Dependability modeling and analysis of software
systems specified with UML

SIMONA BERNARDI

Centro Universitario de la Defensa, Academia General Militar, Zaragoza (Spain)
JOSE MERSEGUER

Dpto. de Informdtica e Ingenieria de Sistemas, Universidad de Zaragoza (Spain)
and

DORINA C. PETRIU

Department of Systems and Computer Engineering, Carleton University (Canada)

The goal is to survey dependability modeling and analysis of software and systems specified
with UML, with focus on reliability, availability, maintainability and safety (RAMS). From the
literature published in the last decade, 33 approaches presented in 43 papers were identified.
They are evaluated according to three sets of criteria regarding UML modeling issues, addressed
dependability characteristics and quality assessment of the surveyed approaches. The survey shows
that more works are devoted to reliability and safety, fewer to availability and maintainability and
none to integrity. Many methods support early life-cycle phases (from requirements to design).
More research is needed for tool development to automate the derivation of analysis models and
to give feedback to designers.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.4
[Computer System Organization]: Performance of Systems—Modelling techniques; D.2.1
[Software Engineering]: Requirements/Specifications—Methodologies; D.2.4 [Software En-
gineering]: Software/Program Verification— Formal methods; D.2.8 [Software Engineering):
Metrics— Complexity measures; D.2.10 [Software Engineering]: Design; D.2.11 [Software En-
gineering]: Software Architectures; D.3.2 [Programming Languages]: Language Classifica-
tion—UML

General Terms: Design, Languages, Reliability, Standardization, Verification
Additional Key Words and Phrases: Availability, maintainability, safety, model transformation,
dependability analysis

1. INTRODUCTION

Dependability is a non-functional property (NFP) of a system, defined by [Avizienis
et al. 2004] as the ability to avoid failures that are more frequent and severe than
acceptable. Dependability encompasses a set of attributes: reliability, availability,
maintainability, integrity and safety. The assessment of these attributes may imply
quantitative and/or qualitative evaluation of the system, which has been a research

Author’s e-mail: simonab@unizar.es, jmerse@unizar.es, petriu@sce.carleton.ca.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY /0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-077.

2 . Dependability modeling and analysis of software systems specified with UML

topic since the early times of computing; the use of models for this purpose is
extensively recognized [Lyu 1996]. A model is an abstraction of the system for the
purpose of understanding it before building it [Rumbaugh et al. 1991]. A software
system model describes a specific system view; in a broad sense we can distinguish
behavioral and structural software views, which together constitute the model of
the system. A dependability model considers the abstractions needed to represent
the failures of the system and their consequences. This implies that in some manner
the dependability model needs to be related to the behavioral model of the system
or at least to its abnormal behaviors. Models are developed using different kinds
of languages and/or notations, some of them with an underlying mathematical
formalism supporting some kind of analysis (e.g., fault trees, Markov chains, Petri
nets or bayesian networks). These are called formal models, analyzable models or
models for analysis. The task of developing models is known as modeling, while the
task of analyzing quantitative or qualitative properties is known as analysis.

)

UML Software Model
with dependability
annotations

Dependability
Analysis Model

Transformation\
to Analysis Modeu

7 Solving Analysis)
Model

Presenting
feedback in UML -
model context

r Mapping Results

to Software
Domain

Dependability
Model Results

G

Feedback to
developers

Fig. 1. Integrating dependability modeling and analysis in a UML-based MDD process.

According to the literature, dependability attributes are assessed through de-
pendability formal models or using technical methods (e.g., FMEA, HAZOP) [IEC-
60300-3-1 2003]. However, the focus of this survey is not on dependability analysis
models per se, but on approaches for modeling and analyzing dependability in
the context of UML software models used for software development. We are par-
ticularly interested in works contributing toward the integration of dependability
modeling and analysis within the UML-based model-driven software development
process [Schmidt 2006]. Figure 1 shows an ideal process, where a UML software
model used by the software developers is extended with dependability annotations
and then (automatically) transformed into a formal dependability model , which
is solved with existing solvers and methods. The dependability results from the
formal model are mapped to feedback to the developers, expressed in terms of the
software model. The process bridges two domains: the software modeling domain
and the dependability analysis domain and is dealing with two categories of mod-
els and modeling languages: a) for software development and b) for dependability
analysis. This survey is focused on how and what dependability annotations need
to be added to UML software models (i.e., in the software modeling domain) in

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 3

order to support the derivation of dependability analysis models that can be used
for dependability analysis.

The most widely used modeling language for software development is the Unified
Modeling Language [UML 2005], standardized by the Object Management Group
(OMG). There is a large body of work extending UML with concepts required for
carrying out quantitative and qualitative analyses of different non-functional prop-
erties, such as performance, schedulability, dependability, security. For instance, a
UML-based methodology for unifying dependability modeling and analysis by as-
sociating the concepts of UML models, dependability, and mathematical analysis
was promoted in [Pataricza and Gyor 2004]. Analyzing non-functional properties
(NFP) based on design models allows developers to start verifying early in the life
cycle whether the system under construction will meet its non-functional require-
ments. It is less expensive to analyze different design alternatives and choose the
best one at an early phase, when the investment in building the product has not
been completely made yet. However, the verification may continue throughout the
lifecycle.

Adding NFP specifications to UML is possible due to a number of UML charac-
teristics. First, a UML model can abstract the structure and behavior of the system
and also the hardware platform where it will execute. The system can be described
with a great detail and a variety of UML diagrams. Some are representing the
system structure (e.g., class diagrams), others the behavior (e.g., use case, state
machines, activity diagrams or sequence diagrams) and others the platform (e.g.,
deployment diagrams).

Secondly, UML contains standard extension mechanisms allowing users to define
a profile for customizing UML models for particular domains and platforms. A
profile allows refining standard semantics in strictly additive manner. Appendix A
explains the basis of UML and its profile mechanisms to help understanding some
terminology in the paper. So, a UML model together with the specification of
NFPs by standard extension mechanisms represents a complete system model for
carrying out the analysis of different non-functional properties.

Thirdly, it is possible to combine the use of multiple profiles for the same model,
which would support consistent specification of different NFPs and their relation-
ships, as well as the analysis of trade-off between different NFPs.

A milestone in extending UML is the UML Profile for Modeling and Analysis of
Real-Time and Embedded systems [UML-MARTE 2009] standardized by OMG, that
addresses the issue of attaching information necessary for quantitative NFP analy-
sis to UML model elements (more specifically, for performance and schedulability
analysis). Previously to MARTE, OMG adopted other two profiles for analysis
purposes, the Schedulability, Performance and Time Specification [UML-SPT 2005]
and the profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms [UML-QoS&FT 2008]. All these profiles satisfactorily address the
problem of quantitative analysis aimed at performance evaluation. However, so far
no standard profile has been proposed or adopted for dependability modeling and
evaluation (neither quantitative nor qualitative).

For the reasons indicated above, the focus of this survey is on dependability
modeling and analysis of software and systems specified with UML. The goal of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 . Dependability modeling and analysis of software systems specified with UML

survey is to cover a large body of work published in the last decade that models
and analyses reliability, availability, maintainability and safety (RAMS) NFPs with
UML. We apprise the reader that, although we have looked for UML extensions
to model and analyze integrity, we have not found any. According to [Avizienis
et al. 2004], another important NFP, security, is sharing two attributes, availabil-
ity and integrity, with dependability and is adding one more, confidentiality. We
decided not to include confidentiality in this survey because the kind of models
and techniques used for the analysis of confidentiality are different from those for
dependability. Hence, we focus the survey strictly on dependability.

Considering the concern of dependability modeling, a majority of the works from
literature use profiling mechanisms, as explained in Appendix A. We identified
a common approach, which consists of incorporating dependability information in
UML designs in the form of UML extensions, producing UML-annotated models.
Therefore, these UML-annotated models can be seen as (non-formal) dependability
models where the structural and behavioral views are given by the UML design
and the dependability view by the UML extensions and the abnormal behaviors
described in the behavioral view. Such models constitute the starting point of
the process presented in Figure 1. Among the surveyed works dealing with the
dependability analysis aspect, two approaches can be recognized. A first approach
transforms the UML-annotated models, i.e. the (non-formal) dependability model,
into a formal dependability model used for analysis (e.g., Fault Trees [Vesely et al.
1981] for safety and reliability analysis, stochastic Petri nets [Ajmone-Marsan et al.
1995] for reliability analysis), as in Figure 1. Such formal models, as well as methods
and tools for their analysis have been studied and developed for many years, even
before the introduction of UML.

The second approach uses the very same annotated UML model, without model
transformations, to apply well-known dependability techniques (e.g., HAZard and
OPerability study [UK Ministry of Defence 2000]).

We believe that this survey will help researches by informing them which top-
ics in this field have already been addressed and which ones are still open and
need additional effort. In particular, our study of the literature has revealed that
the modeling concern has been more thoroughly treated so far than the analysis
concern, which requires more research. Fundamentally, the translations of UML-
annotated models into dependability analysis models need to be improved, as well
as the eventual evaluation of analysis models. Work should be also invested in
the feedback from NFP analysis to the design model, for instance being able to
pinpoint design flaws from analysis results. Tool support is another lack we found.
Another problem is that there are many proposals for extending UML models with
dependability annotations, each one covering only a subset of dependability aspects
and using the concepts and terminology inconsistently with each other. This is a
consequence of a fact mentioned before, that so far there is no standard UML pro-
file for dependability NFPs that would unify all the necessary annotations. This is
another aspect that needs improvement.

This survey comes to fill a gap not addressed in literature by other works.
[Gokhale 2007] provides the state of the art in architecture-based software reliabil-
ity analysis. Differences with our paper are that we deal not only with architectural

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 5

aspects but also with the software requirements and detailed design, and besides
reliability we address the other RAMS attributes. However, [Gokhale 2007] is not
restricted to architectural designs based on UML, they also consider other languages
and architectural proposals. [Immonen and Niemeld 2008] survey specifically con-
centrates on reliability and/or availability prediction methods based on software
architectural models. Finally, the work in [Balsamo et al. 2004] is similar to ours
in objectives, but targeted to performance evaluation instead of dependability.

The paper is organized as follows. In Section 2 we review the most important
dependability concepts and introduce a discussion in the UML context, so to start
drawing the boundaries of the state of the art in UML dependability modeling and
analysis. Section 3 introduces the evaluation criteria that, along with dependability
concepts, are used to classify and discuss the surveyed works. Sections 4 and 5
present the actual discussion and comparisons of the works. Conclusions are drawn
in Section 6.

2. DEPENDABILITY MODELING AND ANALYSIS BACKGROUND

This section establishes the basic framework of our work, overviewing fundamental
dependability concepts. Since the survey covers both UML modeling of dependabil-
ity as well as its analysis or evaluation, we start by recalling dependability concepts,
such as fault, error and failure, and continue with issues related to dependability
analysis, such as traditional approaches to dependability assessment, different kinds
of analysis, and basic concepts such as dependability measure. While recalling the
basic dependability definitions for these concepts, we also discuss the implications
of expressing them in UML (see the subsections entitled “Discussion in the UML
context”). The goal is to help readers understand the challenges addressed by the
surveyed works in order to seamlessly represent such a large set of concepts in UML
models.

Definitions of dependability can be obtained from multiple sources; here we
mainly follow [Avizienis et al. 2004; Lyu 1996]. In [Avizienis et al. 2004] the de-
pendability terminology is surveyed from a systemic point of view, while [Lyu 1996]
specifically addresses the software domain, focusing on reliability. Another source
is [Leveson 1995] for definitions of safety related concepts. Our intention is not to of-
fer a comprehensive guide on the large number of existing dependability definitions
(which was the goal of the sources just mentioned), but to clarify the conceptual
framework for the survey.

The dependability concepts and issues addressed in this section are summarized
in a checklist shown in Table I. Each concept is given a label that will permit
to easily pinpoint it in later discussion (in Sections 4 and 5). The last column
of the Table indicates whether an issue is addressed in the survey or not. The
goal is to place the scope of the survey in the dependability arena. The remainder
of the section is organized according to main dependability issues: system view,
attributes, threats and means of the dependability.

2.1 System view and basic definitions

Before discussing basic definitions for dependability, we need to specify the context
in which they apply. Both [Avizienis et al. 2004; Lyu 1996] consider a component-
based view of a system for which dependability is investigated. A component is

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 . Dependability modeling and analysis of software systems specified with UML

seen as an entity that interacts with other entities (hardware and/or software) and
with the physical world. A component is then by itself a system made up of other
components which interact through connectors. It is considered that the system or
a component provides an expected service to the environment or the user, which is
a sequence of outputs agreeing with a given specification [Lyu 1996].

An accepted definition of dependability is the ability of a system to avoid failures
that are more frequent and severe than acceptable [Avizienis et al. 2004]; it en-
compasses the following attributes (labeled DA in Table I): reliability, availability,
safety, maintainability and integrity. According to [Avizienis et al. 2004], reliability
(DA.R) ensures the continuity of correct service for a given system and is defined
in [ANSI/IEEE 1991] as the probability of failure-free software operation for a speci-
fied period of time in a specified environment. For repairable systems [Arnold 1973],
i.e., those that can be recovered after failure, the availability (DA.A) and main-
tainability (DA.M) attributes are of special significance. The former is defined as
the systems readiness for correct service, and the latter represents the systems abil-
ity to undergo modifications and repairs. Integrity is related to both dependability
and security. In a broad sense, integrity is the absence of improper system alter-
ations. [ANSI/IEEE 1991] defines it as the degree to which a system or component
prevents unauthorized access to, or modification of, computer programs or data.
In [Biba 1977] integrity ensures that the system cannot be corrupted to perform
in a manner contrary to the original determination. In safety-critical systems, the
safety attribute (DA.S) emphasizes the absence of catastrophic consequences as a
result of the system and/or software usage [Leveson 1995].

2.1.1 Discussion in the UML context. The fundamental concepts of system,
component, connector and service can be represented using notation offered by the
UML diagrams, as these concepts belong to the UML vocabulary. Hence, no addi-
tional effort has been carried out by the surveyed works to introduce them. What
UML does not initially have is the ability to specify dependability attributes and
their properties (e.g., how to define a measure of reliability in a UML diagram).
A frequent solution uses the UML profiling mechanism, which allows users to ex-
tend UML with domain-specific concepts defined as stereotypes, tagged values and
constraints [UML 2005], while using standard UML editors. Appendix A describes
how the UML profiling mechanisms work. We finally remark that, as mentioned in
the introduction, all dependability attributes except integrity have been addressed
in some of the UML works herein surveyed.

2.2 Dependability model-based evaluation

During the first stages of the life-cycle, when implementations are not yet available,
dependability attributes can be evaluated by solving formal dependability models.
Indeed, dependability measures (DM in Table I) represent a quantified estimation
or calculation of a dependability attribute [Hosford 1960]. However, not all depend-
ability attributes can be quantified. For instance, in the safety analysis context,
safety properties (DM.S) are not strictly measures, but rather qualitative indica-
tors used to express the level of injury caused by system hazards or seriousness
associated to system’s unsafe states [Leveson 1995].

Once an estimation of a dependability measure is obtained by solving the formal

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 7

dependability model, it has to be checked against the dependability requirements
(DR) [Littlewood and Strigini 1993]. A dependability requirement can be thought
of as an upper or lower bound (DR.BOUND) of a specific dependability measure.
However, in the case of safety, a requirement (DR.S) represents the satisfaction of
a given safety property (DM.S).

It is important to recall that the computation of reliability, availability and main-
tainability measures basically means a quantitative evaluation of the formal depend-
ability model, while safety properties imply the qualitative evaluation of the model
[Billinton and Allan 1992]. This does not necessarily mean that the nature of safety
models has to differ from the others; for example, fault-trees or Petri nets can be
used to perform both forms of evaluation, while Bayesian networks aims just to
quantitative evaluation. It is also true that safety properties can be checked with-
out an underlying formal dependability model [Leveson 1995], but with specific
techniques such as HAZard and OPerability study (HAZOP) or Functional Failure
Analysis (FFA).

2.2.1 Discussion in the UML context. As explained in the Introduction, a UML
model is able to describe both the structural and behavioral views of the system,
hence the works here surveyed have extended UML to specify measures and require-
ments. In fact, the majority of the surveyed works propose some mechanism to in-
clude measures and/or requirements in the UML models. As previously discussed,
most of the works surveyed in this paper introduce an (automatic) transformation of
the UML model with dependability annotations into a formal dependability model
(e.g., Bayesian networks, Petri nets, fault trees) which can be used for computing
the desired measures. Such formal dependability models will need to interpret the
measures as expressed in the original UML model.

We identified some works interested in a kind of measures similar to software
complezity measures (DM.C), which differ from the measures discussed above since
they are defined in model terms. They are indirect dependability measures that in
our scope refer either to “failure-proneness” in software components as in [Goseva-
Popstojanova et al. 2003] or to the maintainability of the UML design as in [Genero
et al. 2007]. The latter, for example, uses measures such as diagram structural
complexity (e.g., number of associations) or size measures (e.g., number of classes)
in relationship with the maintainability of UML class diagrams. Another example is
the cyclomatic complexity of UML state machines defined in [Goseva-Popstojanova
et al. 2003].

2.2.2 Ezxzamples of dependability measures and properties. In the following, we
describe some important dependability measures most of them used in the surveyed
works. The measures for reliability DM.R, availability DM.A and maintainabil-
ity DM.M are usually defined with respect to time or the number of program
runs [Lyu 1996; Trivedi 2001; Hosford 1960; Johnson 1989]. The execution time or
calendar time are appropriate to define the reliability as:

R(t) = Prob{r >t} (1)

that is, reliability at time ¢ is the probability that the time to failure (7) is greater
than ¢ or, the probability that the system is functioning correctly during the time
interval (0,¢]. Considering that F(t) = 1 — R(t) (i.e., unreliability) is a probability

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 . Dependability modeling and analysis of software systems specified with UML

distribution function, we can calculate the expectation of the random variable 7 as:

/0 T AR = /0 T Rt (2)

This is called MTTF [Johnson 1989] and represents the expected time until the
next failure will be observed. Another measure is the failure rate (called also rate
of occurrence of failures), which represents the probability that a component fails
between (t, dt), assuming that it has survived until the instant ¢, and is defined as
a function of R(t):

1 dR(t)
h(t) = ————— 3
(t) RO di ®3)
The cumulative failure function denotes the average cumulative failures associated
with each point in time, E[N(t)].
Maintainability is measured by the probability that the time to repair (6) falls
into the interval (0,¢] [Johnson 1989]:

M(t) = Prob{f < t} (4)

Similarly, we can calculate the expectation of the random variable 6 as:

/Oot dM (t), (5)
0

that is called MTTR (Mean Time To Repair), and the repair rate as:
dM (t) 1
~a 1M (6)
dt 1— M(t)

A key reliability measure for systems that can be repaired or restored is the M TBF
(Mean Time Between Failure) [Johnson 1989], that is the expected time between
two successive failures of a system. Some of the addressed works also consider the
system /service reliability on-demand that is the probability of success of the service
when requested. When the average time to complete a service is known, then it
might be possible to convert between MTBF and reliability on-demand.

Availability is defined as the probability that the system is functioning correctly
at a given instant [de Souza e Silva and Gail 1989]:

A(t) = Prob{state = U P, time = t}.

In particular, the steady state availability can be expressed as function of MTTF
and MTTR (or MTBF):

MTTF _ MTTF
MTTF + MTTR MTBF’

Safety properties (DM.S) are traditionally expressed in qualitative terms, such
as safety levels or risk factors associated to failures or hazards [Leveson 1995]. Nev-
ertheless, often they are defined in function of quantitative criteria. An interesting
example is the safety integrity level (SIL) [IEC-61508 1998] that specifies the re-
quired protection against software of system failure and corresponds to an interval of
the “average probability of failure to perform a safety function on demand” [TEC-
61508 1998] (e.g., SIL1[10E-2, 10E-1), SIL2 [10E-3, 10E-2)). Other examples of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Availability., =

Dependability modeling and analysis of software systems specified with UML . 9

safety properties are the probability of reaching (or of being in) a safe/unsafe state
and the tolerable accident rate.

Integrity is a property common to dependability and security. Similar to SIL, the
concept of integrity level was defined in [Biba 1977], in security context, to grade
damage caused by information sabotage. However, for integrity it is more common
to use procedures to verify and ensure the integrity of the system than to use for-
mally defined measures to compute grades of integrity. [Clark and Wilson 1987]
presented a formal model for integrity verification, while [Sailer et al. 2004] devel-
oped an architecture for integrity measurement that relies on code measurement
based on standards defined by [TCG 2011].

2.3 Dependability threats

Faults, errors and failures are usually referred as threats to dependability (DT) [Avizie-
nis et al. 2004]. They are seen as a causal chain (F-E-F) that threatens the de-
pendability of a system in the sense that the chain completion leads the system
to a state that reports incorrect service or outage. More specifically, in F-E-F a
fault is the cause of an error; in turn, the error is part of a state of the system that
may lead to a failure (or service failure). In this causal view, an error is seen as an
intermediate stage between failure and fault.

In [Avizienis et al. 2004] a very rich and precise taxonomy of faults is given. They
account, among others, for hardware /software faults, development/operational faults,
malicious/non malicious, fault persistence (DT.FP) and fault occurrence (DT.FO).
The latter refers to “single” and “multiple” fault assumption. The quantitative
characterization of a “single/multiple” fault assumption distinguishes between the
rate and probability of fault occurrences (DT.FOQ)!.The faulty behavior of the
components, connectors and services (DT.FB) means to identify the states of these
elements in which a fault is active [Hawkings et al. 2003].

“Erroneous behavior” (DT.EB) of a component, connector or service is the coun-
terpart of “faulty behavior” (DT.FB), i.e., the characterization of error states for
components, connectors and services due to a fault occurrence [Hawkings et al.
2003]. DT.EB and DT.FB are common in the model-based dependability. The
quantitative characterization of an error (DT.EQ) is the probability of its occur-
rence assuming that the fault has positively occurred (DT.FOQ). On the other
hand and due to the component-based assumption, sometimes a component raises
an error that does not reach the system boundaries, which means that it does not
cause a failure. This obviously happens when the service delivered by the com-
ponent is not in the system interface. However, such component may offer its
service to another internal component; this may lead to error propagation between
components [Cortellessa and Grassi 2007].

Failures or service failures are events that occur when the user perceives that
the system ceases to deliver the expected service [Avizienis et al. 2004]. A failure
can be classified according to different modes (DT.FMD to DT.FMDep) [Powell
1992]. A “failure mode” is the way in which the system manifest the deviation
from correct to incorrect service. A failure mode w.r.t. the domain (DT.FMD)
is classified as a “content” and/or “timing” failure. Detectability (DT.FMDet)

INote that DT.FOQ and DT.EPQ are also dependability measures.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 . Dependability modeling and analysis of software systems specified with UML

distinguishes “signalled” failures, those in which the system sends a warning signal
to the user, and “unsignalled” ones. The consistency criteria (DT.FMC) differen-
tiates “consistent” from “inconsistent” or byzantine failures [Lamport et al. 1982].
The consequence of a failure grades it into severity levels (DT.FMSL) (we re-
ferred to this concept in Section 2.2 as a safety measure, concretely safety level).
Different criteria can be used to define severity levels, for example according to the
standard [MIL-STD-882d 1999] they are rated as catastrophic, critical, marginal
or minor. Finally, failures can be “dependent” or “independent” (DT.FMDep).
Failures are dependent when the affected components share the cause of the failure,
i.e., the error is common to all of them. An example of multiple dependent failures
is a “common failure mode”, that typically occurs within a redundant structure.

“Failure behavior” (DT.FailB) of a component (connector or service) refers to
the specification of failure events/conditions that lead to the degraded/ failure
states of the component (connector or service) as well as the degraded /failure states
themselves [Bondavalli et al. 2001].

For safety-critical systems, the concepts of fault, error and failure are supple-
mented with that of hazard. [Leveson 1995] defines hazard as a state or set of
conditions in a system that, together with other conditions in the environment of
the system, will inevitably lead to an accident. An accident is an undesired and
unplanned (but not necessarily unexpected) event that results in (at least) a spec-
ified level of loss. For every possible hazard in the system it is important to know,
at least, its origin (DT.HO) and main characteristics, i.e., severity (DT.HS) and
likelihood (DT.HL) [Leveson 1995]. The hazard severity is defined as the worst
accident that could result from the hazard, and as in the case of failures, haz-
ard severity can be graded by severity levels such as minor, marginal, critical and
catastrophic. The hazard likelihood can be defined quantitatively or qualitatively
(e.g., frequent, probable, occasional, remote, improbable, impossible). Severity and
likelihood are combined to obtain the hazard level. Some safety-critical techniques,
such as HAZOP [UK Ministry of Defence 2000], use guide-words (DT.HGW) and
parameters (specifics of the process in study) to identify hazards in the system. For
example, the set of guide-words in HAZOP is: No, More, Less, As Well As, Reverse
and Other Than.

2.3.1 Discussion in the UML context. We found that only two kind of fault
characteristics are addressed in the surveyed works: fault persistence (DT.FP)
and fault occurrence (DT.FO). As for error propagation we found that only its
description (DT.EP) was given in surveyed works, e.g., [Pai and Dugan 2002],
and a quantitative characterization (DT.EPQ), e.g., [Yacoub et al. 2004], which
basically specifies the probability of propagation occurrence.

2.4 Dependability means

The problem of achieving a dependable software/system is usually addressed by ap-
plying four technical methods, also known as dependability means [Avizienis et al.
2004]: fault prevention, fault removal, fault tolerance and fault forecasting. Fault
prevention encourages the use of techniques that prevent the system from faults
[Chillarege et al. 1992]. Formal methods are useful for performing automatic soft-
ware verification that, together with software testing, are common techniques for

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 11

fault removal [Boehm 1984; Weyuker 1982]. Fault tolerance techniques [Avizienis
1967; Lyu 1995] aim at avoiding failures despite the presence of faults after the soft-
ware or system is deployed. The last method, the fault/failure forecasting is carried
out through the qualitative and quantitative evaluation of the system behavior with
respect to faults/failures occurrences [Meyer 1980].

Fault tolerance techniques offers “system recovery” (FT.R) and “error detection”
to achieve failure avoidance. Recovery tries to transform an erroneous or faulty
system state into a correct one by using “error handling” and “fault handling”
techniques. Error handling uses rollback, rollforward and compensation, while fault
handling relies on diagnosis, isolation, reconfiguration and reinitialization.

Fault tolerance techniques can be implemented in different ways (e.g., redun-
dancy, n-version, reflection or self-checking component) [Avizienis 1985; Huang
and Kindala 1996]. “Redundancy” (R) implies to describe:

—type? (R.T): information, software and hardware;
—Ilevel (R.L): number of components in a redundant structure;
—failures (R.F): maximum number of tolerated failures;

—roles played by the component within the FT structure (R.R): replica, controller,
adjudicator, voter, hot/cold/warm spare.

Maintenance® follows “fault handling” in the life-cycle and it refers to repairs
(M.R) as well as modifications (M.M) of the system during the use phase [ISO/IEC
14764 2006]. The distinction between fault tolerance and maintenance is that the
latter is carried out by an external actor. Moreover, repair and fault tolerance
are much related concepts; actually, repair is seen sometimes as a fault tolerance
activity.

2.4.1 Discussion in the UML contert. Among dependability means fault toler-
ance is the mean the surveyed works have paid more attention. “System recovery”
is the only fault tolerance technique addressed in the works here surveyed.

Fault prevention and fault removal have not been addressed, it seems reasonable
since fault prevention is mostly a concern of development methodologies rather than
of modeling notations, while fault removal is carried out during the development and
system usage stages, whereas UML is usually exploited in early life-cycle stages.
Different is the case of fault/failure forecasting, that can be carried out during
development (evaluation testing [Boehm 1984]) but also in early stages through
modeling. Dependability models mentioned in Section 2.2 for measures estimation
can be also useful for forecasting faults or failures. A common approach in some of
the surveyed works is that analysts try to identify where the fault/failure could be
located in the dependability model (e.g., a Petri net), and then trace back to the
UML design where the fault/failure emerges in the system.

2Values associated to type, level, failures and roles are representative examples of the ones found
in the works analysed in this paper.

3Tt is important to note the difference between maintainability (a dependability attribute) and
maintenance (a technical method to achieve dependability).

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 . Dependability modeling and analysis of software systems specified with UML

Table I: Checklist for dependability concepts

(1) Dependability issue addressed in this work

L1 I L2 I Dependability concept or issue Restriction (1)
DA Dependability attributes
R Reliability v
A Availability repairable system v
M Maintainability repairable system v
Integrity dependability & security
S Safety safety-critical system v
DM Dependability measures
R Reliability measures. v
A Availability measures. repairable system v
M Maintainability measures. repairable system v
Integrity measures.
S Safety measures and safety properties. safety-critical system v
C Software complexity measures. design level v
DR Dependability requirements
BOUND Upper/lower bound requirements on de- v
pendability measures.
S Safety properties to be checked w.r.t. the | safety-critical system v
system behavior.
DT Dependability threats (Fault)
FP Fault persistence. v
FO Fault occurrence. v
Other Fault classifications: hw/sw, de-
velopment/operational faults.
FB Faulty behavior of components, connec-
tors, services.
FOQ Fault occurrence quantitative characteri- v
zation.
DT Dependability threats (Error)
EB Erroneous behavior (error states). v
EQ Error quantitative characterization. v
EP Error propagation. v
EPQ Error propagation quantitative charac- v
terization.
DT Dependability threats (Failure)
FMD Failure mode w.r.t. the domain. v
FMDet Failure mode w.r.t. the detectability. v
FMC Failure mode w.r.t. the consistency. v
FMSL Failure mode w.r.t. the consequence v
(severity levels).
FMDep Failure mode w.r.t. the dependency. v
FailB Component, connector or service failure v
behaviour.
DT Dependability threats (Hazard)
HO Hazard origin. safety-critical system v
HS Hazard severity (severity levels). safety-critical system v
HL Hazard likelihood. safety-critical system v
HGW Hazard guide-words. safety-critical system v
FT Fault tolerance
Error detection.
FT.R Recovery. v
M Maintenance repairable system
M.M Modifications. v
M.R Repair. v
R Redundancy (A fault tolerance implementation)
R.T Type.
R.L Level.
R.F Failures (max. number of tolerated fail-
ures).
R.R Roles.

3. EVALUATION CRITERIA

This section introduces and discusses the set of evaluation criteria that constitute
the basis for analysis in the survey. Having a set of evaluation criteria will allow us

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 13

to present, discuss and classify the surveyed works, tasks that are carried out in Sec-
tions 4 and 5. For an easy presentation, we merged these criteria into three groups
summarized in Table II. The first group helps to understand how the surveyed
approaches deal with important software engineering and UML modeling aspects.
The second group concentrates on dependability concerns and the third addresses
the quality of the approaches. Some criteria in the first and third groups have been
taken from the surveys of [Balsamo et al. 2004] and [Immonen and Niemeld 2008],
the rest have been identified during literature review, while reading and comparing
the surveyed papers.

Table II. Summary of evaluation criteria

Software engineering & UML

Code | Criteria Values

C1 Phase requirements; architecture; design; implementation; deploy-
ment

C2 Diagrams class; object; UC; SM; act.; seq.; IOD; col.; comp.; deploy.

C3 Process general; use case; CBSE; SPL; MDD

C4 Software domain general; RTES; SOA

C5 Application domain | general; aerospace; automotive; railway control; automated
production

C6 Specification profile; OCL; non-extended UML models; extensions

cr Tool support yes; no

Dependability characteristics

Code | Criteria Values

C8 Attribute DA

C9 Analysis type qualitative; quantitative (stochastic; non stochastic)

C10 Analysis model FMEA; HAZOP; Fault trees; stochastic Petri nets, ...

C11 Input Parameters DM, DT, FT, M, R
C12 Output Parameters | DM

C13 Requirements DR

Quality
Code | Criteria Values
Cl14 Validation case studies; empirical analysis; no validation
C15 Compliance compliant; not compliant
C16 Results N/A; basic; UML-feedback; sensitivity analysis
Cc17 Limitation text describing the limitation

3.1 Software engineering and UML

(C1) Life-cycle phase. Almost all of the surveyed approaches aim to obtain
dependability results early in the software life-cycle. Advantages of getting de-
pendability results prior to implementation were discussed in the Introduction.
Most of the surveyed approaches address the following phases: requirements,
design and software architectural design. Although the latter can be consid-
ered a design sub-phase, we decided to analyze it separately due to the high
number of approaches addressing it. We have also found works targetting the
implementation and deployment phase.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 . Dependability modeling and analysis of software systems specified with UML

(C2) Diagrams. As explained in Appendix A, UML distinguishes between struc-
tural and behavioral diagrams. The kind of UML diagrams used by an ap-
proach strongly relates to the software life-cycle phase the approach addresses.
In early phases, the structural diagrams used are mainly class and object, and
the behavioral diagrams are use case, sequence, state machines, activity, col-
laborations and interaction overview diagram. In later phases, component and
deployment diagrams are used.

(C3) Software development process. The surveyed approaches are applied in
conjunction with a variety of software development processes. We identified
the following cases:

—general: category including all “traditional” software development processes
(iterative, incremental, waterfall or a combination of them).

—use case: use-case based process [Jacobson 1995].

—CBSE: component-based software development process [Szyperski 1998].

—SPL: specifically addressing Software Product Lines [Clements and Northrop
2001]

—MDD: Model Driven Development processes [Stahl and Vélter 2006]. Al-
though MDD can be applied in conjunction with all of the above categories,
we treat it separately for simplicity. Note that the categories in the next
criterion, the software domain, can also be addressed by using MDD tech-
niques.

(C4) Software domain. The approaches can also be classified by the specific
software domain they address. We have identified the following;:
—RTES: targeted to real-time and embedded systems [Liu 2000].
—SOA: targeted to service-based systems [Bell 2008].
—general: approaches not focused on a specific software domain.

(C5) Application domain. Most of the approaches are focused on the devel-
opment of general software systems, so they fall in what we call the general
category. However, a few of them target a specific application domain, in par-
ticular: aerospace, automotive, railway control and automated production.

(C6) Dependability specification. A common technique for introducing de-
pendability specifications (input parameters, output parameters and require-
ments — criteria C11, C12 and C13) in the UML diagrams is by using UML
profiles (see Appendix A for an explanation). However, some of the analyzed
works use other approaches such as OCL restrictions (Object Constraint Lan-
guage [OCL 2010] of UML), non-extended UML models or UML extension
mechanisms (notes, stereotypes and tagged values) not organized around a
specific profile.

(C7) Tool support. UML diagrams are supported by a large variety of CASE tools
(Computer Aided Software Engineering), both commercial and non-commercial.
The integration of an approach with a tool allows to incorporate the depend-
ability specification as extensions to the UML model. The more advanced tools
also incorporate as a feature the analysis of the underlying dependability model,
while others make use of a third-party tool that actually supports the analysis
of the model.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 15

We consider important at this point to highlight that the criteria given in this
section define differences among UML-based approaches and the rest of model-
based approaches. Differences that remark the need of a separate study of these
two concerns as we justify in the following.

A dependability specification (C6) accomplished with UML will use the resources
UML offers, such OCL or extension mechanisms, however this does not apply to
others model-based approaches. This aspect also involves tool support (C7) since
comparisons among UML and non-UML tools will be meaningless, for the same
reasons. Moreover, tools based on UML are nowadays dominant in the software
engineering market and they have left few room for others. Another important
aspect concerns the development approaches (C3), since they can be strongly influ-
enced by UML. For example, CBSE-like approaches develop architectural models
according to UML component and deployment diagrams. More significant is the
case of Use case based approaches, since today all of them follow the UML no-
tation. Last but not least is the importance of some methodological aspects of
the UML diagrams related to the software life-cycle (C1). When a phase, say for
example behavioral design, is accomplished with UML, it mandatorily has to be
carried out using the UML diagrams for the purpose (e.g., state machines or se-
quence diagrams). However, for others model-based approaches the field is opened
and they are not restricted by diagrams neither by the phase they can be applied,
so, some of them use formal specification languages (for which hundreds of them
exist, mere examples are Z [Z 2002], Troll [Jungclaus et al. 1996] or process algebra-
like languages [Fokking 2000]), others use formal graphical models (e.g., stochastic
Petri nets [Ajmone-Marsan et al. 1995], or queuing network models [Lazowska et al.
1984]), and the list may continue.

For all the reasons above, we argue that UML has evolved to the verge of being a
language for which methodologies, specifications and tools around it are so complex
and huge in number that conform a body of knowledge that deserves to be studied
in isolation.

3.2 Dependability characteristics

This group of criteria is based on the dependability concepts in Table I discussed
in Section 2. Besides, we have added two other important concerns, the analysis
type and the analysis model.

(C8) Attribute. This is a cross-reference to DA from the checklist in Table I, so
it refers to reliability DA.R, availability DA.A, maintainability DA.M and
safety DA.S.

(C9) Analysis type. The nature of the dependability analysis may be either
quantitative or qualitative [IEC-60300-3-1], and this strongly constraints the
type of specification as we later discuss. For quantitative analysis we have
found approaches that follow either stochastic analysis or not stochastic. For the
sake of simplicity, “stochastic” and “probabilistic” are considered synonymous.
In general, qualitative analysis aims to prove dependability properties, while
quantitative analysis aims to estimate dependability measures.

(C10) Analysis model. There is a huge variety of dependability models and/or
techniques used for dependability analysis. A few of them, like stochastic Petri

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 . Dependability modeling and analysis of software systems specified with UML

nets [Ajmone-Marsan et al. 1995], are useful for both quantitative and qualita-
tive analysis. However, others are exclusively targeted to qualitative analysis,
such as HAZOP [UK Ministry of Defence], and others to quantitative analysis
such Bayesian models or Markov models.

The analysis (either quantitative or qualitative) of a dependability model re-
quires a proper specification of the input/output parameters and requirements, as
explained below:

(C11) Input parameters. The input dependability parameters required by the
approach to effectively carry out the proposed analysis. They support the
specification of dependability characteristics (cross-reference to DM, DT, FT,
M, R from the checklist in Table I).

(C12) Output parameters. The kind of dependability measures or properties
the approach evaluates (cross-reference to DM from the checklist in Table I).

(C13) Requirements. The kind of requirements the approach supports (cross-
reference to DR from the checklist in Table I).

Observe that, both the criteria (C11) and (C12) reference the dependability
measure item of the checklist in Table I (DM). Indeed, an approach may require
dependability measures as input parameters; for example, the Mean Time To Fail-
ure (MTTF) of system components, is needed to evaluate the overall system failure
rate.

3.3 Quality

The criteria in this group will help to assess the overall quality and maturity of the
surveyed approaches.

(C14) Validation. Some of the approaches have not been validated at the time of
the publication, while for others a validation effort has been carried out. Most
often the validation is carried out by the means of case studies that demon-
strate, using realistic examples, how the dependability concepts are integrated
with UML; sometimes, it is also shown how to obtain a dependability analysis
model from the UML model. In a few works, empirical analysis is used instead,
which mainly consists in extrapolating information, using testable working hy-
potheses, from the application of the proposal by third parties.

Therefore, in this criteria we will distinguish approaches belonging to one of
the following categories: case studies, empirical analysis and no validation.

(C15) Compliance with standards. Several dependability standards exist, some
with general purpose [ISO/IEC9126-1.2 2001; TEC-60300-3-1 2003; IEC-61508
1998], others targeted to specific application domains [MIL-STD-882d 1999;
MIL-STD-1629A 1984; ARP-4754 1994; 1995; RTCA 1992; EN-50126 1999;
2001; 2001]. Compliance of an approach with a standard represents certainly an
asset; this is especially true in the safety domain, where certifications following
standards are common practice. In this regard we will classify an approach as
compliant when it adheres to some standard or not compliant otherwise.

(C16) Presentation of results. When the dependability analysis has been car-
ried out, results should be automatically interpreted in the problem domain,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 17

and subsequently presented to the software engineer. However, this is a tricky
concern that, in our opinion, has not been satisfactorily solved by any of the sur-
veyed approaches yet. Despite this drawback, some of the approaches present
the results in some basic form (for example, in textual, tabular or plot forms).
The best approaches feedback results to the same UML model (e.g. using
trace visualization on sequence diagrams) and/or provide support for sensi-
tivity analysis. We classify approaches in four categories: N/A (do not deal
with this aspect), basic (offer some kind of basic support), UML feedback and
sensitivity analysis.

(C17) Limitations. The analyzed approaches present drawbacks related to some
of the previous criteria. For example, a few of them do not offer UML annota-
tions for the definition of basic input parameters such as failures of components.
The large number and diversity of these limitations hindered us from classify-
ing them. However, we studied these limitations and pointed out the more
relevant.

4. CONTRIBUTIONS

We surveyed 33 approaches (a total of 43 papers) addressing dependability mod-
eling and analysis of UML-based software systems and collected the information
regarding the criteria in previous section. They are presented according to the de-
pendability attribute they address (criterion C8), i.e., reliability, availability, main-
tainability or safety. Approaches focussed on more than one dependability attribute
will be presented in the last subsection.

4.1 Reliability

A first set of surveyed works contribute specifically to the reliability analysis of
UML-based software systems. Following criterion C1, software architecture and
design are the only phases of the software life-cycle dealt with by these works, so
§4.1.1 and §4.1.2 address them, respectively. Since most of the works in this group
follow a component-based approach, criterion C3, §4.1.3 discusses this aspect.

4.1.1 Software architecture. [D’Ambrogio et al. 2002] define a transformation of
sequence and deployment diagrams (C2) into fault tree models (C10) to predict
the system failure rate (C72 - DM.R). Although no UML extension standard
mechanisms are used (C6), several UML model elements whose failure (basic events
in fault tree models) can lead to the system failure (top-event in fault tree models)
are identified, such as failure of nodes and communication paths, call/return actions
and operations. Mean Time To Failure (MTTF) is assigned to such elements as
input parameter (C11 - DML.R).

Both [Yacoub et al. 2004] and [Rodrigues et al. 2005] aim at calculating the
system reliability on-demand (C12 - DM.R) as a function of the component/ con-
nector reliability (C11 - DML.R) and the scenario execution probabilities. [Yacoub
et al. 2004] consider also the probability of error propagation between components
(DT.EPQ). To compute the metric, [Yacoub et al. 2004] construct a probabilis-
tic model, called Component Dependency Graph (CDG), from sequence diagrams
and develop an algorithm, based on the CDG. Instead, [Rodrigues et al. 2005] use
Labeled Transition Systems to synthesize sequence diagrams and interpret them as

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 . Dependability modeling and analysis of software systems specified with UML

Markov models (C2,C10).

‘Works Criteria
[D’Ambrogio et al. 2002] | C2, C6, C10, C11, C12
[Yacoub et al. 2004] Cl11, C12
[Rodrigues et al. 2005] C2, C10, C11, C12

Table ITI. Reliability and software architecture: Summary of addressed criteria.

4.1.2 Software design. [Singh et al. 2001; Cortellessa et al. 2002] use the Bayesian
framework (C10) to derive the probability distribution of the system reliability (C'12
- DM.R) from UML use case and sequence diagrams (C2). [Cortellessa et al. 2002]
improve the previous approach of [Singh et al. 2001] by considering also deployment
diagrams and the connector failure (Beta) distribution beside the component failure
(Beta) distribution and the use case execution probabilities (C11 - DML.R).

[Pai and Dugan 2002] use dynamic fault tree as target formalism (C10) to evalu-
ate the system unreliability (C12 - DML.R) of fault-tolerant software systems. Un-
like [D’Ambrogio et al. 2002], [Pai and Dugan 2002] introduce a set of stereotypes
and tags to enrich UML system models with information needed for the reliability
analysis (C6). In particular, tags are used to define input parameters, such as the
failure rate of system components and the error propagation probability (C11 -
DT.EPQ, DM.R). The method supports the modeling and analysis of sequence
error propagations (DT.EP) that lead to dependent failures (DT.FMDep), re-
dundancies and reconfiguration activities (FT.R). Several stereotypes are defined
to represent different kinds of dependencies between system components and to
model the type of spare components, e.g., hot, cold and warm spares (R.T).

[Grassi et al. 2005; 2007] propose a model-driven transformation framework (C3)
for the performance and reliability analysis of component-based systems. Grassi
et al. build an intermediate model that acts as bridge between the annotated
UML models and the analysis-oriented models. In particular, discrete time Markov
process models (C10) can be derived for the computation of the service reliability
(C12 - DML.R). Grassi et al. uses the UML extensions of [Cortellessa and Pompei
2004] (C6) and complements them, by associating failure input parameters to both
hardware and software components and by considering both atomic failures and
failure probability distribution functions (C17 - DM.R). Finally, [David et al.

‘Works
[Singh et al. 2001]

Criteria
C2, C10, C12

[Cortellessa et al. 2002]

C2, C10, C11, C12

[Pai and Dugan 2002]

C6, C10, C11, C12

[Grassi et al. 2005; 2007]

C3, C6, C10, C11, C12

[David et al. 2009] C1o0, C11, C17

Table IV. Reliability and software design: Summary of addressed criteria.

2009] focus on the identification of behavioral failure modes, e.g., with respect to
their detectability (C11 - DT.FMDet), in system design using Failure Mode and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 19

Effects Analysis (FMEA) technique (C10). Beside UML, SysML [SysML 2010] is
also considered as modeling notation for the specification of the system functional
behavior. The main drawback of the approach is that a Dysfunctional Behavior
data-base, that organizes the knowledge about possible elementary failure modes
of components, needs to be constructed and maintained to support an automated
reuse of the method (C17).

4.1.3 Component-based systems. Component-based modeling approach for the
functional specification of the software (C3) is common to all of the aforementioned
works, but [Pai and Dugan 2002] and [David et al. 2009]. These component-based
proposals address reliability analysis from the quantitative and stochastic point of
view (C9), using different dependability techniques. [Yacoub et al. 2004; Rodrigues
et al. 2005; Singh et al. 2001; Cortellessa et al. 2002] assume failure independence of
components and connectors; moreover, [Yacoub et al. 2004] considers independent
scenarios and sequential execution of components and [Singh et al. 2001; Cortellessa
et al. 2002] rely on the regularity assumption of component/ connector failure
probability distributions (i.e, component busy periods are characterized by the
same failure probability distribution) - (C17). They all provide support to analyse
the sensitivity of the system reliability to the critical components, but only in
[Rodrigues et al. 2005] the results of the analysis are fed-back to the UML model
using annotations (C16).

Finally, [Cortellessa and Pompei 2004] provide support to the reliability anal-
ysis of component-based systems, in both phases (i.e., architecture and design),
by proposing UML extensions within the frameworks of the SPT and QoS&FT
standard profiles (C6). In particular, the set of stereotypes are specialization of
stereotypes defined in the General Resource Modeling package of the SPT profile.
The most interesting input parameters considered are the atomic failure probabili-
ties of software components or (logical/physical) links (C11 - DM.R), that is the
probability that a component, or connector, fails in a single invocation of it.

‘Works Criteria

[D’Ambrogio et al. 2002] C3, C9

[Yacoub et al. 2004] C3, C9
[Rodrigues et al. 2005] C3, C9, C16
[Singh et al. 2001] C3, €9, C17
[Cortellessa et al. 2002] C3, C9, C17

[Grassi et al. 2005; 2007] C3, C9
[Cortellessa and Pompei 2004] | C3, C6, C11

Table V. Reliability and component-based systems: Summary of addressed criteria.

4.2 Availability

To the best of our knowledge, [Bernardi and Merseguer 2006] is the ony work that
tackles, exclusively, software availability. They devise a method to evaluate the
quality of service (QoS) of fault tolerant (FT) distributed system design specifica-
tion (C1), under late-timing failure assumption (C71 - DT.FMD). The QoS metric
is defined as a function of two non-functional requirements (€73 - DR.BOUND):

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 . Dependability modeling and analysis of software systems specified with UML

one is related to the system availability, i.e., the time to detect an error and isolate
it (FT.ED), and the other is related to the cost of the FT strategy, i.e., communi-
cation overhead. [Bernardi and Merseguer 2006] propose a transformation of UML
sequence, state-chart and deployment diagrams (C2), annotated with the SPT pro-
file [UML-SPT], into a performability Generalized Stochastic Petri Nets (GSPN)
model (C10). The latter is then analysed via simulation to evaluate, under differ-
ent system configurations, the considered QoS metric (C16). State-charts are also
proposed for the quantitative characterization of faults (DT.FOQ) as well as for
the behavioral specification of different types of fault with respect to their timing
persistency (DT.FP). In this case UML extensions have been explicitly introduced
(C6), since the SPT profile does not support the specification of dependability
parameters (e.g., fault occurrence probabilities).

‘Works Criteria
[[Bernardi and Merseguer 2006] | C1, C2, C6, C10 C11, C13, C16

Table VI. Availability: Summary of addressed criteria.

4.3 Maintainability

[Genero et al. 2003; Genero et al. 2007] is the only approach, among the surveyed
ones, that addresses specifically the maintainability of UML specifications during
the design stage of the software lifecycle (C1). They rely on the software quality
standard [ISO/IEC9126-1.2] (C15) and propose a set of metrics as good predictors
of two maintainability sub-characteristics, that is understandability and modifia-
bility (C11 - M.M). The set of metrics includes both typical size metrics (e.g.,
number of classes, attributes and methods) and structuraly complexity ones (e.g.,
number of aggregations, dependencies and generalizations) - (C12 - DM.C) - which
can be applied on UML class diagrams (C2). An empirical analysis is carried out
to evaluate the correlation between the proposed metrics and the considered main-
tainability characteristics (C14). Nevertheless, no guidelines are provided to the
software designers on how to use such metrics to evaluate the maintainability of
the UML class diagrams (C17).

‘Works Criteria
l [Genero et al. 2003; Genero et al. 2007] | C1, C2, C11, C12, C14, C15, C17

Table VII. Maintainability: Summary of addressed criteria.

4.4 Safety

Another group of works focus on safety-critical systems. They are presented ac-
cording to the activities they support along the software life-cycle (C1). Moreover,
we have considered of interest to jointly analyze those works focussed on risk as-
sessment, irrespective of the phase of the life-cycle they apply, they are presented
in §4.4.5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 21

4.4.1 Requirements elicitation. The safety requirement elicitation approaches
are application domain-specific (C5) and use Use Case diagrams (C2,(C3) to iden-
tify system level functionalities of aerospace software ([Allenby and Kelly 2001])
or in automotive domain ([Johannessen et al. 2001]). They are both compliant
to safety-standards ([ARP-4754],|]ARP-4761],[IEC-61508] - C15) and provide sys-
tematic methods to identify failure modes with the help of guidewords (C11 -
DT.HGW). In particular, [Allenby and Kelly 2001] apply a subset of HAZard
OPerability guidewords (C10) to pre- and post-condition, guard condition, and
scenario sections of use case descriptions to identify failure modes considering the
domain and their consequence (C11 - DT.FMD, DT.FMSL) and to derive safety
requirements related to use cases (C13 - DR.S). Instead, [Johannessen et al. 2001]
adopt Functional Failure Analysis guidewords (C10) and failures are classified ac-
cording to their consequence (C11 - DT.FMSL). Unlike [Allenby and Kelly 2001],
[Johannessen et al. 2001] provide also support to analyse the consequence of com-
bined failures (C11 - DT.FMDep). Both the approaches are characterized by a
low degree of automation (to the best of our knowledge, no tools are available to
support them - C7).

‘Works Criteria
[Allenby and Kelly 2001] | C2, C3, C5, C7, C10, C11, C13, C15
[Johannessen et al. 2001] C2, C3, C5, C7, C10, C11, C15

Table VIII. Safety and requirements elicitation: Summary of addressed criteria.

4.4.2 Software architecture. [Hansen et al. 2004] and [Iwu et al. 2007] use HAZ-
ard OPerability guidewords (C10,C11 - DT.HGW) to identify hazards in software
architecture specification. Both the works address specific application domains (au-
tomotive in [Hansen et al. 2004] and embedded systems in [Iwu et al. 2007] - C5).
While [Iwu et al. 2007] adopt an approach similar to [Allenby and Kelly 2001] (i.e.,
use case-based, C3), [Hansen et al. 2004] considers each model element in package,
class, component, object, sequence and deployment diagrams (C2). Then, the main
drawback of [Hansen et al. 2004] is the limited scalability of their proposal that,
when applied of a real case study, may result in a time consuming activity (C17).

[Iwu et al. 2007] use also Fault Tree Analysis to combine faults that give rise
to identified hazards (C10). Such faults are related to UML model elements (e.g.,
classes in class diagrams, messages in sequence diagrams - C2) and are used to
establish derived safety requirements. Safety requirements and healthiness proper-
ties (C13 - DR.S, C12 - DM.S) are specified using Practical Formal Specification
state machines (C6) and tool support is provided to check their consistency and
completeness (C7).

[Liu et al. 2007] address safety analysis on the variations in software product-
lines proposing a five-step approach (C8). In the first step, common and variability
analysis is carried out to identify requirements for the entire product line and for
specific product members. Hazard analysis is then performed by using Software
Fault Tree Analysis (SFTA) customized to product-line domain (C10). The root
node of the tree is typically a negation of a safety requirement, or it can be identified

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 . Dependability modeling and analysis of software systems specified with UML

from pre-existing hazard lists (C11 - DT.HGW), while the leaf nodes are labeled
with a commonality or variation, previously identified. In the third step, such leaf
nodes are mapped into architectural components, whose behavior is then modeled
with a UML state-chart (C2). Safety requirement and failure scenarios are then
derived from the fault tree (C13 - DR.S) and, finally, behavioral safety-properties
(C12 - DM.S) are checked in state-based models (C6) through scenario-guided
execution or animation (C16). The safety-properties that can be automatically
checked include ordering logic and relative timing of failures of events while, due to
the tool limitations, the verification of exact time values is not supported (C17).

‘Works Criteria
[Hansen et al. 2004] C2, G5, C10, C11, C17
[Iwu et al. 2007] C2, C3, C5, C6, C7, C10, C11, C12, C13
[Liu et al. 2007] C2, C3, C6, C10, C11, C12, C13, C16, C17

Table IX. Safety and software architecture: Summary of addressed criteria.

4.4.3 Software design. [Hawkings et al. 2003], [Pataricza et al. 2003], [Ober
et al. 2006] and [Zoughbi et al. 2007; 2006] consider the UML design of safety
critical software. [Hawkings et al. 2003] address the preliminary system safety
assessment of UML design. They construct a Fault Tree (C10) where hazardous
basic events are related to classes and operations in UML Class Diagrams (C2).
Then, the behavior of the classes - represented by UML StateCharts - is analysed
in order to derive detailed safety requirements. Beside the normal behavior, the
faulty behavior (C11 - DT.FB) is modeled by adding extra transitions in the
StateCharts with the help of hazard guidewords (e.g., omission, commission and
value) (C11 - DT.FMD, DT.HGW). A reachability analysis of the mutated
StateChart is performed to check whether the introduced faulty behavior can lead
to unsafe states. The derived safety requirements restrict the hazardous behaviors
and are specified with OCL (C6) as contracts on classes/operations (C13 - DR.S).

The modeling of the normal and the faulty behavior of a system component in a
single state machine (C2,C11 - DT.FB) is also proposed by [Pataricza et al. 2003],
whose objective is to identify the error propagation paths leading to catastrophic
failures in railway control software (C5,C12 - DM.S). They define UML stereotypes
(C6) for erroneous states and correcting transitions in UML State Machines (C11
- DT.EB, DT.EP, FT.R).

[Ober et al. 2006] present a technique for the verification of safety properties of
real-time and embedded systems (C4) via model checking (C12 - DM.S). A UML
profile (OMEGA) is defined (C6) to specify timing constraints in the UML design
(Class Diagrams and State Machines, C2) as well as dynamic and time dependent
safety requirements (C13 - DR.S). In particular, the latter are expressed by ob-
servers UML classes, whose behavior is described as a State Machine characterized
by error or invalid states (C71 - DT.EB). Both design and requirements are then
transformed into communicating extended timed automata (C10) and the design
is verified against the requirements using model checking techniques.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 23

[Zoughbi et al. 2007; 2006] define a UML profile (C6) for the specification of safety
concepts of aerospace software systems (C5) in the design phase to support the
automated generation of certification-related information. The proposed UML ex-
tensions are compliant to the airworthiness standard [RTCA] (C15), they are used
to record safety-related design decisions - e.g., failure consequence/ hazard sever-
ity (C11 - DT.FMSL, DT.HS), roles within replicated structures (C11 - R.R),
safety /confidence levels (C12 - DM.S) and complexity metrics (C12 - DM.C) for
collaboration, class, operation and relationship (C2) - and trace them back to the
requirements (C16). Their approach is based on a rigorous definition of the pro-
file (through a safety domain model) and an exhaustive completeness/consistency
assessment with respect to the considered safety standard (C14). The main weak-
ness is the use of dynamic concepts (through the profile) that extend typically static
concepts, then leading to mixed static/dynamic views in the same UML diagram
(Class Diagram) - (C17).

‘Works Criteria
[Hawkings et al. 2003] C2, Ce, C10, C11, C13
[Pataricza et al. 2003] C2, C5, Co6, C11, C12
[Ober et al. 2006] C2, C4, C6, C10, C11, C12, C13,
[Zoughbi et al. 2007; 2006] C2, C5, C6, C11, C12, C14, C16, C17

Table X. Safety and software design: Summary of addressed criteria.

4.4.4 Software architecture, design and implementation. [Cancila et al. 2009]
and [Lu and Halang 2007] focus on the specification of safety-related properties
in different phases of the software life-cycle and for different purposes. Their ap-
proaches are characterized by a high automation degree, although only the work
of [Cancila et al. 2009] is supported by a software tool (i.e., the used UML profiles
are implemented as Papyrus [CEA-LIST 2008] plug-ins, C7).

[Cancila et al. 2009] consider software architecture and design specifications of
railways transport systems (C5) and propose a UML profile (SOPHIA) for safety
concerns (C6). SOPHIA relies on the OMG standard profile MARTE to express
safety metrics (tolerable accident rate, i.e., TAR, and frequency of an accident C'12
- DM.S), requirements (i.e., maximum TAR C18 - DR.BOUND), and charac-
teristics (accident severity, accident severity/frequency table, accident frequency
C11 - DT.HS, DT.HL). The work also proposes an algorithm for the automatic
generation of derived safety attribute values (i.e., TAR) in design model.

[Lu and Halang 2007] address the design of safety-critical distributed embedded
real-time systems (C4) and the automated code derivation from UML design, con-
sidering PEARL as target programming language and Function Blocks [TEC-61131-
1] (C15) to support the code reusability. A set of PEARL code structures are pro-
posed as suitable for building applications which have to meet safety integrity level
requirements [IEC-61508] (C18 - DR.BOUND). The SIL-related PEARL con-
structs are represented as UML stereotypes and the Object Constraint Language
(OCL) is used to specify constraints (i.e., pre- and post-conditions, invariants)
on the expected execution of stereotyped components (C6). [Lu and Halang 2007]

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 . Dependability modeling and analysis of software systems specified with UML

define UML extensions also for representing Function Block diagrams as UML com-
ponent diagrams. A limitation of the approach concerns the timing-related issues
which are vaguely dealt in the paper (C17).

‘Works Criteria
[Cancila et al. 2009] C5, Co6, C7, C11, C12, C13
[Lu and Halang 2007) C4, C6, C13, C15, C17

Table XI. Safety and different phases in the life-cycle: Summary of addressed criteria.

4.4.5 Risk assessment. [Goseva-Popstojanova et al. 2003] and [Hassan et al.
2005] address the risk assessment step within the system safety analysis process.
They both consider software architectures specified with UML. [Goseva-Popstojanova
et al. 2003] estimate the scenario risk factor (C12 - DM.S) from risk factors as-
sociated to software components and connectors by constructing and solving a
Markovian model (C10). The component/connector risk factor is computed as the
product of two safety metrics: the severity level (C71 - DT.FMSL, DT.HS) and
the complexity/coupling associated to the component/connector. The severity is
obtained using FMEA technique (C10), while the component complexity and con-
nector coupling are estimated considering the UML dynamic specifications - State
Machines and Sequence Diagrams - (C2,C12 - DM.C).

[Hassan et al. 2005] focus the problem of evaluating the failure severity based on
UML specification. They integrate different severity techniques (FFA, FMEA and
FTA - C10) to identify and relate system level hazards and component/connector
failure modes (C71 - DT.HO, DT.HL, DT.HGW). A cost of failure graph is
then constructed to evaluate the cost of failure (C12 - DM.S) of system execu-
tion scenarios, software components/connectors. The costs of failure are reported
in the UML models with the use of notes (C6). Finally, the scenario and com-
ponent/connector severity (C11 - DT.FMSL, DT.HS) are obtained from the
estimated costs of failure using a non-linear mapping. Both [Goseva-Popstojanova
et al. 2003] and [Hassan et al. 2005] rely on the US military standard for safety
critical systems [MIL-STD-1629A] (C15).

‘Works Criteria
[Goseva-Popstojanova et al. 2003] C2, C10, C11, C12
[Hassan et al. 2005] Ce, C10, C11, C12, C15

Table XII. Safety and risk assessment: Summary of addressed criteria.

4.5 More than one dependability attribute

The remaining works address several dependability properties at a time. In the
following we analyze them.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 25

4.5.1 Reliability and availability. [Bondavalli et al. 2001; Majzik et al. 2003;
Pataricza 2000], [DeMiguel et al. 2001] and [Leangsuksun et al. 2003] aim at an-
alyzing the reliability and availability of UMIL-based software systems in differ-
ent phases of the software life-cycle (from requirement to deployment, C7), using
stochastic techniques (C'9). They all adopt a model transformation approach to get
an analyzable model from UML annotated models. Also [Dal Cin 2003] considers
the reliability and availability properties, but his main contribution is providing a
support for the specification of fault-tolerant and real-time software systems rather
than the analysis.

[Bondavalli et al. 2001; Majzik et al. 2003; Pataricza 2000] is the most com-
prehensive approach, with respect to the checklist of Table I, for reliability and
availability analysis of UML software architectures (C1). UML standard exten-
sion mechanisms (i.e., stereotypes and tags) are used for annotating dependability
properties of software systems on UML specifications (C6). Through a rigorous
graph transformation process, Timed Petri Net models (C10) are derived via an
intermediate model, that captures the relevant dependability information from the
annotated UML models. Component faulty behavior is triggered by independent
fault injectors, modelled as State Machines (C2), which allow one to specify fault
activation restrictions, such single fault assumption (C71 - DT.FO). Several in-
put parameters are defined (C11) for hardware and software components, such as
fault occurrence rate (DT.FOQ), the percentage of permanent faults (DT.FP),
the error latency for components with an internal state (DT.EQ) and repair de-
lay (DM.M). The approach also supports the specification of error propagation
between components (DT.EPQ) by assigning a probability to the model elements
representing either relationships (e.g., associations) or interactions between such
components (e.g., communication paths, messages). The set of dependability mea-
sures that can be evaluated (C12 - DML.R,DM.A) includes the reliability proba-
bility distribution function, MTTF, the steady state and the immediate availability.
Concerning the type of failures with respect to their dependency, both independent
and dependent failures can be specified (C11 - DT.FMDep). In particular, it is
possible to assign common failure mode occurrence tags to redundant components
belonging to complex FT structures (C11 - R.L, R.R). Failures can be discrimi-
nated also with respect to the domain (C11 - DT.FMD). Extensions for states and
events of state machines representing the behavior of redundancy manager compo-
nents are introduced, in order to discriminate normal and failure states and events
(C11 - DT.FailB). Such extensions are used to analyse the failure conditions of the
FT structures. The main drawback of the UML extensions proposed by [Bondavalli
et al. 2001; Majzik et al. 2003; Pataricza 2000] is the introduction of unnecessary
redundant information in the UML system model, since the specification of some
parameters requires the joint use of more than one stereotype (C17). For exam-
ple, a node, that models a hardware component in UML, must be stereotyped as
hardware and stateful to specify the error latency.

[DeMiguel et al. 2001] consider the software architecture and detailed design
UML specification of distributed real-time systems (C1,C4). Simulation models
are generated automatically from UML models, annotated with dependability input
parameters (C11) - i.e., object and network error occurrence, object time to failure

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 . Dependability modeling and analysis of software systems specified with UML

and repair (DT.EB, DT.EQ, DM.R, DM.M). In particular, the tool [OpNet
1999] is used as simulation kernel (C7). The approach supports the evaluation
of several dependability measures, such as object and network availability, object
failure distribution (C12 - DM.A, DM.R), and different type of statistics can be
computed (i.e., mean, variance, distribution).

[Leangsuksun et al. 2003] derive from UML deployment diagrams (C2), normally
used during the late software design and deployment stages (C1), fault tree and
Markov chain models (C10) for the analysis of the reliability and availability (C8),
respectively. The UML diagrams are annotated (C6) with node failure rate and
repair rate parameters (C11 - DML.R, DM.M). The method supports the com-
putation of the reliability (i.e., survival function) and the steady state availability
(C12 - DM.R, DM.A), under hardware failure independence assumptions.

[Dal Cin 2003] proposes a UML profile (C6) for designing dependability mech-
anisms, that is hardware/ software components to be implemented or integrated
in the real-time system (C4) to ensure fault tolerance (C11 - FT.ED, FT.R,
R.R). The proposed profile is aimed at supporting the quantitative evaluation of
the effectiveness of the fault tolerant strategy adopted (C9), in terms of reliabil-
ity and steady state availability (C12 - DM.R, DM.A). It provides a language
(i.e., SQIRL) for specifying stochastic reliability and availability requirements of
such mechanisms (C13 - DR.BOUND). However, the profile lacks of a support to
the modeling of the interactions among dependability mechanisms and the system
components (C17).

‘Works Criteria
[Bondavalli et al. 2001; Majzik et al. 2003; Pataricza 2000] | C1, C2, C6, C9, C10, C11,
C12, C17
[DeMiguel et al. 2001] C1, C4, C9, C11, C12

[Leangsuksun et al. 2003] C1, C2, C6, C8, C9, C10, C11,
C12

[Dal Cin 2003] C4, C6, C9,, C11, C12, C13,
C17

Table XIII. Reliability and availability: Summary of addressed criteria.

4.5.2 Reliability, availability and maintainability. The following two approaches
deal, as the previous ones, with reliability and availability, besides they address
also maintainability (C8). Both [Addouche and Antoine 2004; Addouche et al.
2006] and [Bernardi et al. 2004a; 2004b] provide support in the requirement and
design phases (C1) of the real-time software development (C4). In particular, the
considered application domains are, respectively, automated production systems
and distributed control automation systems (C5).

[Addouche and Antoine 2004; Addouche et al. 2006] define a profile (C6) that
is compliant with General Resource Modeling package of the SPT profile [UML-
SPT]. The UML extensions are used to annotate UML models with QoS character-
istics (C'11 - DML.R, DM.M) and to derive probabilistic time automata (C10) for
the verification of dependability properties via temporal logic formulas and model
checking (C12 - DML.R, DM.A, DM.M). A pair of stereotypes is also defined to

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 27

include probabilistic aspects of functioning and malfunctioning. The static model
of the system is enriched with new stereotyped classes that are associated with each
class representing a system resource. Such new classes are used to specify, via their
attributes, the failure conditions and the possible degraded/ failure states of the
resources (C11 - DT.FailB). This mechanism can be used by the analyst to specify
components state-based conditional failures (C11 - DT.FMDep). The negative
aspect of the approach is the poor separation of concerns, in fact new classes need
to be defined and introduced in the system model, beside the classes representing
the actual system components, for dependability analysis purposes (C17).

[Bernardi et al. 2004a; 2004b] propose a set of UML class diagrams (C2), struc-
tured in packages (i.e., a CD framework), as a reusable pattern to collect depend-
ability and real-time requirements of distributed control automation systems and
to support the design of an appropriate fault tolerance strategy. They also propose
a systematic method for the derivation of dependability analysis models, such as
TRIO [Ghezzi et al. 1990] temporal logic models (C10). The class attributes define
dependability or fault tolerance (R.T) characteristics; they can represent either
input or output parameters (C11,C12 - DM.R, DM.A, DM.M) or upper/lower
bound requirements (C13 - DR.BOUND), depending on the type of stereotype
associated to the attribute (C6). The fault-error-failure (FEF) chain [Avizienis
et al. 2004] as well as the fault tolerance mechanisms are represented as class di-
agrams. In particular, fault classes include attributes that characterize the fault
timing persistency and occurrence rates (C11 - DT.FP, DT.FOQ) in system com-
ponents. Error classes allows one to quantify error latencies, error probability and
bit error rates (C11 - DT.EQ) in automation functions. Finally, failures are classi-
fied according to their impact on the automation system in halting, degrading and
repairing failures (C17 - DT.FMD). From the analysis of TRIO temporal logic
models it is possible to visualize traces of the system execution that concentrate
on the predicates of interest (C16). The requirement specification and analysis
approach is compliant with the standard dependability management process [ITEC-
60300-3-1] (C15) and it has been applied on a primary substation of power distri-
bution network (C14). Unfortunately, the customization of the CD framework for a
given application is a time consuming activity; moreover, it requires modelers with
expertise in TRIO language to express predicates/axioms as well as to conduct the
analysis of the TRIO models (C17).

‘Works Criteria
[Addouche and Antoine 2004; Addouche et al. 2006] | C1, C4, C5, C6, C8, C10, C11,
C12, C17
[Bernardi et al. 2004a; 2004b] C1, C2, C4, C5, C8, C10, C11,
C12, C13, C14, C15, C16, C17

Table XIV. Reliability, availability and maintainability: Summary of addressed criteria.

4.5.3 Reliability and safety. Reliability and safety (C8) topics are jointly treated
by [Mustafiz et al. 2008; Mustafiz and Kienzle 2009], [Zarras et al. 2004] and [Jiirjens
2003; Jirjens and Wagner 2005]. The three approaches provide support in different

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 . Dependability modeling and analysis of software systems specified with UML

phases of the software life-cycle, that is respectively, requirement, software archi-
tecture and design (C1).

[Mustafiz et al. 2008; Mustafiz and Kienzle 2009] devise a requirement engi-
neering process (DREP) for the elicitation, specification and analysis of reliability
and safety requirements. They extend use cases (C2,C3) to discover exceptional
situations that can interrupt the system normal behavior and to define derived re-
quirements to handle such situations. Use cases are mapped to DA-Charts (C6), a
type of state-charts where probabilities are associated to success/failure transitions
(C11 - DT.FailB, DM.R). A Markov chain is then constructed from a DA-Chart
(C10) to compute the reliability on demand and the probability of reaching safe
states from the initial system state (C12 - DM.R, DM.S). The dependability
analysis produces information to the designer on the maximal achievable reliabil-
ity and safety (C13 - DR.BOUND), considering only the failures of the system
environment (e.g., hw sensor failures) and assuming the system under development
be reliable. The applicability and effectiveness of the DREP approach has been
evaluated empirically, in academic environment, using an electronic toll collection
system as case study (C14).

[Zarras et al. 2004] address mainly reliability and safety analysis of compos-
ite web services (C4); availability is also dealt, but as secondary dependability
property. They consider BPEL [BPEL 2007] as software architecture specification
language and propose a UML representation of BPEL constructs through stereo-
types. UML extensions are also defined to express the parameters necessary for
dependability analysis (C6). In particular, they include: reliability, safety and
availability measures (C12 - DM.R, DM.S, DM.A) to be computed, the fault
characterization of objects (C11 - DT.FP, DT.FO, DT.FOQ) - e.g., fault rate,
fault persistency, phase of occurrence, boundary and nature - the failure domain
and consistency (C11 - DT.FMD, DT.FMC), and redundancy schema within
the devised FT techniques (C11 - R.L, R.F, R.R) - e.g., the type of adjudicators
in error-detection mechanisms, the redundancy level and FT level of a redundant
schema. The UML annotated models are then transformed into Block Diagrams
and Markov models which enable the dependability evaluation of the composite
web services (C10).

‘Works Criteria
[Mustafiz et al. 2008; Mustafiz and Kienzle 2009] | C1, C2, C3, C6, C8, C10, C11,
C12, C13, Cl14
[Zarras et al. 2004] C1, C4, C6, C8, C10, C11, C12
[Jirjens 2003; Jurjens and Wagner 2005] C1, Ce6, C8, C10, C11, C12,
C13

Table XV. Reliability and safety: Summary of addressed criteria.

[Jiirjens 2003; Jirjens and Wagner 2005] define safety and reliability checklists,
using UML stereotypes and tags (C6), to support the analyst in the identification of
failure-prone components (C12 - DM.S, DM.C) in the software design. The UML
extensions are used to specify requirements on communication - e.g., maximum
probability of message loss, safety/reliability level (C13 - DR.BOUND, DR.S) -

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 29

and failure assumptions (C11 - DML.R) of communication links/nodes as a function
of the failure domain (C11 - DT.FMD) and of the type of voters within redundancy
structures (C11 - R.R). A precise semantics is provided to check the design, via
temporal logic formulas (C10), against the requirements and constraints specified
with the proposed UML extensions.

4.5.4 Reliability, availability, maintainability and safety. [Bernardi et al. 2009]
propose a UML profile (namely DAM, C6), as a specialization of the OMG stan-
dard [UML-MARTE 2009], to support the dependability analysis of UML-based
software systems, in the early phases of the software life-cycle (i.e., requirement,
software architecture and design, C7). In particular, the DAM profile focuses on
the RAMS properties (C8) and its definition was based on a thorough analysis of
different approaches, included in the present survey, for dependability specification
and analysis within UML. The main objective of the work has been to unify the ter-
minology and concepts for different dependability aspects C11-18 - (DR.BOUND,
DM, DT, FT.R, M.R, R.L, R.L, R.R) under a common consistent depend-
ability domain model, reusing the best practices and choices reported in literature
on model transformation to generate formal dependability analysis models.

‘Works Criteria
| [Bernardi et al. 2009] | C1, C6, C8, C11, C13

Table XVI. RAMS: Summary of addressed criteria.

5. DISCUSSION

In this section we analyze, from a critical perspective, the set of contributions
presented in Section 4. We use the criteria presented in Section 3 as guidelines
for our discussion. Some considerations about the fulfillment of the dependability
concepts from the checklist (Table I) by the surveyed works will be also provided. In
Table XVII we have summarized each approach and labeled them with an identifier
that will be used throughout this section. The Table is arranged according to the
order of presentation of the approaches in Section 4 and the last column indicates
the concrete subsection where the approach is discussed.

5.1 Software engineering and UML criteria

5.1.1 Life-cycle phase. The support provided by the approaches within the soft-
ware lifecycle spans from the requirement to the deployment phases (Figure 2,
Table XVIII) although major contributions are given in the early phases, in partic-
ular during the requirement, software architecture and design specification. This is
an expected result, as occurred for performance model-based approaches [Balsamo
et al. 2004], since the major modeling effort is placed early in the life-cycle, where
the detection of both functional and non functional (e.g., dependability, perfor-
mance) problems is more effective from the software costs point of view.

We observed that a significant number of works aim at providing approaches to
the dependability analysis of software systems, while few contributions address re-
quirement elicitation or just dependability specification (i.e., how to express depend-

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 . Dependability modeling and analysis of software systems specified with UML

Table XVII. List of surveyed approaches
Approach ID Authors Papers Section
D’Ambrogio D’Ambrogio A., lazeolla G., Mirandola R. D’Ambrogio et al. 2002] 4.1.1,84.1.3
Yacoub Yacoub S.M., Cukic B., Ammar H.H. Yacoub et al. 2004] 4.1.1,§4.1.3
Rodrigues Rodrigues G.N., Rosemblum D.S., Uchitel S. Rodrigues et al. 2005] 1.1.1,84.1.3
Singh Singh H., Cortellessa V., Cukic B., Gunel E., Singh et al. 2001; Cortellessa et al. 4.1.2,84.1.3
Bharadwaj V. 2002]
Pai Pai G.J., Dugan J. Pai and Dugan 2002] 112
Grassi Grassi V., Mirandola R., Sabetta A. Grassi et al. 2005; 2007] 4.1.2,84.1.3
David David P., Idiasak V., Kratz F. David et al. 2009] 4.1.2
Cortellessa Cortellessa V., Pompei A. Cortellessa and Pompei 2004] 4.1.3
Bernardi-a Bernardi S., Merseguer J. Bernardi and Merseguer 2006] 4.2
Genero Genero M., Piattini M., Manso E., Cantone G., Genero et al. 2003; Genero et al. 4.3
Visaggio A., Canofra G. 2007]
Allenbi Allenbi K., Kelly T. [Allenby and Kelly 2001] §4.4.1
Johannessen Johannessen P., Grante C., Alminger A. Eklund [Johannessen et al. 2001] §4.4.1
U., Torin J.
Hansen Hansen K., Wells L., Maier T. Hansen et al. 2004] 4.4.2
Twu Twu F., Galloway A., McDermid J., Toyn 1. Twu ot al. 2007] 1.4.2
Liu Liu J., Dehlinger J., Lutz R.R. Liu et al. 2007] 4.4.2
Hawkins Hawkings R., Toyn I, Bate . Hawkings et al. 2003] 143
Pataricza Pataricza A., Majzik I., Huszerl G., V‘arnay G. Pataricza et al. 2003] 4.4.3
Ober Ober I., Graf S., Ober I. Ober et al. 2006] 4.4.3
Goseva Goseva-Popstojanova K., Hassan A., Guedem Goseva-Popstojanova et al. 2003] 4.4.5
A., Abdelmoez W., Nassar D.E.M., Ammar H.,
Mili A.
Hassan Hassan A., Goseva-Popstojanova K., Ammar H. [Hassan ot al. 2005] §4.4.5
Cancila Cancila D., Terrier F., Belmonte F., Dubois H., [Cancila et al. 2009] §4.4.4
Espinoza, H., Grard S., Cuccuru A.
Zoughbi Zoughbi G., Briand L., Labiche Y. Zoughbi et al. 2007; 2006] 4.4.3
Lu Lu S., Halang W. Lu and Halang 2007] 4.4.4
Bondavalli Bondavalli A., Dal Cin M., Latella D., Majzik Bondavalli et al. 2001; Majzik et 4.5.1
1., Pataricza A., Savoia G., al. 2003; Pataricza 2000]
DeMiguel DeMiguel M., Lambolais T., Piekarec S., Betgé- [DeMiguel et al. 2001] §4.5.1
Brezetz S., Péquery J.
Leangsuksun Leangsuksun C., Song H., Shen L. Leangsuksun et al. 2003] 4.5.1
DalCin Dal Cin M. Dal Cin 2003] 4.5.1
Addouche Addouche N., Antoine C., Montmain J. Addouche and Antoine 2004; Ad- 4.5.2
douche et al. 2006]
Bernardi-b Bernardi S., Donatelli D. Dondossola G. [Bernardi et al. 2004a; 2004b] §4.5.2
Mustafiz Mustafiz S., Sun X., Kienzle J., Vangheluwe H. [Mustafiz et al. 2008; Mustafiz and §4.5.3
Kienzle 2009]
Zarras Zarras A., Vassiliadis P., Issarny V. [Zarras et al. 2004] §4.5.3
Jiiriens Jiriens J., Wagner S. [Jiirjens 2003; Jiirjens and Wagner §4.5.3
2005]
Bernardi-c Bernardi S., Merseguer J., Petriu D.C. [Bernardi et al. 2009] §4.5.4

ability characteristics in the software specification). Among the surveyed works,
only Goseva and Hassan provide methods for the risk assessment of safety-critical
systems.

The implementation and deployment stages are addressed by only one contribu-
tion each (Lu and Leangsuksun, respectively), while none of the considered works
focus on the testing activities. We think that research efforts should be devoted to
combine model-based approaches with experimental ones in the testing phase, e.g.,
by exploiting use-case to drive the testing activities through test cases and to trace
back the latter to dependability requirements.

5.1.2 Diagrams. Concerning the UML specifications assumed as input to the
method, class and deployment are the mostly used structural diagrams (Table XIX).
Unlike in performance analysis of UML-based systems, where UML behavioral spec-
ifications are necessary to get a performance model, dependability models can also
be derived from only structural specifications.

At the first sight, it seems unusual that deployment diagrams are used in works
which address the early phases of the software life-cycle. This can be justified,
considering that dependability issues can arise not only from software faults but
also from hardware ones (e.g., node crashes, broken communication physical links).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML

Table XVIII.

Contributions by life-cycle phase

Approach 1D

Requirements

Architecture

Design _ Impl./Deployment

D’Ambrogio

v

Yacoub

v

Rodrigues

v

Singh

Pai

Grassi

David

Cortellessa

Bernardi-a

Genero

N RRNANENEN

Allenbi

Johannessen

Hansen

Iwu

N

Liu

NEEENE

Hawkins

Pataricza

NENENIEN

Ober

Goseva

Hassan

Cancila

NN

Zoughbi

Lu

Bondavalli

DeMiguel

NN

Leangsuksun

DalCin

Addouche

Bernardi-b

S ENENENEN I ENENEN
<

Mustafiz

NN

Zarras

Jiiriens

N R

Bernardi-c

<

Number of approaches

Fig. 2.

14

21

()
&
&

Contribution to life-cycle phases.

31

Therefore, dependability requirements for a software system need to address not
only the software, but also the platform dependent architectures of the entire system
(usually modeled by deployment diagrams).

Use case, sequence and state machines are the typically assumed behavioral dia-
grams. In particular, use case diagrams are used not only in requirement elicitation
approaches, but also in the works addressing dependability analysis, mainly, to
specify the operational profile (e.g., Singh and Cortellessa).

Observe that, apart from Bernardi-c, which provides support - through a profile
- to dependability specification (only) for all UML diagrams, all the other surveyed

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 . Dependability modeling and analysis of software systems specified with UML

Table XIX. UML diagrams

Approach ID Class Object ucC SM Act. Seq. IOD Col. Comm. Deploy.

D’Ambrogio v v

Yacoub v

Rodrigues v v

Singh v v v

Pai v v v v

Grassi v v v v v

David v

Cortellessa v v v

Bernardi-a v v

Genero v

Allenbi v

Johannessen v

Hansen v v v v v

Iwu v v

Liu v v

Hawkins v v v

Pataricza v

Ober v v

Goseva v v v v

Hassan v v

Cancila v v

Zoughbi v

Lu v v

Bondavalli v v v v v v v

DeMiguel v v v v v

Leangsuksun v

DalCin v v v v

Addouche v v v

Bernardi-b v

Mustafiz v v

Zarras v v

Jiiriens v v v v

Bernardi-c v v v v v v v v v
[Total [14 5 12 12 5 18 2 7 8 13 |

works consider only a sub-set of UML diagrams. Note that Bondavalli is the contri-
bution that enables to analyze dependability based on the largest sub-set of UML
diagrams.

The surveyed works rely upon different UML versions (i.e., 1.4, 1.5 and 2.0),
mainly according to the year of publication (Figure 3). In general, the most impor-
tant changes between UML 1.x and 2.x concern behavioral diagrams, specifically
activity and sequence. However, none of the surveyed approaches that rely upon
UML 1.x use activity diagrams. The ones that use sequence diagrams (D’Ambrogio,
Yacoub, Singh, Hansen, Goseva, Bondavalli and De Miguel) can, in principle, be
applied to UML 2.x, since they consider independent execution scenarios - modelled
each one by a simple sequential SD (i.e., without alternative, parallel, optional sub-
scenarios). Obviously, the software tools that support such approaches and rely
on the UML meta-model (e.g., to produce automatically a dependability formal
model) would need to be upgraded to the new UML version. UML2.0 supports
more types of diagrams than UML1.* in particular the interaction overview dia-
grams (IOD), which are a combination of activity and sequence diagrams. 10D
allow one to model system scenarios using a hierarchical approach. Nevertheless,
even though the majority of the surveyed works support UML2.0, only Rodrigues
and Bernardi-c use 10D.

5.1.3 Software development process. Most of the approaches follow the tradi-
tional software life-cycle (Table XX). The use-case approach is applied in some
works to capture dependability requirements, besides the functional ones.

We can observe that there are several contributions using the component-based
software development process. However, only one work, Liu, addresses the soft-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 33

14
1.5
w20

7
Fig. 3. UML versions.

Table XX. Contributions by software development process

Approach ID general ucC CBSE SPL MDD
DAmbrogio
Yacoub
Rodrigues
Singh

Pai

Grassi
David
Cortellessa
Bernardi-a
Genero
Allenbi v
Johannessen v
Hansen
Iwu

Liu
Hawkins
Pataricza
Ober
Goseva v v
Hassan v

Cancila
Zoughbi

Lu
Bondavalli
Demiguel
Leangsuksun
DalCin
Addouche
Bernardi-b
Mustafiz
Zarras
Jiiriens
Bernardi-c

Total [

N NIENENEN N
N

NENEENEN

NENERE

NN

NI ENERENENEN ENENENENENEN

¥
=)
o
©|
=
o)

ware product-line development process. Note also that a few surveyed works apply
model-driven development techniques, where software models are the main focus of
the development. The use of model transformations to generate not only code, but
also analysis models is an intrinsic part of model-driven development.

5.1.4 Software and Application domains. As shown in Figure 4, most of the
works either do not focus on a specific software domain or provide specific support
to real-time (embedded) systems. Only Zarras addresses the SOA domain. The ma-
jority of the surveyed works support reliability analysis of general software systems,
possibly fault-tolerant and distributed. We observe that the kind of dependability
property to be evaluated is influenced by the software and the application domains
considered by a given work. For instance, contributions focusing on real-time (em-
bedded) systems are mainly concerned with safety issues. In particular, considering
in detail the application domain (Table XXI), we notice that most of the works that

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 . Dependability modeling and analysis of software systems specified with UML

general
" RT(E)S
SOA

Fig. 4. Software domain

Table XXI. Application domain

Approach ID general aerospace automotive railway automated healthcare transaction
D’Ambrogio v

Yacoub v

Rodrigues v

Singh v
Pai v

Grassi
David
Cortellessa
Bernardi-a
Genero
Allenbi v

Johannessen v
Hansen
Iwu v

Liu v
Hawkins v

Pataricza v

Ober v

Goseva
Hassan
Cancila v
Zoughbi v

Lu
Bondavalli
DeMiguel
Leangsuksun
DalCin
Addouche
Bernardi-b
Mustafiz
Zarras v
Jiiriens v

Bernardi-c v

[Total [17 5 2 2 2 3 2

NN

<

<<

NERRR

NEN

<

address aereospace, automotive, railways control software and healthcare systems
are interested in providing support for safety analysis. On the other hand, in the
case of transaction applications it is often desirable to guarantee the continuity
and the promptness of service delivery, when requested by the end-user. Therefore,
reliability and availability are the main issues addressed by the works dealing with
this type of applications (Singh, Zarras).

5.1.5 Dependability specification. The specification of dependability requirements
and properties can be done by a) providing a specific UML profile; b) a set of UML
standard extensions (that is stereotypes and tagged values), not structured in a

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 35

profile?; ¢) using regular non-extended UML models and d) using OCL (Figure 5).
In particular, when regular models are used, they are the same UML diagrams -
like use cases applied in the requirement elicitation approaches - or ad hoc ones
- like state-machine variants (Mustafiz, Iwu). Other approaches use UML mod-
els to extrapolate dependability informations (Genero, Hansen, Goseva). Finally,
only Hawkins and Lu use the Object Constraint Language (OCL) to specify safety
related requirements and constraints.

=
© o

Number of approaches
N

Fig. 5. Type of specification.

Table XXII details the type of specification used by each considered approach.
The definition of a UML profile requires more effort with respect to propose a set
of extensions, but has the advantage of defining consistent extensions in a struc-
tured framework. The majority of the approaches that resort to profiling technique,
define the profile in the context of existing standard OMG UML profiles, such as
the Schedulability, Performance and Time [UML-SPT 2005] (Rodrigues, Grassi,
Cortellessa, Bondavalli, Addouche) and the Modeling and Analysis of Real-Time
Embedded System [UML-MARTE 2009] (Cancila, Bernardi-c), which has the ad-
vantage of exploiting the specification capabilities of the standard profile. Although
a lot of efforts has been devoted to propose UML extensions to support dependabil-
ity specification in UML-based systems, less attention has been paid to providing
a solution for the unification of the different proposals. Indeed, to the best of our
knowledge, only Bernardi-c tackled this issue. Currently, a standard OMG proposal
for a dependability profile does not exist yet. We think that more research should
be invested in providing a common UML framework for the modeling and analysis
of different NFPs in order to support the consistent specification of different NFPs
and their relationships, as well as the trade-off analysis between different NFPs
(such as performability, performance and security, security and dependability).

5.1.6 Tool support. As shown in Figure 6, the majority of works provides tool

support for the approaches they propose. Although most of the tools are research

4Observe that the type of specification b) refers to the surveyed works that rely upon UML 1.*.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 . Dependability modeling and analysis of software systems specified with UML

Table XXII. Dependability specification

Approach ID profile OCL non-ext. UML extensions
D’Ambrogio v

Yacoub v
Rodrigues v

Singh
Pai
Grassi v
David
Cortellessa
Bernardi-a
Genero
Allenbi
Johannessen
Hansen

Iwu

Liu

Hawkins v

Pataricza v
Ober
Goseva v

Hassan v
Cancila
Zoughbi

Lu
Bondavalli
DeMiguel
Leangsuksun
DalCin
Addouche
Bernardi-b
Mustafiz
Zarras
Jiiriens
Bernardi-c v

SN

N

NI

NENENENENEN

<

NN

NAR

N B

NN

SRR

H yes
no

Fig. 6. Tool support

prototypes that do not cover all the aspects, the potential for building more powerful
tool support exists. Many approaches could be automated since they propose either
rigorous transformation techniques of UML annotated models into formal depend-
ability models or dependability annotations through the UML profiling mechanism.
Only a few proposals are difficult to implement or do not provide any indication
of an existing implementation. These are mainly approaches that address depend-
ability requirements elicitation via use cases (Allenby and Johannessen) or class
diagrams (Bernardi-b) or focus on severity analysis (Hassan).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 37

5.2 Dependability characteristics criteria

5.2.1 Attribute. Concerning the type of dependability attribute, most of the
surveyed approaches address either reliability or safety issues, while few efforts
have been devoted to maintainability and availability (Figure 7). Indeed, the latter
are often considered as secondary dependability issues. In particular, the stochastic
approaches proposed for reliability analysis can be also used, as claimed by their
authors, to compute availability and maintainability measures (e.g., steady state
availability, MTTR) given that the additional quantitative characterization of the
repair or recovery activities is provided (e.g., repair rate) as input parameter. A
unique exception is Genero where a set of size and complexity metrics for UML class
diagrams are proposed as indicators of the software specification maintainability.

OR
A
om
Os

Fig. 7. Dependability attribute

5.2.2 Analysis type. One of the considered criteria is the type of dependabil-
ity analysis proposed, that is qualitative or quantitative (Figure 8). Qualitative
analysis aims to identify, classify and rank the hazards or failure modes in the
software systems, while quantitative analysis mainly aims to compute dependabil-
ity measures. We notice that safety-related contributions fall basically in the first
category (i.e., qualitative) while the works that focus on reliability, maintainability
and availability belong to the second one (i.e., quantitative). There are some excep-
tions that support both types of analysis, like the works on safety of Ober, Goseva,
Hassan and Cancila, and the works of Bernardi-b, DalCin, Jiiriens and Bernardi-c,
providing support for dependability specification.

Considering the approaches aimed at quantitative dependability analysis, the
majority of them rely on stochastic (or probabilitic) assumptions. Nevertheless,
there are also non-stochastic approaches to the dependability analysis, like Ober
and Bernardi-b, that support the verification of time-dependent dependability re-
quirements of real-time systems.

5.2.3 Analysis model. Table XXIII summarizes the techniques adopted by the
surveyed works to support dependability analysis of UML-based specifications. This
criterion does not apply to the approaches that provide support only for depend-
ability specification (shown in grey in Table XXIII).

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 . Dependability modeling and analysis of software systems specified with UML

N
o

-
(3]

Number of approaches
-
o =)

o

Fig. 8. Analysis type

Table XXIII. Dependability analysis models

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 39

Some of the used techniques are those suggested by dependability standards,
such as FMEA, HAZOP, Petri Net, Fault Tree, Markov model, Bayesian model
and Block diagram [IEC-60300-3-1 2003]. In particular, Fault tree and its variants
(e.g., dynamic fault tree) is the mostly used dependability technique, followed by
Markov models. Fault trees have been applied in both reliability (D’Ambrogio, Pai,
Leangsuksun) and safety works (Iwu, Liu , Hawkins, Hassan), and for both qualita-
tive (Iwu, Liu, Hawkins, Hassan) and quantitative (D’ Ambrogio, Pai, Leangsuksun)
analysis.

Some contributions propose instead techniques which are not traditionally aimed
at dependability analysis, e.g., component dependency graphs (Yacoub). Finally,
there are a few approaches, like Hassan and Iwu, that suggest the combined use of
several complementary techniques.

. — 16]
14
g7 — 8 5
£ L] 5 12
- 8 10
€5 & Clvo
g |1 8 g 8
< 4 © =Zo
5 .] 6 5 6
5 3 o 6 01
2.7 g4
z _ S S
0 /,____...— == //, 0 p
DRBOUND DRS DM.R DM.A DM.M DM.S DM.C
|

© =2 N W »h OO N

Number of approaches

=5

DT.FP
DT.FO
DT.FMD
DT.FMDet
DT.FMC
DT.FMSL
DT.FMDep

Fig. 9. Number of approaches addressing each checklist item.

5.2.4 Parameters and requirements. Figure 9 shows three histograms that rep-
resent the number of surveyed approaches addressing the items of the checklist in
Table I, namely the dependability requirements (upper-left histogram), the depend-
ability measures (upper-right histogram) and the other dependability parameters

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 . Dependability modeling and analysis of software systems specified with UML

(bottom histogram). We observe that the specification of dependability require-
ments is supported by few approaches. In particular, most of the works that aim
at evaluating the system reliability do not provide support for the validation of the
estimated reliability measures w.r.t. the requirements.

Concerning the dependability measures, they are often considered as both in-
put parameters and output results in a given approach (D’Ambrogio, Yacoub,
Rodrigues, Singh, Pai, Grassi, Cortellessa, DeMiguel, Leangsuksun, Addouche,
Bernardi-b, Mustafiz, Bernardi-c). For example, the failure occurrence rate is as-
sociated to software component/connectors (i.e., input parameters for the method)
and to the system level as well (i.e., output result provided by the method).

None of the surveyed approaches provide any indication on how to assign values
to the input parameters. Input parameters are simply assumed values. The value
assignment can be trivial for some input parameters, such as MTTF of hardware
components that is usually provided by the manufacturer, however this is not the
case for most of the parameters (e.g., how to assign a MTTF value to a software
component ?).

The most frequent items are reliability measures (DM.R) and safety properties
(DM.S): this is not surprising, since most of the surveyed works address reliability
and safety issues.

Considering the other dependability parameters, although each item is addressed
by at least a work, several of them are marginally dealt with. In particular, special
attention has been devoted to the specification of failure modes with respect to the
domain (DT.FMD) and to the use of hazard guide-words (DT.HGW), while few
works consider, other classifications of failure modes, such as failure detectability
(DT.FMDet) and consistency (DT.FMC). On the other hand, few efforts have
been devoted to maintenance issues, i.e., modifications (M.M - Genero) and repair
(M.R - Bernardi-c), and to supporting a comprehensive specification of redundancy
in fault-tolerant systems. For instance, only Zarras provides UML extensions to
specify the maximum number of replica failures that can be tolerated (R.F).

Figure 10 shows the number of checklist items addressed by each surveyed ap-
proach. Such a number is a raw quality metric for the evaluation of the approach
itself, giving some insight of its comprehensiveness in providing support for de-
pendability modeling and/or analysis. Obviously, such a metric should not be
considered in isolation since other aspects are important as well, as discussed in
the next sub-section. Note that Bernardi-c is the approach that considers most of
the items, since it actually builds on several approaches considered in the survey.
Nevertheless, it does not provide a specific method to analyze the system depend-
ability but, rather, supports the dependability specification through a UML profile.
On the other hand, Bondavalli is the second approach in the checklist coverage;
unlike Bernardi-c, it also proposes a method to derive formal models amenable for
dependability analysis.

5.3 Quality criteria

5.3.1 Validation and Compliance with standards. The method validation is not
a primary issue (Figure 11(a)). Indeed 12 out of 33 of the surveyed approaches
do not consider it at all. On the other hand, when validation is a concern, it is
carried out mainly to show the applicability and/or the scalability of the method to

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 41

30
)
2 25
£
]
=
® 20
=
@
e 15
. 1
s
- 10
@
E
S 5 = 1
) g all0.00010 i
0 Ho el leas D lil ' = ' L
O N EFp OB BOFECESISVWRERCE@FI=gESQLAN®D®BOQ
5 [S 0 .L = [T S E N2> c= = 0 £ L © c .1
U’g:g’ﬂ-g>:n-a0CmmEJE_ngmoﬂ"g:agu-c"ﬁtw-o
Coo- S8 occQgpyc SO0 wncD OxESEHRE =
88TV @Q=N°2w«s 3 g oas3 J=5/808835¢C
E> 7T QcO0O<cx S OTOQ cTo-"3TE S £
S ts = g N 582 ©5= 3
4 Sm = m- 5 <o o
=] 5] o
S 4

Fig. 10. Number of checklist items addressed by each approach

realistic examples, i.e., through case studies. The 19 approaches that address a case
study are: Singh, Pai, David, Bernardi-a, Allenbi, Johannessen, Hansen, Iwu, Liu,
Patarizca, Ober, Goseva, Hassan, Zoughbi, Bondavalli, Bernardi-b, Zarras, Jiriens
and Bernardi-c. Only few works (Genero and Mustafiz) conduct empirical analysis
in an academic environment, to assess the effectiveness of the proposed approaches
beside their applicability.

We observed that all approaches providing support for quantitative dependabil-
ity analysis are in fact missing the validation of the correctness of the proposed
methods. This could be achieved, for example, by comparing the analysis results
with the ones obtained in testing activities by injecting faults during the system
execution.

compliant
no compliant

case
studies
empirical
NV

Fig. 11. (a) Validation. (b) Compliance with standards.

Concerning the compliance of the method with respect to dependability engineer-
ing standards, only 12 out of 33 approaches adheres to some standard, as shown
in Figure 11(b). Most of the compliant approaches focus on safety issues in the
development of real-time and embedded systems (Allenbi, Johannessen, Iwu, Go-
seva, Hassan, Cancila, Zoughbi, Lu) for which a certification from third parties is

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 . Dependability modeling and analysis of software systems specified with UML

required.

5.3.2 Presentation of results. The majority of the approaches addressing de-
pendability analysis provide a basic support to present the results of the analysis
(Figure 12). The most common way is textual presentation, followed by graphical
and tabular one. We observed that sensitivity analysis is supported by several works
that address reliability and availability analysis. The most promising approaches
are those that feedback the results to the original UML specification (Rodriguez,
Liu, Pataricza, Hassan and Jiiriens); this makes the analysis process transparent to
the software analyst.

However, further research is needed to address this issue. In particular, the
problem of how to identify the critical elements of the UML specification that
cause dependability properties not to be satisfied is still open. Good solutions are
those that provide useful information to the software engineers for changing the
design accordingly. Finally, in Figure 12, there are seven approaches classified as
not available (i.e., NA): they are either aimed at dependability specification, rather
than the analysis, or provide transformation techniques without focusing on the
analysis of the derived formal models.

30

25

20
15 26

10

Number of approaches

Fig. 12. Presentation of the results.

5.3.3 Limitations. Almost all the surveyed approaches present limitations, as
summarized in detail in Table XXIV. In particular, several proposals aimed at
reliability analysis assume failure independence of system components (Yacoub,
Rodrigues, Singh, Grassi, Zarras, Leangsuksun). However, this assumption, which
facilitates the analysis of the derived reliability model, may not hold for systems
characterized by tightly coupled components. An example of such systems are the
even demanding complex, large scale ICT infrastructures that control distributed
embedded systems (e.g., distributed SCADA systems controlling power production
and distribution plants located in a given geographical area). Another limitation
that is common to some approaches is low scalability (Bernardi-a, Hansen, Hawkins)
that can make the validation and verification activities time consuming and risky
from the point of view of software development process management or, even worse,
unfeasible.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML .

Table XXIV. Limitations

43

Approach ID Limitations

D’Ambrogio Lack of UML extensions. Informal treatment of spatial redundancy.

Yacoub Execution scenario independent assumption. Parallel execution of components
is not supported. Component failure independence assumption

Rodrigues Component failure independence assumption.

Singh Component/connector failure independence assumption. Time-independent
failure probability.

Pai Use of class diagrams to represent hardware components and explicit error
propagation associations between hardware components.

Grassi Failure independence assumption.

David A Dysfunctional Behavior dababase needs to be constructed.

Cortellessa No annotations for hw failure supported.

Bernardi-a Limited scalability that may lead to the generation of intractable dependability
models from the analysis point of view.

Genero Lack of guidelines about how to use the proposed metrics to evaluate the
maintainability of the UML specifications.

Allenbi Operations in emergency/degraded states and multiple failure identification
are not supported.

Johannessen

Hansen Limited scalability that may lead to a time consuming activity.

Iwu Lack of relationships between UML specification and PFS requirements.

Liu The state-based modeling technique is not suitable for testing border (exact)
time values.

Hawkins Limited scalability in the hazard detection approach that may lead to an un-
controlled generation of mutant transitions.

Pataricza

Ober

Goseva Use case/scenario independent assumption.

Hassan Low traceability of the results derived from each applied severity technique.

Cancila

Zoughbi Use of dynamic concepts (defined with the profile) to extend static concepts.
This leads to mixed static/dynamic views in the same diagram (CD).

Lu Timing specification issues are vaguely dealt.

Bondavalli Introduction on unnecessary redundant information in the UML models, since
some input parameters require the joint use of more than one stereotype.

DeMiguel

Leangsuksun Node failure independence assumption, single-failure assumption.

DalCin Lack of support to the modeling of the interaction among dependability mech-
anisms and the system components.

Addouche Poor separation of concerns (new classes need to be defined and introduced in
the system model, beside the classes representing the system components).

Bernardi-b Expertise of the modeler required to specify the predicates/axioms in TRIO
language.

Mustafiz Failure assumptions limited to failures coming from the system environment
(hw sensor failure). Use of no standard state-charts (DA-Chart).

Zarras Object failure independence assumption.

Jiiriens

Bernardi-c Lack of support for the specification of path properties. Limited support for
the specification of FT mechanism (only redundancy aspects are dealt).

6. CONCLUSION

We have surveyed approaches in the literature addressing dependability modeling
and analysis of software systems specified with UML. The survey covers contribu-
tions published in the last decade that focus on different facets of dependability,
namely reliability, availability, maintainability and safety. Several open research
issues emerged from the study. Firstly, most of the works focus on reliability and
safety and fewer efforts have been devoted to availability and maintainability mod-
elling and analysis. Moreover, we have not found any work addressing specifically
how to extend UML with integrity NFP, which is also a dependability concern.

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 . Dependability modeling and analysis of software systems specified with UML

Secondly, the surveyed works provide support mainly in the early phases of the
software life-cycle (i.e., from requirement to design), while there is a lack of support
for later phases, as for example for testing dependability NFPs guided by the use
cases.

Thirdly, those contributions that support model transformation mainly focus on
obtaining formal models which are amenable for dependability analysis. However,
only a few go one step further to provide a feedback from the analysis results to
the original UML model specification, in order to pinpoint to requirement incon-
sistencies or design flaws. It is also worth noticing that tool support and method
validation are crucial factors to make an approach effectively applicable. Although
the majority of the surveyed approaches are characterized by a high automation
degree, most of them are not fully supported by a software tool. Moreover, in
many cases method validation consists only in applying the proposed method to
a case study. Considering the approaches that provide support for quantitative
dependability analysis, the validation of the correctness of the proposed methods
is in fact missing. More efforts should be devoted to the validation of the methods
themselves.

Last but not least, more research work should be invested in providing a standard
common UML framework for the modelling and analysis of several NFPs, in order
to support the consistent specification of different NFPs and their relationships,
as well as the trade-off analysis between different NFPs (such as performability,
performance and security, security and dependability).

A. UML AND PROFILE MECHANISM

The Unified Modeling Language [UML 2005] is a general purpose standardized
modeling language used for software development. It proposes a set of diagrams
that allow description of the structural and behavioral views of a system as well
as the hardware platform where the same is deployed. UML has an extensive tool
support.

The system structure may be described in UML by a component diagram and/or
a class diagram. The first contains components and connectors that can be pack-
aged or grouped to form subsystems, which in turn are grouped to form higher
level subsystems and eventually a system. Components can be logical or physical.
A component provides services offered through its interfaces and may require ser-
vices from other components. A class diagram allows for representing in detail the
internal structure of the system components. The behavioral view of the system is
specified using use cases, activity diagrams, sequence diagrams and state machines,
or a combination of them. Section A.1 offers some examples of UML diagrams and
a brief explanation to understand their basic features.

UML 2 introduced the profile mechanism as a meta-modeling technique to ex-
tend and adapt the language for different purposes. Reasons to extend UML are
of different nature, for example to introduce terminology adapted to a given plat-
form or domain (e.g., the EJB profile [UML-EDOC 2001]) or to add semantics not
already present in UML that can be used for model transformation purposes (e.g.,
the profile [UML-MARTE 2009] extends UML with concepts from the real-time and
embedded systems domain, facilitating the derivation of performance or schedula-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 45

<<net acl ass>>
UML::Classes::Kernel::Class

A

<<cl ockType>>
{nat ur e=dense,

<<st er eot ype>> uni t Type=Ti meUni t Ki nd}
clockType IdealClock
nature: TimeNatureKind[1]
unitType: Enumeration[0..1] currentTime(): Real
isLogical: Boolean[1]=false
resolAttr: Property[0..1] (b)

maxValAttr: Property[0..1]
offsetAttr: Property[0..1]

)

Fig. 13. UML stereotypes and tagged-values.

bility analysis models from UML+MARTE models). Since profiles are standard
extension mechanisms, they are recognized by standard UML tools and can be
exchanged among them.

Stereotypes and tagged-values are extension mechanisms used to define a profile.
A stereotype extends one or more UML meta-classes and can be applied to UML
model elements (components, states, transitions, etc.). For example, MARTE intro-
duces a stereotype for a well-known concept from the the real-time domain, that of
“type of clock” , which extends the UML meta-class “Class”. Figure 13 (a) depicts
the definition of the stereotype “clockType”. The stereotype can be applied to any
Class instance in a UML+MARTE model by labeling it with clockType, as shown
in Figure 13 (b). Last, tagged-values represent the attributes of the stereotypes;
for instance, in Figure 13 (a) are given the attributes of “clockType” stereotype
(nature, unitType and so on).

A.1 Examples of UML-annotated models

The purpose of this sub-section is twofold: on the one hand, a reader non-familiar
with UML can learn a few essential aspects of some of the most important UML
diagrams; on the other hand, we show excerpts of some of the works surveyed in
this paper. This way the reader can see how stereotypes and tagged-values are
used to model dependability concepts within UML models (it is informally known
as “UML-annotated models for dependability”).

A use case diagram (UCD) identifies the functionalities of the system at a high
abstraction level. Each functionality is depicted as an ellipse (called use case)
that interacts with actors (humans or other systems) to carry out the system re-
sponsibilities. Figure 14 depicts the UCD of a system meant to provide reliable
communication; it has only one use case and two actors, the client sending the
messages and the receiver. The use case is stereotyped as a reliability handler fol-
lowing [Mustafiz et al. 2008], which means that the use case addresses exceptional
situations that threaten system reliability. The diagram also depicts an annotation
from [Bernardi et al. 2009], which defines the use case as a service. This annotation

ACM Journal Name, Vol. V, No. N, Month 20YY.

46 . Dependability modeling and analysis of software systems specified with UML

ucb <<DaService>> B‘
availability=(expr=$Xack/$Xrequest, source=pred)}
[

<<realibility handler>>

Message Redundacy
Service

Client Receiver

DD
| <<stateful> .
<<stateless>> Receiver
i :E Payload
<<stateful>> Y
——Message

Replicator _,_| LAN—G_ IJ':, Pa(lpyload

N <<stateful>> i
Controller
Q

| <<stateful>>
<<variant>>

-

i

<<redundancy manager>>

Fig. 14. Use case diagram (UCD) and deployment diagram (DD).

assesses that service availability should be predicted (by analysis) as a rate of the
successful messages ($Xack) out of all delivered messages ($Xrequest).

The deployment diagram (DD) identifies the system software components as well
as the hardware nodes in which the former are deployed. In this case, we have used
the proposal of [Bondavalli et al. 2001; Majzik et al. 2003], see Figure 14. It iden-
tifies which software and hardware are stateful or stateless and which components
are working as redundancy managers, variants or adjudicators in a fault tolerance
architecture.

The sequence diagram shows the messages exchanged between the system compo-
nents. It provides useful constructors such as loops, alternatives or parallel execu-
tion. The example illustrated in Figure 15 corresponds to [Cortellessa and Pompei
2004]. It offers roles for the components, connectors and actors as well as probabil-
ities of execution or failure for all these elements. This sequence diagram partially
describes the system scenario represented by the previous use case, i.e., the message
replication service.

The activity diagram, see Figure 16, specifies the control flow of a component,
subsystem or system. It is widely used for modeling business processes, workflows or
system low level processes. It features most of the common control flow structures
such as decision, fork, join, loop or merge. Figure 16 models a partial behavior of
a reliable communication system and illustrate the failure specification using the
proposal of [Bernardi et al. 2009).

REFERENCES

ADDOUCHE, N., ANTOINE, C., AND MONTMAIN, J. 2006. Methodology for UML Modeling and
Formal Verification of Real-Time Systems. In International Conference on Computational In-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML

47

sd MRS/

{REaccessprob=0.6,
REserviceprob=(0.4,sd)(0.6,r

<<REuser>>

elj

<<REcomponent>>
{REcompfailprob=0.009.

REbp=1}

<<REcomponent>>

{REcompfainrob=0.OOl.Iﬁ
REbp=2}

Client

MessageReplicator

message(receiver,file)

create(receiverfile)

Controller

<<REgonnector>>
{REconnpfailprob=0.00!
REnymmsg=1}

<<REuser>>
Receiver

loop[2]

create(file)

Payload

loop[2]

result(myRes)

[

]:| s&dfile)

loop[2]

destroy()

[D decide()

[not OK]

noResult()

“1-._ message(file)

Fig. 15.

Sequence diagram.

S

compose log

scandvirus

/

Fig. 16.

decipher
contents

composeMsg
4receiver&seng

<<DaStep>>
{kind=failure;

failure=(Fcause=((occurrenceRate=
(value=100000,unit=s,source=assm))))}

Activity diagram.

telligence for Modelling Control and Automation (CIMCA 2006), International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC 2006). IEEE Com-
puter Society, Sydney, Australia, 17.
ADDOUCHE, N. AND ANTOINE, C.AND MONTMAIN, J. 2004. UML models for dependability analysis
of real-time systems. In Proc. International Conference on Systems, Man and Cybernetics.
Vol. 6. IEEE CS., The Hague, Netherlands, 5209-5214.
AJMONE-MARSAN, M., BALBO, G., CONTE, G., DONATELLI, S., AND FRANCESCHINIS, G. 1995.
Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing. John
Wiley and Sons, England.

ALLENBY, K. AND KELLY, T. 2001. Deriving safety requirements using scenarios. In 5th IEEE

ACM Journal Name, Vol. V, No. N, Month 20YY.

48 . Dependability modeling and analysis of software systems specified with UML

International Symposium on Requirements Engineering. IEEE Computer Society, Washington,
DC, USA, 228-235.

ANSI/IEEE. 1991. Standard glossary of Software Engineering Terminology. Tech. Rep. STD-
729-1991, ANSI/IEEE.

ARNOLD, T. 1973. The concept of coverage and its effect on the reliability model of a repairable
system. IEEE Transactions on Computers 22, 251-254.

ARP-4754 1994. Certification considerations for highly-integrated or complex aircraft systems.
Society of Automotive Engineers.

ARP-4761 1995. Guidelines and methods for conducting the safety assessment of civil airbone
systems and equipment. Society of Automotive Engineers.

AVIZIENIS, A. 1967. Design of fault-tolerant computers. In Proceedings of the Fall Joint Computer
Conference. AFIPS ’67 (Fall). ACM, New York, NY, USA, 733-743.

AviziENIS, A. 1985. The N-Version approach to Fault-Tolerant software. IEEE Transactions on
Software Engineering SE-11, 12, 1491-1501.

AviZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. 2004. Basic concepts and tax-
onomy of dependable and secure computing. IFEE Transactions on Dependable and Secure
Computing 01, 1, 11-33.

BALSAMO, S., MARCO, A. D., INVERARDI, P., AND SIMEONI, M. 2004. Model-based performance
prediction in software development: a survey. IEEE Transactions on Software Engineering 30, 5
(May), 295-310.

BELL, M. 2008. Service-Oriented Modeling (SOA): Service Analysis, Design and Architecture.
Wiley & Sons., Hoboken, New Jersey (US).

BERNARDI, S., DONATELLI, S., AND DONDOSsOLA, G. 2004a. A class diagram framework for
collecting dependability requirements in automation systems. In Proc. of the 1st International
Symposium on Leveraging Applications of Formal Methods (ISOLA’04). Dept. of Computer
Science, University of Cyprus, Paphos (Cyprus).

BERNARDI, S., DONATELLI, S., AND DONDOSSOLA, G. 2004b. Towards a methodological Approach
to Specification and Analysis of Dependable Automation Systems. In Proc. of the 15¢ Inter-
national Joint Conference on Formal Modelling and Analysis of Timed Systems (FORMATS)
and on Formal Techniques in Real-Time and Fault Tolerant System (FTRTFT). Springer,
Grenoble (France), 36-51.

BERNARDI, S. AND MERSEGUER, J. 2006. QoS Assessment via Stochastic Analysis. IEEE Internet
Computing 10, 3 (May-June), 32—42.

BERNARDI, S., MERSEGUER, J., AND PETRIU, D. 2009. A dependability profile within MARTE.
Software and Systems Modeling, 1-24. 10.1007/s10270-009-0128-1.

BiBa, K. J. 1977. Integrity considerations for secure computer systems. Tech. Rep. MTR-3153,
Mitre Corporation, Bedford MA. April.

BILLINTON, R. AND ALLAN, R. N. 1992. Reliability evaluation of engineering systems: concepts
and techniques. Springer.

Boenm, B. 1984. Verifying and validating software requirements and design specifications. IEEE
Software 1, 75-88.

BonbpavaLLl, A., DAL CIN, M., LATELLA, D., MaAJzik, 1., PATARICZA, A., AND SAVOIA, G. 2001.
Dependability analysis in the early phases of UML-based system design. Int. Journal of Com-
puter Systems Science & Engineering 16, 5, 265-275.

BPEL 2007. Web Services Business Process Execution Language. Version 2.0.

CANCILA, D., TERRIER, F., BELMONTE, F., DUuBoIS, H., EspINOzA, H., GRARD, S., AND CUCCURU,
A. 2009. Sophia: a modeling language for model-based safety engineering. In 2nd International
Workshop On Model Based Architecting And Construction Of Embedded Systems, S. Van Bae-
len, T. Weigert, I. Ober, and H. Espinoza, Eds. CEUR, Denver, Colorado, USA, 11-26.

CEA-LIST. 2008. Papyrus: open source tool for graphical UML modelling. Available at:
http://www.papyrusuml.org/.

CHILLAREGE, R., BHANDARI, I. S., CHAAR, J. K., HALLIDAY, M. J., MOEBUS, D. S., Ray, B. K.,
AND WONG, M.-Y. 1992. Orthogonal defect classification-a concept for in-process measure-
ments. [EEE Trans. Softw. Eng. 18, 943-956.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 49

CLARK, D. D. AND WILsON, D. R. 1987. A comparison of commercial and military computer
security policies. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE CS
Press, Oakland, California, USA, 184-195.

CLEMENTS, P. AND NORTHROP, L. 2001. Software Product Lines: Practice and Patterns. Software
Engineering Institute. Addison-Wesley, US.

CORTELLESSA, V. AND GRASSI, V. 2007. A modeling approach to analyze the impact of error
propagation on reliability of component-based systems. In Proceedings of the 10th interna-
tional conference on Component-based software engineering. CBSE’07. Springer-Verlag, Berlin,
Heidelberg, 140-156.

CORTELLESSA, V. AND PomPEI, A. 2004. Towards a UML Profile for QoS: a contribution in
the reliability domain. In Proceedings of the Fourth International Workshop on Software and
Performance (WOSP’04). ACM, New York, NY, USA, 197-206.

CORTELLESSA, V., SINGH, H., AND Cukic, B. 2002. Early reliability assessment of UML based
software models. In Workshop on Software and Performance. ACM, New York, NY, USA,
302-309.

DarL Cin, M. 2003. Extending UML towards a Useful OO-Language for Modeling Dependabil-
ity Features. In Proc. of 9th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2003 Fall). IEEE Computer Society, Anacapri (Capri Island),
Ttaly, 325-330.

D’AMBROGIO, A., IazEOLLA, G., AND MIRANDOLA, R. 2002. A method for the prediction of
software reliability. In Proc. of the 6-th IASTED Software Engineering and Applications Con-
ference (SEA2002). ACTA press, Cambridge, MA, USA.

Davip, P., IDASIAK, V., AND KRrRATZ, F. 2009. Improving reliability sudies with SysML. In
RAMSO09: Proceedings of the Reliability and Maintainability Symposium. IEEE Computer So-
ciety, Fort Worth, Texas, (USA).

DE SOUZA E SILVA, E. AND GAIL, H. R. 1989. Calculating availability and performability measures
of repairable computer systems using randomization. J. ACM 36, 171-193.

DEMIGUEL, M., LAMBOLAIS, T., PIEKAREC, S., BETGE-BREZETZ, S., AND PEQUERY, J. 2001. Au-
tomatic generation of simulation models for the evaluation of performance and reliability of
architectures specified in UML. In EDO’00: Revised Papers from the Second International
Workshop on Engineering Distributed Objects. Springer-Verlag, London, UK, 83-101.

EN-50126 1999. Application ferroviaires - Spécification et démonstration de Fiabilité, Disponi-
bilité, Maintenabilit’e et Sécurité (FMDS). Norme.

EN-50128 2001. Applications ferroviaires - Systéme de signalisation, de télécommunication et de
traitement - Logiciels pour systémes de commande et de protection ferroviaire. Norme.

EN-50129 2001. Application ferroviaires - Systéme de signalisation, de télécommunication et de
traitement - systémes électroniques relatifs a la sécurité pour la signalisation. Norme.

FokkiNGg, W. 2000. Introduction to Process Algebra. Springer-Verlag, Berling-Heidelberg.

GENERO, M., MANSO, E., VISAGGIO, A., CANOFRA, G., AND PIATTINI, M. 2007. Building measure-
based prediction models for UML class diagram maintainability. Empirical Software Engineer-
ing 12, 517-549.

GENERO, M., P1aTTINI, M., MANSO, E., AND CANTONE, G. 2003. Building UML class diagram
maintainability prediction models based on early metrics. In METRICS ’03: Proceedings of
the 9th International Symposium on Software Metrics. IEEE Computer Society, Washington,
DC, USA, 263.

Guezzi, C., MANDRIOLI, D., AND MORZENTI, A. 1990. Trio: A logic language for executable
specifications of real-time systems. J. Syst. Softw. 12, 2, 107-123.

GOKHALE, S. S. 2007. Architecture-based software reliability analysis: Overview and limitations.
IEEE Transactions on Dependable and Secure Computing 4, 1, 32—40.

GOSEVA-PoOPSTOJANOVA, K., HASSAN, A., GUEDEM, A., ABDELMOEZ, W., NASSAR, D. E. M., Am-
MAR, H., AND MiL1, A. 2003. Architectural-level Risk Analysis Using UML. IEEE Transactions
on Software Engineering 29, 10, 946—960.

GRASSI, V., MIRANDOLA, R., AND SABETTA, A. 2005. From design to analysis models: a kernel
language for performance and reliability analysis of component-based systems. In Proceedings

ACM Journal Name, Vol. V, No. N, Month 20YY.

50 . Dependability modeling and analysis of software systems specified with UML

of the Fifth International Workshop on Software and Performance (WOSP’05). ACM, New
York, NY, USA, 25-36.

GRASSI, V., MIRANDOLA, R., AND SABETTA, A. 2007. Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach. Journal of
Systems and Software 80, 4, 528-558.

HANSEN, K., WELLS, L., AND MAIER, T. 2004. HAZOP analysis of UML-based software archi-
tecture description of safety-critical systems. In Second Nordic Workshop on UML, Modeling,
Methods and Tools, K. Koskimies, L. Kuzniarz, J. Lilius, and I. Porres, Eds. TUCS, Turku,
Finland.

HassaN, A., GOSEVA-POPSTOJANOVA, K., AND AMMAR, H. 2005. UML Based Severity Analysis
Methodology. In Proc. of Annual Reliability and Maintainability Symposium (RAMS 2005).
IEEE, Alexandria, VA.

Hawkinags, R., ToyN, I., AND BATE, 1. 2003. An approach to Designing Safety Critical Systems
using the Unified Modelling Language. In Workshop on Critical Systems Development with
UML. San Francisco (USA), 3-18.

HosroRrD, J. 1960. Measures of dependability. Operations Researchs 8, 1, 204-206.

HuaNG, Y. AND KINDALA, C. 1996. Software fault tolerance in the application layer. In Software
Fault Tolerance, M. R. Lyu, Ed. John Wiley and Sons Ltd., Chapter 10, 231-248.

TEC-60300-3-1 2003. Dependability Management. Part 3: Application Guide, Section 1: Analysis
Techniques for dependability: Guide on methodology.

IEC-61131-1 1992. Programmable controllers, part 3: Programming languages. International
Electro-technical Commission.

TEC-61508 1998. Functional safety of electrical/electronic/programmable electronic safety-related
systems. International Electro-technical Commission.

IMMONEN, A. AND NIEMELA, E. 2008. Survey of reliability and availability prediction methods
from the viewpoint of software architecture. Software and System Modeling 7, 1, 49-65.

ISO/IEC 14764 2006. Standard for Software Engineering — Software Life Cycle Processes - Main-
tenance. International Organization for Standardization/International Electro-technical Com-
mission.

ISO/IEC9126-1.2 2001. Information technology - software product quality. part 1: quality model.
International Electro-technical Commission.

Iwu, F., GALLOWAY, A., MCDERMID, J., AND TOYN, I. 2007. Integrating safety and formal analyses
using UML and PFS. Reliability Engineering and System Safety 92, 2, 156-170.

JACOBSON, I. 1995. Object-Oriented Software Engineering: a Use Case driven Approach.
Addison—Wesley, Wokingham, England.

JURJENS, J. AND WAGNER, S. 2005. Component-based Development of Dependable Systems with
UML. In Component-Based Software Development, A. et al., Ed. LNCS, vol. 3778. Springer-
Verlag, Berlin/ Heidelberg, 320-344.

JOHANNESSEN, P.; GRANTE, C., ALMINGER, A., EKLUND, U., AND TORIN, J. 2001. Hazard analysis
in object-oriented design of dependable systems. In Proc. of the International Conference on
Dependable Systems and Networks (DSNO1). IEEE Computer Society, Washington, DC, USA,
507-512.

JOHNSON, B. W. 1989. Design and analysis of fault-tolerant digital systems. Addison-Wesley.

JuNnGeraus, R., SAAKE, G., HARTMANN, T., AND SERNADAS, C. 1996. Troll: a language for object-
oriented specification of information systems. ACM Trans. Inf. Syst. 14, 175-211.

JURJENS, J. 2003. Developing safety-critical systems with UML. In UML 2003, San Francisco.
LNCS, vol. 2863. Springer-Verlag, Berlin/ Heidelberg, 360-372.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4, 382—401.

LAzZOWSKA, E., ZAHORJAN, J., SCOTT GRAHAM, G., AND SEVCIK, C. 1984. Quantitative System
Performance: Computer System Analysis Using Queueing Network models. Prentice-Hall, New
Jersey (USA).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 51

LEANGSUKSUN, C., SONG, H., AND SHEN, L. 2003. Reliability modeling using UML. In Proceedings
of the International Conference on Software Engineering Research and Practice (SERP03),
B. Al-Ani, H. R. Arabnia, and Y. Mun, Eds. CSREA Press, Las Vegas, Nevada (USA), 259—
262.

LEVESON, N. G. 1995. Safeware. Addison-Wesley, USA.

LiTTLEWOOD, B. AND STRIGINI, L. 1993. Validation of ultrahigh dependability for software-based
systems. Commun. ACM 36, 69-80.

Liu, J., DEHLINGER, J., AND LuTz, R. R. 2007. Safety analysis of software product lines using
state-based modeling. Journal of Systems and Software 80, 11, 1879-1892.

Liu, J. W. 2000. Real-time Systems. Prentice Hall, Upper Saddle River, New York.

Lu, S. AND HaLaNG, W. A. 2007. A UML profile to model safety-critical embedded real-time
control systems. In Contributions to Ubiquitous Computing, B. J. Kramer and W. A. Halang,
Eds. Studies in Computational Intelligence, vol. 42. Springer, Berlin, Heidelberg, 197-218.

Lyu, M. 1995. Software Fault Tolerance. John Wiley & Sons, Ltd.

Lyu, M. R., Ed. 1996. Handbook of Software Reliability Engineering. IEEE Computer Society
Press, NY.

Majzik, 1., PATARICZA, A., AND BONDAVALLI, A. 2003. Stochastic Dependability Analysis of Sys-
tem Architecture Based on UML Models. In Architecting Dependable Systems, LNCS 2677,
R. De Lemos, C. Gacek, and A. Romanovsky, Eds. Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, New York, 219-244.

MEYER, J. F. 1980. On evaluating the performability of degradable computing systems. IEEE
Trans. Comput. 29, 720-731.

MIL-STD-1629A 1984. Procedures for performing failure mode effects and criticality analysis.
US Military standard, MIL-STD-1629A/ notice 2.

MIL-STD-882d 1999. System safety program requirements. MIL-STD-882, United States of
America.

MusTAFIZ, S. AND KIENZLE, J. 2009. DREP: A requirements engineering process for dependable
reactive systems. In Methods, Models and Tools for Fault Tolerance, M. J. Butler, C. B. Jones,
A. Romanovsky, and E. Troubitsyna, Eds. Lecture Notes in Computer Science, vol. 5454.
Springer, Berlin / Heidelberg, 220-250.

MUusTAFIZ, S., KIENZLE, J., AND BERLIZEV, A. 2008. Addressing degraded service outcomes and
exceptional modes of operation in behavioural models. In SERENE ’08: Proceedings of the 2008
RISE/EFTS Joint International Workshop on Software Engineering for Resilient Systems.
ACM, New York, NY, USA, 19-28.

MusTAFi1z, S., SUN, X., KIENZLE, J., AND VANGHELUWE, H. 2008. Model-driven assessment of
system dependability. Software and System Modeling 7, 4, 487-502.

OBER, I., GRAF, S., AND OBER, I. 2006. Validating timed UML models by simulation and verifi-
cation. STTT 8, 2, 128-145.

OCL 2010. Object Constraint Languageo. Version 2.2.

OpNet 1999. OpNet modeler. http://www.opnet.com/solutions/network_rd/modeler.html.

Pa1, G. J. AND DuGAN, J. 2002. Automatic Synthesis of Dynamic Fault Trees from UML System
Models. In Proc. of 13th International Symposium on Software Reliability Engineering (ISSRE-
02). IEEE Computer Society, Annapolis, MD, USA, 243-256.

Pataricza, A. 2000. From the General Resource Model to a General Fault Modelling Paradigm ?
Workshop on Critical Systems, held within UML’2000.

PaTARICZA, A. AND GYOR, F. 2004. Towards unified dependability modeling and analysis. In
Workshops Proceedings Organic and Pervasive Computing. Lecture Notes in Informatics. GI,
Gesellschaft fiir Informatik, Bonn, Germany, 113-122.

PATARICZA, A., MAJZIK, 1., HUSZERL, G., AND V‘ARNAY, G. 2003. UML-based design and formal
analysis of a safety-critical railway control software module. In In Proc. of Symposium Formal
Methods for Railway Operation and Control Systems (FORMS03), G. Tarnai and E. Schnieder,
Eds. Budapest (Hungary), 125-132.

ACM Journal Name, Vol. V, No. N, Month 20YY.

52 . Dependability modeling and analysis of software systems specified with UML

PowegLL, D. 1992. Failure mode assumptions and assumption coverage. In Fault-Tolerant Com-
puting, 1992. FTCS-22. Digest of Papers., Twenty-Second International Symposium on. IEEE
Computer Society, Boston, MA, USA, 386 —395.

RODRIGUES, G. N.; ROSENBLUM, D. S., AND UCHITEL, S. 2005. Reliability prediction in model-
driven development. In Model Driven Engineering Languages and Systems, 8th International
Conference (MoDELS 2005), L. C. Briand and C. Williams, Eds. Lecture Notes in Computer
Science, vol. 3713. Springer, Montego Bay, Jamaica, 339-354.

RTCA. 1992. Software considerations in airbone systems and equipment certification. Radio
Technical Commission for Aeronautics (RTCA), European Organization for Civil Aviation Elec-
tronics (EUROCAE), no.DO-178B/ED-12B.

RumBAavucH, J. E., BLana, M. R., PREMERLANI, W. J., EDDY, F., AND LORENSEN, W. E. 1991.
Object-Oriented Modeling and Design. Prentice-Hall.

SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN, L. 2004. Design and implementation
of a tcg-based integrity measurement architecture. In Proceedings of the 13th conference on
USENIX Security Symposium - Volume 13. SSYM’04. USENIX Association, Berkeley, CA,
USA, 223-238.

ScuMipT, D. C. 2006. Guest editor’s introduction: Model-driven engineering. [EEE Com-
puter 39, 2, 25-31.

SINGH, H., CORTELLESSA, V., Cukic, B., GUNEL, E., AND BHARADWAJ, V. 2001. A Bayesian
approach to reliability prediction and assessment of component based systems. In 12th In-
ternational Symposium on Software Reliability Engineering (ISSRE 2001), 27-80 November
2001, Hong Kong, China. IEEE Computer Society, Washington, DC, USA, 12-21.

STAHL, T. AND VOLTER, M. 2006. Model-driven software development. John Wiley & Sons, Ltd.,
New York.

SysML 2010. System Modeling Language. Version 1.2, formal/2010-06-01.

SzZYPERSKI, C. 1998. Component Software: Beyond Object-Oriented Programming. ACM Press
and Addison-Wesley, New York, NY.

TCG 2011. http://www.trustedcomputinggroup.org.

TriveEDI, K. 2001. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. John Wiley and Sons, NY.

UK Ministry of Defence 2000. HAZOP Studies on Systems Containing Programmable Electronics.
UK Ministry of Defence. Glasgow (UK).

UML 2005. Unified Modeling Language: Superstructure. Version 2.0, formal/05-07-04.
UML-EDOC 2001. UML Profile for Enterprise Distributed Object Computing. Version 1.0.

UML-MARTE 2009. UML profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE). Version 1.0, OMG document formal/2009-11-02.

UML-QoS&FT 2008. UML Profile for Modeling Quality of Service and Fault Tolerant Charac-
teristics and Mechanisms. V1.1, formal/08-04-05.

UML-SPT 2005. UML Profile for Schedulabibity, Performance and Time Specification. Version
1.1, formal/05-01-02.

VESELY, W., GOLDBERG, F., ROBERTS, N., AND HAAsL, D. 1981. Fault Tree Handbook. Sys-
tem and Reliability Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory
Commission, Washington, D.C. 20555.

WEYUKER, E. J. 1982. On Testing Non-Testable Programs. The Computer Journal 25, 4 (Novem-
ber), 465-470.

Yacous, S. M., Cukic, B., AND AMMAR, H. H. 2004. A scenario-based reliability analysis ap-
proach for component-based software. IEEE Transactions on Reliability 53, 4, 465—480.

7 2002. Z Formal Specification Notation: Syntax, Type System and Semantics. ISO/IEC
13568:2002 ed.

ZARRAS, A., VASSILIADIS, P., AND ISSARNY, V. 2004. Model-driven dependability analysis of web-
services. In On the Move to Meaningful Internet Systems 2004: CooplS, DOA, and ODBASE,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Dependability modeling and analysis of software systems specified with UML . 53

OTM Confederated International Conferences, Agia Napa, Cyprus, October 25-29, 2004, Pro-
ceedings, Part I, R. Meersman and Z. Tari, Eds. Lecture Notes in Computer Science, vol. 3291.
Springer, Berlin / Heidelberg, 1608-1625.

ZouGHBI, G., BRIAND, L., AND LABICHE, Y. 2006. A UML profile for developing airworthiness-
compliant (RTCA DO-178B) safety-critical software. Tech. rep., Carleton University, Canada,
tech.rep.SCE-05-19.

ZOUGHBI, G., BRIAND, L., AND LABICHE, Y. 2007. A UML Profile for Developing Airworthiness-
Compliant (RTCA DO-178B), Safety-Critical Software. In Proceedings of Models 2007, G. En-
gels, Ed. LNCS, vol. 4735. Springer-Verlag, Berlin, Heidelberg, 574-588.

ACM Journal Name, Vol. V, No. N, Month 20YY.

