENA
Dpto. de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza, Zaragoza, Spain
{jmerse,jcampos,emena}@unizar.es

ABSTRACT

In this paper we present a formal approach to analyse
performance for distributed systems, which is integrated
in the early stages of the software development process.
We propose to model the software system in a pragmatic
way using as a design technique the well-known design
patterns; from these models, the corresponding formal per-
formance model, in terms of Petri nets, is obtained semi-
automatically by applying a set of translation rules. Fi-
nally, the formal performance model is analysed, using an-
alytical techniques, in order to study the performance of
the system. Moreover, another benefit of the proposal is
that it is possible to predict the behaviour of the system
without the necessity of implementing it. To illustrate the
proposal, we apply it to a software retrieval service system
designed using mobile agents.

Keywords: Software performance, Petri nets, UML, mo-
bile agent, design patterns

1. INTRODUCTION

In the last years distributed software applications have
increased their possibilities making use of Internet capabil-
ities. Although there are researchers who question mobile
agents, they take sense in distributed environments because
it is a technology with appropriate new skills for these kind
of systems. However, it could introduce new problems as
the inappropriate use of the net resources. In this way time
consuming could become a problem for users. So, we are
concerned to develop new techniques and methods which
minimize these problems. In this context, software perfor-
mance [11] appears as a discipline inside software engi-
neering to deal with model performance on software sys-
tems design.

The Unified Modeling Language (UML) [9] is widely
accepted as a standard notation to model software systems.
One of the goals of this paper is the study of the perfor-
mance indices in mobile agent systems, thus, we propose

∗This work has been developed within the projects TIC2002-04334-
C03-02 of the Spanish CICYT and P084/2001 of the Gobierno de Aragón.

to extend UML with performance annotations (paUML)
[8] to deal with performance skills on these kind of sys-
tems. Our approach to solve the problem is as follows:
we model the problem domain using paUML in conjunc-
tion with design patterns [5], describing static and dy-
namic views when necessary (preliminary ideas were pre-
sented in [7]). The paUML models will give us the nec-
essary background to semi-automatically obtain the corre-
sponding formal model expressed as Petri nets [10]. From
paUML, we derive, by applying a set of rules, a time in-
terpretation of Petri nets leading to Generalized Stochastic
Petri Nets (GSPN) [2]. Thus, we implicitly give a seman-
tics for paUML in terms of Petri nets. Performance indices
may be computed for GSPN by applying quantitative anal-
ysis techniques already developed in the literature. More-
over, as the Petri nets have been obtained as a by-product
of the software life-cycle, the benefits from the pragmatic
methodologies are preserved, for example the possibility
of using CASE tools such as Rational Rose [1] to automat-
ically generate code for the implementation phase or the
database.

The rest of the paper is organised as follows. In sec-
tion 2, we describe a system, based on agents, which has
been taken from [6]. In section 3, we present the process to
evaluate performance of agent systems using our proposal
of “enriched” design patterns and our proposal of paUML.
In section 4, we apply the first step of the process. In
section 5 a set of rules is given to semi-automatically ob-
tain the Petri nets from the paUML diagrams in order to
achieve the desired formal model. In section 6 the last step
of the process will be applied, consequently performance
results for the proposed system will be obtained. Finally,
conclusions are presented in section 7.

2. CASE STUDY: ANTARCTICA SRS

The ANTARCTICA1 system [6], developed by the In-
teroperable Database Group (Country Basque University),
was designed to provide mobile computer users with dif-

1Autonomous ageNT bAsed aRChitecture for cusTomized mobIle
Computing Assistance.

ferent services that enhance the capabilities of their com-
puters. One of these services is the Software Retrieval Ser-
vice [6] (ANTARCTICA SRS), that allows users to select
and download new software in an easy and efficient way.
The ANTARCTICA SRS has been chosen as a case study
to apply our proposal to evaluate performance because it
was designed using mobile agent technology. This service
has been thought to work in a wireless network media and
provides several interesting features:

• The system manages the knowledge needed to re-
trieve software without user intervention, using an on-
tology. The location and access method to remote
software is transparent to users.

• There is a “catalog” browsing feature to help users in
the selection of the software.The system maintains up
to date the information related to the available soft-
ware.

In the following, we briefly describe the system paying
attention to its components, see figure 1. There is a “ma-
jordomo” called Alfred, which is an agent specialised in
user interaction. There is a Software Manager agent whose
task is to create a catalog which will help the user to select
the required software. Another agent, the Browser, will
help the user in selecting the software. Finally, a Sales-
man agent is in charge of performing any action previous to
the installation of the selected software, like e-commerce
whenever needed.

Although considering the importance and the relevance
of the results of the work [6], we would like to stress the
enormous cost of implementing different prototypes in or-
der to evaluate the performance of the different alterna-
tives. In the next sections, we model the system in a prag-
matic way using paUML combined with design patterns,
annotating consistently the system load (we have annotated
the system load taking as a basis the experiments and ex-
perience of the authors of the ANTARCTICA SRS). Af-
ter that, we can interpret the paUML model in terms of -
Petri nets and derive the corresponding performance model

Figure 1. Architecture for the ANTARCTICA SRS.

which will be properly analysed. This analysis is used to
evaluate the performance of the system.

3. PROCESS TO MODEL AGENT SYSTEMS

As we have introduced, our process combines UML and
design patterns. We have considered UML because actu-
ally it has became a standard in the software engineering
community. Benefits from design patterns come from their
ability to achieve software reuse [5].

Pragmatic object-oriented methodologies or design
techniques such as [5] do not deal with performance re-
quirements. So, we can say that there is not an accepted
process to model and study system performance in the
object-oriented software development process. This lack
implies that there is not a well-defined language or notation
to annotate system load, system delays and routing rates.
On the contrary, formal specification languages, such as
Petri nets [10], have considered and studied the problem
in depth. Thus, there are several proposals where we can
learn from.

We consider that our proposal to evaluate performance
in software systems must accomplish with both, the pro-
cess and the notation. The process will give us the method
to model the system and how to identify the relevant per-
formance parameters that must be taken into account. We
advocate for a pattern-oriented approximation to deal with
performance on the software development process at the
design stage. Lately, design patterns [5] have gained rele-
vance in software development due to their simplicity and
flexibility.

The idea of the design patterns was formulated initially
in the architecture2 field. This way to use and document
designs was rapidly accepted in most of the engineering
fields and concretely in the software design field was for-
mulated in [5] as “descriptions of communicating objects
and classes that are customized to solve a general de-
sign problem in a particular context”. We assume that
the reader is familiar with the patterns language as pro-
posed in [5], where twenty three design patterns, that solve
a wide range of software design problems, are proposed.
This language describes each pattern using the “sections”
that appear in [5].

Concerning the notation, we propose a UML extension
(paUML), which will be described in section 4. In or-
der to have a complete performance notation, the UML be-
havioural and structural models must be considered. Also,
performance will play a prominent role in the implementa-
tion diagrams. In this article, we are interested only in be-
havioural aspects, concretely in the sequence diagram and
the statechart diagrams. Future works will deal with the
rest of the UML diagrams to describe behaviour (activity
diagrams and collaboration diagrams), structural aspects

2The art and science of designing and making buildings. Not the hard-
ware or software architecture field.

(use case diagrams and class diagrams) and implementa-
tion diagrams.

Concerning the process, the following three main steps
are proposed:

• Step 1. Model software requirements using
paUML in conjunction with design patterns.

• Step 2. Apply the translation rules given in section 5
to the models obtained in the previous step in order to
generate the corresponding formal model in terms of
Petri nets.

• Step 3. Apply analytical techniques to solve the for-
mal model.

The first step of our process is concerned with the de-
scription of the functional and performance aspects of the
system. It does not pretend to be orthogonal to the common
use of the design patterns language. On the contrary, this
step proposes to use design patterns as usual in the object
oriented development. So, we propose to extend the pat-
tern language with sections that portray the performance
parameters for the system, complementing in this way the
functional description. This enlargement will come from
two sides:

1. The “Collaborations” and “Participants” sections will
be enhanced to annotate performance requirements.

2. Two new sections,“Performance goals” and “Work-
load definitions” will be added to the language with
the same purpose.

Obviously, the performance annotations will be made us-
ing our proposal, paUML. These improvements are ex-
plained in the following.

Currently, the “Collaborations” section is described in
some patterns using a sequence diagram, the rest of the pat-
terns describe it in a textual way. We propose the manda-
tory use of a sequence diagram in all the patterns to de-
scribe this section. In this way, the sequence diagram will
be used to annotate the performance parameters of the sys-
tem that represent the load of the messages sent among ob-
jects. Which kind of annotations, their meaning in the di-
agram and how to obtain them are explained in section 4.1
using the running example.

The “Participants” section of the language, which de-
scribes the classes/objects participating in the pattern, must
be also enhanced from our point of view. We propose that
a statechart diagram for each participant must be modelled.
These diagrams represent the life of the objects in the sys-
tem. In order to describe the performance parameters of
the system that represent the load introduced by the ob-
jects themselves, the statechart will be annotated with the
events load, the probabilities of the guards and the time to
perform the actions. In section 4.2, this enhancement is
explained using the running example.

Now, we explain the proposal to extend the design pat-
terns language with new sections. These sections, taken

from [11], are necessary to obtain a complete description
of the system performance features:

• Performance goals: the pattern performance objec-
tives will be expressed. For instance, response time,
throughput or utilization. Section 4.3 shows an exam-
ple.

• Workload definitions: such as request arrival rates
or the number of concurrent users. Section 4.4 shows
an example.

The second and the third steps of the process are
described respectively in sections 5 and 6 using the
ANTARCTICA SRS as an example.

4. STEP 1: pa-UML & DESIGN PATTERNS

In the following, we apply the first step of the process
proposed in section 3, i.e., to model the system described
in section 2 using paUMLand design patterns.

The system is modelled according to the mediator pat-
tern. The mediator pattern is advised in [5] when an object
that encapsulates how a set of objects interact, therefore it
promotes loose coupling by keeping objects from referring
to each other explicitly, and it lets to vary their interaction
independently. We propose a design following the medi-
ator pattern because it is interesting that Alfred acts as a
mediator object, preventing the user to interact with the
rest of the objects of the system.

4.1 The Collaborations Section

Alfred SwManager

BrowserAgent

Salesman

{1K}

{1K}

{1K}

{100K}

{100K}
{100K}

{1K}{0.9}

{1K}

{1K}

{1K}
{1K}

{1K}

{1K..100K}

get_catalog(info_plus)

create_browser(c1)

show_catalog_GUI(c1)1..n

[not satisfied]refine_catalog(refinement)

c i+1

select_sw(name)

delete_browser

request(info_sale)

info_sale_plus

electronic_commerce

create_salesman(info_sale)

observe_GUI_catalog(c1)

create_catalog(info_plus) c1:Catalog

select_sw_service(info)

refine_catalog(refinement_plus)

select_sw(name)

[satisfied] {1K..100K}{prob}

{1K}

[info_need] more_information(refinement2, ci)

Figure 2. Sequence diagram for the Software Retrieval Service.

As we introduced in the previous section a sequence
diagram [9] represents messages sent among objects, see
figure 2. Usually, a message is considered as no time
consuming in the scope of the modelled system. But in

a mobile agent system, we distinguish between messages
sent by objects on the same computer and messages sent
among objects on different computers, those which travel
through the net. The first kind of messages will be con-
sidered as no-time consuming. The second kind will con-
sume time as a function of the message size and the net
performance (speed). Here an annotation, inside braces,
will be made indicating the message size. For instance,
in figure 2, select sw service message is labelled with
{1 Kbyte}, while show catalog GUI requires the move-
ment of {100 Kbytes}. Also, it will be possible to an-
notate a range for the size in the UML common way, like
in more information message, where a {1K..100K} label
appears.

In a sequence diagram, conditions represent the possi-
bility that the message that they have associated with could
be sent. An annotation, also inside braces, expressing the
event probability success will be associated to each con-
dition. A range is accepted too. See, for instance, the
probability {0.9} associated in figure 2 to the condition
not satisfied. Sometimes, it is possible that the proba-
bility is unknown when modelling. Also, it could be that
the probability a message occurs is a parameter subject to
study. In our example, the condition info need associated
to the more information message is critical for the sys-
tem, because it reveals how much intelligent the Browser
is; so, we want to study it. In such situations, we will an-
notate an identifier, corresponding to the unknown proba-
bility.

It must be notice that the standard UML notation to
deal with time is based on the use of time restrictions.
These restrictions are expressed as time functions on
message names, e.g., {(messageOne.receiveTime - mes-
sageOne.sendTime) < 1 sec.}. We consider more realistic
and suitable to annotate the message size. In this way, we
could calculate performance for different net speeds.

4.2 The Participants Section

Sequence diagrams show how objects interact, but to
take a complete view of the system dynamics, it is also
interesting to understand the life of objects. In UML, the
statechart diagram is the tool that describes this aspect of
the system, for these reasons we propose to incorporate
them to the “Participants” section of the enhanced design
pattern language. Then, for each class with relevant dy-
namic behaviour a statechart diagram must be specified in
this section.

In a statechart diagram two elements will be considered,
the activities and the guards. Activities represent tasks per-
formed by an object in a given state. Such activities con-
sume computation time that must be measured and anno-
tated. The annotation will be inside braces showing the
time needed to perform it. If it is necessary, a minimum
and a maximum values could be annotated. Guards show
conditions in a transition that must hold in order to fire the
corresponding event. A probability must be associated to

them. It will be annotated in the same way as guards were
annotated in the sequence diagram, and the same consid-
erations must be taken into account. Message size may be
omitted since this information appears in the sequence dia-
gram. In the example, we have duplicated this information
to gain readability.

The statechart diagrams for our system using the
paUML notation can be seen in [8].

4.3 The Performance Goals Section

The performance objectives for this system are: The
study of the system response time in the presence of a
user request and to identify the bottlenecks of the system
and identify their importance. There are two possible parts
which can decrease system performance. First, the trips of
the Browser from the “user place” to the “software place”
(and way back) in order to obtain new catalogs. Second,
the user requests for catalog refinements, because s/he is
not satisfied with it.

4.4 The Workload Definitions Section

In the following, we summarize the workload consider-
ations taken into account for the system:

1. When the Browser needs a new catalog (under re-
quest of the user) there are several possibilities:

• The Browser has enough information to accom-
plish the task or it needs to ask for the in-
formation. We have considered an “intelligent
Browser” which does not need information the
70% of the times that the user asks for a refine-
ment.

• When the Browser needs information to perform
the task, it may request it by a remote procedure
call (RPC) or it may travel through the net to the
Software place to get the information and then
travel back to the MU Place. In this case, we
have considered two scenarios. First, a proba-
bility equal to 0.3 to perform a RPC, so a proba-
bility equal to 0.7 to travel through the net. Sec-
ond, the opposite situation, a probability equal
to 0.7 to perform a RPC, therefore a probability
equal to 0.3 to travel through the net.

2. To test the user refinement request, we have consid-
ered two different possibilities. An “expert user” re-
questing a mean of 10 refinements, and a “naive user”
requesting a mean of 50 refinements.

3. The size of the catalog obtained by the Browser can
also decrease the system performance. We have
used five different sizes for the catalog: 1 Kbyte, 25
Kbytes, 50 Kbytes, 75 Kbytes and 100 Kbytes.

4. The speed of the net is very important to identify bot-
tlenecks. We have considered two cases: a net with

a speed of 100 Kbytes/sec. (“fast” connection speed)
and a net with a speed of 10 Kbytes/sec. (“slow” con-
nection speed).

5. STEP 2: PNs MODELLING

The paUML models are expressive enough to accom-
plish with different implementations. A necessary condi-
tion to design methods is their independence of final imple-
mentation decisions. In this way, we can use these models
to develop applications based on CORBA, mobile agents,
etc. But this gap between design and implementation could
be undesirable in certain cases. As an example, in the sys-
tem that we are treating we are not sure about how many
majordomos should attend requests, how many concurrent
users can use the system, etc. However, a formal modelling
with Petri nets [10] solves these questions satisfactorily.

The design proposed in [6] deals with one user and one
majordomo. Petri nets allow to represent cases such as:
One user and one majordomo, several users served by one
majordomo or many users served by many majordomos,
once per request.

Thus, increasing the modelling effort, it could be possi-
ble to avoid the necessity of implementing the system for
predicting performance figures.

At this point, we have modelled the system with
paUML notation, taking into account the load in the se-
quence diagram and the statechart diagrams. So, a prag-
matic approach of the system has been obtained. But this
representation is not precise enough to express our needs.
Remember that we want to predict the system behaviour in
different ways.

In order to obtain answers to our questions, we need
to apply performance analytic techniques to the developed
paUML diagrams. But there is a lack in this field because
no performance model exist for UML, so the pragmatic
model is not expressive enough. Also, we need to ex-
press system concurrency, but UML models concurrency
in a very poor way. Thus, it is required a formal model of
the system with concurrency capabilities.

To solve these lacks, we have chosen Petri nets as for-
mal model, because it has the remarked capabilities and
also there are well-known analytic techniques to study sys-
tem performance in stochastic Petri net models. Thus, we
propose some transformation rules to semi-automatically
obtain Petri nets from paUML diagrams. Therefore, it
must be underlined that a formal performance model can
be obtained as a by-product of the software design stage.

We have modelled with Petri nets the first two proposed
systems (one or several users and one majordomo), the
third one (several majordomos) will be developed in a
future work. For the first system, one user and one major-
domo, GSPN [2] have the expressive power to accomplish
the task, it is proposed in the following paragraphs. To
study the second system, several users served by one
majordomo, stochastic well-formed coloured Petri nets [3]

are of interest, it can be consulted in [8]. Once the systems
are modelled, we use analytic techniques implemented
in GreatSPN [4] tool to obtain the target performance
requirements.

Petri net model: One majordomo and one user

We are going to obtain a Petri net for each system class,
the component nets. Obviously, every annotated statechart
diagram will give us the guide, and the following general
transformation rules will be applied:

Rule 1 Two different kinds of transitions can be identified
in a statechart diagram. Transitions which do not spend
net resources and transitions which do. The first kind will
be translated into “immediate” transitions (that fire in zero
time) in the Petri net. The second kind will be “timed”
transitions in the Petri net. The mean of the exponentially
distributed random variable for the transition firing time
will be calculated as a constant function of the message
size and net speed.

Rule 2 Activities inside a state of the statechart diagram
are considered as time consuming, so in the Petri net model
they will be consider as timed transitions. The time will be
calculated from the CPU and disk operations needed to
perform the action.

Rule 3 Guards in the statechart diagram will become
immediate transitions with the associated corresponding
probabilities for the resolution of conflicts.

Rule 4 States in the statechart diagram will be places in
the Petri net. But there will be not the unique places in the
net, because additional places will be needed as an input
to conflicting immediate transitions (obtained by applying
Rule 3).

P15P7

wait_for_service wait_UserforCatalog P4

P6

observe_GUI_catalog

alfred.select_sw_service

alfred_refine_catalog

alfred.select_sw

electronic_commerce

end_ec

begin_ec

Figure 3. User Petri net component

Figures 3, 4, 5, 6 and 7 represent the nets needed to
model our system components taking into account the pre-
vious transformation rules. According to GSPN notation
[2], immediate transitions (firing in zero time) are drawn
as bars (filled), while timed transitions are depicted as
boxes (unfilled). Timed transitions are annotated with fir-
ing rates, while immediate transitions are annotated with
probabilities for conflict resolution.

wait_Alfred

P36

P3P4

P5

P6

P7

P8

P9

show_GUI_catalog

add_info3

add_info1 user.observe_GUI_catalogSw_Manager.getcatalog

add_info2

create_GUI

browser.select_sw_browser browser.refine_catalog

refine_catalogselect_software

select_sw_service

Figure 4. Alfred Petri net component

wait

P3

P4

P5

P6

P7

P8

browser.reply_remote add_info4
request

salesman.reply

get_catalogmore_information_remote

browser.create_browser

create_catalog

get_info

browser.reply_local

more_information_local

Figure 5. Software Manager Petri net component

The sequence diagram will be the guide to obtain a com-
plete Petri net for the system using the previous compo-
nent nets. We must consider that UML distinguishes, in
a concurrent system, two different kind of messages in a
sequence diagram: Those represented by a full arrowhead
(wait semantics) and those represented by a half arrowhead
(no-wait semantics).

The following transformation rules will be used to ob-
tain the net system. But first, it must be taken into account
that, for every message in the sequence diagram, there are
two transitions with the same name in two different com-
ponent nets, the net representing the sender and the net rep-
resenting the receiver.

Rule 5 If the message has wait semantics, only one transi-
tion will appear in the complete net system; this transition
will support the incoming and outcoming arcs from both
net components.

Rule 6 If the message has no-wait semantics, the two tran-
sitions will appear in the net system and also an extra place
will be added modelling the communication buffer. This
place will receive an arc from the sender transition and
will add an arc to the receiver transition.

The net system for the example is shown in fig-
ure 8. In order to understand how to apply the previ-

P1

P2

P3

wait

P5P6

P7

P8

P9

P10

P11

P12

P13

P15

P16

P17

P18

P19

P20

SwManager.more_information_remote

reply_local

reply_remote

goto_MU_Place2

create_browser_agent

alfred.show_catalog_GUI

refine_catalog_browser

select_sw_browser

salesman.create_salesman

goto_Sw_Place

refine

goto_MU_Place

not_info_need_or_local

info_need_travel1

SwManager.more_information_local

info_need_local

info_need_travel

not_info_need

delete_browser

Figure 6. Browser Petri net component

P1 P2 begin_add_info_sale

end_add_info_saleP5P6

SwManager.requestcreate_salesman

user.electronic_commerce

add_info_saleuser.end_ec

user.begin_ec

Figure 7. Salesman Petri net component

ous rules, we are going to explain how to obtain the ob-
serve GUI catalog transition in the net system (figure 8)
from the observe GUI catalog message sent by Alfred to
the user in the sequence diagram. We can observe in Al-
fred’s net (figure 4) and in the user’s net (figure 3) the pres-
ence of that transition. So, in the net system the transition
appears with the union of the incoming and outcoming arcs
of the components, synchronising in this way both objects.

Finally, we remark with an example that the concur-
rency expressed in UML has been achieved in the net
system by synchronising component nets. When cre-
ate salesman transition fires one token is placed in P20
and one token is placed in P31, allowing a concurrent ex-
ecution of the request and delete browser transitions.

6. STEP 3: PERFORMANCE STUDY

As we expressed in the “performance goals” of the sys-
tem, see section 4.3, it is of our interest to study the sys-
tem response time in the presence of a user request. To
obtain the response time, first the throughput of the se-
lect sw service transition, in the net system, will be cal-
culated by computing the steady state distribution of the
isomorphic Continuous Time Markov Chain (CTMC) with
GreatSPN [4]; finally, the inverse of the previous result
gives the system response time. Also, we proposed as
a performance goal to determine the bottlenecks of the
system and identify their importance. In order to study
the two possible bottlenecks identified in section 4.3, we
have developed a test taking into account the “workload
definitions” given in section 4.4 and taking into account
that: Transition not info need measures if the Browser
has enough information to create a new catalog and transi-
tions info need local and info need travel represent re-
spectively that the Browser performs a RPC or a travel to
the Software place to obtain information to create a new
catalog.

In Figure 9, we have tested the system for a different
number of requests ranging from 1 to 4, thus the coloured
model in [8] has been used. Observe that when the number
of requests is increased, the response time for each request
increases, i.e., tasks cannot execute completely in parallel.
Alfred and the Software Manager are not duplicated with
simultaneous requests. Thus, they are the bottleneck for
the designed system with respect to the number of concur-
rent requests of the service. Therefore, the next step in the
performance analysis of the model would be to consider
several majordomos (we do not include here due to space

m
1=

 2

P1

w
ai

t_
Sw

M
an

ag
er

P5

P6

P7

P8

w
ai

t_
U

se
rf

or
Se

rv
ic

e

w
ai

t_
U

se
rf

or
C

at
al

og

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

be
gi

n_
ad

d_
in

fo
_s

al
e

P2
2

P2
3

en
d_

ad
d_

in
fo

_s
al

e

P2
5

P2
6

P2
7

w
ai

t_
B

ro
w

se
r

P2
9

P3
0

P3
1

w
ai

t_
A

lf
re

d

P3
5

P3
6

P3
7

P3
8

P3
9

P4
0

P4
1

P4
2

P4
3

P4
6

P4
4

P4
5

P4
7

P4
9

P4
8

P5
0 P5

1

P5
2

P5
3

P5
4

P5
5

P5
6

br
ow

se
r.

re
pl

y_
re

m
ot

e
go

to
_M

U
_P

la
ce

2

ge
t_

in
fo

ob
se

rv
e_

G
U

I_
ca

ta
lo

g

m
or

e_
in

fo
rm

at
io

n_
re

m
ot

e

go
to

_M
U

_P
la

ce

go
to

_S
w

_P
la

ce

ad
d_

in
fo

_s
al

e

sh
ow

_c
at

al
og

_G
U

I

cr
ea

te
_c

at
al

og

ad
d_

in
fo

4 cr
ea

te
_s

al
es

m
an

ad
d_

in
fo

3

ad
d_

in
fo

2

ad
d_

in
fo

re
fi

ne

cr
ea

te
_B

ro
w

se
rA

ge
nt

cr
ea

te
_G

U
I

br
ow

se
r.

re
pl

y_
lo

ca
l

in
fo

_n
ee

d_
tr

av
el

in
fo

_n
ee

d_
lo

ca
l

se
le

ct
_s

w

re
fi

ne
_c

at
al

og

no
t_

in
fo

_n
ee

d

sa
le

sm
an

.r
ep

ly

re
qu

es
t

se
le

ct
_s

w
_b

ro
w

se
r

re
fi

ne
_c

at
al

og
_b

ro
w

se
r

se
le

ct
_s

w
_s

er
vi

ce
ge

t_
ca

ta
lo

g

t3
8

t3
7

t3
6

el
ec

tr
on

ic
_c

om
m

er
ce

no
t_

in
fo

_n
ee

d_
or

_l
oc

al in
fo

_n
ee

d_
tr

av
el

1

m
or

e_
in

fo
rm

at
io

n_
lo

ca
l

de
le

te
_b

ro
w

se
r

be
gi

n_
ec

en
d_

ec

Figure 8. The Petri net for the whole system

limitations).

7. CONCLUSIONS

The main goal of this paper is to present an approach
to evaluate performance in design mobile agents software.
We have used as test a system designed for providing mo-
bile computer users with a software retrieval service. We
summarise the contributions in the following items:

• A process to evaluate software performance has been
integrated in the early stages of the software life-
cycle. Thus, when performance or functional require-
ments change, it will be easy and less expensive to
assume them. Starting from the paUML models, the
component Petri nets are systematically obtained, and
from these the net system, finally the net system al-
lows performance evaluation. Benefits from prag-
matic software methodologies are preserved.

• Software design is a complex task, therefore any kind
of reuse becomes interesting. In this way, design pat-

0

2

4

6

8

10

12

14

16

18

m
in

u
te

s

1 Kbyte

50 Kbytes

100 Kbytes

1 Kbyte 3,7069988 6,1319598 8,3640013 10,506961

50 Kbytes 4,970673 7,2605823 9,5529232 11,862396

100 Kbytes 6,2609567 9,2157405 12,30315 15,500271

1 request 2 request 3 request 4 request

Figure 9. System response time.

terns have been introduced to design software using
agents taking into account performance parameters.

• The modelled example presents a complex system
which is expensive to implement. Our approach offers
an analytic way of evaluating such kind of systems
without having to implement several prototypes. The
results coincide with those obtained by the ANTARC-
TICA SRS designers using implemented prototypes.

8. REFERENCES

[1] Rational Software Corporation., 2001.
http://www.rational.com.

[2] M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized
stochastic Petri nets for the performance evaluation of multiproces-
sor systems. ACM Transactions on Computer Systems, 2(2):93–122,
May 1984.

[3] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochas-
tic well-formed colored nets for symmetric modelling applications.
IEEE Transactions on Computers, 42(11):1343–1360, November
1993.

[4] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN
1.7: GRaphical Editor and Analyzer for Timed and Stochastic Petri
Nets. Performance Evaluation, 24:47–68, 1995.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[6] E. Mena, A. Illarramendi, and A. Goñi. A software retrieval ser-
vice based on knowledge-driven agents. In Cooperative Informa-
tion Systems CoopIS’2000, pages 174–185, Eliat, Israel, September
2000. Opher Etzion, Peter Scheuermann editors. Lecture Notes in
Computer Science, (LNCS) Vol. 1901, Springer.

[7] J. Merseguer, J. Campos, and E. Mena. A pattern-based approach
to model software performance. pages 137–142, Ottawa, Canada,
September 17-20 2000. ACM. ISBN 1-58113-195-x.

[8] J. Merseguer, J. Campos, and E. Mena. Performance evaluation for
the design of agent-based systems: A Petri net approach. In Mauro
Pezzé and Sol M. Shatz, editors, Proceedings of the Workshop on
Software Engineering and Petri Nets, within the 21st International
Conference on Application and Theory of Petri Nets, pages 1–20,
Aarhus, Denmark, June 2000. University of Aarhus.

[9] Object Management Group, http:/www.omg.org. OMG Unified
Modeling Language Specification, September 2001. version 1.4.

[10] M. Silva. Las Redes de Petri en la Automática y la Informática.
Editorial AC, Madrid, 1985. In Spanish.

[11] C. U. Smith. Performance Engineering of Software Systems. The
Sei Series in Software Engineering. Addison–Wesley, 1990.

