Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Universidad de Zaragoza Instituto de Investigación en Ingeniería de Aragon (I3A), Spain

December 9, 2009

Outline

- Introduction
- Timed Continuous Petri net (contPN)
 - Definition
 - Controlled contPN
- Control Strategy
 - Computation of Linear Trajectories
 - A Heuristics for Minimum Time Control
- Closed Loop Control
- Case Study

Conclusion

Outline

Introduction

- Timed Continuous Petri net (contPN)
 - Definition
 - Controlled contPN
- Control Strategy
 - Computation of Linear Trajectories
 - A Heuristics for Minimum Time Control
- Closed Loop Control
- Case Study

Conclusion

Introduction

 Controlling the system from m₀ to m_f through the linear trajectory by minimizing the time.

 In order to reduce the time, controlling the system from m₀ to m_f through a PWL trajectory.

 In order to minimize noise effect, controlling the system online by closed loop control approach.

Outline

- Introduction
- Timed Continuous Petri net (contPN)
 - Definition
 - Controlled contPN
- Control Strategy
 - Computation of Linear Trajectories
 - A Heuristics for Minimum Time Control
- Closed Loop Control
- Case Study

Conclusion

Timed Continuous Petri nets (contPN)

Definition

Timed Continuous Petri nets (contPN)

Definition

A (deterministic) contPN system is a tuple $\langle P, T, Pre, Post, \lambda, m_0 \rangle$ with the set of places P, the set of transitions T, pre and post matrices $Pre, Post \in \mathbb{R}^{|P| \times |T|}$. $\lambda \in \mathbb{R}_{>0}^{|T|}$ is the firing rate vector and $m_0 \in \mathbb{R}_{\geq 0}^{|P|}$ is the initial state. C = Post - Pre is incidence matrix.

Mostly used two server semantics for contPN

- Finite Server Semantics
- Infinite Server Semantics

Timed Continuous Petri nets (contPN)

Definition

Timed Continuous Petri nets (contPN)

Definition

A (deterministic) contPN system is a tuple $\langle P, T, Pre, Post, \lambda, m_0 \rangle$ with the set of places P, the set of transitions T, pre and post matrices $Pre, Post \in \mathbb{R}^{|P| \times |T|}$. $\lambda \in \mathbb{R}_{>0}^{|T|}$ is the firing rate vector and $m_0 \in \mathbb{R}_{\geq 0}^{|P|}$ is the initial state. C = Post - Pre is incidence matrix.

Mostly used two server semantics for contPN

- Finite Server Semantics
- Infinite Server Semantics

Timed Continuous Petri nets (contPN)

Definition

Timed Continuous Petri nets (contPN)

Definition

A (deterministic) contPN system is a tuple $\langle P, T, Pre, Post, \lambda, m_0 \rangle$ with the set of places P, the set of transitions T, pre and post matrices $Pre, Post \in \mathbb{R}^{|P| \times |T|}$. $\lambda \in \mathbb{R}_{>0}^{|T|}$ is the firing rate vector and $m_0 \in \mathbb{R}_{\geq 0}^{|P|}$ is the initial state. C = Post - Pre is incidence matrix.

For a contPN under infinite server semantics:

$$f(\tau, t_j) = f_j = \lambda_j \cdot \min_{p_i \in \bullet t_j} \left\{ \frac{m(\tau, p_i)}{Pre[p_i, t_j]} \right\}$$
(1)

Timed Continuous Petri nets (contPN)

Definition

Timed Continuous Petri nets (contPN)

Definition

A (deterministic) contPN system is a tuple $\langle P, T, Pre, Post, \lambda, m_0 \rangle$ with the set of places P, the set of transitions T, pre and post matrices $Pre, Post \in \mathbb{R}^{|P| \times |T|}$. $\lambda \in \mathbb{R}_{>0}^{|T|}$ is the firing rate vector and $m_0 \in \mathbb{R}_{\geq 0}^{|P|}$ is the initial state. C = Post - Pre is incidence matrix.

$$\boldsymbol{m} = [m_1 \ m_2 \ m_3]^T$$
$$\boldsymbol{\lambda} = [\lambda_1 \ \lambda_2]^T$$
$$f_1 = \lambda_1 \cdot \min\{m_1, m_2\}$$
$$f_2 = \lambda_2 \cdot m_3$$

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Timed Continuous Petri nets (contPN)

Definition

Timed Continuous Petri nets (contPN)

Definition

A (deterministic) contPN system is a tuple $\langle P, T, Pre, Post, \lambda, m_0 \rangle$ with the set of places P, the set of transitions T, pre and post matrices $Pre, Post \in \mathbb{R}^{|P| \times |T|}$. $\lambda \in \mathbb{R}_{>0}^{|T|}$ is the firing rate vector and $m_0 \in \mathbb{R}_{\geq 0}^{|P|}$ is the initial state. C = Post - Pre is incidence matrix.

$$\boldsymbol{m} = [0.5 \ 1.5 \ 0]^T$$
$$\boldsymbol{f_1} = \boldsymbol{\lambda_1} \cdot \boldsymbol{m_1}$$
$$\boldsymbol{f_2} = \boldsymbol{\lambda_2} \cdot \boldsymbol{m_3}$$

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Timed Continuous Petri nets (contPN)

Definition

Timed Continuous Petri nets (contPN)

Definition

A (deterministic) contPN system is a tuple $\langle P, T, Pre, Post, \lambda, m_0 \rangle$ with the set of places P, the set of transitions T, pre and post matrices $Pre, Post \in \mathbb{R}^{|P| \times |T|}$. $\lambda \in \mathbb{R}_{>0}^{|T|}$ is the firing rate vector and $m_0 \in \mathbb{R}_{\geq 0}^{|P|}$ is the initial state. C = Post - Pre is incidence matrix.

$$\boldsymbol{m} = [1.5 \ 0.5 \ 0]^T$$
$$\boldsymbol{f_1} = \lambda_1 \cdot \boldsymbol{m_2}$$
$$\boldsymbol{f_2} = \lambda_2 \cdot \boldsymbol{m_3}$$

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Timed Continuous Petri nets (contPN)

Definition

A contPN with infinite server semantics is a PWL sysem with polyhedral regions. For a region \mathcal{R}^z , the constraint matrix is $\mathbf{\Pi}^z : T \times P \to \mathbb{R}^+$:

$$\mathbf{\Pi}^{z}[t_{j}, p_{i}] = \begin{cases} \frac{1}{Pre[p_{i}, t_{j}]}, & if(\forall \boldsymbol{m} \in \mathcal{R}^{z}) \quad \frac{m(p_{i})}{Pre[p_{i}, t_{j}]} = \min_{p_{h} \in \bullet t_{j}} \left\{ \frac{m_{h}}{Pre[p_{h}, t_{j}]} \right\} \\ 0, & \text{otherwise} \end{cases}$$
(2)

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Timed Continuous Petri nets (contPN)

Definition

Firing rate of transitions:

$$\boldsymbol{\Lambda} = \mathsf{diag}\{\lambda_1, \dots, \lambda_{|T|}\} \tag{3}$$

The nonlinear flow of the transitions at a given state m:

$$\boldsymbol{f} = \boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}) \cdot \boldsymbol{m} \tag{4}$$

The state equation of uncontrolled contPN:

$$\dot{\boldsymbol{m}} = \boldsymbol{C} \cdot \boldsymbol{f} = \boldsymbol{C} \cdot \boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}) \cdot \boldsymbol{m}$$
(5)

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

L-Timed Continuous Petri nets (contPN)

Definition

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$

L Timed Continuous Petri nets (contPN)

Definition

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$

L Timed Continuous Petri nets (contPN)

Definition

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$

Timed Continuous Petri nets (contPN)

Controlled contPN

Controlled contPN

Definition

If the flow of a transition can be reduced and even stopped, it is a controllable transition.

Definition

The flow of controlled timed contPN is denoted as $w(\tau) = f(\tau) - u(\tau)$, with $0 \le u(\tau) \le f(\tau)$, where f is the flow of the uncontrolled system [i.e. defined as in equation (1)] and u is the control action.

L Timed Continuous Petri nets (contPN)

Controlled contPN

Under these conditions, the overall behaviour of the controlled system:

$$\dot{\boldsymbol{m}} = \boldsymbol{C} \cdot [\boldsymbol{f} - \boldsymbol{u}]$$

= $\boldsymbol{C} \cdot [\boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}) \cdot \boldsymbol{m} - \boldsymbol{u}]$ (8)
 $0 \leq \boldsymbol{u} \leq \boldsymbol{f}$

L Timed Continuous Petri nets (contPN)

Controlled contPN

Under these conditions, the overall behaviour of the controlled system: (w=f-u)

$$\dot{\boldsymbol{m}} = \boldsymbol{C} \cdot \boldsymbol{w} \\ 0 \leq \boldsymbol{w} \leq \boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}) \cdot \boldsymbol{m}$$
(9)

Timed Continuous Petri nets (contPN)

Controlled contPN

Outline

- Introduction
- Timed Continuous Petri net (contPN)
 - Definition
 - Controlled contPN
- Control Strategy
 - Computation of Linear Trajectories
 - A Heuristics for Minimum Time Control
- Closed Loop Control
- Case Study

Conclusion

Control Strategy

Control Strategy

In the literature,

- Optimal steady state control problem by means of LPP has been solved (Mahulea et al. 2008)
- Transitory control problem has been solved MPC (Mahulea et al. 2008)
- A Lyapunov-function-based dynamic control algorithm is developed and it is proposed to introduce intermediate states in order to improve the time (Xu et al. 2008)
- A local controllability concept was proposed (C.R. Vázquez et al. 2008)

• ...

Control Strategy

Control Strategy

Compute a control action u that drives the system from the initial marking m_0 to a desired target marking m_f by minimizing time

- Linear Trajectory (LPP)
- Piecewise Linear Trajectory (BLP)
 - * Total time is reduced
 - * Computational complexity is reasonable

Control Strategy

Computation of Linear Trajectories

Computation of Linear Trajectories

We distinguish two cases:

(A) m_0 and m_f are in the same region

(B) m_0 and m_f are in different regions

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Control Strategy

Computation of Linear Trajectories

(A)
$$m{m}_0$$
 and $m{m}_f$ are in the same region \mathcal{R}^z .

Problem to be solved for linear trajectory

min τ_f $\boldsymbol{m}_f = \boldsymbol{m}_0 + \boldsymbol{C} \cdot \boldsymbol{w} \cdot \boldsymbol{\tau}_f$ (a) $0 \le w_j \le \lambda_j \cdot \prod_{ji}^z \min \{m_{0i}, m_{fi}\},$ $\forall j \in \{1, ..., |T|\}$ where *i* satisfies $\prod_{ji}^z \ne 0$ (b)

Control Strategy

Computation of Linear Trajectories

(A)
$$m{m}_0$$
 and $m{m}_f$ are in the same region \mathcal{R}^z .

LPP for linear trajectory $(\boldsymbol{x} = \boldsymbol{w} \cdot \tau_f)$

$$\begin{array}{ll} \min & \tau_f \\ & \boldsymbol{m}_f = \boldsymbol{m}_0 + \boldsymbol{C} \cdot \boldsymbol{x} \\ & 0 \leq x_i \leq \lambda_i \cdot \Pi^z \dots \min \gamma \end{array}$$

$$\begin{aligned} & (11) \\ & \leq x_j \leq \lambda_j \cdot \Pi_{ji}^z . \min\left\{m_{0i}, m_{f_i}\right\} \cdot \tau_f, \\ & \forall j \in \{1, ..., |T|\} \text{ where } i \text{ satisfies } \Pi_{ji}^z \neq 0 \end{aligned}$$

(a)

Control Strategy

Computation of Linear Trajectories

(B) m_0 and m_f are in different regions.

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Control Strategy

Computation of Linear Trajectories

Linear Trajectory

Input: $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$, \boldsymbol{m}_f Compute the line ℓ connecting \boldsymbol{m}_0 and \boldsymbol{m}_f Compute the intersection of ℓ and the crossed borders: $\boldsymbol{m}_c^1, \, \boldsymbol{m}_c^2, \,, \boldsymbol{m}_c^n$ $\boldsymbol{m}_c^0 = \boldsymbol{m}_0, \, \boldsymbol{m}_c^{n+1} = \boldsymbol{m}_f, \, \tau_f = 0$ for i = 0 to n do Determine τ_i by solving LPP in (11) with $\boldsymbol{m}_0 = \boldsymbol{m}_c^i$ and $\boldsymbol{m}_f = \boldsymbol{m}_c^{i+1}$ end for Output: $\tau_1, \boldsymbol{w}^1, \tau_2, \boldsymbol{w}^2, ..., \tau_{n+1}, \boldsymbol{w}^{n+1}, \, \tau_f = \sum_{i=1}^{n+1} \tau_i$

Control Strategy

Computation of Linear Trajectories

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

Computation of Linear Trajectories

Linear Trajectory

Input: $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$, \boldsymbol{m}_f Compute the line ℓ connecting \boldsymbol{m}_0 and \boldsymbol{m}_f Compute the intersection of ℓ and the crossed borders: $\boldsymbol{m}_c^1, \boldsymbol{m}_c^2, \dots, \boldsymbol{m}_c^n$ $\boldsymbol{m}_c^0 = \boldsymbol{m}_0, \quad \boldsymbol{m}_c^{n+1} = \boldsymbol{m}_f, \quad \tau_f = 0$ for i = 0 to n do Determine τ_i by solving LPP in (11) with $\boldsymbol{m}_0 = \boldsymbol{m}_c^i$ and $\boldsymbol{m}_f = \boldsymbol{m}_c^{i+1}$ end for Output: $\tau_1, \boldsymbol{w}^1, \tau_2, \boldsymbol{w}^2, \dots, \tau_{n+1}, \boldsymbol{w}^{n+1}, \quad \tau_f = \sum_{i=1}^{n+1} \tau_i$

Control Strategy

Computation of Linear Trajectories

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

Computation of Linear Trajectories

Linear Trajectory

Input: $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$, \boldsymbol{m}_f Compute the line ℓ connecting \boldsymbol{m}_0 and \boldsymbol{m}_f Compute the intersection of ℓ and the crossed borders: $\boldsymbol{m}_c^1, \boldsymbol{m}_c^2, \dots, \boldsymbol{m}_c^n$ $\boldsymbol{m}_c^0 = \boldsymbol{m}_0, \quad \boldsymbol{m}_c^{n+1} = \boldsymbol{m}_f, \quad \tau_f = 0$ for i = 0 to n do Determine τ_i by solving LPP in (11) with $\boldsymbol{m}_0 = \boldsymbol{m}_c^i$ and $\boldsymbol{m}_f = \boldsymbol{m}_c^{i+1}$ end for Output: $\tau_1, \boldsymbol{w}^1, \tau_2, \boldsymbol{w}^2, \dots, \tau_{n+1}, \boldsymbol{w}^{n+1}, \quad \tau_f = \sum_{i=1}^{n+1} \tau_i$

Control Strategy

Computation of Linear Trajectories

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

Computation of Linear Trajectories

Linear Trajectory

Input: $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$, \boldsymbol{m}_f Compute the line ℓ connecting \boldsymbol{m}_0 and \boldsymbol{m}_f Compute the intersection of ℓ and the crossed borders: $\boldsymbol{m}_c^1, \, \boldsymbol{m}_c^2, \,, \boldsymbol{m}_c^n$ $\boldsymbol{m}_c^0 = \boldsymbol{m}_0, \, \, \boldsymbol{m}_c^{n+1} = \boldsymbol{m}_f, \, \, \tau_f = 0$ for i = 0 to n do Determine τ_i by solving LPP in (11) with $\boldsymbol{m}_0 = \boldsymbol{m}_c^i$ and $\boldsymbol{m}_f = \boldsymbol{m}_c^{i+1}$ end for Output: $\tau_1, \boldsymbol{w}^1, \tau_2, \boldsymbol{w}^2, ..., \tau_{n+1}, \boldsymbol{w}^{n+1}, \, \tau_f = \sum_{i=1}^{n+1} \tau_i$

Control Strategy

Computation of Linear Trajectories

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

Computation of Linear Trajectories

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

Computation of Linear Trajectories

Example

 $\tau_{total} = 0.2 + 0.67 = 0.87 \text{ t.u.}$

The control law:

$$f(\tau) = \begin{cases} \left[\begin{array}{c} 4 \cdot m_5(\tau) - 2.49 \\ m_2(\tau) - 1.67 \\ 3 \cdot m_8(\tau) \\ m_4(\tau) - 1.67 \end{array} \right], \\ \text{if } 0 \le \tau \le 0.2 \\ \left[\begin{array}{c} 4 \cdot m_5(\tau) - 1.5 \\ m_2(\tau) - 1 \\ 3 \cdot m_8(\tau) \\ m_4(\tau) - 1 \end{array} \right], \\ \text{if } 0.2 < \tau \le 0.87 \end{cases}$$

$$(12)$$
- Control Strategy

A Heuristics for minimum time control

A Heuristics for minimum time control

In order to improve the time spent to move from $oldsymbol{m}_0$ to $oldsymbol{m}_f$,

intermediate states are introduced to the trajectory.

Control Strategy

A Heuristics for minimum time control

A Heuristics for minimum time control

In order to improve the time spent to move from $oldsymbol{m}_0$ to $oldsymbol{m}_f$,

intermediate states are introduced to the trajectory.

Control Strategy

A Heuristics for minimum time control

A Heuristics for minimum time control

In order to improve the time spent to move from $oldsymbol{m}_0$ to $oldsymbol{m}_f$,

intermediate states are introduced to the trajectory.

Control Strategy

A Heuristics for minimum time control

A Heuristics for minimum time control

In order to improve the time spent to move from $oldsymbol{m}_0$ to $oldsymbol{m}_f$,

intermediate states are introduced to the trajectory.

Control Strategy

A Heuristics for minimum time control

We may realize two steps to obtain PWL trajectory:

- (1) Intermediate states on the borders (BLP1) All intermediate states on the borders that the line from m_0 to m_f crosses are calculated by solving BLP1 once.
- (2) Interior intermediate states (BLP2)Each intermediate state is calculated by solving BLP2.

Control Strategy

A Heuristics for minimum time control

(A) m_0 and m_f are in different regions

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Control Strategy

A Heuristics for minimum time control

Problem to be solved BLP1

min $\sum \tau_k$ $m^{k+1} = m^k + C \cdot x^{k+1}, \quad k \in \{0, 1, 2, ..., s\}$ (a) $\left(\mathbf{\Pi}^k - \mathbf{\Pi}^{k+1}\right) \cdot \mathbf{m}^k = 0, \quad k \in \{1, 2, .., s\}$ (b)(13) $m_i^k \leq m_i^{k+1}$ if $m_{0_i} \leq m_{f_i}$ $i \in \{1, 2..|P|\}, k \in \{0, 1, 2, ..., s\}$ (c) $m_{i}^{k} \geq m_{i}^{k+1}$ if $m_{0_{i}} \geq m_{f_{i}}$ $i \in \{1, 2.., |P|\}, k \in \{0, 1, 2, .., s\}$ (d) $0 \le x_i^k \le \lambda_j \cdot \prod_{i=1}^k \cdots \min\{m_i^{k-1}, m_i^k\} \cdot \tau_k,$ with p_i st. $\prod_{i=1}^k \neq 0, j \in \{1, 2... | T | \}, k \in \{1, 2...s\}$ (e)

Control Strategy

A Heuristics for minimum time control

Control Strategy

A Heuristics for minimum time control

We may realize two steps to obtain PWL trajectory:

- (1) Intermediate states on the borders (BLP1) All intermediate states on the borders that the line from m_0 to m_f crosses are calculated by solving BLP1 once.
- (2) Interior intermediate states (BLP2)Each intermediate state is calculated by solving BLP2.

Control Strategy

A Heuristics for minimum time control

Problem to be solved BLP2

min $\tau_1 + \tau_2$ $\boldsymbol{m}^d = \boldsymbol{m}_0 + \boldsymbol{C} \cdot \boldsymbol{x}^1$ $\boldsymbol{m}_f = \boldsymbol{m}^d + \boldsymbol{C} \cdot \boldsymbol{x}^2,$ (a) $\min\{m_{f_i}, m_{0_i}\} \le m_i^d \le \max\{m_{f_i}, m_{0_i}\},\$ (14) $\forall i \in \{1, 2... |P|\}$ (b) $0 \le x_j^1 \le \lambda_j \cdot \prod_{j=1}^z \cdot \min\{m_{0_i}, m_i^d\} \cdot \tau_1,$ with *i* st. $\Pi_{ji}^k \neq 0$, $j \in \{1, 2... |T|\}$ $0 \leq x_i^2 \leq \lambda_i \cdot \prod_{i=1}^z \cdot \min\{m_i^d, m_{f_i}\} \cdot \tau_2,$ with *i* st. $\Pi_{ii}^k \neq 0$, $j \in \{1, 2... |T|\}$ (c)

Control Strategy

A Heuristics for minimum time control

Control Strategy

A Heuristics for minimum time control

Piecewise Trajectory

Compute the line ℓ connecting m_0 and m_f Compute intermediate states on the borders that the line ℓ crosses. Calculate the interior intermediate states until the time can not be improved significantly.

Control Strategy

A Heuristics for minimum time control

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

A Heuristics for minimum time control

Piecewise Trajectory

Compute the line ℓ connecting \boldsymbol{m}_0 and \boldsymbol{m}_f

Compute intermediate states on the borders that the line ℓ crosses.

Calculate the interior intermediate states until the time can not be improved significantly.

Control Strategy

A Heuristics for minimum time control

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

A Heuristics for minimum time control

Piecewise Linear Trajectory

Compute the line ℓ connecting m_0 and m_f Compute intermediate states on the borders that the line ℓ crosses. Calculate the interior intermediate states until the time can not be improved significantly.

Control Strategy

A Heuristics for minimum time control

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

A Heuristics for minimum time control

Piecewise Trajectory

Compute the line ℓ connecting m_0 and m_f Compute intermediate states on the borders that the line ℓ crosses. Calculate the interior intermediate states until the time can not be improved significantly.

Control Strategy

A Heuristics for minimum time control

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Control Strategy

A Heuristics for minimum time control

Example						
	Table: Intermediate States					
	Number of int. states	0	1	3	9	13
	Total duration (t.u.)	0.87	0.83	0.74	0.73	0.72
	CPU time (sec.)	0.03	0.11	0.32	1.65	2.32

Control Strategy

A Heuristics for minimum time control

Outline

- Introduction
- Timed Continuous Petri net (contPN)
 - Definition
 - Controlled contPN
- Control Strategy
 - Computation of Linear Trajectories
 - A Heuristics for Minimum Time Control
- Closed Loop Control
- Case Study

Conclusion

Closed Loop Control

Closed Loop Control

In the real systems there may exist perturbation

 \Rightarrow

Online closed loop controller

The discrete-time representation of the continuous-time system is:

$$m(k+1) = m(k) + \Theta \cdot C \cdot w(k)$$

$$0 \le w(k) \le \mathbf{\Lambda} \cdot \mathbf{\Pi}(m(k)) \cdot m(k)$$
(15)

 $(\tau = k \cdot \Theta)$

 Θ should be small enough to avoid spurious states:

$$\sum_{t_j \in p^{\bullet}} \lambda_j \cdot \Theta < 1 \tag{16}$$

Closed Loop Control

Closed Loop Control

Closed Loop Control

Closed Loop Control

Closed Loop Control

Closed Loop Control

Closed Loop Control

Closed Loop Control

Input: $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$, \boldsymbol{m}_f , path, s $\boldsymbol{m'}^0 = \boldsymbol{m}_0 \quad \boldsymbol{m'}^{s+1} = \boldsymbol{m}_f \quad \boldsymbol{m}(0) = \boldsymbol{m'}^0 \quad k = 0$ for j = 0 to s do while $||\boldsymbol{m}(k) - \boldsymbol{m'}^{j+1}|| > \epsilon$ do Solve the following LPP $\max \quad \alpha$ s.t. $\boldsymbol{m'}_{next} = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot \boldsymbol{w}$

$$\mathbf{m}'_{next} = \mathbf{m}(k) + \Theta \cdot \mathbf{C} \cdot \mathbf{w}$$
$$\mathbf{m}'_{next} = (1 - \alpha) \cdot \mathbf{m}(k) + \alpha \cdot \mathbf{m}'^{j+1}$$
$$0 \le \alpha \le 1$$
$$0 \le \mathbf{w} \le \mathbf{\Lambda} \cdot \mathbf{\Pi}(\mathbf{m}(k)) \cdot \min\{\mathbf{m}(k), \mathbf{m}'_{next}\}$$
(17)

Advance one step and obtain the new marking

$$\boldsymbol{m}(k+1) = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot (\boldsymbol{w} + \boldsymbol{z})$$
(18)

k = k + 1

end while

end for

Closed Loop Control

Input:
$$\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$$
, \boldsymbol{m}_f , path, s
 $\boldsymbol{m}'^0 = \boldsymbol{m}_0 \quad \boldsymbol{m}'^{s+1} = \boldsymbol{m}_f \quad \boldsymbol{m}(0) = \boldsymbol{m}'^0 \quad k = 0$
for $j = 0$ to s do
while $||\boldsymbol{m}(k) - \boldsymbol{m}'^{j+1}|| > \epsilon$ do
Solve the following LPP

s.t.
$$\boldsymbol{m'}_{next} = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot \boldsymbol{w}$$

 $\boldsymbol{m'}_{next} = (1 - \alpha) \cdot \boldsymbol{m}(k) + \alpha \cdot \boldsymbol{m'}^{j+1}$ (19)
 $0 \le \alpha \le 1$
 $0 \le \boldsymbol{w} \le \boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}(k)) \cdot \min\{\boldsymbol{m}(k), \boldsymbol{m'}_{next}\}$

Advance one step and obtain the new marking

$$\boldsymbol{m}(k+1) = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot (\boldsymbol{w} + \boldsymbol{z})$$
(20)

k = k + 1

end while

end for

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Closed Loop Control

Input:
$$\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$$
, \boldsymbol{m}_f , path, s
 $\boldsymbol{m'}^0 = \boldsymbol{m}_0 \quad \boldsymbol{m'}^{s+1} = \boldsymbol{m}_f \quad \boldsymbol{m}(0) = \boldsymbol{m'}^0 \quad k = 0$
for $j = 0$ to s do
while $||\boldsymbol{m}(k) - \boldsymbol{m'}^{j+1}|| > \epsilon$ do
Solve the following LPP
max α

s.t.
$$\boldsymbol{m'}_{next} = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot \boldsymbol{w}$$

 $\boldsymbol{m'}_{next} = (1 - \alpha) \cdot \boldsymbol{m}(k) + \alpha \cdot \boldsymbol{m'}^{j+1}$ (21)
 $0 \le \alpha \le 1$
 $0 \le \boldsymbol{w} \le \boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}(k)) \cdot \min\{\boldsymbol{m}(k), \boldsymbol{m'}_{next}\}$

Advance one step and obtain the new marking

$$\boldsymbol{m}(k+1) = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot (\boldsymbol{w} + \boldsymbol{z})$$
(22)

k = k + 1

end while

end for

Closed Loop Control

Input:
$$\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$$
, \boldsymbol{m}_f , path, s
 $\boldsymbol{m}'^0 = \boldsymbol{m}_0 \quad \boldsymbol{m}'^{s+1} = \boldsymbol{m}_f \quad \boldsymbol{m}(0) = \boldsymbol{m}'^0 \quad k = 0$
for $j = 0$ to s do
while $||\boldsymbol{m}(k) - \boldsymbol{m}'^{j+1}|| > \epsilon$ do
Solve the following LPP

max
$$\alpha$$

s.t. $\boldsymbol{m'}_{next} = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot \boldsymbol{w}$
 $\boldsymbol{m'}_{next} = (1 - \alpha) \cdot \boldsymbol{m}(k) + \alpha \cdot \boldsymbol{m'}^{j+1}$ (23)
 $0 \le \alpha \le 1$
 $0 \le \boldsymbol{w} \le \boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}(k)) \cdot \min\{\boldsymbol{m}(k), \boldsymbol{m'}_{next}\}$

Advance one step and obtain the new marking

$$\boldsymbol{m}(k+1) = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot (\boldsymbol{w} + \boldsymbol{z})$$
(24)

k = k + 1

end while

end for

Closed Loop Control

Input:
$$\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$$
, \boldsymbol{m}_f , path, s
 $\boldsymbol{m}'^0 = \boldsymbol{m}_0 \quad \boldsymbol{m}'^{s+1} = \boldsymbol{m}_f \quad \boldsymbol{m}(0) = \boldsymbol{m}'^0 \quad k =$
for $j = 0$ to s do
while $||\boldsymbol{m}(k) - \boldsymbol{m}'^{j+1}|| > \epsilon$ do
Solve the following LPP

max
$$\alpha$$

s.t. $\boldsymbol{m'}_{next} = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot \boldsymbol{w}$
 $\boldsymbol{m'}_{next} = (1 - \alpha) \cdot \boldsymbol{m}(k) + \alpha \cdot \boldsymbol{m'}^{j+1}$ (25)
 $0 \le \alpha \le 1$
 $0 < \boldsymbol{w} < \boldsymbol{\Lambda} \cdot \boldsymbol{\Pi}(\boldsymbol{m}(k)) \cdot \min\{\boldsymbol{m}(k), \boldsymbol{m'}_{next}\}$

0

Advance one step and obtain the new marking

$$\boldsymbol{m}(k+1) = \boldsymbol{m}(k) + \Theta \cdot \boldsymbol{C} \cdot (\boldsymbol{w} + \boldsymbol{z})$$
(26)

k = k + 1

end while

end for

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Closed Loop Control

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Closed Loop Control

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Closed Loop Control

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$.

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Closed Loop Control

Example

$$\boldsymbol{\lambda} = [4 \ 1 \ 3 \ 1]^T$$
, $\boldsymbol{m}_0 = [7.5 \ 4.5 \ 4 \ 2 \ 1.5 \ 5 \ 4 \ 2.5]^T$, $\boldsymbol{m}_f = [7 \ 5 \ 5 \ 1 \ 1 \ 4 \ 5 \ 3]^T$

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Closed Loop Control

Outline

- Introduction
- Timed Continuous Petri net (contPN)
 - Definition
 - Controlled contPN
- Control Strategy
 - Computation of Linear Trajectories
 - A Heuristics for Minimum Time Control
- Closed Loop Control
- Case Study

Conclusion

Example

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Example

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Example

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Example

place	\boldsymbol{m}_0	m_{f}	
Pallet_A	35.0100	27.0000	
Pallet_B	25.0100	17.0000	
B2_A	1.0100	0.0100	
B2_B	1.0100	0.0100	
B3_Empty	25.0100	15.0000	
B_3	0.0100	10.0100	

Without intermediate states: 1000 t.u.

place	\boldsymbol{m}_0	m'^1	m'^2	m'^3	m'^4	m_{f}
Pallet_A	35.0100	33.5000	31.0000	30.0000	28.5008	27.0000
Pallet_B	25.0100	23.5000	21.0000	20.0000	18.5008	17.0000
B2_A	1.0100	1.0100	0.5100	0.0149	0.0100	0.0100
B2_B	1.0100	1.0100	0.5100	0.0149	0.0100	0.0100
B3_Empty	25.0100	23.0000	20.0000	18.0148	16.5009	15.0000
B_3	0.0100	2.0100	5.0100	6.9952	8.5091	10.0100

With 4 intermediate states: 802 t.u.

Case Study

Example

Closed loop control without noise effect:

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

Example

Closed loop control under noise effect:

Hanife Apaydın Özkan, Jorge Júlvez, Cristian Mahulea, Manuel Silva

An Efficient Heuristics for Minimum Time Control of Continuous Petri nets

Outline

- Introduction
- Itimed Continuous Petri net (contPN)
 - Definition
 - Controlled contPN
- Control Strategy
 - Computation of Linear Trajectories
 - A Heuristics for Minimum Time Control
- Closed Loop Control
- Case Study

Conclusion

Conclusion

- A control law that drives the system from initial state to target state through a linear trajectory is developed.
- Calculation of linear tarjectories is based on Linear Programming.
- In order to improve the time introduce intermediate states are introduced. This can yield a piecewise linear trajectory.
- Calculation of piecewise linear tarjectories is based on BiLinear Programming.
- The control law for both linear and piecewise linear trajectories assigns constant or piecewise constant flows to transitions.
- A closed loop control method is proposed to ensure that the final marking is reached.

- Conclusion

- This work was presented in ADHS'09:3rd IFAC Conference on Analysis and Design of Hybrid Systems: Apaydin-Ozkan, H., Julvez, J., Mahulea, C., and Silva, M. (2009). An Efficient Heuristics for Minimum Time Control of Continuous Petri nets. In 3rd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS 2009), 44–49. Zaragoza, Spain.
- The extended work is under preparation for the journal version.