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ABSTRACT
Security attacks aim to system vulnerabilities that may lead to oper-
ational failures. In order to react to attacks software designers use
to introduce Fault-Tolerant Techniques (FTTs), such as recovery
procedures, and/or Security Mechanisms (SMs), such as encryp-
tion of data. FTTs and SMs inevitably consume system resources,
hence they influence the system performance, even affectingits full
operability.

The goal of this paper is to provide a model-based methodology
able to quantitatively estimate the performance degradation due to
the introduction of FTTs and/or SMs aimed at protecting critical
systems. Such a methodology is able to inform software design-
ers about the performance degradation the system may incur,thus
supporting them to find appropriate security strategies while meet-
ing performance requirements. This approach has been applied to a
case study in the E-commerce domain, whose experimental results
demonstrate its effectiveness.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance measures;
C.4 [Performance of Systems]: fault tolerance, modeling tech-
niques; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Design, Performance, Security

Keywords
Critical Systems, Fault-Tolerant Techniques, Security Mecha-
nisms, Model-based Performance Prediction.
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1. INTRODUCTION
Communication networks are globally used to perform many

transactions: electronic purchases, bank transfers or even stock ex-
changes can be accomplished with a computer connected to a net-
work. This new concept of electronic market allows to perform
almost everything remotely, so saving a lot of time to the users.

The main drawback in this domain is that some bad human be-
haviours may occur: spam or junk mails, viruses, trojan horses
or other attacks are commonly suffered. For example, with the
Denial-of-Service (DoS) attack [12] multiple requests aresent to
a server with the intention of consuming its resources and, in last
term, bringing the server down. These harmful actions clearly have
an impact on the functionality of servers that might not be able to
attend all incoming requests, and finally might bring down their
services for saturation.

Relevant efforts of software designers are devoted on devising
the security strategies suitable to protect information and compu-
tational systems against not authorised accesses. In fact,when de-
signing critical systems it is fundamental to study the attacks that
may occur and plan how to react from them. The occurrence of
attacks in software systems leads software designers to introduce
different Fault-Tolerant Techniques (FTTs), such as recovery pro-
cedures, and/or Security Mechanisms (SMs), such as encryption of
data, in order to react to intrusions.

Despite these efforts, it is necessary to consider the coststhat
have to be incurred to guarantee a certain security level in critical
systems. In fact, the security costs can be very relevant andmay
span along different dimensions, such as budgeting, performance
and reliability [18,19]. In this paper we focus on the security costs
related to the system performance.

FTTs and SMs inevitably consume system resources hence
they influence the performance, even affecting its full operability.
Therefore, the necessity of balancing security and performance in
these systems becomes clear: security strategies must assure that
the system guarantees a minimal level of functionality.

This paper works towards this goal. We define a model-based
methodology able to quantitatively estimate the system perfor-
mance while introducing some FTTs and/or SMs aimed at protect-
ing critical systems. Such a methodology is able to inform software
designers about the performance degradation the system mayincur,
thus supporting them to find appropriate security strategies while
minimising performance penalties.

To this end, we make use of a library of models that represent
a subset of FTTs and SMs ready to be composed. Once a system
model is built, in order to conduct a joint analysis of security and
performance with our approach it is necessary: (i) to specify the



appropriate security annotations (e.g. the confidentiality of some
data), and (ii) to annotate the model with performance related data
(e.g. the system operational profile). Thereafter, such an annotated
model can be automatically transformed into a performance model
whose solution quantifies the prediction of performance properties
for the system under design.

The starting point of this work can be found in [7, 8, 22], where
we introduced a preliminary set of models aimed at representing
the most common security strategies: models for FTTs have been
introduced in [22], whereas models for SMs have been presented
in [8]. This paper jointly considers FTTs and SMs (namely, we
consider a subset of FTTs and SMs, as summarised in Section 2)
with the aim to enlarge the set of alternatives in the hands ofsoft-
ware designers while making critical systems more secure. The
final goal is to allow the addition of security strategies to agiven
system model thus to enable a model-based performance analysis.

The setting where our approach works is Unified Modelling
Language (UML) [20] for software modelling and Generalized
Stochastic Petri Nets (GSPNs) [1] for performance analysis.

UML models are aimed at representing the architecture of crit-
ical software systems. Such models can be extended for specific
purposes through a technique called profiling [17, 26]. A UML
profile defines a set of stereotypes and tagged-values which are
used to extend its semantic. In this paper we use two profiles:(i)
the Modelling and Analysis of Real-Time and Embedded Systems
(MARTE) profile [21] for the specification of performance prop-
erties that enable the performance analysis; (ii) and the Security
Analysis and Modelling (SecAM) profile [23] for the specification
of security properties.

UML annotated models are transformed into GSPN models, i.e.,
formal models representing the system for performance analysis
purposes. This choice has been driven by two main factors: (i)
GSPNs provide a formal notation which avoids any source of am-
biguity while representing the stochastic behaviour of systems;
(ii) GSPNs have a clear graphical notation and several toolshave
been developed for analysis. The transformation from UML to
GSPN can been carried out using well-established tools, such as
ArgoSPE [13], ArgoPN [10] or ArgoPerformance [11].

The remainder of the paper is organised as follows. Section 2
provides some background on the SMs and FTTs we consider while
designing critical systems. Section 3 presents our approach and
the types of analyses it can support. Section 4 reports the case
study we used to validate the approach, and experimental results
are discussed. Section 5 compares our approach with respectto the
existing literature. Finally, Section 6 provides concluding remarks
and future research directions.

2. BACKGROUND
This section provides some background on the security mecha-

nisms (see Section 2.1) and the fault-tolerant techniques (see Sec-
tion 2.2) we consider in this paper while designing criticalsystems.

2.1 Security Mechanisms
The Security Mechanisms we consider in this paper are:En-

cryption, which refers to the usage of mathematical algorithms to
transform data into a form that is unreadable without knowledge of
a secret (e.g. a key);Decryption, which is the inverse operation of
Encryption and makes the encrypted information readable again;
theDigital Signature, which is a mathematical scheme for demon-
strating the authenticity of a digital message or document through
its GenerationandVerification.

Some preliminary operations, such as the generation of public
and secret keys and the process of obtaining a certificate from a

certification authority, are executed once by all software entities in-
volved in the security annotations. The generation of public and
private keys involves a software component that sets the keytype
and length thus to generate the public and the private keys. The
process of obtaining a certificate from a certification authority in-
volves a software component that sends its information and its pub-
lic key; the certification authority checks the credentialsand, if
trusted, generates the certificate and sends it back to the software
component.

Encryption. The sender of the message decides the type of al-
gorithm to use and the key length. The encryption can be of two
different types: (i) asymmetric encryption (i.e., by public key); (ii)
symmetric encryption (i.e., by a shared secret key). For asymmet-
ric encryption the sender sets the padding scheme it requires and
verifies the receiver’s certificate if it is not already known. Finally,
the encryption algorithm is executed on the message with thepub-
lic key of the receiver. For symmetric encryption the sendersets the
algorithm mode, performs a key-exchange protocol if a shared key
is not already exchanged, and requires the exchange of certificates.
Finally, the encryption algorithm is executed on the message with
a session key obtained combining the keys generated by the sender
and the receiver.

Decryption. After receiving the encrypted message, the algo-
rithm type and the key length are extracted, and the decryption al-
gorithm is executed to obtain the plain text.

Digital Signature Generation. The hash function algorithm
must be specified, and the digest is generated. The encryption al-
gorithm is applied on the digest by using the software component
private key.

Digital Signature Verification. A message and the digital signa-
ture are received as inputs. Two operations are performed: the first
one is to calculate the digest; the second one is the actual execution
of the encryption algorithm applied on the input digital signature
producing a forecast of the real signature. The last computation in-
volves the verification of the digital signature which compares the
forecast digital signature with the received one, in order to confirm
the verification.

For sake of space the models of the aforementioned security
mechanisms are not reported, for further details please refer to [8].

2.2 Fault-Tolerant Techniques
Fault-Tolerant Techniques are added to mitigate the conse-

quences of faults that when exploited may lead to failures, i.e. to
assure that critical systems remain fully operative. FTTs are clas-
sified in: fault detection, fault recovery, fault handling and fault
masking [3]. Depending on when FTTs are applied, they are: (i)
either proactive techniques, when they mitigate the effectof the
failures as a way of prevention, i.e., without any previous proof of
having failures; (ii) either reactive techniques when theyare ap-
plied once some fault is detected; (iii) or proactive-reactive tech-
niques [27].

In [22], an initial FTT model library was introduced. Such a li-
brary contains a model of a proactive-reactive FTT inspiredin the
one given in [27]. In this paper, we extend such a FTT library with
two new FTTs techniques. The FTTs we consider in this paper
are: Switch Over FailingandPing And Restore. Both techniques
are fault detection and recovery reactive FTTs aimed at adding re-
dundancy capacity to the system, but in a different way.

Switch Over Failing. It provides an Intrusion Detection System
(IDS) which is in charge of analysing incoming requests, andfil-
tering legal ones to be correctly processed by the system. Besides,
the IDS defines a threshold that allows to establish an attacklimit.
When such a limit is exceeded, the IDS brings down the machine



alt [r is an attack]

d : WatchDogws : webServer

8: login(r)

1: loginRequest(r)

1.1.1: analyseRequest(r, nAttacks)

ws1 : webServer

1.1: newLoginRequest(r)

alt
[r is detected as attack]

4: switchOn(ws1)

2: ws1= prepareNextReplica()

«gaStep»

{hostDemand=

      (value=0.5; unit=ms; 

      statQ=mean; source=mea)}
4.1: start()

alt
[nAttacks > threshold]

3: switchO�(ws)

3.1: shutdown()

«gaStep»

{hostDemand=

      (value=0.6; unit=s; 

      statQ=mean; source=mea)}

5: request clear

7: request clear

6: repair()

«gaStep»

{hostDemand=

      (value=70.1; unit=s; 

      statQ=mean; source=mea)}

«gaStep»

{prob=$hitRate}

sd SwitchOverFailing

«gaStep»

{hostDemand=

      (value=$analyse; unit=ms; 

      statQ=mean; source=est)}

«gaStep»

{hostDemand=

       (value=30; unit=min; 

        statQ=mean; source=mea)}

alt

loop

loop m

[m < k]

[server is not down]

loop

t : timerm : monitorws1 : webServerws : webServer

6:

11.1:

11: switchOn(ws1)

10.1: 

10: switchO�(ws)

9: ws1 =

8:

7: t expired

5: ack

4: setTimeOut(t)
3: isAlive(ws)

1: wait()

2: initialise(m = 0)

cancelTimeOut(t)

increment(m)

shutdown()

prepareNextReplica()

start()

sd Ping&Restore

«gaStep»

{hostDemand=

      (value=$wait; unit=ms; 

      statQ=mean; source=est)}

«gaStep»

{hostDemand=

      (value=0.6; unit=s; 

      statQ=mean; source=mea)}

«gaStep»

{hostDemand=

      (value=70.1; unit=s; 

      statQ=mean; source=mea)}

«gaStep»

{hostDemand=

      (value=0.5; unit=ms; 

      statQ=mean; source=mea)}

«gaStep»

{hostDemand=

      (value=$tOut; unit=ms; 

      statQ=mean; source=est)}

(a) (b)

Figure 1: UML Sequence Diagram of the (a)SwitchOverFailing and (b) Ping&Restore Fault-Tolerant Techniques.

which is collecting the potentially harmful requests, and brings up
a new (and clean) machine replica.

Ping And Restore. It provides a Monitor software component
which observes the vulnerable system machines. When it finds
some of these machines in an undefined state (i.e., affected by at-
tacks), it brings down such a machine and brings up a new (and
clean) replica.

Note that in both FTTs the machine replica may have a different
operating system or software capabilities, as a way of mitigating
incoming illegal requests.

Figure 1(a) illustrates the UML Sequence Diagram (UML-SD)
of theSwitchOverFailingFTT. Grey notes indicate the system per-
formance properties and they are specified as annotations bymeans
of the MARTE profile. For example, thegaStep stereotype repre-
sents a part of the scenario (defined in sequence with other actions)
for which it is possible to indicate the demands of such a parton
the system resources, such as its execution on the host processor
(called itshostDemand attribute).

Each external incoming request is sent to theWatchDog
that analyses it; such an analysis requires processing resources
(hostDemand) of $analysemilliseconds (ms), which is a mean
value to be estimated.

Note that the request may be an attack or not, and it can be ei-
ther detected or not detected. When the request is not an attack,
the web server redirects the request to other services inside the sys-
tem. Successful attack detection occurs with a probabilityof $hi-
tRate. When the attack is detected and the threshold is reached, the
WatchDog prepares a redundancy replica to be switched on, starts
it (which has a duration of70.1 seconds [27]), and then it switches
off the server receiving the attacks, which has a cost of0.6 sec-
onds [27]. When the request is an attack but it is not detected, then
the server collapses and it needs to be repaired, and we assumed it
lasts for30 minutes. For such a duration the server is inoperative,
i.e., it is not attending new requests, because it represents the main-

tenance time, i.e., someone locally or remotely must fix the error or
restart the server.

It is worth to notice that input parameters of the model, suchas
$analyse, $hitRate, are values set by the IDS which implements
this FTT. That is, this model will be useful for performing sensitive
analysis of different IDS solutions.

Figure 1(b) depicts the UML-SD of thePing&RestoreFTT. The
cyclic behaviour of the monitor is as follows. It waits a certain
amount of time ($wait ms) and then initialise a variablem, which
counts the number of replicas in a non-functional state. Themon-
itor sets a timeout having a duration of$tOut ms and iterates up
to k machines to be recovered, asking for each machine if it is
alive. When the machine answers, then the monitor cancels the
timeout. Otherwise, the timeout is expired and the current machine
is marked for recovering. When the number of machines to be re-
covered are reached or all machines have been inspected, then the
monitor iterates preparing a new replica, switches off the faulty
machine and switches on the new replica.

As in the previous case, it is worthy of mention that input pa-
rameters of the model, such as$wait, $tOut, are values useful for
performing sensitive analysis of different monitor solutions.

3. OUR APPROACH
In this section we present a model-based methodology that al-

lows to quantify the trade-off between the security strategies intro-
duced to cope with the security attacks and the consequent perfor-
mance degradation.

In Figure 2 the process that we propose is reported. The process
has been partitioned in two sides: on the top-hand side all models
that can be represented with a software modelling notation (e.g.
UML) appear; on the bottom-hand side all models representedwith
a performance modelling notation (e.g. GSPN) appear.

The starting point of the process is aPerformance-Annotated
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Figure 2: A process to estimate the system performance whileadding Security Mechanisms and Fault-Tolerant Techniques.

Application Modelthat is a static and dynamic representation of
a software system. For sake of simplification, we assume thatsuch
a model is annotated with performance parameters related tothe
application such as the expected workload and system operational
profile. The standard MARTE profile [21] has been adopted to
specify performance parameters in our UML models.

A Security-Annotated Application Modelis obtained by intro-
ducing security annotations in the former. Such annotations spec-
ify wheresecurity strategies have to be inserted, namely which soft-
ware services have to be protected and how (e.g. some data must be
encrypted). Security annotations have been incorporated by theRe-
siliencepackage of the Security Analysis and Modelling (SecAM)
profile [23,24] that enables the specification of attacks, vulnerabil-
ities and intrusions in UML models. Security attacks are charac-
terised with their kind (i.e., flooding, spoofing or brute force), type
(i.e., active or passive), objective (i.e. DoS, run arbitrary code or
privilege escalation), class (i.e. virus, worm or buffer overflow) and
occurrence rate (i.e. the probability of success).

The task ofEnabling Security Mechanismshas been already
presented in [8]. This step is driven by the security annotations
specified in the application model, and aSMs-Enabled Application
Model is finally obtained. As an example, if a security annotation
specifies that data must be kept secret, an additional pattern with
the steps needed for the encryption mechanism must be introduced
in the system model. Such a pattern is one of the mechanisms mod-
elled in ourSecurity Mechanisms Library(see Section 2.1).

The task ofEnabling Fault-Tolerant Techniquesconsists in em-
bedding the appropriate fault-tolerant techniques in the system
model, and aFTTs-Enabled Application Modelis finally obtained.
As an example, if an attack annotation specifies that spoofingcan
be performed for a certain service, an additional pattern with the
steps needed for the FTT acting against such an attack must bein-
troduced in the system model wherever the service is invoked. Such
a pattern is one of the techniques modelled in ourFault-Tolerant
Techniques Library(see Section 2.2).

Note that both the security strategies we consider (i.e., SMs and
FTTs) can be analysed in isolation or can be jointly analysedwhile
merging the previous models (i.e., theSMs-Enabledand FTTs-
Enabledmodels) and aSMs-FTTs-Enabled Application Modelis
finally obtained.

A key aspect of our approach is the composability of models,

and this is achieved through two features: (i) entry points for FTTs
and SMs are unambiguously defined by security annotations, and
(ii) models in the SMs and FTTs libraries have been designed to be
easily composable with application models.

Shaded boxes of Figure 2 represent the models that can be finally
transformed into GSPN-basedPerformance Model(s). This step in-
volves not only a transformation between modelling notations1, but
an additional task is necessary to appropriately instrument the tar-
get performance model, because security strategies inevitably in-
troduce additional performance parameters to be set in the model.
The definition of such parameters is embedded in the securityli-
braries where they are defined in an application-independent way.
For example, the encryption mechanism introduces additional pa-
rameters affecting system performance, such as the complexity and
resource requirements of the encryption algorithm, its mode of op-
eration (e.g. CBC), the lengths of the keys, etc. Hence, the GSPN
performance model finally generated has to be carefully parame-
terised with proper performance data.

The GSPN performance models can be solved by means of any
available formal model analysis tools, such as the PeabraiN[25]
simulator, and the model evaluation provides performance indices
that jointly take into account the security strategies as well as the
performance features of critical systems. Note that such a trade-
off analysis can be conducted on multiple security settingsby only
modifying the security annotations and re-running the steps of our
approach. In fact, in Figure 2 we can define a certain multiplicity in
the security annotations to emphasise that different strategies can be
adopted for the same system design according to different settings.

Finally we observe that several types of analysis can be con-
ducted on the models built with this approach: (i) a performance
model with a set of security requirements can be compared with
one without security to simply study the performance degradation
introduced from certain security strategies; (ii) the performance
estimates from different performance models can be compared to
each other to study the trade-off between security and performance
across different design configurations.

1Well consolidated techniques have been exploited to transform
software models (e.g. UML models) into performance models (e.g.
GSPN), see [4] for an extensive survey on this topic.



4. CASE STUDY
Our approach has been applied to an E-Commerce System

(ECS). It is a web-based system that manages business data: cus-
tomers browse catalogues and make selections of items that need
to be purchased; at the same time, suppliers can upload theircata-
logues, change the prices and the availability of products etc.

An overview of the ECSPerformance-Annotated Application
Model (see Figure 2) is depicted in Figure 3.

Figure 3(a) reports the UML Use Case Diagram representing the
services we consider in our analysis. In particular, themakePur-
chaseservice is executed only if a customer has been properly
logged into the system, i.e., by invoking thelogin service. A logged
user can either make a purchase, with a probability of0.7 (as in-
dicated by the tagged value ofgaStep stereotype of the MARTE
profile), or asking for other services with a probability of0.3. The
gaScenario annotations inmakePurchaseremark the existence
of two different scenarios, one which occurs with a probability of
0.25 and has a duration of2.5ms, and the other one with a proba-
bility of 0.75 and an average duration of7.5ms.

Figure 3(b) reports the UML Deployment Diagram. ECS has a
number of web servers nodes which attend the incoming requests.
Such servers are connected through a Wide Area Network (WAN)
to a dispatcher node which forwards requests to a control node and
a database node, through a Local Area Network (LAN). A monitor
node is intentionally added to implement thePing&RestoreFTT,
and it will be used when designing security strategies.

Figure 3(c) reports the UML Sequence Diagram of thelogin ser-
vice. When a new login request arrives to the system, the web
server redirects it to the dispatcher, which diverts it to the user
controller. The latter component finally communicates withthe
database to get the actual user credentials (i.e., user nameand pass-
word). Once the user controller receives the user credentials from
the database, it verifies them against the ones provided by the user.
If verification is successful (which happens85% of times), then
the customer is logged into the system, and the corresponding ac-
knowledge is sent back to the web server.

Note that MARTE [21] annotations indicate, for instance, some
performance features of the system. For example, the incoming re-
quests to ECS are characterised by an incoming rate of$cusRate,
in terms of milliseconds (gaStep stereotype), see Figure 3(c).
The verification of user credentials (verifyUserCredentialsmethod)
consumes, on average,12.4ms, as specified in thehostDemand
tagged value, see Figure 3(c).

The rest of this Section is organized as follows. We firstly de-
scribe the experimental setting (see Section 4.1) of our case study:
the step-wise application of the approach presented in Section 3 is
discussed as well as the input parameters used for the experimen-
tation. Then we collect the experimental results (see Section 4.2)
of our case study: performance models are simulated and a perfor-
mance index (i.e., the throughput of the system) is studied across
different design configurations.

4.1 Experimental setting
The first step of our approach (see Figure 2) is to annotate the

performance-annotated application model by means of the SecAM
profile [23,24] in order to specify attacks, vulnerabilities and intru-
sions in UML models.

We assume that thelogin service can be the objective of exter-
nal attackers that have the objective of bringing down the system
while consuming its resources. The incoming requests are anno-
tated throughsecaAttackGeneratorstereotype describing an
attack occurrence probability of rate$attRate. Hence, we obtain a
Security-Annotated Application Model(see Figure 2).

Security annotations indicate to add several SMs and FTTs. In
particular, for our experimentation we consider: (i) SMs, i.e., en-
cryption and decryption, digital signature generation andverifi-
cation; (ii) FTTs, i.e., switch over failing and ping&restore. An
overview of the ECSSMs-FTTs-Annotated Application Model(see
Figure 2) is depicted in Figure 4.

The activity of enabling Security Mechanisms (see Figure 2)
leads to introduce SMs in the communication between the web
server and the dispatcher. Figure 4 shows that before sending data
the web server generates a digital signature (boxDSGeneration)
and encrypts the credentials inserted by the users (boxEncryption).
Both the digital signature and encrypted data are forwardedfrom
the dispatcher to the user controller and finally to the database. This
latter component needs to decrypt (boxDecrypt) the received data
and verifies the digital signature (boxDSVerification). Hence, we
obtained aSMs-Enabled Application Model(see Figure 2). We do
not execute the performance analysis of such model because such
experimentation has been already performed in [8], hence wede-
cided to only analyse such model in conjunction with application
models equipped with FTTs.

The activity of enabling Fault-Tolerant Techniques (see Figure
2) leads to introduce FTTs in order to protect the web server.Both
the FTTs we presented in Section 2.2 are considered in our exper-
imentation. In particular, the addition of FTTs gives rise to two
different system models: (i) theFTTs-Enabled Application Model
(SoF), where only theSwitch Over FailingFTT has been consid-
ered; (ii) theFTTs-Enabled Application Model (P&R), where only
thePing And RestoreFTT has been introduced. The SoF technique
is depicted in Figure 4, whereas a monitor node is intentionally
added to implement the P&R technique, as reported in Figure 3(b).
Hence, we obtained twoFTTs-Enabled Application Models (see
Figure 2).

The input parameters used for our experimentation have beenre-
ported in Table 1 (system resources and number of their instances)
and Table 2 (timing of system actions).

As already mentioned in Section 3, the definition of security
parameters is embedded in the Security-Annotated Application
Model (see Figure 2) where they are defined in an application-
independent way. However, the task of enabling security implies
the usage of such strategies at the application level, thus they can
be influenced by further application-dependent characteristics. For
example, the encryption mechanism efficiency is influenced by the
key length of the encryption algorithm, the speed of the CPU ex-
ecuting the encryption algorithm, the length of the messageto be
encrypted, etc. In particular, we refer to [2, 18, 27] in order to de-
termine reliable numerical values, whereas application-dependent
parameters come from the experimentation we conducted in [9].

In the sequel of this section the input parameters are definedas
follows. IDS parameters ($analyse, $hitRate) have been chosen
following values of an IDS given in [2] (a mean value for analysing
of 32.04ms, and a generic-attack detection rate of71.4%). The
input parameters for the monitor ($wait, $tOut) have been set to5
minutes and1ms, respectively. Timing of recovering replicas have
been taken from [27]. The timing values of the referenced UML-
SD SMs have been chosen from [9] and [18] while considering the
MD5 hash algorithm with a public key length of 1024 bits.

For incoming requests, we have set a rate equal to37 visitors per
second as happens in the Amazon site. We have estimated a think
time of registered customers of 2 minutes, and after such a time,
then the customer may decide either logout or make a purchase,
having a probability of0.3 and0.7, respectively. As it is shown in
Figure 3(a), a new purchase may have two different scenarios, each
one with different duration.
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Resource No. instances

webServer 50
dispatcher 40

userController 30
database 20

webServer (replicas) 5
watchDog 5

Table 1: Input parameters: system resources and number of
instances.

Method name/UML-SD Duration (ms)

login 0.5
checkLoginCustomer 0.5

checkLoginDB 0.5
checkCustomerItemDB 2
sendUserCredentials 0.5

verifyCustomerCredentials 12.4
acceptedCustomers 0.5

loginOK 0.5
UML-SD DSGeneration 107
UML-SD DSVerification 68

UML-SD Encryption 117
UML-SD Decryption 117

Table 2: Input parameters: execution times of system actions.

4.2 Experimental results
The experimentation has been conducted while considering the

following scenarios: (i) the Performance-Annotated Application
Model (see Figure 3); (ii) the FTTs-Enabled Application Model
(SoF), i.e., without SMs but withSwitchOverFailingFTT only; (iii)
the FTTs-Enabled Application Model (P&R), i.e., without SMs but
with Ping&RestoreFTT only; (iv) the SMs-FTTs-Enabled Appli-
cation Model (SoF), i.e., with SMs and theSwitchOverFailingFTT
only (see Figure 4); (v) the SMs-FTTs-Enabled Application Model
(SoF + P&R), i.e., with SMs and both FTTs.

The transformation from UML software models to GSPN perfor-
mance models has been carried out by ArgoSPE [13] tool. We have
used the PeabraiN simulator [25], which is a PNML-complianttool
and allows to simulate GSPNs in transient mode. We have simu-
lated an execution of the system of 2 hours with the input parame-
ters reported in Tables 1 and 2.

Figure 5 shows the experimental results. Figure 5(a) reports the
system throughput (transactions completed per unit of time) while
varying attack rates from0.05 to 0.4. When we consider attacks,
the system throughput of the performance-annotated application
model quickly drops down, reaching values lower than10

−4. In
fact, when the request is an attack but it is not detected, then the
server collapses and it needs to be repaired, and such procedure
lasts for30 minutes.

On the contrary, when FTTs are enabled, the system is able to
mitigate the effects of attacks, maintaining a certain level of server
availability. However, the throughput of the FTTs-EnabledAppli-
cation Model (SoF) is greater than the throughput of the FTTs-
Enabled Application Model (P&R). Finally, we can observe that
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when we consider a scenario with SMs and both FTTs then the
throughput outperforms any other combination. Ultimately, if the
system is subjected to an increasing probability of attacks, then
a better throughput is achieved while considering SMs and both
FTTs, rather than considering FTTs in an isolated way.

Figure 5(b) reports the system throughput while varying thein-
coming customers rate from5 to 40, and with a fixed attack rate of
1%, in all the considered scenarios. As it is shown, the through-
put in the performance-annotated application model and with the
P&R FTT only remains quite constant despite the increasing of the
incoming customers rate. The throughput in the latter scenario,
however, outperforms the former. In the rest of scenarios, the more
incoming customers, the more throughput is achieved. The highest
throughput is obtained in the scenario where SMs and both FTTs
have been added. These results show that such scenario, i.e., SMs-
FTTs-Enabled Application Model (SoF + P&R), is able to success-
fully support the increasing rate of incoming customers.

We can conclude that the conjunction of both FTTs techniques
is beneficial for the application model. As future work we plan to
investigate the system throughput while varying the probability of
detecting attack conditions, i.e., by increasing the detection rate of
the IDS algorithm.

We recall that the goal of this paper is to validate a methodology
that applies FTTs and SMs at the architectural level by enabling the
possibility of computing performance impact before deployment.
More in general, several security capabilities can be tested to find
the most suitable options.

From a performance analysis viewpoint, our experimentation
follows standard practices: a performance model is built, instru-
mented with input parameters and finally evaluated through simu-
lation. Further experimentation can be conducted by instrumenting
the model with different numerical values for the input parameters.
As future work, we plan to apply our approach to other real world
examples in order to assess the scalability of the framework.

5. RELATED WORK
The problem of analysing the performance of security technolo-

gies has been widely addressed in literature, in particularmost of
the studies focus attention on the performance of existing standards
such as IPsec and SSL. Examples of research investigation inthis
direction can be found in [5,14,16].

Security properties are often considered in trade-off withother
features, for example in [18] the security is considered while min-
imising performance penalties. Our aim is similar to this one be-
cause we also target an analysis of how security strategies impact
on system performance. However, in [18] the analysis is conducted
using a specific security protocol (i.e., SSL) and a limited set of
cryptographic algorithms, whereas our methodology is intended to
enlarge the set of design options while modelling and analysing
more general solutions.

Estimating the performance of a system with different security
properties is a difficult task, as demonstrated in [15], where differ-
ent measurements on different platforms have been performed to
compare secure and non-secure Web services, RMI and RMI with
SSL. Our work differs from [15] because we estimate the system
performance before the deployment with the possibility of targeting
different platforms.

An experimental approach with regard to the performance evalu-
ation of security services is presented in [6] where security applica-
tions are planned and implemented with embedded security strate-
gies, and subsequently monitored. Our approach differs from [6]
because we adopt a model-based approach to predict the system
performance, hence no implementation of the system is required.

Some works use the aspect-oriented modeling (AOM) paradigm
to specify and integrate security risks and strategies intoa system
model, such as the one in [28]. It models security solutions as as-
pects in UML, and the annotated model is transformed into a per-
formance model. This work uses an approach to the problem that
is similar to ours, in that they are both based on model annotations
and transformations. However, our work targets the problemof
representing security strategies while guaranteeing certain security
properties, whereas the analysis in [28] is only performed on the
SSL protocol.

The lack of a model-based approach to this problem is the ma-
jor motivation behind our work. This paper aims at overcoming
the limitations of ad-hoc solutions (i.e., the well assessed secu-
rity protocols like IPsec and SSL) that estimate the performance
of specific security technologies. To achieve this goal, we propose
a methodology that makes use of platform-independent models of
security strategies (i.e., Fault-Tolerant techniques, security mecha-
nisms) with the aim to inform software designers about the perfor-
mance of different design solutions for critical systems.

6. CONCLUSION AND FUTURE WORK
Security attacks aim to system vulnerabilities that, when achieve

success, may lead to system failures. As an attempt to mitigate
these effects, software designers use to introduce Fault-Tolerant
Techniques (FTTs) and/or Security Mechanisms (SMs). However,
FTTs and SMs inevitably consume system resources, hence they
influence system performance, in the worst case affecting its full
operability.

In this paper we provided a model-based methodology able to
quantitatively estimate the system performance while introducing
FTTs and/or SMs aimed at protecting critical systems. The main
goal of this methodology is to introduce different securitymodels
and compose them with software architectural models, thus to sup-
port software designers to find appropriate security strategies while
meeting performance requirements.

We validated our proposal by applying it to a case study. The ex-
periments put on evidence that our approach enables the estimation
of system performance when adding security protection strategies,
and sensitive analysis (testing various security alternatives) can be
carried out as support while designing critical systems.

There exist many security techniques that may affect systemper-
formance, such as the use of firewalls, security protocols, remote
logging, etc. For this paper, we only considered a subset of FTTs
and SMs, however, as future work, the subset of techniques may be
enlarged to enable the verification of (possibly future) techniques.

We consider this work as a starting point for investigating even
more sophisticated tradeoffs, for example it would be relevant to
study the tradeoff between security and other non-functional at-
tributes, such as availability. In particular, addressingthe problem
of quantifying and locating data replicas for availabilitypurposes
without heavily affecting the security of the system may be crucial
in certain domains.

Finally, we plan to automate the steps of our approach by means
of a tool, thus to provide guidelines to software designers about the
best choices of Fault-Tolerant techniques and security mechanisms
for the attacks systems may suffer.
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