3. Optimization problem based on an undefined Petri net

Outline

Statement of the problem

- Max/min objective/multiobjective function $\{$ Quality measurement
- Max/min objective/multiobjective function $\left\{\begin{array}{l}\text { of a solution }\end{array}\right.$
- Definition of the structure of the feasible solutions.
- Constraints \rightarrow configuration of the solution space.
- Undefined Petri net:

1. Disjunctive constraint: only one simple alternative PN must be verified.

3. Optimization problem based on an undefined Petri net

Classical solution

Decomposition of the problem in n different cases based on a simple alternative Petri net.

The proposed methodology allows to transform a compound PN into a set of simple alternative PN
unversidad de la rioja

3. Optimization problem based on an undefined Petri net

Classical solution

Decomposition of the problem in n different cases based on a simple alternative Petri net

The disjunctive constraint is avoided.
It requires the solution of n optimization problems.
It requires a further stage of comparing the results.
If n is large...

3. Optimization problem based on an undefined Petri net

Proposed methodology

Alternatives aggregation Petri nets
Transformation of an undefined PN into an AAPN.
Efficient exploration of a single solution space.
Solution of the problem by means of classical methodologies (state explosion).

Heuristics / metaheuristics

3. Optimization problem based on an undefined Petri net

Alternatives aggregation Petri nets

Construction of an AAPN

Decomposition of a set of alternative Petri nets in: Subnets

Link transitions
Aggregation and link of the subnets.
Application of the reduction rules.
Application of the simplification rules.
3. Optimization problem based on an undefined Petri net

Example 4
 Alternatives aggregation Petri nets

R_{2}
R_{3}

3. Optimization problem based on an undefined Petri net

Example 4 1. Decomposition into subnets

3. Optimization problem based on an undefined Petri net

Example 4 1. Decomposition into subnets

Incidence matrix

3. Optimization problem based on an undefined Petri net

Example 4
 1. Decomposition into subnets

3. Optimization problem based on an undefined Petri net

Example 4
 1. Decomposition into subnets

Incidence matrix
3. Optimization problem based on an undefined Petri net

Example 2
 1. Decomposition into subnets

R^{c}

Manufacturing strategy pull.

1 route of AGV.
Undefined structural parameters

Lot sizes.

3. Optimization problem based on an undefined Petri net

Example 2

1. Decomposition into subnets

UNIVERSIDAD DE LA RIOJA

3. Optimization problem based on an undefined Petri net

Example 2

1. Decomposition into subnets

$R^{c}{ }_{2}$

Manufacturing strategy pull.

2 routes of AGV.

UNIVERSIDAD DE LA RIOJA
3. Optimization problem based on an undefined Petri net

Example 2
 1. Decomposition into subnets

Incidence matrices

24 compound alternative PN.

Size of each matrix $\approx 78 \times 54$.

3. Optimization problem based on an undefined Petri net

Example 4

2. Aggregation of subnets

$$
\begin{aligned}
& \boldsymbol{R}_{1} \\
& \mathbf{W}_{\mathbf{1}}=\left(\begin{array}{cccccccc}
\mathrm{t} 1 & \mathrm{t} 2 & \mathrm{t} 3 & \mathrm{t} 4 & \mathrm{t} 5 & \mathrm{t} 6 & \mathrm{t} 7 & \mathrm{t} 8 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\mathbf{1} & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbf{1} & 0 & -1 & 0 & 0 & 0 & -1 & 0 \\
\mathbf{0} & \mathbf{1} & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} & -1 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & -1 & 0 & 1 & 1 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1
\end{array}\right) \mathrm{p} 4
\end{aligned}
$$

3. Optimization problem based on an undefined Petri net

Example 4

Step 1. Aggregation of \mathbf{R}_{1}

3. Optimization problem based on an undefined Petri net

Example 4

2. Aggregation of subnets

The choice variable \boldsymbol{a}_{1} is associated to the link transitions of $\boldsymbol{R}_{\boldsymbol{1}}$.

3. Optimization problem based on an undefined Petri net

Example 4

2. Aggregation of subnets

R_{2}
It does not provide with new subnets.

It has three link transitions.
t_{9}, t_{10}, t_{11}.

3. Optimization problem based on an undefined Petri net

Example 4

2. Aggregation of subnets

R_{2}
It does not provide with new subnets. It has three link transitions.
3. Optimization problem based on an undefined Petri net

Example 4

2. Aggregation of subnets

R_{2}
It does not provide with new subnets. It has three link transitions.

universidad de la rioja
3. Optimization problem based on an undefined Petri net

Example 4

2. Aggregation of subnets

R_{3}

R_{3}

3. Optimization problem based on an undefined Petri net

Example 4
 2. Aggregation of subnets

R_{3} It provides with a new subnet.

It has two link transitions.
t_{15} and t_{16}
universidad de la rioja
3. Optimization problem based on an undefined Petri net

Example 4
 2. Aggregation of subnets

\boldsymbol{R}_{3}

R_{3}

universidad de la rioja
3. Optimization problem based on an undefined Petri net
$\begin{array}{ll}\text { Example } 4 & \text { 2. Aggregation of subnets }\end{array}$

Basic AAPN

Equivalent set of simple alternative

Presents a choice variable for every link transition.
universidad de la rioja

3. Optimization problem based on an undefined Petri net

Example 4
 2. Aggregation of subnets

Incidence matrix of the AAPN

3. Optimization problem based on an undefined Petri net

Example 4

3. Reduction of the link transitions

Application of the reduction rule

$\left\{\mathrm{t}_{7}, \mathrm{t}_{10}\right\}$ reduced to t_{7} by associating the next function of choice variables $\mathrm{f}_{7}=\mathrm{a}_{1}+\mathrm{a}_{2}$
$\left\{t_{8}, t_{11}\right\}$ reduced to t_{8} by associating the next function of choice variables $f_{8}=a_{1}+a_{2}$
3. Optimization problem based on an undefined Petri net

Example 4
 3. Reduction of the link transitions

Application of the reduction rule

$\left\{t_{7}, t_{10}\right\}$ reduced to t_{7} by associating the next function of choice variables $f_{7}=a_{1}+a_{2}$
$\left\{t_{8}, t_{11}\right\}$ reduced to t_{8} by associating the next function of choice variables $f_{8}=a_{1}+a_{2}$

The incidence matrices are reduced proportionally.

3. Optimization problem based on an undefined Petri net

Example 4 3. Reduction of the link transitions

In the incidence matrix of the AAPN there exist several identical columns:

1) Every identical columns can be reduced to a single one.
2) A function of choice variables is associated to the column which is equivalent to the reduced transitions.

3. Hrobiema de 3. Uptımization probiem based on an undefined Petri net basado en una RdP indefinida Example 4 3. Reduction of the link transitions

In the incidence matrix of the AAPN there exist several identical columns:

1) Every identical columns can be reduced to a single one.
2) A function of choice variables is associated to the column which is equivalent to the reduced transitions.
Choice variables associated to the link transitions:

t 15	t 16	
0	0	p 1
0	0	p 2
0	0	p 3
0	0	p 4
0	0	p 5
1	0	p 6
0	0	p 7
0	-1	p 8
0	1	p 9
0	0	p 10
0	0	p 11
0	0	p 12
-1	0	p 13

3. Optimization problem based on an undefined Petri net

Example 4 3. Reduction of the link transitions

In the incidence matrix of the AAPN there exist several identical columns:

1) Every identical columns can be reduced to a single one.
2) A function of choice variables is associated to the column which is equivalent to the reduced transitions.

3. Optimization problem based on an undefined Petri net

Example 4

4. Simplification of functions

Application of the rule of simplification

 t_{7} are t_{10} are only enabled when one of the choice variables of the associated function is active.3. Optimization problem based on an undefined Petri net

Example 4

4. Simplification of functions

Application of the rule of simplification

t_{7} are t_{10} are only enabled when one of the choice variables of the associated function is active.
3. Optimization problem based on an undefined Petri net

Example 4
 5. Simplified AAPN

Alternatives aggregation PN

PN equivalent to the original set of simple alternative PN

3. Optimization problem based on an undefined Petri net

Example 4
 5. Simplified AAPN

Incidence matrix of the AAPN

3. Optimization problem based on an undefined Petri net

Example 2

3 y 4. Reduction and simplification

The number of link transitions is reduced from 741 to 92.

Equivalent transition

3. Optimization problem based on an undefined Petri net

Example 2
 3 y 4. Reduction and simplification

Incidence matrix of the AAPN (Same information than in the original alternative PN).
Size $=99 \times 125$ versus 78×54 in the ones from everyone of the 24 alternative PN.Blocks associated to the subnets.
Columns associated to the link transitions.
Columns associated to the link transitions that represent work orders (push/pull).

UNIVERSIDAD DE LA RIOJA

3. Optimization problem based on an undefined Petri net

Ejemplo 4 Behaviour of the AAPN

Let us suppose that $a_{l}=1$
By definition $a_{j}=0, i \neq j, 1 \leq j \leq n$, ($n=$ number of alternative PN).
a) Removing the transitions that are not allowed to fire, a PN with the same reachability graph than the original alternative $\mathrm{PN} \boldsymbol{R}_{1}$ is obtained. This behaviour is shared for a basic and a simplified AAPN.

3. Optimization problem based on an undefined Petri net

Ejemplo 4 Behaviour of the AAPN

Let us suppose that $a_{l}=1$
By definition $a_{j}=0, i \neq j, 1 \leq j \leq n$, ($n=$ number of alternative PN).
a) Removing the transitions that are not allowed to fire, a PN with the same reachability graph than the original alternative $\mathrm{PN} \boldsymbol{R}_{1}$ is obtained. This behaviour is shared for a basic and a simplified AAPN.

3. Optimization problem based on an undefined Petri net

Ejemplo 4

Behaviour of the AAPN

Let us suppose that $a_{l}=1$

By definition $a_{j}=0, i \neq j, 1 \leq j \leq n$, ($n=$ number of alternative PN).
a) Removing the transitions that are not allowed to fire, a PN with the same reachability graph than the original alternative $P N R_{1}$ is obtained. This behaviour is shared for a basic and a simplified AAPN.

3. Optimization problem based on an undefined Petri net

Ejemplo 4

Behaviour of the AAPN

Let us suppose that $a_{l}=1$
By definition $a_{j}=0, i \neq j, 1 \leq j \leq n$, ($n=$ number of alternative PN).
a) Removing the transitions that are not allowed to fire, a PN with the same reachability graph than the original alternative $\mathrm{PN} \boldsymbol{R}_{1}$ is obtained. This behaviour is shared for a basic and a simplified AAPN.
b) According to the definition of extended marking $m_{0}^{E 1}\left(p_{k}\right)=0$ with $9 \leq k \leq 13 \Rightarrow$ the subnet R_{1}^{3} does not participate in the evolution of the PN.

3. Optimization problem based on an undefined Petri net

Ejemplo 4 Behaviour of the AAPN

Let us suppose that $a_{l}=1$
By definition $a_{j}=0, i \neq j, 1 \leq j \leq n$, ($n=$ number of alternative PN).
a) Removing the transitions that are not allowed to fire, a PN with the same reachability graph than the original alternative $P N R_{1}$ is obtained. This behaviour is shared for a basic and a simplified AAPN.
b) According to the definition of extended marking $m_{0}^{E 1}\left(p_{k}\right)=0$ with $9 \leq k \leq 13 \Rightarrow$ the subnet R_{1}^{3} does not participate in the evolution of the PN.

3. Optimization problem based on an undefined Petri net

Ejemplo 4

Behaviour of the AAPN

Let us suppose that $a_{l}=1$
By definition $a_{j}=0, i \neq j, 1 \leq j \leq n$, ($n=$ number of alternative PN).
a) Removing the transitions that are not allowed to fire, a PN with the same reachability graph than the original alternative $\mathrm{PN} \boldsymbol{R}_{1}$ is obtained. This behaviour is shared for a basic and a simplified AAPN.
b) According to the definition of extended marking $m_{0}^{E 1}\left(p_{k}\right)=0$ with $9 \leq k \leq 13 \Rightarrow$ the subnet R_{1}^{3} does not participate in the evolution of the PN.

3. Optimization problem based on an undefined Petri net

Outline

New statement of the problem

- Max/min objective/multiobjective function $\left\{\begin{array}{l}\text { Quality measurement }\end{array}\right.$ of a solution
- Definition of the structure of the feasible solutions.
- Constraints \rightarrow configuration of the solution space.
- Alternatives aggregation Petri net:

1. Obtained from a disjunctive constraint but it is handled as a non-disjunctive constraint.
2. Optimization problem based on an undefined Petri net

Solution by means of a genetic algorithm

Steps of the classical methodology

1) Random selection of the initial set of feasible solutions.
2) Evaluation of the objective function for every feasible solution
3) Evaluation of the stop criterion.
4) Calculation of the quality of every solution.

5) Removal of the less apt solutions.
6) Obtention of the new generation of solutions from the crossover of the surviving solutions.
7) Return to step 2.
3. Optimization problem based on an undefined Petri net

Comparison

Optimization based on n alternative PN.

© : n optimizations based on a single Petri net.
(: Worst alternative PNs \longrightarrow waste of time.
© Additional stage for the comparation of the results.

Optimization based on an AAPN

(:) 1 single optimization process, based on an AAPN.
(:) Computational effort focussed on the most promising regions of the solution space.
: Larger size of the incidence matrices.
(:) It profits from the shared subnets.
3. Optimization problem based on an undefined Petri net

Example 2

Comparison

General characteristics

15 generations.
Population composed by 50 feasible solutions.
Adjustable parameters (mortality rate, mutation rate, type of crossover, etc).

Option 1: 24 optimizations based on a compound alternative PN.

Option 2: 1 optimization based on a single AAPN.

3. Optimization problem based on an undefined Petri net

Example 2

Comparison

Solution obtained from the AAPN Quality of the solution

The value of the objective function is the 98.85% of the value obtained from the process of 24 optimizations

Computational working time

The time needed to develop is the $\mathbf{1 0 . 0 7 \%}$ of the time needed to perform the 24 optimization (note: the stage of comparing the results has not been included).
3. Optimization problem based on an undefined Petri net

Example 2

Comparison

Explanation of the results

4. Conclusions

Methodology for decision taking based on alternatives aggregation Petri nets

1. Decision problem based on a DES

2. Decision problem based on an undefined Petri net

Representation by means of $\left\{\begin{array}{l}\text { Simple or compound alternative PN. } \\ \text { AAPN or CPN. }\end{array}\right.$
3. Optimization problem based on an undefined PN.
4. Optimization problem based on an alternatives aggregation Petri net.
Transforms a disjunctive constraint.
The AAPN is not unique. It depends on $\longrightarrow\left\{\begin{array}{l}\text { Set of alternative PN } \\ \text { Decomposition in subnets and } \\ \text { link transitions }\end{array}\right.$
Equivalent to a coloured PN which allows the use of its software

4. Conclusions

Methodology for decision taking based on alternatives aggregation Petri nets

Open research fields

Increase the efficiency in the application of the genetic algorithm:

Data storage / Adjustable characteristics of the algorithm

Extend the analysis of the performance of the optimization based on different representations of an undefined PN (compound PN, etc).
Extend the analysis of the performance of an AAPN obtained from different sets of alternative PN (simple, compound, mixed).
Extend the aplication of this methodology to other metaheuristics.
Analysis the applicability to other problems and solve them:
Problem of the design of a PN (large number of undefined
structural parameters)
Problem of the preventive maintenance (timed sequence of decisions that modify the structure of the Petri net)

