
YA: Fast and Scalable Discovery of Idle CPUs in a P2P network

Javier Celaya and Unai Arronategui
University of Zaragoza,

Department of Computer Science and Systems Engineering
C/ Marı́a de Luna 1, Ed. Ada Byron, 50018 Zaragoza, Spain

{jcelaya, unai}@unizar.es

Abstract

Discovery of large amounts of idle CPUs in fully dis-
tributed and shared Grid systems is needed in relevant ap-
plications and is still a challenging problem. In this paper
we present a fast, scalable and efficient discovery protocol
founded on a tree-based peer-to-peer (p2p) network with
fault-tolerant capabilities and locality features. Each sys-
tem node stores a good estimation of the number of CPUs
that are available in its branch. Each node notifies its fa-
ther about changes in this value only when it is meaningful
enough. This allows low overhead and a stable behavior
with concurrent and dynamic allocation of CPUs. This ba-
sic mechanism allows any node to launch a discovery pro-
cess, that needs only to follow the information of free CPUs
in each branch. Results from experiments and simulation
tests, using a simple allocation method, show discovery time
scaling logarithmically with the number of nodes.

1. Introduction

Recent works and solutions in Grid Computing show
that centralized management and scheduling of computa-
tional resources based on complex economic theories pro-
duce very interesant results in terms of equitativity and best
use. However, it also proves that an approach between
Peer-to-Peer (P2P) and Grid Computing is needed, because
scalability and fault-tolerance problems rapidly arise when
the number of resources managed is incremented. First
steps into this kind of solutions where taken by projects
like SETI@Home [3] and distributed.net [11], but they still
maintain a master-slave model where only one entity in the
network generates the workload, and the rest consume it,
leading again to centralized management.

In this paper, we propose an architecture where any par-
ticipant of the network may need idle cycles to complete its
tasks. The idea is to bring distributed and grid computing
solutions to users with a lower profile than research labo-

ratories. The availability of virtual machines to limit local
resource use makes this situation more feasible. The sys-
tem manages information about free CPUs so that when a
node does not have enough computing power to finish its
work, it may divide it into n independent tasks and ask the
network to discover n more idle machines in a fast and effi-
cient way. Unlike common P2P resource management sys-
tems, like data sharing networks, in this project resources
are consumible, meaning that they cannot be used by more
than one client at the same time. For this reason free nodes
availability information must be kept up to date.

The system consists of a peer-to-peer network based on
a balanced tree structure that finds the nearest free CPUs
to the one that is demanding the execution of a number of
tasks. At any time, any node of the network may request
the execution of n tasks; this request is routed by neigh-
bour nodes to those available ones that are closer to the
originating client with a fast discovery protocol. The tree
structure allows applying different constraints to the idle
CPU search by using the information about existing free
nodes, that is dynamically managed by an availability pro-
tocol. These funtionalities are obtained with little state in
nodes, and low communication and CPU overhead. A sim-
ple allocation policy has been designed and implemented to
evaluate the architecture behavior.

This paper takes some steps into a complete distributed
computing solution, thus we will impose some restrictions
to the environment: We assume that nodes execute batch
tasks that do not communicate between them, so we won’t
be addressing the issues that arise from having dependen-
cies. Also, we will suppose that there is low churn, that is,
joins and leavings are not frequent. And finally, we will
only consider a weak concept of fairness in the allocation
of free nodes.

The rest of the article will be structured as follows: In
Sect. 2 we will expose an overview of the system architec-
ture and its behavior. In Sect. 3 the hierarchical overlay
topology and its management will be detailed, followed by
the protocols that allow the fast and scalable discovery of

1

free nodes in Sects. 4 and 5. Finally, in Sect. 6 we will
show the experimental results and in Sects. 7 and 8 we
will explain what other work has been presented concern-
ing distributed computing in peer-to-peer networks and the
conclusions of this investigation.

2. Related Work

As it has been pointed out in the introduction, the main
approximation until now to a highly scalable distributed
computing environment is one entity harnessing the idle
cycles of personal computers donated by volunteers, as in
SETI@Home project, the BOINC generic framework [2]
and distributed.net. Those projects use the traditional
client/server paradigm to schedule tasks and return results,
what soon leads to scalability problems. For that reason,
more elaborated network structures and distributed algo-
rithms have been adopted. One example is Javelin++ [17],
which extends the concepts of Javelin [9] replacing the bro-
ker that scheduled the tasks with a network of brokers. Re-
cently, more strict peer-to-peer networks have been used to
select the nodes which would execute the tasks. BOINC and
similar projects adopt an application-driven perspective, in
which the existence of an element that is generating all the
workload determines the structure of the network and the
management algorithms.

Following a more general view, another family of
projects, in which this paper is included, have proposed an
architecture where every participant can generate the work-
load, which is better suited for this peer-to-peer philosophy.
CompuP2P [13] is one of the first works to use a decentral-
ized peer-to-peer network to manage processor cycles as a
shared resource. It arranges all the nodes in a Chord [19]
ring and organizes them into ’compute markets’, where idle
cycles are traded with. However, it presents a scalability
problem because it has no mechanism to limit the number
of nodes in a market or to balance load between markets.
G2-P2P [16] takes an object-oriented approach. It uses Pas-
try [18] to create a Distributed Hash Table (DHT) where
computation objects are stored. Using an uniform hash-
ing function they claim to achieve a good load-balancing
property, but there is no other criterion to select the most
appropriate free node. In [7] the Pastry DHT is also used,
but exploiting its locality awareness to discover near idle
nodes. It announces availability with controlled message
floodings, what leads to inefficiency as far free nodes are
not discovered. Finally, [8] is a discovery mechanism that
uses the computational properties of each machine (CPU,
RAM, disk space, ...) to form a Chord identifier, what
allows searches by description. However, it forces exact
queries, so it cannot do more general and massive searches
efficiently. In contrast with these approximations, [4] pro-
poses the use of an unstructured overlay network, as it is

easier to manage, and it is traversed with random walks.
Even though, that is also inefficient because there is no way
of knowing if the next node of the walk is free or not.

In some of these works it can be seen that there is an
increasing tendency to implement the task execution envi-
ronment over a virtual machine. In this way, local resources
and security are easily managed, as remote tasks are only al-
lowed to access a limited part of the host node. This method
allows setting arbitrary limits to resource usage, like CPU,
memory, disk or bandwidth. For this reason, more projects
are being developed using interpreted languages; for exam-
ple, [7] uses the Java Virtual Machine and G2-P2P uses
the .NET Platform. Another solution is to use OS-level vir-
tual machines, like Xen [5]; this is the solution presented by
[20].

For the overlay topology, other authors have proposed
the use of a virtual tree on top of a DHT, where each node
store only part of a tree index, mainly oriented to range
queries. Examples of this are P-Tree [10], P-Grid [1] and
VBI-Tree [14]. However, they rely on a uniform distribu-
tion of the shared resource; for example, using a uniform
hashing function for the DHT. For that reason, BATON [15]
uses a balanced binary tree. This type of organization is bet-
ter suited for a non-uniform resource distribution because
the tree gets balanced automatically when the insertions or
deletions occur within the same zone. We adopt these ideas
but with more than two children per node.

3. System Architecture

The system has a layered architecture that lets us stablish
a separation between network topology and resource man-
agement. From the lowest level:

• The first layer defines the connectivity protocol that
maintains the overlay links in the network. It con-
forms a tree-based network overlay, derived from the
B-Tree [6], thus it is a balanced tree where each node
can have between m and 2m children and the height
is always a logarithm of the number of nodes N . The
protocol states how nodes join and leave the network,
how the tree is kept balanced, and how node failures
are dealt with to rebuild the structure.

• The second layer is described by the availability pro-
tocol, that distributes information relative to the num-
ber of free nodes and computing power each time it
changes. Every node of the network stores the global
state of the branch that hangs below it in the B-Tree
structure, and communicates updates to its parent so it
can recompute the state of its own branch. This proto-
col uses a number of techniques that prevent the upper
levels of the tree from being flooded with update no-
tifications, while maintaining the information accurate

enough to maximize the network use. Also, the con-
servative approach of notification updates yields to a
more stable behavior of this protocol.

• Finally, the discovery protocol uses the information
stored in each branch by the availability protocol to
route free nodes requests up and down the tree. It tries
to find those free nodes that meet a trade-off between
proximity to the client and computing power by dis-
tributing the requests among the appropriate branches
at each level. Therefore the search is performed in
a number of network hops that depends only on the
height of the tree and, consequently, on the logarithm
of the number of nodes of the network.

• Over these three layers we can implement different re-
source allocation methods. For the simulation tests we
have used a simple one, where each free node discov-
ered is automatically allocated to the client.

With this three-layered structure, the system can be eas-
ily extended to other types of resources for the discovery
protocol, like memory or bandwidth, and other notification
policies for the availability protocol.

4. B-Tree Based Topology

The overlay network topology is a hierarchy where every
node of the network is mapped to a node of the tree. Other
authors have proposed the use of a virtual tree on top of
a DHT, where each node store only part of a tree index,
mainly oriented to range queries. However, they rely on
a uniform distribution of the shared resource; for example,
using a uniform hashing function for the DHT. On the other
hand, using a balanced tree where each node of the network
maintains one node of the tree is better suited for a non-
uniform resource distribution because the tree gets balanced
automatically when the insertions or deletions occur within
the same zone. In our approximation we use a B-Tree [6]
variant; it maintains the balance in every join and departure
and allows more than two child nodes, thus reducing the
tree height.

The main objective of the tree is grouping nearby nodes.
In this way, a node can communicate with the nearest ones
to itself because they are its siblings or its descendants, and
it can reach other regions of the tree by means of its parent.
However, the concept of locality usually depends on many
variables, so it is actually an aproximation. We have de-
cided to use the simple yet effective way of organizing the
nodes in the tree by their phisical address, actually their IP
address. Based on the subnet partitioning of the IP address
space and the studies on geographic locality of IP addresses,
like [12], this method allows a fast and easy decision of

B-Tree Network Tree

4 , 8

1 , 2 , 3 5 , 6 , 7 9 , 10 , 11 1 2 4 6 7

53

(1,4) (5,7)

11

8 9 10

(8,11)

Figure 1. Differences between B-Tree and net-
work tree.

where to insert a node in the tree when it joins the net-
work, while maintaining good metrics (latency and band-
width, mainly) between nodes of the same branch, specially
near the leaves.

Our tree has some differences with the original B-Tree.
First of all, as nodes in a B-Tree may hold more than one
value (in this case, values are IP addresses), those B-Tree
nodes are translated to a group of siblings where each node
of the network tree holds only one value; with this one-to-
one mapping, every node of the network participates in the
management of the tree structure. Also, every inner node
(a node with children) has a pair of values that represent
the interval of addresses of its descendats and itself. These
intervals are used to route messages along the tree, mainly
in the operations of insertion and deletion of nodes of the
tree. These two main differences can be observed in Figure
1.

Like B-Trees, there exist a constant m so that every node
not being the root of the hierarchy always has between m
and 2m siblings. If these limits are exceeded, then the tree
must be rebalanced. When a group of siblings has more
than 2m nodes, it must be divided into two. On the other
hand, if it has less than m nodes it must take some from
adjacent groups or be joined with them, eventually. A high
value of m priorizes performance for search over network
management, because the tree is lower, so this is usually
preferred in this context.

Concerning fault-tolerance, every node knows the ad-
dress of the k predecessors and k successors at the same
level (they can be ”brothers” or ”cousins”). When a node
fails, the tree structure can be repaired using these refer-
ences, because they allow the communication between a
node and the brother of its dead father. Obviously, the value
of k is an agreement between fault-tolerance and an over-
load in the management of the tree.

4.1. Joining and Leaving the Network

These are the two main operations that affect the struc-
ture of the network; additionally, as a side effect, they can
trigger a rebalance. Joining is usually easier: when a node

requests an insertion, the request message is routed through
the tree. It goes up the hierarchy looking for a node which
interval contains the address of the new node, and then it
goes down until it reaches the node with the nearest address
to the new node’s address. Finally they become brothers
and the new node updates its references to its neighbours.

When the father node is notified of the new node, it may
request a group split to rebalance the tree if the number of
child nodes is greater than 2m. It stays as the father for one
of the new subgroups and asks the other one to designate
a leaf node as the new father for that subgroup. This new
father node becomes a sibling of the old father, so that their
group of siblings is incremented in one member and their
respective father must check if it has more than 2m child
nodes, repeating the process for the next level of the tree.
Eventually, a group of siblings is splited in every level until
the group of the root is reached, which operates differently.

When a node is added to the group of the root, each of
the members checks the number of nodes in that group by
counting the references in their successor and predecessor
lists. When a root node has k references in both lists (they
are full) it looks for a descendant leaf node, which becomes
the new root of the tree. This method limits the size of the
root to 2k nodes, assuming that m is larger than k, but it is
very simple because creating a new root node is the deci-
sion of only one node; a higher limit would require commu-
nication between the members of the group. The high level
algorithms can be seen in Fig. 2.

By leaving the network we assume a voluntary action;
otherwise, when a node fails the structure must be rebuilt
by its neighbours. First of all, a leaving node must check if
it has any child. If so it looks for a leaf node that becomes
the new father of all of them, similarly to the creation of a
new root node. Once done, or if it had no child nodes, it
notifies its siblings and its father that it is going to leave and
then they update their reference lists.

Similarly to the joining, when the father node is notified
of the node leaving, it must check if the number of child
nodes is less than m. In that case, it will ask its predecessor
or successor to send it child nodes until it has m again. If
they both do not sum up more than 2m nodes, then they
are joined in only one branch. One special case is when the
father has no siblings because it is the only one node in the
root group. Then it will check if it has less than 2k child
nodes, in a similar way as it was done in the insertion in the
root. If it has so, it will insert itself in the tree, leaving its
children as the new root group. All of this can be seen also
in Fig. 3.

5. CPU Availability Management

In order to allow the discovery protocol to find free
nodes, each inner node must store information about its de-

insert(node) {
if is_my_brother(node) {
send_references(node);
if i_have_parent() {
parent.new_child(node);

} else
if num_pred == k and num_succ == k
look_for_new_root();

} else route(node);
}

new_child(node) {
add_child(node);
if num_children > 2*m {
new_parent = select_new_parent(children);
if my_ip < new_parent.ip {
i = num_children/2; j = num_children;

} else { i = 0; j = num_children/2; }
new_parent.set_children(children, i, j);
num_children = m;
// Turn new_parent into our brother
send_references(new_parent);
if i_have_parent() {
notify_parent(node);

} else if num_pred == k and num_succ == k
look_for_new_root();

}

Figure 2. Insert algorithms

delete() {
if num_children > 0 {
new_parent = look_for_new_parent();
i = 0; j = num_children;
new_parent.set_children(children, i, j);
num_children = 0;

}
notify_siblings();
parent.child_gone(this);

}

child_gone(node) {
remove_child(node);
if num_pred == 0 and num_succ == 0

and num_children < 2*k {
children[0].insert(this);

} else if num_children < m {
sibling.ask_for_children(num_children);

}
}

ask_for_children(num) {
if num_children + num < 2*m
join();

else send_children(m - num);
}

Figure 3. Delete algorithms

scendants; not exhaustive information, but more general in-
formation about the branch as a whole. It knows the ap-
proximate number of free CPUs of the branch, the maxi-
mum computing power and the minimum number of hops
to a free node. This way, the management of this informa-
tion becomes scalable as it does not depend directly on the
number of nodes.

The information each node stores about its branch must
be communicated to its parent so that it can efficiently route
requests to the idle nodes it has under itself. Therefore, each
node not only has information about its branch, but also
about each of its sub-branches. The way this information
propagates is critical, because it must be kept up to date
without flooding the network with notification messages,
specially near the root where there are less nodes per level
of the tree. This propagation is performed by the availabil-
ity protocol. Basically, when a node receives a notification
of change from one of its child nodes, it must decide if it
has to inform its parent, too. With the maximum comput-
ing power and the minimum number of hops to a free node,
the process is simple. The inner node has to calculate the
new maximum and minimum values, respectively, between
its child nodes and itself, and if it changes, route the new
information to its parent immediately. Note that when a no-
tification goes up one level there is less probability of being

the maximum or minimum because the branches are bigger
at each hop, so the traffic is self-limited and is unlikely that
it reaches the top levels.

The problems arise with the value of the number of free
nodes, because when a node gets ready (busy), the number
of free nodes of each of its ancestors increases (decreases)
by one. If the notification were sent with every change, the
root would get informed of all of them, what leads to an
unacceptably high traffic in the top levels. For this reason,
we have designed a technique that delays the notification of
the number of free nodes at each level of the tree, reducing
the traffic routed up to the root. The basis of this method lies
on sending a notification when the change is meaningful
enough. Actually, this means that the most significant bit
set to one changes; that is, the number of free nodes crosses
a boundary of power of two. For example, a notification
would be sent if this value changes from 7 to 8 (111b and
1000b in binary) or from 32 to 31 (100000b and 11111b),
but not when it changes from 23 to 24 (10111b and 11000b).
Although this yields to a precision lack, there are three main
reasons for using this technique:

1. Trying to provide optimality based on exact informa-
tion is senseless when we are dealing with millions of
nodes that are continually and concurrently changing
state.

2. The traffic of notifications in the top levels is reduced
because as a notification goes up the tree it is less prob-
able of being routed to the next level. This depends
also on the number of free nodes, as a high number
has also less probabilities of being routed.

3. When the number of free nodes is low, the precision of
this value is better. This is most relevant as the nodes of
the network get busy, because they are correctly well-
spent when there last only a few free nodes.

4. When the number of free nodes changes, this method
forces a stabilization mechanism in the propagation of
this value.

There are two policies deciding what availability value
to take as reference for a branch when a child node notifies
a change to its father: optimistic and conservative. An op-
timistic policy would use the same value sent by the child.
On one hand, it has the advantage of having better preci-
sion in the information each node stores about its branch,
but on the other hand the real number of free nodes of a
branch could decrease and be less than the number its father
is using, making top level nodes route requests to branches
that cannot cope with them. For this reason we have de-
cided to adopt a conservative policy, which would store a
lower value, for example the higher power of two less than

update(child, free_nodes,
max_power, min_hops) {

children[child].free = free_nodes;
children[child].power = max_power;
children[child].hops = min_hops;
// Save old values
old_power = power;
old_hops = hops;
old_free = free;
// Update value of power, hops and free
update_values();
lbo = last_bit_one(free);
old_lbo = last_bit_one(old_free);
if power > old_power or

hops < old_hops or
lbo != old_lbo
parent.update(this, free, power, hops);

}

Figure 4. Notification algorithm

or equal to the notified value. With such a policy, the sys-
tem has a better behavior against situations when there last
very few free nodes, as it delays too big requests, although
it does not make the most of the network. This helps mak-
ing the protocol stable and provides a gradual convergence
in the occupation of the network.

6. Discovery of Free CPUs

As it has been said, when a node has a number of tasks
to be done, it requests the network to find that number of
idle machines. This service is accomplished with the dis-
covery protocol, that uses the information collected by the
availability protocol. By applying heuristic rules, it will try
to allocate the fastest and nearest free nodes, so that tasks
execution is efficiently done.

A node that receives a message with n pending tasks will
first check if itself is ready to execute a new one. If so, it
takes one of the tasks from the message. Then it distributes
the remaining tasks between its child nodes according to the
number of free nodes each branch has, giving priority to the
branches having more computing power or less hops to a
free node. If it is not enough with the children branches to
cope with all the tasks, then a new message with the last
tasks will be sent to the father so that it can reach more
distant branches. When the message arrives at the root of
the tree and it cannot be sent to another branch, it is returned
to the originating node meaning that there are no free nodes
left in the network. The algorithm for each node can be seen
in Fig. 5, where each children node has a free field for
the number of free nodes of the sub-branch, a power field
for the maximum power and a hops field for the minimum

discover(msg) {
if i_am_ready {
start_task; msg.num_tasks--;

}
while msg.n > 0 or branch_full {
for i in children {
if i.free > max.free or

(i.free == max.free and
(i.power > max.power or
(i.power == max.power and
i.hops < max.hops)))

max = i;
}
add_task_to(max);
msg.num_tasks--;

}
if msg.num_tasks > 0 {
if i_have_father
send_father(msg);

else
send_client_node(msg);

}
}

Figure 5. Discover protocol algorithm

number of hops to a free node.
The worst case would be that of a leaf node that needs to

allocate every node of the net. The request would have to go
up to the root and then down to the rest of the tree; that is the
longest path a request would traverse. As discovery of idle
nodes is done concurrently in every branch, that would be
the same as reaching one idle leaf node in the opposite side
of the tree, which is done in O(2 logm N) hops, being N the
number of nodes in the network, thus making the discovery
protocol highly scalable.

This is a best effort network. That is, the intermediate
nodes make its best to route the message to the most suit-
able free nodes, but the reception is not guaranteed. In fact,
the failure of nodes is frequent in a peer-to-peer network.
For this reason, both the originating node and the allocated
ones must avoid problems in the discovery phase and when
sending the actual work to execute using timeout mecha-
nisms, acknowledge messages and retransmissions.

7. Experimental Results

This architecture has been validated with a simulator, im-
plemented with the OMNeT++ simulation framework. The
allocation policy used in the tests has been a simple one,
where as soon as nodes are discovered they are allocated,
because we are focused on resource discovery performance.

Tests have been done aimed to measure free nodes dis-
covery time, control messages traffic and CPU load. Every

5
4
0
0

8
0

0
1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0

0
0

4
4
0
0

4
8

0
0

5
2
0
0

5
6

0
0

6
0
0
0

6
4

0
0

6
8
0
0

7
2
0
0

7
6
0
0

8
0
0
0

8
4
0
0

8
8
0
0

9
2

0
0

9
6
0
0

1
0
0
0
0

0,00000

0,50000

1,00000

1,50000

2,00000

2,50000

Number of Tasks

T
im

e
 (

se
c)

m=4

m=6
m=8
m=10

Figure 6. Discovery time for as many free
nodes as requested tasks. The test network
has 50000 nodes and one hop is 200 ms.

test has been issued with variations in the number of nodes,
N , and the B-Tree parameter, m, to study the impact of the
size and structure of the network in the performance of the
protocols. The simulations have been performed with up to
50000 nodes and values of m from 6 to 10. Variations on the
duration of the tasks and the size of the data have also been
applied to recreate more realistic situations. There are three
constants, though: the latency of the network connections
has been established to 200 ms, the mean continental value
for Internet, to simulate a very wide area network; 1 Mbps
has been taken for the bandwidth, a conservative value for a
home Internet connection; and the mean computing power
of the nodes has been set to 2000 MIPS.

Time tests show that both the number of nodes and the
number of child nodes per parent affect the discovery of
free nodes. Just as expected, the last free node of the n
requested is reached in O(2 logm n) hops. For this reason,
a network with a higher value of m performs better, while
an increasing value of n is hardly appreciated. The results
of the free nodes discovery time tests can be seen in Fig.
6 as a logarithmic growth. We can extrapolate the results
to higher values of n. For example, we calculate that, for
the test network, requesting the execution of 100,000 tasks
would discover 100,000 free nodes in 2 seconds, 1,000,000
in 2.4 seconds, 10,000,000 in 2.8 seconds, and so on.

Control traffic (traffic of non-data messages) and CPU
load tests have been done under two situations: participants
have a normal and high activity. Normal activity means that
there are frequent requests from randomly chosen nodes,
but the network does not get completely busy. Under high
activity, every node is busy and continuously receiving new
requests. Traffic has been measured in bytes per second.
CPU load is more difficult to measure in a simulation, but
as every message is managed in nearly constant time (some
hundreds of instructions) we have decided to express it in
terms of messages per second. Tables 1 and 2 show the re-
sults of the normal and high-activity behavior. They present
the value of m, the tree height and the mean and maximum
values of CPU load and control traffic for the root and leaves
of a network of 50000 nodes.

Table 1. CPU load and control traffic under
normal activity. The net has 50000 nodes,
with m = 10 and a bandwidth of 1Mbps.

Tree Load (msg/s) Traffic (Bps)
m height mean max mean max
Root
4 7 0.08 2.87 24.10 519.98
6 6 0.09 5.64 24.98 1005.69
8 5 0.09 5.64 25.28 1005.35

10 5 0.09 5.62 25.43 999.48
Leaves
4 7 3.56 4.21 1235.89 1343.51
6 6 3.71 4.33 1293.18 1405.28
8 5 3.85 4.56 1330.41 1436.15

10 5 4.12 5.77 1435.08 1485.60

Table 2. CPU load and control traffic under
high activity. The net has also 50000 nodes,
with m = 10 and a bandwidth of 1Mbps.

Tree Load (msg/s) Traffic (Bps)
m height mean max mean max
Root
4 7 0.13 28.20 38.19 4980.56
6 6 0.13 28.46 39.53 5021.05
8 5 0.14 27.65 39.75 4526.82

10 5 0.14 28.44 40.05 5018.49
Leaves
4 7 39.68 41.62 14359.74 16031.69
6 6 44.20 50.55 15198.24 16205.83
8 5 54.15 59.85 17417.23 19256.67

10 5 63.72 65.29 19566.90 21947.28

In these tables it can be seen that while the discovery pro-
tocol was positively affected by the value of m, the overall
system load suffers when the tree is lower, thus a trade-off
is needed between them. Besides this, by using the avail-
ability protocol, under normal behavior both control traffic
and CPU load is heavier at the leaves than at the root nodes.
Also, control traffic hardly reaches 1KBps, what represents
less than 1% of the total bandwidth. However, under high
activity rate the root suffers waves of very high CPU load
and control traffic.

Results are promising. As we can see in Tables 1 and
2, control overhead is very low. Under normal activity,
the control traffic is only 1485 Bps and the CPU load only
reaches 5.77 messages per second, in the worst case. And
under heavy activity, which would be a very uncommon sit-
uation, the control traffic is 21947 Bps and the CPU load is
65.29 messages per second.

8. Conclusions and Future Work

In this paper, we have presented a network architec-
ture that discovers the presence of idle machines with a
scalable (O(logmN)) and fast (1.8 seconds for 10000 re-
quested tasks) method. It organizes the nodes in a balanced
tree structure to efficiently distribute information about free
nodes in a per-branch basis, that is eventually used to route
the request from a client to the appropriate idle CPUs. The
connectivity protocol, discovery protocol and availability
protocol are all three designed in a totally distributed way,
that provide high scalability and fault-tolerance. Moreover,
the experimental simulation results show low overhead in
the control traffic and CPU load.

We envision to validate these results with a real proto-
type to be implemented over the PlanetLab testbed. Also,
a distributed simulator in development could validate the
model in the range of millions of nodes. We believe this
can be a valuable step to develop system support for high
performance computing applications.

References

[1] K. Aberer. P-grid: A self-organizing access structure for p2p
information systems. In CooplS ’01: Proceedings of the 9th
International Conference on Cooperative Information Sys-
tems, pages 179–194, London, UK, 2001. Springer-Verlag.

[2] D. P. Anderson. Boinc: A system for public-resource com-
puting and storage. In GRID, pages 4–10, 2004.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@home: an experiment in public-
resource computing. Commun. ACM, 45(11):56–61, 2002.

[4] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama. Un-
structured peer-to-peer networks for sharing processor cy-
cles. Journal Parallel Computing (PARCO), 32(2):115–135,
February 2006.

[5] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP, pages 164–177, 2003.

[6] R. Bayer and E. M. McCreight. Organization and main-
tenance of large ordered indexes. In Record of the 1970
ACM SIGFIDET Workshop on Data Description and Ac-
cess, November 15-16, 1970, Rice University, Houston,
Texas, USA (Second Edition with an Appendix), pages 107–
141. ACM, 1970.

[7] A. R. Butt, X. Fang, Y. C. Hu, and S. P. Midkiff. Java, peer-
to-peer, and accountability: Building blocks for distributed
cycle sharing. In Virtual Machine Research and Technology
Symposium, pages 163–176, 2004.

[8] A. S. Cheema, M. Muhammad, and I. Gupta. Peer-to-peer
discovery of computational resources for grid applications.
In Proc. IEEE/ACM Workshop on Grid Computing (GRID),
2005.

[9] B. O. Christiansen, P. R. Cappello, M. F. Ionescu, M. O.
Neary, K. E. Schauser, and D. Wu. Javelin: Internet-based
parallel computing using java. Concurrency - Practice and
Experience, 9(11):1139–1160, 1997.

[10] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram. Querying peer-to-peer networks using p-trees. In
WebDB ’04: Proceedings of the 7th International Workshop
on the Web and Databases, pages 25–30, New York, NY,
USA, 2004. ACM Press.

[11] Distributed.net. http://www.distributed.net, 2000.
[12] M. Freedman, M. Vutukuru, N. Feamster, and H. Balakrish-

nan. Geographic Locality of IP Prefixes. In Internet Mea-
surement Conference (IMC) 2005, Berkeley, CA, October
2005.

[13] R. Gupta and A. K. Somani. Compup2p: An architecture
for sharing of computing resources in peer-to-peer networks
with selfish nodes. In Online Proceedings of Second Work-
shop on the Economics of Peer-to-Peer Systems. Harvard
University, June 2004.

[14] H. V. Jagadish, B. Ooi, Q. Vu, R. Zhang, and A. Zhou.
Vbi-tree: A peer-to-peer framework for supporting multi-
dimensional indexing schemes. In 22nd IEEE International
Conference on Data Engineering (ICDE), 2006 (to appear),
2006.

[15] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A balanced
tree structure for peer-to-peer networks. In VLDB, pages
661–672, 2005.

[16] R. Mason and W. Kelly. G2-p2p: A fully decentralised
fault-tolerant cycle-stealing framework. In ACSW Frontiers,
pages 33–39, 2005.

[17] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and
P. Cappello. Javelin++: scalability issues in global com-
puting. Concurrency: Practice and Experience, 12(8):727–
753, 2000.

[18] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems. In Middleware, pages 329–350, 2001.

[19] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[20] A. I. Sundararaj and P. A. Dinda. Towards virtual networks
for virtual machine grid computing. In Virtual Machine Re-
search and Technology Symposium, pages 177–190, 2004.

