A Performance Engineering Case Study:
Software Retrieval System*

José Merseguer, Javier Campos, and Eduardo Mena

Dpto. de Informatica e Ingenieria de Sistemas, University of Zaragoza, Spain
{jmerse, jcampos,emena}@posta.unizar.es

Abstract. This chapter presents a case study in performance engineer-
ing. The case study consists of a Software Retrieval System based on
agents. The system is modelled in a pragmatic way using the Unified
Modeling Language and in a formal way using stochastic Petri Nets.
Once the system has been modelled, performance figures are obtained
from the formal model. Finally, some concluding remarks are obtained
from our experience in the software performance process.

1 Introduction

The common tasks of retrieving and installing software using Internet are pro-
vided by several sites (e.g., Tucows [3], Download.com [1], and GameCenter [2]).
From a user point of view, the process of selecting and downloading software
could become costly and sometimes slow, therefore the performance of these
kind of services becomes crucial.

This chapter describes the performance study of a Software Retrieval Sys-
tem (SRS hereafter) proposed in [11]. This SRS, as those mention above, allows
Internet users to select and download new pieces of software. The main differ-
ences between it and the others are that the SRS has been designed for wireless
network systems (to satisfy mobile computer users) and it has been developed
using mobile agents technology [16].

The chapter is organised as follows. In Section 2, the SRS is specified. In
section 3, the SRS is modelled using the Unified Modeling Language (UML) and
Petri nets (PN). In section 4 a performance analysis of the system is addresed.
Finally, some concluding remarks are given.

2 System Specification

Mobile agents are intelligent and autonomous software modules that can move
themselves from one place to another, carrying with them their whole states. A
place is a context, within an agent system,! where an agent can execute [15].

* This work has been developed within the project TAP98-0679 of the Spanish CICYT.
! An agent system is a platform that can create, interpret, execute, transfer and dispose
agents.

GATEWAY SUPPORT NODE (GSN)

SOFTWARE PLACE

Salesman

9
>
‘\
N
.
.
.

Software Manager Agent

%\

« f Salesmag .
Browser &-
Tttt \ ’/4: Tt 1
' ' ' _> Creati '
! '}T Static agent | ‘;" !_ 3 | reation H
: ! Alfred i —» Communication i
i é’ Mobile agent MU PLACE o 1 i
H H o e ey » Travel H
"""""""" USER COMPUTER

Fig. 1. Architecture for the Software Retrieval System

Some of the advantages of the use of mobile agents, related to accessing remote
information, are the following:

— They encapsulate communication protocols.
— They do not need synchronous remote communications to work.
— They can act in an autonomous way and carry knowledge to perform local in-

teractions at the server system instead of performing some remote procedure
calls.

— They can make use of remote facilities and perform specific activities at

different locations.

The main components that are involved in the SRS, with emphasis on the

agents defined and how they interact, are shown in Figure 1. In the following
we briefly describe how these agents interact when the user wants to retrieve
software:

1.

Alfred, an agent specialized in user interaction, allows the user to express
her/his information needs. It resides in the Mobile Unit (MU) place.

Alfred communicates with the Software Manager agent, residing in the Soft-
ware place, which obtains a catalog with the available software.

The Software Manager creates a Browser agent, a specialist in helping users
to select software. This agent moves to the MU place carrying a catalog of
software (see [12] for more details).

The Browser interacts with Alfred in order to select the wanted piece of
software. The user can request a refinement of the catalog; in that case, the
Browser will travel back to the Gateway Support Node (GSN) or, depending
on the concrete refinement, it will request the information to the Software
Manager. This process is repeated until the user selects the name of the
software that s/he wants to install on her/his computer.

Software
Retrieval
Service

User

Fig. 2. Use Case diagram

5. Then, the Browser creates a Salesman agent on the GSN, which is on charge
of performing all the tasks previous to installing the software on the user
node, i.e., e-commerce, downloading of the software, etc.

Finally, the main features of the SRS are pointed out:

Automatic generation (without user intervention) of a catalog of available
software [12].

The location and access method to retrieve remote software are transparent
to users.

— The system maintains up to date the information related to the available
software.

The system is able to help the users to find software even if they are inex-
perienced users.

3 Modelling the Software Retrieval System

In the following, we are going to model the SRS as a previous step to obtain
performance figures. First, it will be modelled using UML, but as we explain in
section 5 it is not possible to obtain performance figures from UML diagrams.
Therefore, in this section, we will model the system using PNs, which will be
obtained from the UML diagrams. PNs will allow us to obtain performance
figures for the system.

3.1 Modelling Using UML

The first step in the performance study of the SRS conveys in the development of
the UML [4] diagrams that model the system. A use case diagram, a sequence di-
agram and several statechart diagrams, one for each agent present in the system,
will be modelled; all them represent the dynamic view of the system.

In order to express the system load, the diagrams have been enriched fol-
lowing the notation presented in [14, 13]. It must be noted that for this case
study all the system load can be represented in the dynamic view of the system,
avoiding the necessity to develop a static view, which could be appropriately
represented using a class diagram.

Figure 2 shows the only use case needed to describe the dynamic behaviour
of the system. We can see in it the unique actor which interacts with the system,
the “user”. The use case is described in the following.

% ‘ Alfred ‘ SwManager

s ect_Shdserviceinfo

get_%gl}al og(info JJ|3US)

1K]
creaté cgtalog(info) plus) _[-1-Cado
= E : g
créalt%%))rowser(cl) BrowserAgent

100K
1.n (1004} shéw_cgtal og_GUlI(cl)
observe_GUI_catalog(¢1)

(nd? Shiistied] refine_datalbiyefinement)

refiﬁ\le'i)catalog(reﬁnemmt _plus)

0.
A ?ed] [i n%%rfr? {rlrlfdr%eo_olﬁormati on(refinement2| ci)

Ci+1{1K..100K}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =]

1K
A& sw(name) creste saldSiin(info_sdle
s
delete_browser

info_sale plus {1K}

T E T = S ———]

electronic_commerce

sg(&jw(nan &)

rgﬁnﬂ(i nfo_sale)

=

Fig. 3. Sequence diagram for the Software Retrieval System

Software Retrieval System Use Case Description.

— Principal event flow: the user requests Alfred for the desired software. Alfred
sends the request to the Browser, who obtains a catalog with the available
software. The Browser gives the catalog to Alfred, who shows it to the user.
If the user is satisfied with the catalog then s/he selects the software, in
other case s/he can ask for a refinement. This process could be repeated as
many times as necessary until the user selects a concrete piece of software.

The sequence diagram for the SRS, that describes in detail the use case, is
shown in Figure 3. The diagram represents the messages sent among agents,
their load and the probability associated to the guards.?

As it has been told, a statechart has been developed for each agent in the
system. They represent the life of the agents as well as the load of their events,
the time spent by their activities and the probabilities associated to the guards.

In the following a detailed description of the statecharts is given:

% It must be pointed out that these values have been obtained from our knowledge of
the problem domain.

{1K})
ASwManager.get_catal og(info_plus)

{100K} .
show_catalog_GUI(ci)

- {1sec}
WAIT Do:create_GUI(c)
Auser.observe GUI_catalog(ci)

{100K}

{1k} .
select_sw_service(info)

<<more_services>>

{01} . 1K
[Muser.Satisfied] sel

B

{0.9) =) élK%)
[not Muser.satisfied] refine_catal og(refinement)

show_GUI_catalog

1 refine_catalog

.refine_catalog

add_info2

Fig. 4. (a) Statechart for Alfred, (b) SWN for Alfred

Alfred Statechart Alfred is always present in the system, no creation event is
relevant for our purposes. Its behaviour is typical for a server object. It waits for
an event requesting a service (select_sw_service, show_catalog_GUI, refine_catalog
or select_sw). For each request it performs the necessary activities and it returns
to its wait state to serve another request. Figure 4(a) shows Alfred’s statechart.
The stereotyped transition < more_services > means that Alfred may attend
other services that are not of interest here.

User Statechart In Figure 5(a), the behaviour of a user is represented. The
user is in the wait state until s/he activates a select_sw_service event. This event
sets the user in the waiting_for_catalog state. The observe_GUI _catalog event, that
could be sent by Alfred, allows the user to examine the catalog in order to look

{1K}
"Alfred.select_sw_service(info)

Waiting for
catalog

[not sﬂiéﬂg&]/‘Alfred.{tlefﬁ} e

atal og(refinement)

{1}
Alfred.sel

{lOOK{
observe_GUI_c:i
ct_sw(name)

(a)

alfred_refine_catalog

wait_for_service wait_UserforCatalog < 1 pa R
<X> <XX>

1 reduest:c
R 1 - <XxX> Sm
x> afred.select_sw_service e mim
= end_ec observe_GUI_catalog
- _—
o x> dfred.select_sw Ly
<X> [] <X> <X> _ kc <>
electronic ‘commerce % R begin X R

(b)

Fig. 5. (a) Statechart for the user, (b) SWN for the user

for the desired software. If it is in the catalog, the user sends the select_sw event
to Alfred, in other case s/he sends the refine_catalog event.

Software Manager Statechart Like Alfred, the Software Manager behaves
as a server object. It is waiting for a request event (more_information, get_catalog,
request). When one of them arrives, it performs the necessary activities to ac-
complish it. Figure 6(a) shows its statechart diagram. It is interesting to note
the actions performed to respond the get_catalog request: first, the catalog with
the available software is created, after that, the browser is created.

Salesman Statechart The Salesman’s goal is to give e-commerce services, as
we can see in Figure 7(a). After its creation it asks the Software Manager for sale
information. With this information the e-commerce can start. This is a complex
task that must be described with its own use case and sequence diagram which
is out of the scope of this case study.

Browser Statechart The statechart diagram in Figure 8(a) describes the
Browser’s life. It is as follows: once the Browser is created it must go to the
MU place, where it invokes Alfred’s shows_catalog_GUI method to visualize the
previously obtained catalog. At this state it can attend two different events,
refine_catalog or select_sw. If the first event occurs there are two different pos-
sibilities: first, if the Browser has the necessary knowledge to solve the task,
a refinement action is directly performed; second, if it currently has not this
knowledge, the Browser must obtain information from the Software Manager,

) {PFOb} . {1K..100K .
info_n more_information(refinement2,ci)

{0.5sec..50seC
Do:get_info

~browser.reply(cataloy

{100K}

{1 min}
Do: create_catalog

{lKa% '
get_catalog(info_plus)

{1}
“catalog.create_catalog(info_plus)

Do: create_browser
{1sec}

ate_browser(ci) {1K}

{1k}
"salesman.reply(info_sale plus)

{1sec}
Do:add_info4

{1K
request(info_sale)
browser.creg

get_info P8

.
L=

more_information_local
- - browser.crs

Fig. 6. (a) Statechart for the Software Manager, (b) SWN for the Software Manager

by sending a more_information request or by travelling to the software place. If
the select_sw event occurs, the Browser must create a Salesman instance and die.

3.2 Modelling Using Stochastic Petri Nets

The UML diagrams previously modelled are expressive enough to accomplish
with different implementations. For example, in the system specification we did
not specify how many majordomos should attend requests, how many concurrent
users can use the system, etc. Several situations can arise, such as:

1. One user request served by one majordomo (no concurrency).
2. Several user requests served by one majordomo.
3. Several user requests served by many majordomos, one per request.

{1k}

{1K}
create_salesman(info) ASwManager.request(info_sale) {1sec}
Do: add_info_sale

User.begin_electroni¢_commerce

@ AUser.end_electronic_commerce [
D

0: electronic_commerc

user.electronic_commerce \p USer .end_ec

user.begin_ec

end_add_info_sale

add_info_sale SwManager.request

begin_add info_sale

(b)

Fig. 7. (a) Statechart for the Salesman, (b) SWN for the Salesman

These kind of questions can be satisfactorily solved using a formal language,
such as PNs, to model the system.

Therefore, once a statechart has been modelled, a PN (concretely a stochastic
well formed coloured Petri net (SWN) [5]) is obtained from it (called component
net). It must be noticed that the statechart and its component net provide the
same information. The reasons to maintain both formalisms are given in section
5.

The component net is obtained following the transformation rules given in
[14]. The most important facts are the following:

— Each token in the PN represents an object.

— Each state of the STD is represented by a place, with the same name, in the
PN.

— For each transition in the STD arriving at a state, there will be an input
transition in the PN for the place which represents the state. The name of the
transition in the PN will be the same as the event that labels the transition
in the STD.

info_r

{100K} 100K
ate_browser(c)) 7 'Shgw—

cre

{1k}
select_sw(name)

delete_browser ~sal esmancrea{égal esman(info_sale)
(@ -

(inf"s

"alfré}.(gﬁm | catalog_GUI ﬁi'&l?nféprnh

| logal]

(a)

goto_MU_Place
<X> <X>

R:c
request:c
Sm
mlm

(b)

Fig. 8. (a) Statechart for the Browser, (b) SWN for the Browser

[i nfo_n{éjsrgﬂravd]

Do:goto_MU_Hace
{100K..200K}

refine_catalog_browser P7 info_need_travel

<X>

on_local

El6

— For each transition in the STD exiting from a state, there will be an output
transition in the PN from the place which represents the state. The name
of the transition in the PN will be the same as the event that labels the

transition in the STD.

— Guards in the STD are translated into a subnet including immediate (firing

in zero time) transitions.

The component nets corresponding to Alfred, the user, the Software Manager,
the Salesman and the Browser statecharts are shown in Figures 4(b), 5(b), 6(b),

7(b) and 8(b).

From the component nets, and considering the sequence diagram, a complete

PN for the system is obtained. It represents the behaviour of the whole

system.

This net is shown in Figure 9. The complete PN has been obtained by synchro-
nizing the component nets and following the transformation rules given in [14].
Moreover, it must be noticed that, for every message in the sequence diagram,
there are two transitions with the same name in two different component nets,
the net representing the sender and the net representing the receiver. Basically,
the transformation rules state that:

— If the message has no wait semantics (half arrowhead in the sequence di-
agram), then an extra place will appear in the complete net to model a
communication buffer between the two component nets.

— If the message has wait semantics (full arrowhead in the sequence diagram),
then only one transition appears in the complete net, that represents the
fusion of the transitions in the two component nets.

4 Performance Analysis of the SRS

Once the system has been modelled, the performance analysis can be addressed.
It is accomplish in this section.

4.1 Performance Assumptions

It will be of interest to study the system response time. There are two possible
bottlenecks that can decrease the system performance. First, the trips of the
Browser from the MU place to the Software place (and way back) in order to
obtain new catalogs. Second, the number of user requests for catalog refinements.

In order to develop the performance tests the following realistic scenarios
have been considered:

1. When the Browser needs a new catalog (under request of the user) there are
several possibilities:

— The Browser has enough information to accomplish the task or it needs
to ask for new information. It is measured by the not_info_need transi-
tion. We have considered an “intelligent Browser” which does not need
information the 70% of the times that the user asks for a refinement.

— When the Browser needs information to perform the task, it may be
requested by a remote procedure call (RPC) (represented in the net sys-
tem by the info_need_local transition) or it may travel through the net to
the Software place (represented in the net system by the info_need_travel
transition) to get the information and then travel back to the MU place.
In this case, we have considered two scenarios. First, the 30% of the times
the Browser performs a RPC, therefore the 70% of the times it travels
through the net. Second, the opposite situation, the 70% of the times it
performs a RPC, therefore the 30% of the times it travels through the
net.

wiTw
ws
JSMOUG D!

159nba.

80IAIBSIOLES 1eM

ol

N

2y

<> 0INBS MS 198
Boemro areln Boers b geq oMIPRR o
N_mwu/l - o 1 M 1 m&(.n
ovd <X> 3G 19 <X> =X <X> <X>
X %) o d
AXV <X Go
29Ul
o _ EEoo P Amv O -
< 9Td
d @pes oJui ppe pue
<X\ Boeroiopesn jem
<X: — _ —|
co[es oJul ppe <G POIIY 1M Boers auLRl -
S X5
JaSMoIq MS 109 .
=G d i o Tres 80z —F
vd Sl ppe Trd ms 100ps 5
| o a0eid MS _EomA > S o em < o B0
X> o X X U :
20| UoreuMO Ui m:WE PAZS] <% <> svdyd <]
e ARl Pt gul X>
s ol B | o
[eooj peau, ol 3 JBN0Iq BofeRs sulp x>
Su.. > I AXV-..Nn_ nmuAv d0 eed
T e »xv i
NooU 0 C_ HOC —
srd g ® Zouippe
<X Od <X omn_.- omn_
mmu 1229 A|da lesh OEQA o <X .
< S| e/el] pssu ojul _
U v d b _ _
cx_%h_:m&@_ﬁ o erdos~ olA - 01 10 ppuioiut o Mo Boprs wos <X>
slowpi—Aldelr esmolq aulpl 6vd Ay . =
<> - 95d 3 PRET NN 0106 o 25 1 Ow_ 30 &
<X> X: "
Wby esmoig ameel 92d Yage\ RN 01061 led ge” € ged IND ke

Fig. 9. The Petri net for the whole system

2. To test the user refinement request, we have considered two different possi-
bilities. An “expert user” requesting a mean of 10 refinements, and a “naive
user” requesting a mean of 50 refinements, until s/he finds the wanted soft-
ware.

3. The size of the catalog obtained by the Browser can decrease the system
performance. We have used five different sizes for the catalog: 1 Kbyte, 25
Kbytes, 50 Kbytes, 75 Kbytes and 100 Kbytes.

4. With respect to the speed of the net, two cases have been considered: a net
speed of 100 Kbytes/sec. (“fast” connection speed) and a net speed of 10
Kbytes/sec. (“slow” connection speed).

4.2 Performance Results
Now, we present the results for two possible cases:

1. One user request served by one majordomo (no concurrency).
2. Several user requests served by one majordomo.

In both cases the interest is to study the system response time, as we said pre-
viously. The performance figures were obtained by analysing the net in Figure 9
with the tool GreatSPN [6]. To obtain the response time, first the throughput
of the select_sw_service transition, in the net system, is calculated by computing
the steady state distribution of the isomorphic Continuous Time Markov Chain
(CTMCQ); finally, the inverse of the previous result gives the system response
time.

One user and one majordomo Figure 10(a) shows the system response time
(in minutes) assuming “fast” connection speed, an “expert user” and an “intelli-
gent Browser” . One of the lines represents a probability equal to 0.7 to travel and
0.3 to perform a RPC, the other line represents the opposite situation. We can
observe that there are small differences between the RPC and travel strategies.
Such a difference is due to the round trip of the agent. As the agent size does
not change, this difference is not relevant for the global system performance.
Thus, we show that the use of mobile agents for this task does not decrease the
performance.

Figure 10(b) shows system response time, supposing “fast connection”, “in-
telligent Browser” and “naive user”. The two solutions still remain almost iden-
tical.

Someone could suspect that there exist small differences because of the net
speed. So, the net speed is decreased to 10 Kbytes/sec. In Figures 10(c) and
10(d) it can be seen how the differences still remain non significant for a faster
net speed.

Several user requests served by one majordomo Figure 11 represents a
test for an “intelligent Browser”, an “expert” user, a probability for RPC equal
to 0.7 and equal to 0.3 to travel. Now, we tested the system for a different number
of requests ranging from 1 to 4. Observe that when the number of requests is
increased, the response time for each request increases, i.e., tasks cannot execute

30
«ssﬁ“’"
’ / 25 —
s 2 /
_— 22
4 £
- € /
15 —
3
- 110
—travel 0,3;| 2 g?‘vgl(?%&
RPCOT7 | e (; . |5
-~ travel 0,7; - travel 0,7; . .
RPG 03] file size RPCO3 | file size
100 1 Kbyte |25 Kbyte| 50 Kbyte |75 Kbyte| 100
1Kbyte | 25 Kbyte | 50 Kbyte | 75 Kbyte | vte yt y yt yt Kbyte
[travel 0,3; RPC 0,7|3,706999|4,326757| 4,970673] 5,663156 | 6,260957 [travel 0,3; RPC 0,7] 13,6277 | 16,7842 | 20,0803 | 23,6072 | 26,6667
travel 0,7; RPC 0,33,747002|4,366431|5,011024|5,703856 |6,301197 ‘travel 0,7; RPC 0,3) 13,8313 | 16,9895 | 20,2758 | 23,8095 | 26,8817
(a) (b)
10 4 40 -
9 35
: 2 25
: £
4 15
~travel 0,3; 3 —~travel 0,3;
RPC 0,7 2 RPC0,7 10
- travel 0,7; 1 - travel 0,7; 5 . .
RPC 0,3 0 file size RPC 0,3 0 file size
100 100
1 Kbyte |25 Kbyte 50 Kbyte|75 Kbyte| Ve 1 Kbyte |25 Kbyte 50 Kbyte| 75 Kbyte| .\ Ve
"travel 0,3; RPC 0,7|5,63825 | 6,36862 | 7,12555 | 7,93273 | 8,6445 \+trave| 0,3; RPC 0,7| 16,7001 20,4248 | 24,2954 | 28,4075 | 32,051
|-+ travel 0,7; RPC 0,3]6,03865 | 6.76956 [7.52785 8,3375 [9.0432 [travel 0.7, RPC 0,3 18,7477 22,4921 26,3421| 30,4303 | 34,083

(©

(d)

Fig. 10. Response time for different scenarios with an “intelligent Browser”. (a) and
(b) represent a “fast” connection speed, (¢) and (d) a “slow” connection speed; (a) and
(c) an “expert user”, and (b) and (d) a “naive user”

18 -
16 r
» 14 I
Q
5 12 — L
£
g 10 L
8 L
H1 Kbyte 6 —
B 50 Kbytes 4 ==
[1100 Kbytes 5 |
0 - L
1 request | 2request | 3 request | 4 request
M 1 Kbyte 3,7069988 | 6,1319598 | 8,3640013 | 10,506961
W50 Kbytes | 4,970673 |7,2605823 | 9,5529232 | 11,862396
1100 Kbytes | 6,2609567 |9,2157405| 12,30315 | 15,500271

Fig. 11. Response time for an “intelligent Browser”, an “expert user”, a “fast” con-
nection and different number of requests (1-4) and catalog size (1K, 50K, 100K)

completely in parallel. Alfred and the Software Manager are not duplicated with
simultaneous requests. Thus, they are the bottleneck for the designed system
with respect to the number of concurrent requests of the service, and the impact
of such bottlenecks can be evaluated using our approach.

5 Concluding Remarks

Along the Performance Engineering process several choices must be done. In the
following, we stress some of them:

Why to use UML to model system requirements? Fundamentally because
in the last years UML has become the standard notation to model software
systems, widely accepted by the software engineering community. Unfortunately,
UML lacks of the necessary expressiveness to accurately describe performance
features. There have been several approaches to solve this lack [19, 20, 17, 14].
In this chapter the last one has been followed.

Why to use two modelling languages —UML and PNs— during the
performance process? The reasons to maintain both formalisms are given by
the advantages and disadvantages they provide.

A disadvantage of PNs is that they do not show the system load (message
size, guards probability, activities duration) as clear as UML diagrams do, this
information is hidden in the definition of the net transitions. Besides, much
work has been done in the software engineering area in developing methodologies
[18, 9] for object oriented design, from which UML take profit and PNs do not.

PNs have advantage over UML because they can be used to obtain perfor-
mance figures, due to the underlying mathematical model; even more, there exist
software tools that automatically obtain them [6, 21]. Moreover, PNs express
concurrency unambiguously, UML do not.

Finally, it can be said that the UML diagrams are considered in this chapter
as the documentation part of the system, being useful for the system analyst to
express in a easy way the system requirements, including performance require-
ments. And PNs are considered as the mathematical tool which represent the
performance model of the system.

Why to use PNs to represent the performance model instead of other
mathematical formalism? As an alternative to stochastic Petri nets (SPNs),
several performance-oriented formalisms can be considered as underlying math-
ematical tools for computing performance indices of interest. Among them,
Markov chains (MCs) [7], queuing networks paradigm (QNs) [10], and stochas-
tic process algebras (SPAs) [8]. For all of them, translation algorithms can be
devised from the time-annotated UML diagrams using the general rules exposed
in [14].

The main drawback of plain MCs is their poor abstraction level (each node
of the underlying graph model represents a state of the system). Concerning
SPAs, even if they are compositional by nature, thus specially adequated for the
modelling of modular systems, the present lack of efficient analysis algorithms
and software tools for performance evaluation would make them difficult to use
in real applications. The use of SPNs rather than QNs models is justified because
SPNs include an explicit primitive for the modelling of synchronization mecha-
nism (a synchronizing transition) therefore they are specially adequated for the
modelling of distributed software design. Even more, a vast amount of literature
exists concerning the use of PNs for both validation of logical properties of the
system (e.g., liveness or boundedness) and quantitative analysis (performance
evaluation).

References

[1] CNET Inc., 1999. hitp://www.download.com.

[2] CNET Inc., 1999. hitp://www.gamecenter.com.

[3] Tucows.com inc., 1999. hitp://www.tucows.com.

[4] G. Booch, I. Jacobson, and J. Rumbaugh, OMG Unified Modeling Language spec-
ification, June 1999, version 1.3.

[6] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, Stochastic well-formed
coloured nets for symmetric modelling applications, IEEE Transactions on Com-
puters 42 (1993), no. 11, 1343-1360.

[6] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo, GreatSPN 1.7: GRaphical
Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation
24 (1995), 47-68.

[7] E. Cinlar, Introduction to stochastic processes, Prentice-Hall, Englewood Cliffs,
NJ, 1975.

[8] H. Hermanns, U. Herzog, and V. Mertsiotakis, Stochastic process algebras as a
tool for performance and dependability modelling, Proceedings of IEEE Interna-
tional Computer Performance and Dependability Symposium, IEEE CS-Press,
April 1995, pp. 102-113.

[9] I. Jacobson, M. Christenson, P. Jhonsson, and G. Overgaard, Object-oriented soft-
ware engineering: A use case driven approach, Addison-Wesley, 1992.

[10] K. Kant, Introduction to computer system performance evaluation, Mc Graw-Hill,
1992.

[11] E. Mena, A. Illarramendi, and A. Goni, A software retrieval service based on
knowledge-driven agents, Cooperative Information Systems CoopIS’2000 (Eliat,
Israel), Opher Etzion, Peter Scheuermann editors. Lecture Notes in Computer
Science, (LNCS) Vol. 1901, Springer, September 2000, pp. 174-185.

[12] E. Mena, A. Illarramendi, and A. Goni, Automatic ontology construction for a
multiagent-based software gathering service, Proceedings of the Fourth Interna-
tional ICMAS’2000 Workshop on Cooperative Information Agents (CIA’2000),
Springer series of Lecture Notes on Artificial Intelligence (LNAI), Boston (USA),
July 2000.

[13] J. Merseguer, J. Campos, and E. Mena, A pattern-based approach to model software
performance, Proceedings of the Second International Workshop on Software and
Performance (WOSP2000) (Ottawa, Canada), ACM, September 2000, pp. 137-
142.

[14]

[15]

[16]
[17]
18]

[19]

[20]

21]

J Merseguer, J Campos, and E. Mena, Performance evaluation for the design
of agent-based systems: A Petri net approach, Proceedings of the Workshop on
Software Engineering and Petri Nets, within the 21st International Conference
on Application and Theory of Petri Nets (Aarhus, Denmark) (Mauro Pezzé and
Sol M. Shatz, eds.), University of Aarhus, June 2000, pp. 1-20.

D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,
D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White,
MASIF, the OMG mobile agent system interoperability facility, Proceedings of
Mobile Agents '98, September 1998.

E. Pitoura and G. Samaras, Data management for mobile computing, Kluwer Aca-
demic Publishers, 1998.

R. Pooley and P. King, The unified modeling language and performance engineer-
ing, IEE Proceedings Software, IEE, March 1999.

J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick, and W. Lorensen, Object
oriented modeling and design, Prentice-Hall, 1991.

G. Waters, P. Linington, D. Akehurst, and A. Symes, Communications software
performance prediction, 13th UK Workshop on Performance Engineering of Com-
puters and Telecommunication Systems (Ilkley), Demetres Kouvatsos Ed., July
1997, pp. 38/1-38/9.

M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov, A wide band approach to in-
tegrating performance prediction into a software design environment, Proceedings
of the 1st International Workshop on Software Performance (WOSP’98), 1998.
A. Zimmermann, J. Freiheit, R. German, and G Hommel, Petri Net Modelling
and Performability Fvaluation with TimeNET 3.0, Proceedings of the 11th Int.
Conf. on Modelling Techniques and Tools for Computer Performance Evaluation,
Lecture Notes in Computer Science, Vol. 1786, Springer, 2000, pp. 188-202.

