A Pattern-Based Approach to Model
Software Performance’

José Merseguer
Dpto. de Informatica e
Ingenieria de Sistemas,

University of Zaragoza, Spain

jmerse@posta.unizar.es

ABSTRACT

The use of the object-oriented paradigm in the software in-
dustry is nowadays a reality. Approximations like frame-
works, components, workflows or patterns are gaining place,
sometimes to complement object-oriented development. All
these approaches, as well as the object-oriented paradigm,
make special emphasis on the reuse of the software as a way
to increase productivity. But it must be admitted that some-
times the performance of the deployed software systems is
not as good as desired. Thus, techniques and methods to
predict performance are subject of research, and Software
Performance Engineering is concerned about them. In this
article, we present an approach based on patterns to de-
velop performance models for software systems in the early
stages of the software development process. Moreover, the
approach has as a goal the use of formal models to pre-
dict performance. This work complements the proposal sug-
gested in [10].

Keywords
Software performance, Petri nets, patterns, UML, software
reuse, object-oriented paradigm

1. INTRODUCTION

It is widely recognized that software design is a hard task
that requires a significant amount of effort and experience.
In the last decades, several paradigms have been proposed
in order to facilitate the software development process, for
instance, pragmatic object-oriented methodologies such as
OMT [13], OOSE [6]. Some of them have recognized and
identified as goal the necessity of reuse in all the stages of
the development process, specially in the analysis and design
stages. So, software reuse [7] has become a key to increase
productivity. Concerning software reuse, object-oriented ap-
proach represents the main paradigm to develop software,

*This work has been developed within the project TAP98-
0679 of the Spanish CICYT.

Javier Campos
Dpto. de Informatica e
Ingenieria de Sistemas,

University of Zaragoza, Spain

jcampos@posta.unizar.es emena@posta.unizar.es

Eduardo Mena
Dpto. de Informéatica e
Ingenieria de Sistemas,

University of Zaragoza, Spain

because the concepts underlying object-oriented paradigm
promote reuse in all stages of the software life cycle. In the
last years, reuse at the design stage in the object-oriented
paradigm has been subject of study, obtaining interesting
proposals such as the well-known design patterns [4]. Thus,
design patterns appear as an interesting approach to assist
software engineers to model software systems.

Moreover, the necessity to predict the performance of soft-
ware systems is doubtless. Even nowadays, systems are
frecuently deployed without the performance expected by
clients. It is a common practice of developers to test the
performance of their systems only when they have been im-
plemented. Software performance field [16] is concerned
about these problems. This discipline proposes the study
of the system performance inside the software development
process, but paying special attention in the early stages,
when the proper actions to solve performance problems could
we performed with less effort and less economical impact.
Several approaches in this area have been proposed with
success [15, 17, 9].

Our objective is to bring together both disciplines, software
reuse and software performance. The object-oriented para-
digm will be the key to combine both. Thus, we propose a
process to assist the software requirements engineer in the
construction of the system models. In the proposed process,
the software engineer will be able to capture functional re-
quirements as well as performance requirements. In order
to accomplish reuse, the process promotes the use of pat-
terns. This process, called PROP!, is also concerned with
the use of the adequate techniques to obtain performance
results from the developed models.

The language proposed in [4] to describe design patterns
deals with the structural and behavioural aspects of the soft-
ware and also gives trends to accomplish the implementation
phase. PROP proposes the enrichment of this language with
performance features, describing for each pattern its perfor-
mance goals and workload definitions, obtaining “patterns
with performance”®. In [4], the OMT [13] notation is used
to describe the structure and behaviour of patterns. We
advocate for the use of the UML notation [2] because of its

!Performance Requirements for Object-oriented design us-
ing Patterns.

2We mean by “patterns with performance”, design patterns
augmented with time annotation to evaluate performance.

widely acceptance between the software engineering commu-
nity. UML will be enriched with performance annotations,
we will use the proposal stated in [10]. Another proposals
to annotate time aspects in UML have been stated for the
real-time field [3], therefore with different objectives.

Using patterns, with the corresponding performance anno-
tations, in conjunction with the guides given by PROP, the
engineer will be assisted in the construction of the complete
performance annotated UML diagrams for the system. In
order to obtain numerical results from the UML annotated
diagrams for the complete system, we promote the use of
formal analytic techniques such as those surveyed in [14].
However UML lacks of the necessary formalism to accom-
plish it, due to the pragmatic view point used to develop
UML diagrams. Therefore, the models of the system must
be translated into a formal model, such as Petri Nets [11].
After that, we have the possibility to perform the desired
performance analysis. We propose to maintain UML nota-
tion as a friendly front-end for the designer, so the transla-
tion into the formal model must be transparent for her/him.
In this way, our approach combines pragmatism and formal-
ty.

Notice that this approach offers the possibility of reusing
performance patterns, in the same way as traditional design
patterns offer the possibility to reuse design and code. The
approach could be applied to any kind of software design.
We are specially interested in distributed systems design. In
these environments, performance could be specially impor-
tant because of the possible improper use of net resources.
We specifically study the use of the mobile agent technology
[12] to design and implement the systems. Thus, we are pri-
marily interested in the study of patterns that fit well for
this kind of software.

The rest of the paper is organized as follows. Section 2
introduces performance features in design patterns in order
to achieve PROP patterns. Section 3 shows the process
proposed by PROP to model performance and functional
requirements, in a pragmatic way, including the translation
from the pragmatic models into the corresponding formal
ones, and the techniques used to solve the formal model in
order to obtain performance results which aid the designer
to take decisions. Finally, concluding remarks are presented
in section 4.

2. PROP PATTERNS

Design patterns are defined in [4] as “descriptions of com-
municating objects and classes that are customized to solve
a general design problem in a particular contert”. Benefits
from design patterns, as it was suggested, come from their
ability to achieve software reuse. In the same way, we claim
for reuse in performance modelling. In section 2.2 we explain
how patterns and performance could be a good marriage.

2.1 Basicson designpatterns

We assume that the reader is familiar with patterns language
as proposed in [4], but we consider interesting to succinctly
remember it. In this language, a design pattern is described
using the next sections:

e Pattern name: the essence of the pattern succinctly.
e Intent: the problem that the pattern address.

e Motivation: a scenario that illustrates how the pat-
tern solves the problem.

e Applicability: situations in which the pattern can be
applied.

e Structure: representation of the classes in the pattern
(using OMT notation).

e Participants: classes/objects participating in the de-
sign pattern and their responsibilities.

e Collaborations: how the participants collaborate.
e Consequences: trade-offs of using the pattern.

¢ Implementation: techniques to be used when imple-
menting the pattern.

e Sample code: code fragments that illustrate how you
might implement the pattern in C++ or Smalltalk.

e Known uses: examples of the pattern found in real
systems.

e Related patterns: patterns closely related to this
one.

Our approach does not pretend to be orthogonal to design
patterns. On the contrary, it pretends to integrate both per-
spectives. So, we propose to extend the pattern language
from two sides: 1) some of the language current sections
will be enhanced to support performance requirements; and
2) new sections will be added to the language with the same
purpose. These improvements will be explained in the fol-
lowing.

2.2 Adding performancefeaturesto designpat-

terns
In this section, we propose the enhacement of the design
patterns language in order to describe performance features,
so we obtain “patterns with performance”. First, we pro-
pose the improvement of the “Collaborations” and “Partici-
pants” sections. Later, new sections for the design patterns
language are proposed.

The “Collaborations” section of the language is enhanced as
follows. Currently, this section is described in some patterns
using a sequence diagram, the rest of the patterns describe it
in a textual way. We propose the use of a sequence diagram
in all the patterns to describe the section. In this way, a
sequence diagram will be used to annotate the message load
among objects. Also, the probability for the guards success
will be annotated.

The meaning of the annotations in the diagrams, the tech-
niques to obtain them and other details encountered to de-
velop the process are largely explained in [10], so we do not
extend here on them. As an example, the reader may notice
in Figure 1, taken from [10], the annotations in bold face.
Some of them represent the load of the parameters in the
messages sent among objects (for instance 100K associated

% ‘ Alfred ‘
‘

{Ky
' select_sw_service(info)

|
|
|
I
o I
|

g i
get_catalog(info_plus)!

1K}

create{calelog(iﬂfOJ)| us)

100K}
create_browser(cl)

BrowserAgent

{100K}
show_catalog_GUI(c1)

{lOOK}
pbserve_GUI_catalog(cl)

[no&o'sgt}lsfied]re%lé)_catal pg(refinement)

{1k})
refine_catalog(refinement_plus)

e rob 00l
satisfied] [inf{gfneéd] more_i m(ormation(zefinemmtz, ci)

1K..100K’

ci+1 {1K..100K}

,,,,,,,,,,,,,,,,,,,, =

{1K}
select_sw(name)

$](m
ect_sw(name)

{1Q)
lcreate_salesman(info_sale) -

delete_browser :
{1l

K}
requést(info_sale)

B

electronic_commerce

info_sale plus {1K}

Figure 1: Annotated sequence diagram.

to create_browser message) and others represent the proba-
bility the messages success (such as 0.9 in the not_satisfied
guard).

The “Participants” section, which describes the classes/ob-
jects participating in the pattern, must be also enhanced. A
state transition diagram (STD) for each participant must be
modelled. These diagrams represent the life of the objects.
The STD will be annotated with the events load, the prob-
abilities of the guards and the time to perform the actions.
Figure 2, taken also from [10], shows an example that de-
scribes the way in which annotations are done. As it occurs
with the sequence diagram, the complete description of the
process to obtain the annotated STD and the meaning of
the annotations are given in [10].

Now, we explain the proposal to extend the design patterns
language with new sections. These sections taken from [16]
are necessary to obtain a complete description of the pattern
performance features:

e Performance goals: the pattern performance objec-
tives. For instance, response time, throughput or uti-
lization.

o Workload definitions: such as request arrival rates
or the number of concurrent users.

The sections proposed in [4] together with the enhancement
of the “Colaboration” and “Participants” sections and the

new sections proposed, define what we call PROP pattern,
to distinguish it from the design patterns.

The catalog presented in [4] contains twenty three design
patterns. It would be very interesting to introduce perfor-
mance in all of them. So, they could become PROP pat-
terns. At the moment, we are only concerned about those
which are appropriate for a concrete software technology:
mobile agents. These are: mediator, observer, prozy and
facade. We also consider the possibility of creating new pat-
terns with their own performance features, but this will be
the subject of future works.

The way to use a PROP pattern is the same as a design
pattern. When the software engineer detects that the use of
a pattern is possible in the system s/he is modelling, s/he
develops, using the techniques given in [10], the annotated
sequence diagram and the annotated state transition dia-
grams for the collaborating objects. At the moment, only
a “piece” of the system has been modelled. The “piece” is
ready to be used in the PROP process. Section 3.1 explains
how to use these pieces in the PROP process.

3. THE PROP PROCESS

In this section, we present the PROP process; from now
on and for simplicity we refer to it only as “the process”.
The main goal of the process is to assist software engineers
to obtain the performance indices of the system that they
are modelling. The process has also as objective to make
use of well-known techniques from different fields: object-

{1K

} {1K}
seect S Lervice(inio) Manager get_catalog(info_plus)

{100K}
show_catalog_GUI(ci)
<<more_services>>

{isa}
Do:create GUI(c)

Auser.observe_GUI_catalog(ci)
{100K}

(0.1

{1K}
["user satisfied] select_sw(name
{0.9} élK)
[not “user.satisfied]refine_catal og(refinement)

Do:add_info2

élK)
~browser.refine_catal og(refinement_plus)

@

Do {1K..100K}
el more_informeation(refinement2,ci)
{1K}
T | Pomi——

{1 min}
Do: create_catalog

) plus) {1K}

100K} WAIT catalog.create

Do: create_browser

{1sgy

~browser.credte_browser(ci) {1K}

1K
requén(\gfo;de)

Do:add_info4 {1sg}
~sdlesman.reply(info_sae plus) {1K}

(b)

Figure 2: Examples of annotated STDs.

UML annotated diagrams

1
Software Requeriments —— >

(O
~O

PROP results
Performance Model (take decisions)
© 3
— [—— /
/_\

Figure 3: The PROP process.

oriented paradigm, performance modelling and performance
evaluation.

Before illustrating the process in detail, we want to give a
brief explanation of it. The process proposes to model the
system in a pragmatic way using well-know object-oriented
techniques: patterns as explained in section 2 will play a
prominent role. As notation, we propose UML annotated
with time; here our contribution in [10] can be used. When
the pragmatic model is achieved, a formal model will be
obtained from it. In the last step, the formal model will
be used to obtain the performance indices using the proper
techniques.

The following three main steps show the process, Figure 3
refers to them:

1. Model software requirements using annotated UML in
conjunction with PROP patterns.

2. Use PROP translation rules to generate the correspond-
ing formal model.

3. Use the techniques proposed by PROP to solve the
formal model.

In the following sections, the process is described in detail.

3.1 Modelling systemrequirements

The objective of this section is to show the process to fulfil
the UML annotated diagrams, from the software require-
ments, when a system is being modelled.

UML designers should model the system from two comple-
mentary perspectives, static view and dynamic view. Sys-
tem statics deals with system information structure, UML

provides the class diagram to accomplish it. To express sys-
tem dynamics and UML gives the possibility to use five
different and complementary kind of diagrams: use cases,
sequence diagrams, collaboration diagrams, state transition
diagrams and activities diagrams. At this stage UML im-
plementation diagrams are avoided.

In the object-oriented design process, the engineer must
study the requirements of the system in order to identify
where to use PROP patterns. Whenever the use of a pat-
tern is possible, the engineer will complete the proposed
sections. It is possible that s/he models only a few pieces
of the system using patterns, or even none, depending on
his/her experience and the system characteristics. Those
requirements that have not been expressed using patterns
must be designed inside the object-oriented design process.
The engineer must develop the class diagram, the sequence
diagrams and the STDs as it was proposed in [10].

3.2 PROP translation rules

At this point, we have modelled the system with UML nota-
tion, taking into account the load in the sequence diagram
and the state transition diagrams. So, a pragmatic approach
of the system has been obtained.

But this representation is not precise enough to express our
needs (remember that we want to predict system perfor-
mance). To accomplish it, we need to apply performance
analytic techniques to the developed UML diagrams. But
there is a lack in this field because no performance model
exists for UML. To solve this lack, we have chosen stochas-
tic Petri nets [1] as formal model, the reasons of the choice
will be explained in the next section. It is our intention that
the formal model can be obtained from the pragmatic model
in a transparent way for the engineer. In [10] we gave the
process and rules to accomplish the complete translation. In
the following, we recall some of them succinctly.

Channel

T

P5 Sw_Manager.getcatalog | user.observe_GUI_catalog

add_infol
- create_GUI

P36

select_sw_service

show_GUI_catalog

P4

S
U
wait_Alfred

P8
select_software refine_catalog

P9 P7

dd_info3 browser.select_sw_browser browser.refine_catalog

Net component

browser,r?)lyilocal

browser.reply_remote

more_information_remote

more_information_local
- - browser.create_browser

Net component

Figure 4: Asynchronous comm. between the two Petri net components obtained from the STDs in Fig. 2.

First, we must obtain a stochastic Petri net for each sys-
tem class, the component nets. Obviously, the annotated
STDs will guide us in this task. The transitions, actions,
guards and states are considered to be translated into the
Petri net. In Figure 4 component Petri nets for the STDs
in Figure 2 are shown. They have been obtained using the
rules proposed in [10].

Second, the sequence diagrams will be the guide to obtain
a complete Petri net for the system using the previous com-
ponent nets. For each message, there exist two transitions
with the same name in two different component nets, the net
representing the sender and the net representing the receiver
(see for instance transition get_catalog in Figure 4). The way
that we propose for the synchronization between transitions
differs depending on the semantics of the message. Taking
into account that UML distinguishes between messages with
wait semantics and no-wait semantics, we propose a Syn-
chronous composition (by fussing transition instances) for
wait semantics messages and asynchronous communication
(through a channel place) for no-wait semantics messages.
As an example, Figure 4 shows how the get_catalog transi-
tion, with no-wait semantics, synchronizes the components
Petri nets. Proceeding in the same way the complete net for
the system will be obtained.

The techniques proposed in the next section will be applied
to the complete Petri net in order to obtain the system per-
formance indices.

3.3 PROPtechniquego solvethe formal model
Now we describe the kind of analysis techniques can be ap-
plied to obtain performance goals for the system.

Several performance-oriented formalisms can be considered
as an underlying mathematical tool for computing the per-
formance indices of interest. Among them, queuing net-
works paradigm (QNs) [8], stochastic Petri nets (SPNs) [1],
and stochastic process algebras (SPAs) [5]. For all of them,
translation algorithms can be devised from the performance
annotated UML diagrams in a similar way to those proposed
in [10] for the case of SPNs.

SPAs, even if they are compositional by nature thus specially
adequate for the modelling of modular systems, the present
lack of efficient analysis algorithms and software tools for
performance evaluation would make them difficult to use
in real applications. We would suggest SPNs rather than
QNs models because they include an explicit primitive for
the modelling of synchronization mechanism (a synchronsiz-
ing transition) therefore they are specially adequate for the
modelling of distributed software design. Even more, a vast
amount of literature exists concerning the use of Petri nets
for both the validation of logical properties of the system
(e.g., liveness or boundedness) and the quantitative analysis
(performance evaluation).

Since we are specially interested in making use of modular
design exploiting object-oriented approach, we refer to net-
driven decomposition analysis technigques for SPNs as those
surveyed in [14]. In that paper, a taxonomy for net-driven
decomposition techniques is proposed, providing a frame-
work for the consideration of a significant number of perfor-
mance evaluation methods. In our present context, object
life leads the definition of the “components” (subnetworks)
of the Petri net, and this modular view of the model is cru-
cial for the use of efficient net-driven based analysis tech-
niques. In particular, exact solution, approximated solution,
or bounds can be computed for the steady-state performance
measures of the model using divide and conquer algorithms
that take profit of the modular view of Petri nets.

Performance bounds are useful in the preliminary phases of
the design of a system, in which many parameters are not
known accurately. Several alternatives for those parameters
should be quickly evaluated, and rejected those that do not
satisfied response time requirements. Bounds become useful
in these instances since they usually require much less com-
putation effort. With additional computation investment,
there is a large number of approximation techniques for sto-
chastic Petri nets, and many of them make use of modular
views of the model. Approximate values for the performance
parameters are in general more efficiently derived than the
exact ones. In this context, a pragmatic compromise to be
handled by the designer of a system concerns the defini-
tion of faithful models, that may be very complex to exactly

analyse (what may lead to the use of approximation or just
bounding techniques), or simplified models, for which ex-
act analysis can be, eventually, accomplished. The general
cost/accuracy trade-off must be taken into account in the
selection of the desired approach.

4. CONCLUSIONS

The contribution of this work is the proposal of a process
that integrates performance evaluation aspects in the object-
oriented design of software applications using patterns. This
paper complements the approach given in [10]. A perfor-
mance extension of UML is used as a design notation. De-
sign patterns are enriched with performance features, ob-
taining “patterns with performance”. The resulting process,
called PROP, is described in its main steps: Modelling busi-
ness and performance requirements using annotated UML
and patterns; translating UML diagrams into a performance
model (stochastic Petri nets); and using specific analysis
techniques (that make use of the modular and structured
view of Petri nets) to get performance measures.

An important amount of work must be invested in the fu-
ture:

e Performance aspects must be introduced in the exist-
ing catalogue of design patterns.

e Specific new patterns for particular applications could
be proposed.

o The definition of a formal semantics for a subset of
UML diagrams will permit an automatic translation
into stochastic Petri nets (or any other performance
oriented formalism).

e The existing analysis techniques for stochastic Petri
nets that make use of decomposition of the model
should be integrated in a tool and they would take
profit of the object-oriented software design.

5. REFERENCES
[1] M. Ajmone Marsan, G. Balbo, and G. Conte.
Performance Models of Multiprocessor Systems. MIT
Press, Cambridge, Massachussetts, 1986.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. OMG
Unified Modeling Language specification, June 1999.
version 1.3.

[3] B. Douglass. Real-Time Uml: Developing Efficient
Objects for Embedded Systems. Object Technology
Series. Addison-Wesley, 1999.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[5] H. Hermanns, U. Herzog, and V. Mertsiotakis.
Stochastic process algebras as a tool for performance
and dependability modelling. In Proceedings of IEEE
International Computer Performance and
Dependability Symposium,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

pages 102-113. IEEE CS-Press, April 1995.

1. Jacobson, M. Christenson, P. Jhonsson, and
G. Overgaard. Object-Oriented Software Engineering:
A Use Case Driven Approach. Addison-Wesley, 1992.

I. Jacobson, M. Griss, and P. Jonsson. Software Reuse:
Architecture Process and Organization for Business
Success. Addison-Wesley, 1997.

K. Kant. Introduction to Computer System
Performance Evaluation. Mc Graw-Hill, 1992.

P. King and R. Pooley. Using UML to derive
stochastic Petri nets models. In J. Bradley and

N. Davies, editors, Proceedings of the Fifteenth Annual
UK Performance Engineering Workshop, pages 45-56.
Department of Computer Science, University of
Bristol, July 1999.

J. Merseguer, J. Campos, and E. Mena. Performance
evaluation for the design of agent-based systems: A
Petri net approach. In Software Engineering and Petri
Nets (SEPN’2000) workshop within the 21st
International Conference on Application and Theory
of Petri Nets, Aarhus, Denmark, June 2000. To
appear.

T. Murata. Petri nets: Properties, analysis, and
applications. Proceedings of the IEEE, 77(4):541-580,
April 1989.

E. Pitoura and G. Samaras. Data Management for
Mobile Computing. Kluwer Academic Publishers, 1998.

J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick,
and W. Lorensen. Object Oriented Modeling and
Destgn. Prentice-Hall, 1991.

M. Silva and J. Campos. Performance evaluation of
DEDS with conflicts and synchronizations: Net-driven
decomposition techniques. In Proceedings of the 4th
International Workshop on Discrete Event Systems,
pages 398413, Cagliari, Italy, August 1998. IEE
Control.

C. Smith and L. G. Williams. Performance
engineering evaluation of object-oriented systems with
SPEeED™™ In Proceeding of the 9th International
Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 135-154, St.
Malo, France, June 1997. R. Marie, et al. eds. Lecture
Notes in Computer Science, Vol. 1245,
Springer-Verlag.

C. U. Smith. Performance Engineering of Software
Systems. The Sei Series in Software Engineering.
Addisson—Wesley, 1990.

M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov.
A wide band approach to integrating performance
prediction into a software design environment. In
Proceedings of the 1st International Workshop on
Software Performance (WOSP’98), 1998.

