A deadlock avoidance approach for Non—Sequential Resource
Allocation Systems

J. Ezpeleta, L. Recalde

Departamento de Informatica e Ingenieria de Sistemas
Universidad de Zaragoza
Maria de Luna 3, 50018 Zaragoza (SPAIN)

{ezpeleta,lrecalde}@posta.unizar.es

Abstract— Many solutions have been proposed for
deadlock related problems in systems where a set of
sequential processes must be concurrently executed
competing for the set of system resources (these sys-
tems are usually named as Sequential Resource Al-
location Systems -S—RAS-). In the case in which
the involved processes have a non—sequential nature
(Non—Sequential Resource Allocation Systems -NS—
RAS-) the problem becomes more complex. In this
paper we propose a deadlock avoidance algorithm for
this last class of systems. The solution is obtained by
means of an adaptation of a Banker’s approach for
S—RAS. We also show the usefulness of the proposed
solution by means of its application to a real system.

Keywords: Deadlock avoidance, Banker’s algo-
rithm, Concurrent systems, Assembly—disassembly Sys-
tems

I. INTRODUCTION

The point of view adopted in this paper looks at a
manufacturing system as a resource allocation system
(RAS) [Rev98], using Petri nets as formal tool to model
and control the system.

In the adopted perspective, each in—process material
(either a complete part, a component to be assembled or
a component coming from a disassembly operation) will
be modelled as a token that moves through the Petri net.
A production order corresponds to the processing of a
part. When being executed, such production order will
correspond to an active process. A process is defined by
the set of states it can reach, modelling the different op-
erations to be carried out over the components as well as
the actions executed to change such state. During the
production process, each component of a final product
needs to use some system resources (a machine and/or
set of tools that are needed for the current operation on
a component, or the buffer capacity needed for an inter-
mediate storing operation, or the robot that is moving
it between two locations, etc.). Each state change of
a component can be seen as an operation by which a
set of new resources is engaged and a set of resources is
released.

As in any concurrent system where processes share
common resources deadlocks can appear during the pro-
duction process. In most cases deadlock states must be
imperatively avoided. This paper concentrates on the
development of a deadlock avoidance method applicable
to systems with the following characteristics: 1) produc-
tion orders are allowed to have assembly/disassembly

operations (which gives the non-sequential nature in the
production of a part); 2) the use of system resources
must be conservative (resources are neither created nor
destroyed); 3) actions related to the use of resources are
controllable; 4) flexible part routing is allowed.

A lot of work has been done related to the control of
such systems when no assembly/disassembly operation
is allowed (see, for instance, [VNJ90], [BK90], [LRF97],
[RR92], [ECM95], [CX97], [Jen96], [ETGC] for differ-
ent approaches). The case of assembly/disassembly sys-
tems, from a Petri net perspective, has been dealt with
in [RW92], [XJ99].

In general, it is assumed that the isolated execu-
tion of a production order must be possible in the sys-
tem (on the contrary, the production plan is not prop-
erly defined). In the case of systems with no assem-
bly/disassembly operation, to check if this is possible
is easy to do. In the case of assembly/disassembly sys-
tems the problem has been proved to be NP—complete
[RW92]. Assuming a correct system (correct here means
that each production order can be executed in isola-
tion), a second problem is to know if the processing of
all the active orders can be terminated. The optimal
solution (characterising exactly the set of system states
from which all the active processes can terminate) is
NP-hard [RW92]. A deadlock prevention/avoidance
policy has to forbid reachable system states for which
it is not possible to ensure that the active processes
can terminate (or, equivalently, those states from which
the initial state cannot be reached). In the general case,
non-optimal solutions based on sufficient conditions can
be provided. Moreover, when a deadlock avoidance ap-
proach is adopted (which means that the decision of
allowing or forbidding a state transition must be taken
on-line) efficient algorithms for checking a sufficient con-
dition are necessary.

In this paper we adopt a mixed approach based on the
computation of the reachability graph corresponding to
the isolated execution of each type of production order
(avoiding the computation of the reachability graph of
the whole model). We show how the reachability graphs
of the different production orders can be composed ob-
taining a Petri net belonging to the class of the S* PR
nets, for which a polynomial time complexity adapta-
tion of the Banker’s algorithm for deadlock avoidance
can be applied [ETGC]. We illustrate the interest of the
proposed control method by its application to a real as-

sembly system.

The paper is organised as follows. In Section II a
deadlock avoidance control policy for S-RAS, based on
the Banker’s algorithm, is presented. The classes of
non-sequential resource allocation process (NS-RAP)
and non-sequential resource allocation system (NS-
RAS) are introduced in Section III. Section IV shows
how the previous deadlock avoidance algorithm can be
used in the control of NS-RAS. The idea is further il-
lustrated in Section V, where it is applied to a manu-
facturing system.

II. A DEADLOCK AVOIDANCE CONTROL POLICY FOR
SEQUENTIAL RESOURCE ALLOCATION SYSTEMS

Let us introduce a class of Petri nets that allows to
model, in a natural way, many S-RAS with serially
reusable resources, S*PR. These nets can model both
flexible routing and the use of several resources at each
processing step [ETGC].

Definition 1: Let Inr = {1,2,...,m} be a finite set
of indices. An S™PR net is a connected self-loop free
generalised Petri net N' = (P, T, C) where:

(1) P = PyUPsUPg is a partition such that: (a) Ps =
UieIN Ps,;, Ps, # 0 and Ps,NPs, = 0, for all i # j. (b)
Py, = UiEIN {poi}. (C) Pr = {1"1,1"2,. . .,Tn}, n > 0. (2)
T = UiEIN T, T; # 0, T:NT; = @, foralli # j (3) For all
i € Iy, the subnet N; generated by Ps, U{po, }UT; is a
strongly connected state machine. (4) For each r € Pgr
there exists a minimal P-Semiflow, ¥, € IN'Pl, such
that {r} = ||Y}|| N Pg, Y.[r] = 1, Po N ||Y;|| = 0, and
Ps N [|Y:l # 0. (5) Ps =, cp, (INV2II\{r})

An initial marking is acceptable for N iff (1) Vi €
Iy, mg[po;] > 0. (2) Vp € Ps, mg[p] = 0. (3) Vr €
Pr, mo[r] 2 maxye| v, |\ (ry Yr[p].

Places of Ps are called process state places (or process
places). At a reachable marking, a token in a place p €
Ps; models an in—process part whose processing state is
modelled by means of place p. Each place po, is called
idle state place (or idle place), and represents the state
in which the corresponding processes (or parts) are idle.
Each strongly connected state machine in Definition 1.3
represents the states that a part, initially in po,, can
reach during its processing. Places of Pr, called resource
places, and associated arcs model how resources are used
by the active processes.

Definition 1 imposes the existence of a minimal P—
Semiflow Y, such that Y,[r] = 1. For a given p € Ps,
Y,[p] = k (> 0) means that k copies of resource r are
used by each process (token) in the state modelled by
means of place p. Moreover, the invariant imposed by
Y, (Vm e R(N,mp), Y, -m =Y, -mo = mor]) repre-
sents the fact that resources can be neither created nor
destroyed. These P—Semiflows impose the resources to
be serially reusable. Considering only acceptable initial
markings ensures that the processing of each part in iso-
lation is possible. For a given state place p € Ps, Yr(p)
denotes the multi—set of resources used by a process
(a token) in the state modelled by place p: for every
r € Pr, Yr(p)(r) = Y:[p]. In the S*PR in Figure 1,
the following elements can be found: P, = {pl-0},

p2_0

Fig. 1. A S*PR.

Ps, = {pl1,p12,p1.3,p1.4}, Pr = {rl,r2,r3,rd},
T1 = {t1,12,t3,t4,t5,t6}, Y3 = 1-r3+2-p2_1+1-p2_2+
1-pl241-pl3+1-pl4 Yr(p22)=1-r34+1-r4 "

An adaptation of the Banker’s algorithm for dead-
lock avoidance in the class of S*PR nets is presented
in [ETGC], whose run—time cost is polynomial in the
Petri net model size. The algorithm looks for an or-
dering in the set of active processes such that the first
process can terminate using its granted resources plus
the free ones, the second process can terminate using
the resources it holds plus the ones free upon termina-
tion of the first process, and so on. The basic step is to
know if a process is able to terminate. Let us consider
a reachable marking such that m[p] > 0, with p € Ps,.
A token in p models an active process. If the rest of
active processes do not move, the process modelled by
one of the tokens in p can use, in order to terminate,
the resources granted to it (Yr(p)) plus those resources
free at m.

A sufficient condition for the considered process to be
able to terminate is the following:

o for every q € Ps; U po,, mark q if for every r € Pg,
Y:(q) < m[r]+Y:(p)
o find a path of marked places joining p and po,

If such path exists, the process can terminate. Let us
consider, for instance, marking m =2-p1.0+4+1-pl_1+
1-p1.2+1-r3+2-r4+4-p2_0, reachable in the S* PR in
Figure 1. Let us consider the token in place pl1-1 (cor-
responding to an active process in the state modelled
by means of place pl_1). If the previous method is ap-
plied to this process, places p1-0,pl1_1,p1_3,pl 4 will be
marked; since a path using these places exist from pl_1
to pl1_0, the considered process can terminate. Notice
also that, once this process terminates, also the process
in pl1_2 can terminate, which allows us to conclude that
the state corresponding to the chosen marking is safe.

III. A cLASS OF NON—SEQUENTIAL RESOURCE
ALLOCATION SYSTEMS

A S*PR net is basically a set of sequential processes
(state machines) that share a set of resources. This

!The multi-set notation will be used for this kind of vectors,
as also for markings, P-Semiflows, etc.

structure can be easily generalised, allowing more gen-
eral process structures.

Definition 2: A Non—-Sequential Resource Allocation
Process (NS-RAP) is a marked Petri (M, mo), N =
(Ps U PyU Pg, T, C), such that:

1. PsNPgr =PsNPy=PrNPFPy =@,Ps 7é w, Pr =
{rl,...,r} #0

2. Po={po}

3. Npyupgur is an ordinary, self-loop free, conservative
and consistent Petri net

4. For every r € Pr there exists a non-empty set YV, =
{Y;},...,Y}*"} of minimal P-Semiflows such that every
i € {1..k,} verifies that: (1) ||Y;¥||n Py =0 (2) [|V;i|| N
Pr ={r} _

5. Ps = U,emy Uscprn, (I 1D 2

6. mo[po] = 1; for every r € Pg, mo[r] > 0; for every
p € Ps, mo [p] =0

The conditions on the definition avoid undesirable be-
haviours. In particular, these conditions guarantee that
the system is consistent and conservative. Otherwise
it would be non-repetitive, and the resources would be
consumed or generated under its execution.

Let (N, mp) be a NS-RAP, let RG({(NV, mo)) be its
reachability graph and RS({(M, mo)) its reachability set
(the set of nodes of RG((NV, mo))).

e« CC = {Ci,...,Cn} denotes the set of strongly con-
nected components (scc) of RG((NV, mo)). Moreover,
given a marking m € RS({(N, mg)), C™ denotes the scc
to which m belongs.

o Given a marking m € RS((N, mg)), Y& denotes the
multi—set of resources the process is using at m, and it
is defined as follows: for every r € Pgr,YR"[r] = mo[r]—
m[r].

Observe that the reachability graph of an NS-RAP
may have more than one strongly connected component.
Moreover, the process cannot be repetitive unless there
is a non-trivial strongly connected component that con-
tains the initial state. This is a necessary and sufficient
condition for the production order to be executable in
the system. This kind of NS-RAP will be said to be
well-defined.

Definition 3: Let (N, mo) be a NS-RAP. It is said to
be well-defined if, and only if, |C™°| > 1.

In the following, when talking about a NS-RAP it
will be assumed to be well-defined. Given a NS-RAP, a
S* PR can be obtained which is equivalent to C™°. The
idea is to associate a place to each state (in particular
the initial marking corresponds to the idle place), and
a transition to each state change. The set of resources
of the NS-RAP are also resources of the S* PR, and are
connected to the net in such a way that their marking
evolves according to the reachability graph.

Definition 4: Let (N, mg) be a (well-defined) NS-
RAP. The associated unfolded system is the S*PR
(N*,mp*), N* = (P U P; U P}, T*,C*), defined as
follows:

o Pg contains a place pm for each m € C™° \ {mo}
« Py contains a unique place pm,

2Every result presented here is also valid if this assumption is
withdrawn.

Fig. 3. The unfolded system corresponding to the well de-
fined NS-RAS in Figure 2. For the sake of clarity, only
resource 74 has been drawn. Notice that no place has
been generated corresponding to markings my7 and mg
(since they do not belong to C™0).

o Pp contains a place p, for each r € Pg
o T* contains a transition #m, m, for each mj[t'ym,
belonging to RG((V, mo)) such that m;, m, € C™°
o C” is defined as follows:
- C*[pmlatml,mz] =-1
- C*[pm2:tm1,m2] =1
— for every p, € Pz, C*[pr,tm;,mo] = Y}-!cnl [7"]_Y1:l;n2 [r]
— C*[Pm, tm;,m.] = 0 for any other place

e Mo [Pmy] = 1; for every p, € Pr. mo*[p,] = molr],
while mo*[pm] = 0 for every pm € P35
Proposition 5: [ER02] Let (N*, mo*), N* = (P5 U

P§ U Py, T*,C™), be the associated unfolded system of
(N, mp), N = (PsUP,UPg, T, C). Then, every p. € Pj,
is an implicit place

Proposition 6: [ER02] Let (N*, mo*), N* = (P5 U
Py U Py, T*,C™), be the associated unfolded system of
(J\/, mo), N = (Ps U PyU Pg,T,C). Then, (/\/*, mo”*)
is an S*PR with an acceptable initial marking.

It is important to remark the fact that the S*PR
obtained in the previous proposition is composed by just
one type of process (this means that the set of indices
I in Definition 1 is composed by just one element). Let
us now introduce the class of NS-RAS, corresponding
to the concurrent processing of a set of NS-RAP. A
NS-RAS is obtained by means of the composition of a
non—-empty set of NS-RAP by fusion of the common
places modelling resources. First, let us introduce what
do we mean by composition.

Definition 7: Let (N;,my,;), N; = (P;,T;,C;), i €
{1..2}, be two Petrinets. They are said to be composable
if, and Ollly lf, PiNP, ;é 0, T'NTy = 0 ande [S Plr‘ng,
my, [p] = muo, [p].

The resulting composed net is defined as follows:
(N, mp), N = (P, T, C) where:

e« P=P UP,

o I'=T1UT,

o for every p € P and every t € T, Cp,t] =
Ift € Th,p € P; Then Cl[p,t] Else If t € To,p €
P, Then Cap,t] Else 0.

The previous definition can be extended in the nat-
ural way to the case of any finite number of components.

mO: PO+R1+R2+2:-R3+2-R4
ml: P1+P2+2-R3+2-R4

m2: P1+P6+R2+2-R3+R4
m3: P1+P5+R2+R3+2-R4
m4: P2+P4+R1+2-R3+R4
m5: P2+P3+R1+R3+2-R4
m6: P4+P6+R1+R2+2-R3
m7: P3+P6+R1+R2+R3+R4
m8: P4+P5+R1+R2+R3+R4
m9: P3+P5+R1+R2+2-R4

Fig. 2. A well defined NS-RAS and its reachability graph.

In the following, and being (NV;, my,), i € {1..n}, a set
of composable Petri nets, Ol (N;, mo,) will denote the
composed net. In the case of NS-RAP, the “compos-
ability” notion will be constrained to the case in which
the common places belong to the set of resources. The
interpretation of this constraint is clear: each one of
the involved NS-RAP will model the production of a
part. The interaction among the parts is due to the
fact that they have to compete for the set of common
resources; then, only places modelling resources can be
shared among different NS-RAP.

Definition 8: A non-sequential resource allocation
system (NS-RAS) is defined recursively as follows:
e A NS-RAP is a NS-RAS.
o The composition of two NS-RAS via a set of common
resource places is also a NS-RAS.
o All the NS-RAS are obtained using the previous rules.

In the following, any NS-RAS will be assumed to be
of the form O~ (N;, mo;), for some n > 1.

Proposition 9: Let (N, mo) = O~ (NV;, mp;) be a
NS-RAS composed of a set of well-defined NS-RAP.
Then, (N*,mo*) = Q= (N;", mo}) is a set of S*PR.
Notice that (N*, mo*) can be, in general, a set of S* PR
instead of just one. This is due to the fact that it is pos-
sible for the resulting net to be a set of disjoint strongly
connected nets. This is not a drawback for our purposes.
Since we are looking for a deadlock avoidance algorithm,
in the case of having a set of separated systems (which
means there is no interaction among them) it is enough
to control each one of them. Therefore, in the follow-
ing we are going to assume that the composition of the
unfolded system forms one unique S*PR.

IV. A DEADLOCK AVOIDANCE CONTROL POLICY FOR
NS-RAS

In [ETGC] an adaptation of the Banker’s algorithm
for deadlock avoidance was developed for the class of
S*PR. Here we will use this algorithm for deadlock
avoidance in NS-RAS systems. The idea is to have an
schema as shown in Figure 4.

Initially, an NS-RAS model that represents the sys-
tem in an adequate detail is developed. This means, for

Real System

Controller

Scheduler

Banker’s
algorithm

Fig. 4. Schema of the proposed controller.

example that local faults that can be managed by the lo-
cal controllers are not explicitly represented. Then, the
associated S* PR system is obtained. In the execution,
the controller uses the information about the real state
of the system and updates the associated state in the
NS-RAS model to deduce the different possible system
evolutions. From that set of possible transition firings
the controller has to extract a subset that guarantees
that no deadlock will be achieved. That will be done as
follows: for each transition firing, obtain the marking
m that would be reached. This marking has an equiv-
alent marking m* in the associated S*PR. Apply the
Banker’s algorithm developed in [ETGC] to this mark-
ing. If deadlock-freeness can be guaranteed, the transi-
tion is effectively enabled. Otherwise, since it cannot be
safely fired it should be removed from the list of possi-
ble evolutions. The controller should be completed by
adding any other module (scheduler, strategies to opti-
mise the production,...) that may provide information
to choose the the most adequate action among the en-
abled ones.

Observe that it would be possible to remove the NS—
RAS model of the system, and use the associated S*PR
to decide the possible actions. However, the NS-RAS
model is more intuitive and can be more easily checked
by a human operator to supervise the behaviour or de-
cide what should be done in a certain moment.

V. AN APPLICATION EXAMPLE

Figure 5 shows the plant of a manufacturing cell con-
sisting of six machines (M1 to M6) that process the

components, one buffer with place to store up to 16 in-
termediate products, and two robots (R1 and R2). The
process is organised in two rings, with the buffer con-
necting them. The final product (Figure 6) is composed
of a base on which three cylinders are set. The base
may be black or white, and there are two types of cylin-
ders: cylinders that are composed of a case, a piston, a
spring, and a cover (that we will call “complete”) and
cylinders with just a case and a cover (that we will call
“hollow”). In both kinds of cylinders the cases may be
red, black or metallic.

Fig. 6. The kind of product that the system in Figure 5
produces.

As raw materials there are bases, pistons, springs,
covers, cases, and cases with a cover. We assume that
an unbounded amount of raw material feed the system.

The processing goes as follows: machine M1 takes a
case from a feeder, and verifies that it corresponds to
the order, that is, if the colour is correct and whether
it has a cover or not. If it is not correct, then it is dis-
carded, otherwise, it is put on a pallet, and the kind of
processing that the part needs is written on the pallet.
If the part already has a cover, a switch is activated to
carry it directly to M4. Otherwise it goes to M2. Ma-
chine M2 puts the piston and the spring, if the cylin-
der needs them, and then the part goes to M3, which
adds the cover. In M4 the parts are verified, the pallets
are released and the parts are put on a conveyor that
moves them to the entrance of the buffer. Machine M5
can temporarily store the cylinders in the buffer. When
needed to assemble the final product, M5 puts them in
a conveyor that takes them to robot R1. Machine M6
puts a base of the right colour on a pallet, and it is car-
ried to robot R1. The robot takes the three cylinders
one by one and puts them on the base. The product is
then complete, and goes to robot R2, which takes it out
of the system. A set of different 312 products can be
composed using these materials.

An NS-RAP can be used to model each kind of prod-
uct For example, in Figure 7 a Petri net that models the
assembly of a product made of three complete cylinders
is shown. The resource places have been distinguished
by a “tag”, so removing those places what remains is the
process plan. It can be seen that there is a transition
with several output “process places”, the one that di-
vides the order into sub-orders of different pieces and
bases. There are also transitions with several input
“process places”, when the pieces are put on the base.
In this example the resources are of two kind. On the
one hand there are machines, robots, and space in the
intermediate buffer (i.e, physical constraints). On the
other, there are constraints that are not strictly neces-

sary but are advisable for the correct evolution of the
system, for example not to allow more than one pallet
on each conveyor segment.

If all the different products are composed fussing the
places of the common resources, what we have is an NS—
RAS, and so the technique described in Section IV can
be applied to it.

In order to check the usefulness of the proposed ap-
proach, a prototype of the program checking for safeness
has been implemented. The associated S*PR associ-
ated to the NS-RAP in Figure 7 has been computed.
It has 2442 state places and 7814 transitions. Check-
ing if the processing of such type of parts can terminate
with the free resources has been implemented using the
set of graph libraries of the LEDA package (distributed
by Algorithmic Solutions Software GmbH). In mean, its
takes about 0.012 CPU seconds using a PIII processor
at 1.0 GHz with a Linux RedHat 7.2 operating system
(this computation uses a Depth First Search algorithm,
which is linear in the size of the unfolded system). Given
that no more than 26 components can stay at the same
time in the system (considering the 10 pallets plus the 16
storage places in Figure 6) and that a direct implemen-
tation of the algorithm in [ETGC] grows in a quadratic
way with respect to the number of active processes, the
whole time to know if a system state is safe takes about
8 CPU seconds.

VI. CONCLUSIONS

The paper has proposed a deadlock avoidance solu-
tion to the case of NS-RAS systems. It is based on two
main elements. First, the computation of the reachabil-
ity graph of the isolated execution of each production
order. Second, the application of a Banker’s approach
for deadlock avoidance to the S* PR resulting from the
composition of the unfolded systems. The usefulness of
the method has also been shown by means of its ap-
plication to a real example. It is important to remark
the fact that the size of the reachability graphs of the
isolated execution of each production order is tiny com-
pared to the size of the reachability graph of the whole
system, which makes the approach to be promising to
solve the deadlock problem for this kind of systems. The
experimental computations have been carried out using
libraries implementing standard graph algorithms. We
feel that the use of data structures and algorithm imple-
mentations specifically adapted to the kind of systems
we are dealing with can give better performance results.

Acknowledgments

This work has been supported by the Spanish research
project CICYT and FEDER TIC2001-1819

REFERENCES

Z.A. Banaszak and B.H. Krogh. Deadlock avoid-
ance in flexible manufacturing systems with con-
currently competing process flows. IEEE Trans.
on Robotics and Automation, 6(6):724-734, De-
cember 1990.

Feng Chu and Xiaolan Xie. Deadlock analysis of
Petri nets using siphons and mathematical pro-

[BK90)

[CX97]

C_INPUT_STORE

PALLETS 2
)

Ao
IDLE

Y

Fig. 7. The NS-RAP modelling the assembly of a product made of three complete cylinders and a base.

gramming. IEEE Transactions on Robotics and
Automation, 13(6):793-804, December 1997.
[ECM95] J. Ezpeleta, J.M. Colom, and J. Martinez. A Petri
net based deadlock prevention policy for flexible [RR92]
manufacturing systems. IEEE Trans. on Robotics
and Automation, 11(2):173-184, April 1995.
[ER02] J. Ezpeleta and L. Recalde. A deadlock avoid-
ance approach for non-sequential resource alloca-
tion systems. Research Report RR-02-05, Dept. of
Computer Science. University of Zaragoza, Maria [RW92]
de Luna,3 - 50018-Zaragoza. Spain, May 2002.
[ETGC] . Ezpeleta, F. Tricas, F. Garcia-Vallés, and J.M.
Colom. A Banker’s solution for deadlock avoidance
in FMS with routing flexibility and multi-resource
states. To appear in IEEE Transactions on Ro- [VNJ90]
botics and Automation.
[Jen96] M.D. Jeng. A Petri net synthesis theory for mod-
eling flexible manufacturing systems. IEEE Trans.
on Systems, Man and Cybernetics-Part B: Cyber-
netics, 27(2):169-183, April 1996. [XJ99]
[LRF97] M. Lawley, S. Reveliotis, and P. Ferreira. FMS
structural control and the neighborhood policy:
Part 1 correctness and scalability. ITE Transac-
tions, (29):877-887, 1997.
[Rev98] S. Reveliotis. Accommodating FMS operational
contingencies though routing flexibility. In Pro-

ceedings of the 1998 Int. Conference on Robotics
and Automation, pages 573-579, Leuven, Belgium,
may 1998. IEEE.

Z.Banaszak R.Wojcik and E. Roszkowska. Au-
tomation of self-recovery resource allocation pro-
cedures synthesis in FMS. In K. Leiviska, editor,
IFAC CIM in Process and manufacturing Indus-
tries, pages 127-132, Espoo, Finland, 1992. Ox-
ford: pergamon press.

E. Roszkowska and R. Wojcik. Problems of process
flow feasibility in FAS. In K. Leiviska, editor,
IFAC CIM in Process and manufacturing Indus-
tries, pages 115-120, Espoo, Finland, 1992. Ox-
ford: pergamon press.

N. Viswanadham, Y. Narahari, and T.L. John-
son. Deadlock prevention and deadlock avoidance
in flexible manufacturing systems using Petri net
models. IEEE Trans. on Robotics and Automa-
tion, 6(6):713-723, December 1990.

Xiaolan Xie and MuDer Jeng. ERCN-merged nets
and their analysis using siphons. IEFEE Transac-
tions on Robotics and Automation, 15(4):692-703,
aug 1999.

