
Performance analysis of a Dynamic Architecture
for Reconfiguration of Web Servers Clusters

Carla Katarina M. Marques
Department of Informatica, University of Estado R.G. do Norte (UERN), Mossoro-Brazil, carla.katarina@gmail.com

Sergio Ilarri and Jose Merseguer
Departmento de Informática e Ing. de Sistemas, Universidad de Zaragoza, Zaragoza, Spain, {silarri,jmerse}@unizar.es

Giovanni C. Barroso
Department of Fisica, Federal University of Ceara (UFC), Fortaleza-Brazil, gcb@fisica.ufc.br

Abstract

The administration of clusters is an exhausting job. Particularly, allocating
the resources of the clusters by hand can easily become unmanageable
because the processing requirements can change very quickly in a dynamic
environment such as the Internet. A solution to solve this problem is to use a
dynamic architecture for self-reconfiguration of the clusters.

In a previous work, we have proposed the DARC architecture, an agent-
based architecture that can perform an automatic reconfiguration to adapt
itself to the current needs. In this paper, we formally model our architecture
using SPE techniques. These models are validated by comparing the analytical
results with results obtained through experimental evaluation. The models
obtained can thus be used to evaluate DARC in different environments without
the hassle of a time-consuming experimental evaluation. For example, in this
paper we have used our models to compare the strategy of load balancing
without self-reconfiguration with an approach with self-reconfiguration. This
paper also shows that the use of Generalized Stochastic Petri Nets (GSPN)
is suitable to analyze complex performance problems in the dynamic recon-
figuration domain.

Keywords

UML, software agents, software reconfiguration, performance

1. Introduction

In recent years, cluster computing technology has become
a very attractive platform for low-cost super-computing, since
it is easy to build and it offers interesting advantages such as
high availability. Basically, it consists of several workstations
interconnected through a high-speed network for information
exchange and coordination among them.

However, the management of a cluster is an exhausting
job, even for experienced cluster administrators. Particularly,
allocating the resources of a cluster by hand can easily become
unmanageable. Thus, the processing requirements can change
very quickly in a dynamic environment such as the Internet. A
solution to solve this problem is to use a dynamic architecture
for reconfiguration of the resources in a cluster. To perform
this dynamic reconfiguration in a cluster of web servers, we
have previously proposed the DARC (Dynamic Architecture
for Reconfiguration of Web Servers Clusters) architecture [1],
which performs the self-reconfiguration using a multiagent

system [2]. The agents of the architecture interact to modify
the distribution of the web server nodes in each cluster,
allocating/deallocating nodes to/from clusters as needed in
order to satisfy the current requirements.

In this paper, we study the performance of DARC from
an analytical perspective, by following the SPE (Software
Performance Engineering) techniques [3] to formally model
and analyze this architecture. The performance analysis of a
software specification in a language such as UML (Unified
Modeling Language, http://www.uml.org) can assist a design
team in evaluating performance-sensitive design decisions
and in making design trade-offs that involve performance.
Annotations to the design based on the UML Profile for
Schedulability, Performance and Time [4] are used to provide
the necessary information for a performance model (such as
the workload parameters) and many different kinds of perfor-
mance techniques can then be applied [5]. Our analysis allows
us to validate the experimental results previously obtained [1]
and to compare the strategy of load balancing without self-
reconfiguration with the approach with self-reconfiguration.

The structure of the rest of the paper is as follows. In
Section 2, we introduce some basic aspects of DARC. In
Section 3, we model the DARC architecture using UML. In
Section 4, we describe and model the DARC architecture from
a performance perspective, by annotating the previous models
with performance information. In Section 5, we validate and
exploit the performance models of the DARC architecture to
evaluate it analytically. In Section 6, we present the related
work. Finally, in Section 7, we draw some conclusions.

2. Overview of DARC

To understand the rest of the paper, an overview of DARC
(Dynamic Architecture for Reconfiguration of Web servers
Clusters) is needed. In this section, we summarize the basic
aspects of DARC, which was described in more detail in [1].

To perform the dynamic reconfiguration of resources,
DARC interacts with a platform of web clusters. A cluster
of web servers consists of three basic components: the Class
Switch, the Cluster Gateways, and the Web Servers. Requests

of web resources by clients are grouped in different classes
(defined by the administrator) according to their priority. The
Class Switch is responsible for the classification and admission
of new client requests. It receives incoming HTTP requests,
identifies the class of the request, verifies the current load of
the class cluster domain (each cluster is associated with a class
of QoS) and sends each request to the less loaded Cluster
Gateway for that class. The corresponding Cluster Gateway
sends this request to the less loaded server in the cluster. The
cluster of web servers manages different operating modes; e.g.,
a web server may accept requests of a specific class (exclusive
mode) or requests of several classes (shared mode). Switching
from one mode to another is controlled by different thresholds:
ρki (reactivity coefficient), Rexcl, Rsat and medLoad. Details
about the meaning and implications of these thresholds are out
of the scope of this paper and can be found in [1].

The main advantage of the DARC architecture is that it
performs a self-reconfiguration of the resources in a web
server without the need of a cluster administrator. For this
purpose, it uses a multiagent system, which is a natural
approach to perform a dynamic management of resources in
a distributed way. The agents of DARC are able to learn from
past experiences to modify, if needed, the distribution of the
web server nodes in each cluster (e.g., by allocating a host to a
cluster that is overloaded) and the values of the aforementioned
thresholds. The agents learn directly from the way in which
their cluster operates and update the distribution of the web
server nodes in each cluster and the thresholds when necessary,
minimizing the probability of requests being rejected due to
the lack of resources in the cluster. As shown in Figure 1,
the multiagent architecture proposed in DARC is composed
of four different types of agents:

Coordinator

Agent

Execution Agents

Monitoring and

Communication Agents

Monitor

Agent

Monitor

Agent

Monitor

Agent

Monitor

Agent

Internet

Class

Switch

Cluster

Gateway 1

Cluster

Gateway n

Web Server 1

Web Server n

Web Server 1

Web Server n

http

Requests

Fig. 1. Agents in the DARC architecture.

• A Communication Agent requests the platform of web
clusters about the value of the threshold ρki and commu-
nicates it to the Monitoring Agent (explained below).

• A Monitoring Agent collects information of the state of
each server during specific time intervals. The monitoring
rate is adjusted dynamically depending on the CPU load.

• A Coordinator Agent manages the interactions among
agents and receives alerts from the monitoring agents.

• Three Execution Agents can be distinguished, according

to their roles. Thus, the MaximumLoad Agent allocates
the less loaded host to the cluster that is saturating.
The DynamicThreshold Agent is designed to update the
thresholds of a cluster before it saturates, acting only in
case the action of the MaximumLoad Agent is not enough
to prevent the overloading of the cluster. Finally, the Up-
dateManager Agent is designed to monitor the suitability
of an update made by DynamicThreshold Agent.

The DARC architecture is composed of three different levels
and layers (see Figure 2). The Strategic Level corresponds
to the Management Layer, which manages the interactions
among the various agents in the proposed architecture. The
Tactical Level holds both the Monitoring Sublayer and the Ex-
ecution Sublayer. Finally, the Operational Level corresponds
to the Communication Layer, which is responsible for the
communication with the clusters of web servers. Moreover,
Figure 2 also shows the typical messages exchanged between
the different types of agents in DARC.

Comunication
Layer

WSDSAC
Plataform

Management
Layer

Monitoring and
Execution
Sub-layer

Multiagent System

Strategic Level

Tactical Level

Operational Level

Alert

Information

Monitoring

Information

Execution

Information

Control

Information

HTTP client request

Coordinator
Agent

Execution
Agents

Monitoring
Agent

Communication
Agent

Fig. 2. Levels and layers in DARC.

3. Modeling of the DARC Architecture

The sequence diagram in Figure 3 models how the agents
interact. The Monitoring Agent requests monitoring infor-
mation about the load of the clusters to the Communica-
tion Agent of the clusters. To obtain the load information
of the platform of web clusters, the Communication Agent
requests this to the Cluster Gateway by using the getLoadInf
method, and communicates this value to the Monitoring Agent.
Then, the Monitoring Agent tests a condition to decide how
to proceed. Specifically, if medLoadk ≥ γlow*Rsatk and
medLoadk < γhigh ∗ Rsatk are both true, then the Execu-
tion Agent a1:MaximumLoad Agent will execute; this agent
allocates the less loaded host to the cluster that is saturating.
Otherwise, if medLoadk ≥ γhigh ∗Rsatk is true, then the Ex-
ecution Agent a2:DynamicThreshold Agent will execute. This
agent is designed to update the thresholds of a cluster before
it saturates, acting only in case the action of the Execution
Agent a3:MaximumLoad Agent is not enough to prevent the
saturation of the cluster. Thus, if many updates of thresholds
occur in a short period of time then the UpdateManager Agent
will execute and it will increase the thresholds for its cluster

(C1) by δ1 and decrease the thresholds from the less loaded
cluster (C2) by δ1 (i.e., C2 will allocate own resources in the
proportion of δ1 to process requests for C1).

The WSDSAC (Web Servers - Differentiated Services Ad-
mission Control) platform [6] has been integrated as part of
the DARC Architecture. This platform has the following three
main objectives: 1) to balance the load among the different
computers available, 2) to guarantee different QoS (Quality
of Service) levels, and 3) to use the available resources in an
effective way. The sequence diagram in Figure 4 models the
basic aspects of the WSDSAC platform. First, the Class Switch
receives the incoming HTTP requests, identifies the class of
each request by using the httpidentification method, and sends
it to the corresponding Cluster Gateway in charge of managing
requests of that class. The Cluster Gateway verifies the current
load of its clusters, by computing a variable medLoad, and
returns the requested information. Then, the Cluster Gateway
tests if the condition (Loadk ≤ Rexck) is true. If so, then
the request is sent to the less loaded cluster. Otherwise, if
Loadk > Rexck and Loadk ≤ Rsatk then the request is sent
to the native cluster for that class of request. If none of these
two conditions hold, then the request is rejected.

<<PAresource>>
 Class Switch

alt

sendreq(LessLoadedCluster())

return(Load, Rsat,
 Rexcl)

sd: WSDSAC

<<PAresource>>
Cluster Gateway

<<PAresource>>
Web Servers

classhttpidentification()

getCurrentLoad()

 <<PAstep>>
{PAdemand=’asmd’,
 0.1, ’ms’}

 <<PAstep>>
 {PAextOp=’network’,
 ’mean’,15, ’ms’}

return(i)

 <<PAstep>>
 {PAexpOp=’network’,
 ’mean’, 0.2, ’ms’}

[Load> Rexc and Load<=Rsat]

 <<PAstep>>
 {PAextOp=’network’,
 ’mean’, 0.2, ’ms’}

httprequest()

[Load<= Rexc]

sendreq(ClassCluster(i))

return(rejected
 request)

return(ServersLoad)
getHostList(t)

ref

[t>m]

 <<PAstep>>
{PAdemand=’asmd’,
 15, ’ms’}loop

getCurrentLoad():

real

Fig. 4. Sequence Diagram of WSDSAC.

To conclude this section, the modeling of the physical
structure of the DARC architecture is provided in Figure 5
by using a UML deployment diagram (DD).

4. Performance Models

The objective of this section is to get performance mod-
els, in terms of Petri nets (PNs), from the UML diagrams
that model DARC. Hence, we aim to obtain performance
models for DARC. We first annotate the system performance
characteristics in the UML models, see subsection 4.1. Later,

Fig. 5. Deployment Diagram of the DARC Architecture.

in subsection 4.2, we convert such UML diagrams into an
intermediate model, called CSM. Finally, the CSM models are
converted into the target PNs, in subsection 4.3. These PNs
will be the source for an eventual performance analysis.

4.1. UML-annotated models

We use the standard UML Profile for Schedulability, Perfor-
mance and Time Specification (UML-SPT [4]) to introduce the
input performance values of the DARC architecture and also
the metrics that will characterize our performance analysis.
SPT extends the UML standard by defining stereotypes and
tags which can be applied to the model elements in the
UML diagrams. See in Figures 3, 4 and 5 the stereotypes
and tags used to introduce in DARC its intrinsic performance
characteristics. These annotations appear attached as notes in
the UML diagrams as SPT proposes. Consider that SPT is
mainly based on domain sub-models for resources and for
performance, which indeed will be the basis of the CSM
metamodel described in Section 4.2.

The input parameters in DARC will be the system load, the
actions duration and the messages delays. They were collected
by experimental tests using the DARC architecture [1]. Actions
and messages are represented by the stereotype <<PAstep>>,
where the PAdemand tag specifies the execution or delay time
as an exponentially distributed random variable (see Table 1).
The system load is represented by the <<PApopulation>>

<<PAresource>>
 Monitoring
 Agent

alt

SendAlert(medLoad)

return(medLoad,
 Rsat, Rexcl)

[medLoad>= * R and medLoad < * R]

sd: DARC

<<PAresource>>
 Communication
 Agent

<<PAresource>>
 Cluster Gateway

<<PAresource>>
 Coordinator
 Agent

<<PAresource>>
 a1:Maximum
 Load Agent

GetMonitoringInformation()
GetLoadInf()

 <<PAstep>>
{PAextOp=’network’,
 0.1, ’ms’}

 <<PApopulation>>
 {PAinterval=’req’,
 15, ’ms’}

 <<PAstep>>
{PAextOp=’network’,
 0.1, ’ms’}

 <<PAstep>>
{PAextOp=’network’,
 21.5, ’ms’}

return(medLoad,Rsat, Rexcl)

 <<PAstep>>
 {PAdemand=’est’,
 ’mean’, 34.9, ’ms’}

<<PAresource>>
 a2: Dynamic
Threshold Agent

<<PAresource>>
 a3: UpdateMa-
 nager Agent

Call MaximumLoadAgent

Call DynamicThreshold Agent

Call UpdateManager Agent

[medLoad>= * R] <<PAstep>>
 {PAdemand=’est’,
 ’mean’, 17.4, ’ms’}

opt [cont>4]

return(cont)

ref
GetLoadInf():

real

low sat sathigh

low sat

Fig. 3. Sequence Diagram of DARC.

Operation Average Execution Time (ms)
GetMonitoringInformation 0.1

GetCurrentLoad 15
GetLoadInf 15
SendAlert 0.1

CallMaximumLoadAgent 34.9
CallDynamicThresholdAgent 17.4
CallUpdateThresholdAgent 21.5

httprequest 0.01
classhttpidentification 0.1

GetHostList 15
sendreq 0.2

TABLE 1. Mean execution time for basic operations.

stereotype, see Figure 3, and its tag PAinterval indicates that
it is of the open kind and it requests every 15 milliseconds.

4.2. Core Scenario Model Diagrams

The Core Scenario Model (CSM [5]) is an intermediate
performance model. The benefits of intermediate models are
discussed in [5], and they basically bring the choice to be
transformed into different formal models, such as PNs or
queuing networks. The CSM is focused on describing perfor-
mance Scenarios. A scenario, is a sequence of Steps, linked
by Connectors. A step is a sequential piece of execution.
Connectors can include branches, merges, and forks and joins.
The scenario has a Start and an End points, where it begins and
finishes. Start points are associated with at Workload, which
defines arrivals and customers, and may be open or closed.
There exist two kinds of Resources: Active, which execute
steps, and Passive, which are acquired and released during
scenarios by special ResAcquire and ResRelease steps. Steps
are executed by (software) Components which are passive
resources. A primitive step has a single host processor, which
is connected through its component.

It is worth noticing that there exists an automatic translation
from UML-SPT annotated models into CSM models [5], and

also its associated tools. This means that the CSMs for DARC
(Figures 6 and 8) could be easily obtained from their UML-
SPT models (Figures 3 and 4, respectively). Although the
automatic translation exists, it is straightforward to check some
correspondences among models. For example, the GetMon-
itoringInformation message in Figure 3 is converted into an
CSM Step in 6. The ResAcquire and ResRelease steps get hold
and release the neccesary resources, that were deployed in the
diagram in Figure 5.

4.3. Petri Nets

Petri nets (PN) are a graphical and mathematical modeling
tool for describing concurrent systems. We use a temporal
extension, the class of Generalized Stochastic Petri Nets [7]
(GSPN), which distinguishes three kind of transitions: imme-
diate transitions; transitions with probabilities; and transitions
with exponentially distributed random firings.

Fortunately, there also exists an automatic translation from
CSM models into GSPN [8]. Figures 7 and 9 depict the GSPNs
that we obtained from the CSMs in Figures 6 and 8.

5. Performance Evaluation

The GSPN obtained in section 4 should be a mean to evalu-
ate DARC performance properties. But before any analysis, we
want to recall the three strategies considered in [1] to evaluate
the benefits of the DARC dynamic reconfiguration:
• DARC-1: without using the DynamicThreshold Agent or

any learning mechanism.
• DARC-2: DARC-1 with the addition of a DynamicThresh-

old agent to improve fairness in the use of resources.
• DARC-3: DARC-2 with the addition of an UpdateMan-

ager agent, our full-fledge self-reconfiguration proposal.
Note that these strategies are well-identified in the CSM

model in Figure 6, where DARC-3 is indeed represented by the

����

���� ����

Fig. 6. CSM for DARC-1, DARC-2 and DARC-3.

		*�����#

�&���

�������������

	�&���

���*�����#��&+���#������

����

����

� �

������#

����!� '��%

���'��%+��

���#%�����#

	�&���
����

�

��
		�� ��

���

�����������"#��"��%
����*�-����'��%

��
�

����,�%���*���&�#
���

���

���

��	

���%����#�+���#�������

���������������

Fig. 7. GSPN for DARC-1, DARC-2 and DARC-3.

whole CSM, being the other two strategies just subsets of the
former. Therefore, the translation of these three CSM yielded
the three PNs identified in Figure 7 as well. The results in [1]
for these three experiments should prove the GSPN analysis
results, analysis that will be carried out using the GSPN exact
analysis techniques implemented in [9]. Regarding the GSPN
experiments, we used the same number of HTTP requests,
i.e., the same load, as in the experimental tests. The rest of
the parameters were explained in previous sections and had
their counterpart in the experiments in [1].

The results in Figure 10 present the system response time
obtained from the GSPNs analysis and they helped to achieve
the pursued validation. The results for the three experiments

Start

ResAcq

http_request

ResAcq

ResRel

ResRel

JOIN

ResAcq

getHostList()

ResRel

FORK

Component

Web Servers

Component
Class
Switch

Component

classhttpidentify()

getCurrentLoad()

sendreq(
LessLoadedCluster) ClassCluster)

sendreq(

Cluster Gateway

Fig. 8. CSM WSDSAC.

P3ClassSwitch

P6
ClusterGateway

P8

P9

WebServers

P11

P12

P13

P14

P15

request10

getHostList

getCurrentLoad

classhttpidentify

sendreq(LessLoadedCluster)

sendreq(ClassCluster)

httprequest

t1

t10

t7

t5

t3

Fig. 9. GSPN WSDSAC.

(DARC-1, DARC-2 and DARC-3) are very similar, as it hap-
pened in [1]. The response time increases when the reactivity
coefficient ρki increases, but in compensation the number
of requests rejected (not shown in the figure) decreases,
which proves the effectiveness of the solution, as it was also
shown in [1]. The system load (between 50 and 550) was
parameterized in the UML model through the PApopulation
tag and it has its counterpart in the http request place of the
GSPN. The response time was calculated in the GSPN as the
inverse of the throughput given by transition t17.

����

���

����

����

����

����

� � � � � � 	
 � �� ��

����������	
�������������

�
�
�
�
�

�
�
	�
��
�
��
�

��

���
�

���
�
���
�

Fig. 10. Response time: DARC-[1-3].

From now on, we could consider the different GSPN models
as valid and then test the system in hypothetical situations.
Figure 11 presents the response time given by the performance
models for WS-DSAC and DARC-3 in different situations:
(I) presents results obtained from the GSPNs, (II) results
obtained in the real environment and (III) evaluates the system
using GSPNs when the number of clusters and web servers
on the platform WSDSAC is increased. The results obtained
using GSPNs differ -1,43% (DARC Architecture) and -1,37%
(WSDSAC Platform) from the results obtained in the real
environment. We can observe in figure 11 that the response
time for the DARC architecture is a little larger than for the
WS-DSAC platform. However, the DARC architecture meets

more requests and the rejection rate is lower (as the next figure
will show), which proves the effectiveness of the solution.

����

����

����

��	�

��
�

����

����

����

����

� � � � � � 	
 � �� ��

��������	���������������

�
�
�
�
�
�
�
	�
��
�
��
�

��
��

�����	��
��
������

�����	������

�����	��
��

�����	������

��

����

��

���

Fig. 11. Response time: DARC and WSDSAC.

Figure 12 presents the rejected rate given by the per-
formance models (GSPNs) of DARC and WSDSAC. The
rejection rate of the WS-DSAC platform is 6%. However,
for the DARC architecture it is only 0.02%. This figure thus
shows the advantage of a strategy of load balancing with
self-reconfiguration (DARC) over an approach without self-
reconfiguration (WSDSAC).

�

�

�

�

�

�

�

	

� � � � � � 	
 � ��

��������	���������������

�
��
�
��
�
�
	

�
��
�

���

��
�

������

Fig. 12. Rejection rate.

6. Related Work

We will restrict the literature review to some works that
share with ours the performance study of systems that use mo-
bile agents (MA) or multiagent systems (MAS) as technology,
even if they do not focus on web server clusters management.

The work in [10] is likely the closest to ours regarding the
techniques used to analyze performance, since it uses SPT,
CSM and Petri nets. However, although in the MA scope, it is
devoted to analyze and compare the performance of tracking
strategies in MA platforms. Also the work in [11] presents a
performance analysis of MA in a distributed network environ-
ment, but in this case to compare the performance of SNMP
and MA methods to manage a domain of devices.

In the field of MAS, Jurasovic and colleges [12] evaluate
the performance of the well-known Grasshopper and Jade
agent platforms. Their analysis focusses on the measurement
of average round trip times needed for circular exchanges
of messages, the data transferred during a certain period of
time, and the message overhead. Nagwani in [13] highlights
various parameters associated with the performance of MAS.
Then, he studies various models of MAS to discover the
impact of such parameters on them. The work suggests an

interesting profiling technique to keep track of performance
related data in MAS. An important difference of these works
with ours is that we not only follow an experimental approach.
We use experimental results to validate those obtained with
well-known SPE techniques [3], thereby our approach allows
modelers to test the system also in hypothetical situations.

7. Conclusions and Future Work

In this paper, we have studied the performance analysis
of the DARC (Dynamic Architecture for Reconfiguration of
Web Servers Clusters) architecture [1], an agent-based self-
reconfiguration approach for clusters of web servers. Instead
of an experimental approach, we have followed the SPE tech-
niques [3] to model and analyze this architecture. Our analysis
have allowed us to validate the experimental results previously
obtained in [1]. The analytical results obtained are very
similar to the ones obtained experimentally (only increasing
slightly in one of the experiments), which proves the validity
of the models obtained. Moreover, we have also used our
models to compare the strategy of load balancing without self-
reconfiguration with the approach with self-reconfiguration.
This paper also shows that the use of Generalized Stochastic
Petri Nets (GSPN) is suitable to analyze complex performance
problems in the dynamic reconfiguration domain.

As future work, we plan to analyze other aspects of the
DARC architecture by evaluating it in a variety of scenarios
and conditions. The performance models that we have obtained
will allow us to perform an evaluation with much less effort
than it would be needed in a real experimental environment.

References

[1] C. Marques, S. Ilarri, and G. Barroso, “DARC: A dynamic architecture
for reconfiguration of web servers clusters using multiagent systems,” in
Fifth International Conference on Networking and Services (ICNS’09).
IEEE, 2009, pp. 169–174.

[2] M. Wooldridge, An Introduction to MultiAgent Systems. Wiley, 2002.
[3] C. Smith and L. Williams, Performance Solutions. Addison-Wesley,

2001.
[4] UML Profile for Schedulabibity, Performance and Time Specification,

Object Management Group, http://www.uml.org, 2005.
[5] D. Petriu and M. Woodside, “An intermediate metamodel with scenarios

and resources for generating performance models from UML designs,”
Software and Systems Modeling, vol. 6, no. 2, pp. 163–184, 2007.

[6] A. Serra, K. Cardoso, G. Barroso, and R. Ramos, “Controle de admissao
e diferenciacao de servicos em clusters de servidores web,” in Proceed-
ings of the SBRC-SBC, 2005.

[7] M. A. Marsan, G. Balbo, G. Conte, D. S. Donatelli, and G. Frances-
chinis, Modelling with Generalized Stochastic Petri Nets. John Wiley
Series in Parallel Computing - Chichester, 1995.

[8] “The CSM to GSPN translator,” http://webdiis.unizar.es/∼jmerse/
csm2pn.html.

[9] “The GreatSPN tool,” http://www.di.unito.it/∼greatspn.
[10] E. Gómez-Martı́n, S. Ilarri, and J. Merseguer, “Performance analysis of

mobile agent tracking approaches,” in Sixth International Workshop on
Software and Performance (WOSP’07). ACM, 2007, pp. 181–188.

[11] C.-Y. M. J. Holt, A. Huang, “A performance analysis of mobile agents,”
IET Communications, vol. 1, no. 3, pp. 532–538, 2007.

[12] K. Jurasovic, G. Jezic, and M. Kusek, “A performance analysis of
multi-agent systems,” International Transactions on Systems Science and
Applications, vol. 1, no. 4, pp. 335–341, 2006.

[13] N. Nagwani, “A performance measurement analysis for multi-agent
systems,” Intelligent Agent and Multi-Agent Systems, pp. 1–4, 2009.

