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Abstract—Many artificial systems can be modeled as discrete
dynamic systems in which resources are shared among different
tasks. The performance of such systems, which is usually a sys-
tem requirement, heavily relies on the number and distribution
of such resources. The goal of this paper is twofold: first, to
design a technique to estimate the steady-state performance of
a given system with shared resources, and second, to propose
a heuristic strategy to distribute shared resources so that the
system performance is enhanced as much as possible. The systems
under consideration are assumed to be large systems, such as
service-oriented architecture (SOA) systems, and modeled by a
particular class of Petri nets (PNs) called process PNs. In order to
avoid the state explosion problem inherent to discrete models, the
proposed techniques make intensive use of linear programming
(LP) problems.

Index Terms—Discrete event systems (DESs), performance eval-
uation, Petri nets (PNs), software performance.

I. INTRODUCTION

NOWADAYS, the majority of systems in several domains
(such as manufacturing, logistics, or web services) are

complex systems using shared resources. Usually, the number
of resources is the key for the system to obtain a good through-
put (defined as jobs completed per unit of time) for a large
number of users/clients. However, the number of resources
(e.g., the number of servers) cannot be always increased as
desired. In the real world, each project of a new system manages
a budget, and this budget limits the number of resources that can
be acquired.

Many artificial systems can be naturally modeled as dis-
crete event systems (DESs). Unfortunately, these systems are
usually large, and this makes the exact computation of their
performance a highly complex computational task. The main
reason for this complexity is the well-known state explosion
problem. As a result, a task that requires an exhaustive state-
space exploration becomes unachievable in a reasonable time
for large systems.

The framework of this paper is that of a DES dealing with
the resource-allocation problem, also called resource-allocation
systems (RASs) [1], modeled with Petri nets (PNs); more
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precisely, we will focus on process PNs [2]. A large number
of works in the literature deal with RASs from a qualitative
point of view (computing deadlock avoidance [3]–[7] or siphon
structures [8], [9]), whereas our vision here is different: We
focus on the quantitative point of view. In particular, the goals
of this paper are: 1) to efficiently estimate the throughput of a
system; and 2) to find a near-optimal distribution of resources
for the so-called process PNs. To the best of our knowledge, this
resource optimization issue has not been studied in the research
community for process PNs.

To fulfill these goals, in this paper, we propose in the first
place an iterative strategy to compute upper throughput bounds
closer to the real throughput1 than those achieved in previous
works [10], [11]. In the second place, we propose a heuristic
iterative strategy to gauge in the best possible way the number
of resources needed so that the overall system throughput is
maximized. Both strategies use linear programming (LP) tech-
niques for which polynomial complexity algorithms exist, thus
offering a good tradeoff between accuracy and computational
complexity.

Let us summarize how the strategies presented here work.
The strategy for obtaining sharper (i.e., closer to the real
throughput) upper throughput bounds is based on the compu-
tation of bottlenecks. It calculates in the first step the slowest
part of the system, i.e., the initial bottleneck of the system.
After that, in each iteration, the most likely part of the system
to be constraining the current bottleneck is calculated, and
the union of both parts is considered to calculate the new
upper throughput bound. The heuristic strategy for resource
optimization is aimed at calculating the number of resources
required for the bottleneck in order not to constraint the system
throughput.

Both strategies can be applied to any real-life application
whose PN model matches the net class considered in this paper,
i.e., process PNs. This kind of real-life application can be
found in manufacturing, logistics, or other systems, such as
web services. In general, such applications represent real-life
problems where resources are shared.

Running example. Let us consider a simple supermarket,
where customers arrive and look for the products that they
want to buy. After spending some time in the supermarket,
the customer wants to pay for the products and goes to the
checkout. The customer may choose to pay either in cash (with
probability p ∈ [0, . . . , 1]) or by a credit card (with probability
1− p). In the latter case, the cashier will need a point-of-sales

1The notion of real throughput refers to the throughput of the system
modeled, which can be calculated by exact analysis or simulation.
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Fig. 1. Example of a supermarket system.

(PoS) terminal to complete the payment. Fig. 1 depicts a PN
modeling of the supermarket system. The PN represents the
number nC of clients (initial marking of place p0) and the num-
ber nS of cashiers (initial marking of place p2) who attend to
the customers and the PoS terminals, represented by the initial
marking nP of place p6. Immediate transitions are represented
by a black box, whereas exponential transitions are depicted
by a white box. The think time of customers is represented by
transition t1, which follows an exponential distribution with
mean δ1 = 30 min, whereas transition t3 represents the time
for attending to customers, which follows an exponential dis-
tribution with mean δ3 = 2 min. The choice of the mode of
payment is represented by place p4. A payment in cash occurs
with probability w4 = 0.4, whereas credit card payment has
probability w5 = 0.6. The use of the PoS terminals (represented
by transition t7) takes, in terms of time, about 5 min, i.e.,
δ7 = 5, Finally, the cashier spends, on average, δ7 = 2 min on
completing the customer transaction, which is represented by
transition t9.

With the above PN configuration, it is interesting to know,
for example, where the bottleneck of the system is. Is the
slowest part of the system the cashier’s work or is it the PoS
terminal? Another question of interest is whether the system’s
resources are sufficient to attend to an expected number of
customers. Suppose that there is a budgetary limitation on
the supermarket’s expenditure and that the cost of hiring new
cashiers and buying new PoS terminals is known. Where and in
what ratio should the money be spent? These are the kinds of
questions dealt in this paper.

Suppose an initial marking of nC = 5 expected customers,
nS = 2 cashiers, and nP = 2 PoS terminals. With this initial
configuration, no matter how many new cashiers are hired or
how many new PoS terminals are bought, the resources impose
no constraint on the system. There are enough resources to
attend to this number of customers with a think time of δ1 =
30 min. Nevertheless, if the number of expected customers is
set to nC = 100, and the same think time is considered, the
bottleneck in the system will be in the number of cashiers. This
indicates that more cashiers should be hired if it is desired to
attend to customers with the same think time.

This paper is organized as follows. Section II discusses
related work. In Section III, some basic concepts are intro-
duced, such as the kind of PNs that we are dealing with. In
Section IV, a new iterative algorithm for performance es-
timation is presented, whereas a new resource optimization
technique is explained in Section V. Section VI introduces

a case study to demonstrate our methods and describes the
experiments carried out, together with our conclusions. Finally,
Section VII summarizes the main contributions of this paper.

II. RELATED WORK

Performance estimation using PNs has been extensively stud-
ied. Some works are concerned with the exact computation
of analytical measures of performance [12], whereas others
overcome the state explosion problem providing performance
bounds [10], [11], [13]–[15]. The use of performance bounds,
on which our approach is based, avoids the necessity of cal-
culating the whole state space. The advantage of using per-
formance bound computation is the reduced computing time,
but its drawback is the difficulty of assessing how accurate the
computed bound is with respect to the real system performance.

One of the first works on performance bound computation
is [13], where strongly connected marked graphs (MGs) with
deterministic timing are considered, and the reachability of the
computation bound is proven. Some other works that compute
performance bounds use LP techniques [10], [11] in the same
way as in our approach. These bounds are frequently calculated
by using the first-order moment (i.e., the mean) of the distribu-
tions associated to the firing delay. Such bounds were improved
in [14] for the particular case of MGs by using regrowing
techniques (i.e., by adding more components to the initial
bottleneck of the net). In [15], the second-order moment is used
to obtain a sharper (i.e., more accurate) performance bound.

Other works provide bounds for queueing systems instead
of PN models, e.g., [16]–[18]. In [16], Haddad et al. give space
complexity upper and lower bounds for Stochastic PNs with
a product-form solution. In [17], Casale et al. propose perfor-
mance upper and lower bounds for closed queueing networks
with general independent and nonrenewal services. They use
LP techniques on the queue activity probabilities. In [18],
Osogami and Raymond provide upper and lower bounds on
the tail distribution of the transient waiting time for a general
independent service queue. They use the two first moments
of the service time and interarrival time and compute the
bounds through semidefinite programming, which is a convex
optimization technique used for optimization of complex
systems. In contrast, our approach uses first-order moment and
LP techniques.

Resource optimization and its usage have already been stud-
ied for workflow PNs (WF-nets) [19] or some variants [20]–
[22]. The underlying PN model of WF-nets is free-choice nets
(FCNs). However, the kind of systems that we are considering
cannot be modeled through FCNs. In the systems that we
consider, there may be conflicts in the resource acquisition syn-
chronization, which is not allowed in FCNs. Li et al. propose in
[19] an approach to estimate the resource availability by using
continuous-time Markov chains (CTMCs) and compute the
turnaround time (i.e., the shortest response time) by performing
reduction operations on the original WF-net. This performance
analysis has exponential complexity in the worst case, whereas
our approach has polynomial complexity due to the use of
LP techniques. Resource usage could be computed in our
approach by calculating the average marking of resource places
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in the PN system. In [20], Wang and Zeng provide a method
for computing the best implementation case for a workflow
represented by a PN model, based on the reachability graph.
Such a method, however, can suffer scalability problems if the
workflow size is large. In [21], Hee et al. provide an algorithm
to compute optimal resource allocation in stochastic WF-nets.
Such an algorithm suffers from scalability problems because its
complexity depends on the number of resources. In contrast,
our approach only depends on the net structure, irrespective
of the number of resources in the system. Therefore, for large
systems with a great number of resources, our approach is more
tractable than that set out in [21]. Chen et al. propose in [22] a
new PN model, called the Resource Assignment PN, to define
how resources are shared and assigned among different and
concurrent project activities. The computation of the execution
project time considers deterministic timing, and unlike our
approach, this new PN model is not able to model activities
acquiring and releasing resources intermittently.

Another important issue related to resource sharing is dead-
lock prevention. The common use of system resources in con-
current systems may lead to deadlock problems, i.e., a process
waits for the evolution of another process or processes, whereas
the latter also wait for the former to evolve. In order to deal with
such problems, there exist deadlock prevention or avoidance
policies that may be applied for assuring the liveness property,
thus avoiding deadlocks [3]–[7], [23], [24]. As this issue has
been extensively studied in the literature (a recently published
review can be found in [7]) and is not the main focus of this
paper, we assume that all the PNs considered here are live.

With respect to the aforementioned works, the contributions
of this paper are the following. First, we provide a method to
compute upper throughput bounds with greater accuracy than
the upper bounds achieved in the aforesaid works. Then, we
provide a heuristic iterative strategy to distribute, for a given
budget, the number of resources in the best possible way so that
the overall system throughput is maximized.

III. PRELIMINARY CONCEPTS AND DEFINITIONS

Some basic concepts are introduced here regarding the spe-
cial class of PNs that we are considering and its main char-
acteristics. First, we define PNs in the untimed framework
and the process PN formalism. Subsequently, we define timed
PN systems (visit ratios, average marking, and steady-state
throughput). In what follows, the reader is assumed to be
familiar with PNs (see [25] for a gentle introduction).

A. Untimed PNs

Definition 1: A PN [25] is a 4-tuple N =〈P, T,Pre,Post〉,
where:

• P and T are disjoint nonempty sets of places and transi-
tions (|P | = n, |T | = m);

• Pre (Post) are the preincidence (postincidence)
nonnegative-integer matrices of size |P | × |T |.

The preset and postset of a node v ∈ P ∪ T are defined as
•v = {u ∈ P ∪ T |(u, v) ∈ F} and v• = {u ∈ P ∪ T |(v, u) ∈
F}, respectively, where F ⊆ (P × T ) ∪ (T × P ) is the set of

directed arcs. A PN is said to be self-loop free if, ∀p ∈ P ,
t ∈ Tt ∈ •p implies t �∈ p•. Ordinary nets are PNs whose arcs
have weight 1. The incidence matrix of a PN is defined as
C = Post−Pre.

A vector m ∈ Z
|P |
≥0 that assigns a nonnegative integer to each

place is called a marking vector or marking.
Definition 2: A PN system or marked PN S = 〈N ,m0〉 is

PN N with initial marking m0.
The set of markings reachable from m0 in N is denoted as

RS(N ,m0) and is called the reachability set.
A place p ∈ P is k-bounded if and only if, ∀m ∈

RS(N ,m0), m(p) ≤ k. Net system S is k-bounded if and only
if each place is k-bounded. A net system is bounded if and
only if there exists some k for which it is k-bounded. Net N
is structurally bounded if and only if it is bounded no matter
which m0 is the initial marking.

A transition t ∈ T is enabled at marking m if m ≥ Pre(·, t),
where Pre(·, t) is the column of Pre corresponding to tran-
sition t. A transition t enabled at m can fire, yielding a new
marking m′ = m+C(·, t) (reached marking). This is denoted

by m
t−→ m′. A sequence of transitions σ = {ti}ni=1 is a firing

sequence in S if there exists a sequence of markings, such that

m0
t1−→ m1

t2−→ m2 · · ·
tn−→ mn. In this case, marking mn is

said to be reachable from m0 by firing σ, and this is denoted
by m0

σ−→ mn. The firing count vector σ ∈ Z
|T |
≥0 of the firing

sequence σ is a vector, such that σ(t) represents the number of
occurrences of t ∈ T in σ. If m0

σ−→ m, then we can write in
vector form m = m0 +C · σ, which is referred to as the linear
(or fundamental) state equation of the net.

Two transitions, i.e., t and t′, are said to be in structural
conflict if they share, at least, one input place, i.e., •t ∩ •t′ �= ∅.
Two transitions t and t′ are said to be in effective conflict for a
marking m if they are in structural conflict and if they are both
enabled at m. Two transitions t and t′ are in equal conflict if
Pre(·, t) = Pre(·, t′) �= 0, where 0 is a vector with all entries
equal to zero.

A transition t is live if it can be fired from every reachable
marking. A transition t is dead for a reachable marking m if

and only if ∀m′ ∈ RS(N ,m), ¬(m t−→ m′). A marked PN S
is live when every transition is live.

A p-semiflow is a nonnegative-integer vector y ≥ 0, such
that it is a left annuler of the net’s incidence matrix, i.e.,
y ·C = 0 (in the sequel, we omit the transpose symbol in
the matrices and vectors for clarity). A p-semiflow implies a
token conservation law independent from any firing of tran-
sitions. A t-semiflow is a nonnegative-integer vector x ≥ 0,
such that it is a right annuler of the net’s incidence matrix,
i.e., C · x = 0. A p-semiflow (or t-semiflow) v is minimal
when its support, i.e., ‖v‖ = {i|v(i) �= 0}, is not a proper
superset of the support of any other p-semiflow (or t-semiflow),
and the greatest common divisor of its elements is 1. For
example, the PN depicted in Fig. 1 has three minimal
p-semiflows: ‖y1‖={p0, p1, p3, p4, p5, p7, p8, p9, p10}, ‖y2‖=
{p2, p3, p4, p5, p7, p8, p9, p10}, and ‖y3‖ = {p6, p7, p8}. A PN
is said to be conservative (consistent) if there exists a
p-semiflow (t-semiflow), which contains all places (transitions)
in its support.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

A PN is said to be strongly connected if there is a directed
path joining any pair of nodes of the graph. A state machine
is a particular type of an ordinary PN, where each transition
has exactly one input arc and exactly one output arc, i.e., |t•| =
|•t| = 1 ∀t ∈ T . In this paper, we focus on process PNs, which
are defined as follows [2]:

Definition 3: A process PN is a strongly connected self-
loop-free PN N = 〈P, T,Pre,Post〉, with the following
characteristics.

1) P = P0 ∪ PS ∪ PR is a partition, such that P0 = {p0} is
the process-idle place PS �= ∅, PS ∩ P0 = ∅, PS ∩ PR =
∅; PS is the set of process-activity places; and PR =
{r1, . . . , rn}, n > 0, PR ∩ P0 = ∅ is the set of resources
places.

2) Subnet N′ = 〈P \ PR, T,Pre,Post〉 is a strongly con-
nected state machine, such that every cycle contains p0.

3) For each r ∈ PR, there exists a unique minimal
p-semiflow associated to r, yr ∈ N

|P |, fulfilling ‖yr‖ ∩
PR = {r}, ‖yr‖ ∩ PS �= ∅, ‖yr‖ ∩ P0 = ∅ and yr(r) =
1. This establishes how each resource is reused, i.e., the
resources cannot be created or destroyed.

4) PS =
⋃

r∈PR
(‖yr‖ \ {r}).

Definition 3 implies that process PNs are conservative and
consistent.

Let N = 〈P, T,Pre,Post〉 be a process PN. A vector m0 ∈
Z
|P |
≥0 is called acceptable initial marking [2] of N if and

only if: 1) m0(p) ≥ 1, p ∈ P0; 2) m0(p) = 0, ∀p ∈ PS ; and
3) m0(r) ≥ yr(r), ∀r ∈ PR, where m0(r) is the capacity
of the resource r, and yr is the unique minimal p-semiflow
associated to r.

Definition 4: A process PN system or marked process PN
S = 〈N ,m0〉 is a process PN N with an acceptable initial
marking m0.

In this paper, we assume that the first acquired resource in
the process PNs under study is a resource that represents the
maximum capacity of the process, its capacity always being
greater than the number of instances in the process-idle place.
Therefore, such a resource place becomes implicit, and we do
not consider it for the analysis.

B. Timed PNs

Definition 5: A timed process PN (TPPN) system is a tuple
〈S, s, r〉, where S is a process PN system, s ∈ R

|T |
≥0 is the vector

of average service times of transitions, and r ∈ N
|T |
>0 is the

vector of rates associated to transitions.
If s(t) > 0, then transition t is a timed transition. Otherwise,

i.e., s(t) = 0, transition t is immediate. It will be assumed that
all transitions in conflict are immediate. Immediate transition t
in conflict will fire with probability r(t)/(

∑
t′∈A r(t′)), where

A is the set of enabled immediate transitions in conflict. The
firing of immediate transitions consumes no time. When a timed
transition becomes enabled, it fires following an exponential
distribution with mean s(t). There exist different semantics for
the firing of transitions, infinite and finite server semantics being
the most frequently used. In this paper, we will assume that the
timed transitions work under infinite server semantics.

The average marking vector m in an ergodic PN system is
defined as [26]

m(p) =
AS

lim
τ→∞

1

τ

τ∫
0

m(p)udu (1)

where m(p)u is the marking of place p at time u and the
notation =

AS
means equal almost surely.

Similarly, the steady-state throughput χ in an ergodic PN is
defined as [26]

χ(t) =
AS

lim
τ→∞

σ(t)τ
τ

(2)

where σ(t)τ is the firing count of transition t at time τ .
By definition, all the places of a TPPN are covered by

p-semiflows; therefore, it is structurally bounded. In this paper,
we will assume that the TPPN under study is a live and
structurally bounded net with freely related t-semiflows (i.e.,
an FRT-net) [27]. The range of nets fulfilling these conditions
are relatively broad. Examples of TPPNs that are FRT-nets are:
TPPNs in which N′ is choice free, and TPPNs in which N′

satisfies that every conflict is an equal conflict. It is known
that the CTMC associated to these nets is ergodic [27], which
implies the existence of the given limits.

The vector of visit ratios expresses the relative throughput
of transitions in the steady state. The visit ratio v(t) of each
transition t ∈ T normalized for transition ti, i.e., vti(t), is
expressed as follows:

vti(t) =
χ(t)

χ(ti)
= Γ(ti) · χ(t) ∀t ∈ T (3)

where Γ(ti) = 1/(χ(ti)) represents the average interfiring time
of transition ti.

In FRT-nets, the vector of visit ratios v exclusively depends
on the structure of the net and on the routing rates [27]. Thus,
the vector of visit ratios v normalized for transition ti, i.e.,
vti , can be calculated by solving the following linear system
of equations [27]:

(
C

R

)
· vti = 0 vti(ti) = 1 (4)

where R is a matrix containing rates r(t) associated to transi-
tions in equal conflict.

IV. PERFORMANCE ESTIMATION

Here, we present a new iterative algorithm to compute upper
throughput bounds of a TPPN system. Such an algorithm is
based on the computation of p-semiflows. Each p-semiflow has
an associated subnet composed of the places in the support of
the p-semiflow. Given that such a subnet satisfies a conservation
law and synchronizes with other subnets in the overall system,
its throughput, if the subnet is considered isolated, imposes an
upper throughput bound for the overall system. The proposed
iterative strategy considers initially the p-semiflow with lowest
throughput. Its associated subnet is called the initial bottleneck.
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The bottleneck is increased by adding the associated subnet to
the subnet associated to the next most constraining p-semiflow.

A. Little’s Law and Upper Bounds

The Little’s formula [28] conditions involve the average
number of customers L in the system, throughput λ, and the
average time W spent by a customer within the system, i.e.,

L = λ ·W. (5)

Let p be a place such that |p•| = 1 and p• = {t}; then, pair
(p, t) can be seen as a simple queueing system to which, if the
limits of average marking and steady-state throughput exist,
Little’s formula can be directly applied [27] as

m(p) = (Pre(p, t) · χ(t)) · r(p) (6)

where Pre(p, t) · χ(t) is the output rate of tokens from place p,
which in steady state is equal to the input rate, and r(p) is the
average residence time at place p, i.e., the average time spent
by a token in place p.

The average residence time r(p) is the sum of the average
waiting time due to a possible synchronization and the average
service time s(t). Therefore, (6) becomes

m(p)=(Pre(p, t)·χ(t))·r(p)≥(Pre(p, t)·χ(t))·s(t) (7)

where the service time s(t) is a lower bound for the average
residence time r(p), i.e., s(t) ≤ r(p), since place p has only one
output transition. Given that conflicting transitions are assumed
to be immediate, (7) can also be applied to any pair (p, t),
with t ∈ p• and with t being a transition in conflict. Hence, the
following system of inequalities can be derived [27] from (3)
and (7) as follows:

Γ(ti) ·m ≥ Pre ·Dti (8)

where Γ(ti) is the average interfiring time of transition ti, and
Dti is the vector of average service demands of transitions,
i.e., Dti(t) = s(t) · vti(t) (the vector of visit ratios vti is
normalized for transition ti). In the following, we omit the
superindex ti in Dti for clarity.

After some manipulations of (8), a lower bound for the
average interfiring time of transition ti, i.e., Γlb(ti), can be
computed by solving the following LP problem (LPP) [27]:

Γ(ti) ≥ Γlb(ti) = maximum y ·Pre ·D
subject to y ·C = 0

y ·m0 = 1

y ≥ 0. (9)

As a side product of the solution of (9), y represents the slow-
est p-semiflow of the system; thus, LPP (9) can also be seen as
a search for the most constraining p-semiflow. This p-semiflow
will be the one with the highest ratio y ·Pre ·D/(y ·m0).
Therefore, upper bound Θ(ti) for the steady-state throughput
can be calculated as the inverse of the lower bound for the
average interfiring time Γlb(ti), i.e., Θ(ti) = 1/(Γlb(ti)).

B. Next Slowest p-Semiflow

The LPP shown in (9) was the basis in [14] for developing
an iterative algorithm to compute upper bounds in stochastic
MGs. Unfortunately, the proposed algorithm is not applicable to
more general nets than MGs, hence our search for an alternative
method.

The new algorithm will follow a similar strategy. First, the
initial bottleneck is computed using (9). Then, in each iteration
step, the next slowest p-semiflow connected to the subnet
associated to the current bottleneck is added to it.

Let us suppose that the p-semiflow y∗ represents the initial
bottleneck, i.e., y∗ is obtained from the solution of (9). The
following constraint imposes that some other p-semiflow y,
y ·C = 0, is connected to y∗:

∑
p∈V y(p) > 0, where V =

{v|v ∈ •(‖y∗‖•) \ ‖y∗‖} (i.e., there exist places in the support
of y, which share output transitions with places in the support
of y∗). Hence, the p-semiflow y with the highest ratio y ·Pre ·
D/(y ·m0) connected to y∗ can be searched for by solving the
following LPP:

maximum y ·Pre ·D
subject to y ·C = 0

y ·m0 = 1

y(p) > 0 ∀p ∈ Q∑
p∈V

y(p) > 0 (10)

where V = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖}, and Q = {q ∈ P, q ∈
‖y∗‖}.

As a result of LPP (10), we will obtain the p-semiflow y,
which will be a linear combination of y∗ and the next most
constraining p-semiflow.

The strict inequality in (10) could lead us to numerical
problems since the lower the value of

∑
p∈V y(p), the higher

the value of the optimization function. The Appendix discusses
this issue and shows that the solution proposed in the fol-
lowing can be applied in practice. A way to solve this is by
reformulating

∑
p∈V y(p) > 0 into

∑
p∈V y(p) ≥ h, where h

is strictly positive. The problem now is to set an appropriate
value for h. A high value can make constraints y ·m0 = 1 and∑

p∈V y(p) ≥ h incompatible, leading to an infeasible LPP.
A valid value of h can be obtained by searching for a real
number that is lower than each component of a p-semiflow y
that covers all places and satisfies y ·m0 = 1. Such a value
can be obtained by means of the following LPP:

maximum h

subject to y ·C = 0

y ·m0 = 1

y ≥ h · 1
h > 0 (11)

where 1 is a vector with all entries equal to 1.
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Fig. 2. Iterative strategy algorithm for computing upper throughput bounds.

The obtained value h ensures the feasibility of the following
LPP, which is just a reformulation of (10):

maximum y ·Pre ·D
subject to y ·C = 0

y ·m0 = 1

y(p) ≥ h ∀p ∈ Q∑
p∈V

y(p) ≥ h (12)

where V = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖}, and Q = {q ∈ P, q ∈
‖y∗‖}.

As has been said, the last constraint
∑

p∈V y(p) ≥ h imposes
that the support of y corresponds to the p-semiflow connected
to y∗ with the highest y ·Pre ·D/(y ·m0).

C. Iterative Strategy to Compute Upper Throughput Bounds

This subsection presents an iterative strategy to obtain an
improved upper throughput bound in TPPNs. In the first step,
the strategy calculates the initial throughput bound of the sys-
tem with the LPP (9) and takes the subnet associated to y as
the initial bottleneck. In each iteration, the subnet associated
to the p-semiflow that is potentially more constraining than
the others is added to the bottleneck. The throughput is then
calculated. Note that such an addition in each iteration restricts
the behavior of the system, which implies a lower throughput.
The iteration process stops when no significant improvement
of the bound is achieved.

The algorithm in Fig. 2 represents the strategy used to
compute throughput upper bounds. For the input, the algorithm
needs the TPPN system to be analyzed, i.e., 〈S, s, r〉, and a
degree of precision (ε > 0) to be achieved. As output, the upper
throughput bound Θ and the places belonging to the bottleneck

of the TPPN Q are obtained. The degree of precision ε will be
used for the stopping criterion of the iterative strategy.

In the first place, the initial upper throughput bound is
calculated by LPP (9) (step 1). Then, the value of h is computed
by using the LPP shown in (11) so that the feasibility of the
LP is ensured. The iteration process (steps 4–9) is repeated
until no significant improvement is achieved with respect to the
last iteration or until the last obtained bottleneck contains all
places in its support. In the worst case, only one place will be
added in each iteration. Therefore, the algorithm complexity is
polynomial due to the LP.

In step 5, the places that share output transitions with some
place contained in the support of y are calculated. Step 6
corresponds to the LPP (12). Finally, in step 8, the throughput of
the subnet associated to the new bottleneck is considered as the
new upper bound. The throughput is calculated by solving the
Markov chain [25] associated to the current bottleneck when
it can be computed within a practical time, or by simulation
otherwise.

Example: Consider again the supermarket example shown in
Fig. 1. Let the initial marking be nC = 21, nS = 4, and nP =
2. The vector of visit ratios v normalized for transition t1 is
vt1 = {1.0, 1.0, 1.0, 0.4, 0.6, 0.6, 0.6, 0.6, 1.0, 1.0}. According
to LPP (9) (step 1 of the algorithm in Fig. 2), the critical bottle-
neck is composed of ‖y‖ = {p0, p1, p3, p4, p5, p7, p8, p9, p10},
i.e., the p-semiflow, which corresponds to the customers’ life
cycle. Such a result indicates that the system has, on average,
enough resources to attend to the expected incoming customers.
The upper throughput bound (normalized for transition t1) of
the critical bottleneck is Θ(t1) = 0.567521 [result of LPP (9)],
and the value that guarantees the feasibility of the problem is
h = 0.037037 (step 2). The places sharing output transitions
with places in ‖y‖, i.e., connected to the critical bottleneck,
are p2 and p6 (calculated in step 5). Each one corresponds to
the resources of the system, the supermarket cashiers, and PoS
terminals, respectively. The result of the LPP in step 6 allows to
regrow the current bottleneck, imposing that y′(p2) + y′(p6) ≥
h (i.e., one of them, at least, must be contained on the support
of y′), and gives the new bottleneck that is composed of ‖y′‖ =
{p0, p1, p2, p3, p4, p5, p7, p8, p9, p10}. The new throughput is
Θ′(t1) = 0.514220 (step 8), which represents an improvement
of 9.3919% with respect to the previous bottleneck. Note that
the place added is that representing the number of cashiers
(i.e., p2).

Let us assume that ε = 0.001. As the relative difference
between Θ and Θ′ is 0.093919 (as commented previously), the
iteration process carries on. At this point, the only place that is
not connected to the critical bottleneck is p6, which corresponds
to the number of PoS terminals. By solving the LPP in step 6,
the new bottleneck is obtained, which has all the places of the
system in its support (i.e., ‖y‖ = P ), and the new throughput is
Θ = 0.480642. Therefore, as the support of the new bottleneck
contains all places of the net, the iteration process finishes. The
new throughput Θ represents an improvement of 6.5299% with
respect to the previous bottleneck and a total improvement of
15.3085% with respect to the initial bottleneck.

The proposed iterative strategy is applied to a larger system
in Section VI.
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V. RESOURCE OPTIMIZATION

Here, we propose a heuristic strategy to gauge the number
of resources that a system should allocate. Our approach for re-
source optimization is similar to Goldratt’s principle [29]: Once
the system’s bottleneck is identified, the associated resource is
increased.

A. Calculating the Next Constraining Resource

Let us recall LPP (9) to calculate an upper throughput bound.
The most constraining p-semiflow y will have just one marked
place in its support due to the net structure (as explained in
Section III). Assume that the marked place corresponds to a
resource place (not the process-idle place). Then, given that y
constrains the throughput of the whole system, the addition of
more instances to the resource place will result in an increase
in the system throughput. At a certain moment, the resource
becomes saturated, and adding more instances does not im-
prove the throughput. This occurs because the constraining
p-semiflow has changed. Note that the upper throughput bound
will linearly increase with the number of tokens of the resource
place because it is the only place in ‖y‖ having tokens and the
equation y ·Pre ·D is linear.

Hence, resource r1 contained in the support of the most
constraining p-semiflow yr1 can be increased until yr1 is no
longer the bottleneck p-semiflow. Let mΔ

0 be the initial marking
vector m0 with an increase α1 of the resource r1, i.e.,

mΔ
0 =

{
m0(p), p �= r1
m0(p) + α1, p = r1.

(13)

The p-semiflow yr1 is not the only constraining p-semiflow if
the following equation holds:

yr1 ·Pre ·D
yr1 ·mΔ

0

≤ yr2 ·Pre ·D
yr2 ·mΔ

0

(14)

where yr2 �= yr1 is a p-semiflow. Note that the p-semiflow yr2

will contain in its support the next most constraining resource
r2 and, by definition, r1 �= r2.

The number α1 of instances of the resource place r1, con-
tained in the most constraining p-semiflow yr1 , which need to
be added to obtain the next constraining resource r2, contained
in the next most constraining p-semiflow yr2 , can be easily
computed by solving the following LPP:

minimum α1

subject to yr2 ·Pre ·D =yr1 ·Pre ·D
yr2 ·C =0
yr2(r1) = 0

yr2 ·mΔ
0 =yr1 ·mΔ

0

mΔ
0 =

{
m0(p), p �= r1
m0(p) + α1, p = r1

α1,yr2 ≥ 0 (15)

where yr1 is the p-semiflow, which contains r1 in its support;
yr2 is the p-semiflow, which contains r2 in its support; and mΔ

0

represents the initial marking vector m0 with the increase α1

in r1.

Constraints yr2 ·Pre·D=yr1 ·Pre·D and yr2 ·mΔ
0 =

yr1 ·mΔ
0 are both parts (dividend and divisor, respectively) of

(14) equalled. Constraint yr2 ·C=0 ensures that yr2 is a left an-
nuler of the incidence matrix, hence a p-semiflow of the net. Fi-
nally, constraint yr2(r1)=0 is added to avoid a product of two
optimization variables (the variable α1 and the variable yr2(r1)
in equation yr2 ·mΔ

0 =yr1 ·mΔ
0 ). Moreover, variable α1∈R≥0;

therefore, the linearity of the optimization problem is ensured.
Both α1 and the next constraining p-semiflow yr2 are ob-

tained when the LPP is solved. Note that the increase in
resource r1 does not affect the ratio y ·Pre ·D/(y ·m0)
of any other minimal p-semiflow y, which contains another
resource in its support (see definition of the process PNs class
in Section III). Notice that, as in Section IV, an LPP is used to
solve a problem that deals with integer values as the number
of resources. This relaxation of the real domain remarkably
decreases the complexity of the approach (the complexity of
solving a LPP is polynomial), at the cost of some loss of
precision in the results. Once both α1 and the next constraining
p-semiflow yr2 are obtained, LPP (15) can be easily extended
to calculate the next constraining resource and the number of
tokens, i.e., instances, to be increased of both places as follows:

minimum α1 + α2

subject to y′ ·Pre ·D =yr1 ·Pre ·D
y′ ·C =0

y′(r1) = 0

y′(r2) = 0

y′ ·mΔ
0 =yr1 ·mΔ

0

y′ ·mΔ
0 =yr2 ·mΔ

0

mΔ
0 =

⎧⎨
⎩

m0(p), p �∈ {r1, r2}
m0(p) + α1, p = r1
m0(p) + α2, p = r2

α1, α2,y
′ ≥ 0 (16)

where mΔ
0 represents the initial marking vector m0 with the

increase α1 of place r1 and the increase α2 of place r2, and
yr1 (yr2) is the p-semiflow, which contains r1 (r2) in its
support.

As in LPP (15), constraint y′ ·C = 0 ensures that y′ is a
left annuler of the incidence matrix; hence, y′ is a p-semiflow
of the net. In addition, constraints y′(r1) = 0 and y′(r2) = 0
ensure linearity of the optimization problem. Constraints y′ ·
mΔ

0 = yr1 ·mΔ
0 and y′ ·mΔ

0 = yr2 ·mΔ
0 are the key of this

LPP because both values of α1 and α2 can be obtained from
these equations.

Note that y′ ·Pre ·D = yr2 ·Pre ·D is not a constraint in
LPP (16). This is a consequence of the result of LPP (15): From
the latter LPP where r1 is calculated, it is imposed that yr2 ·
Pre ·D = yr1 ·Pre ·D. The addition of this constraint does
not add new information to LPP (16).

LPP (16) can be generalized for more resources, as is shown
in step 5 of the algorithm in Fig. 3.

B. Iterative Strategy for Resource Optimization

This subsection presents a heuristic iterative strategy that
aims at maximizing the throughput by increasing the number of
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Fig. 3. Resource optimization heuristic strategy algorithm.

resources appropriately. The main idea of the strategy is to es-
timate the inflexion points where the constraining p-semiflows
change and, hence, to estimate the increase in resources needed.
More precisely, each unit of a resource has an associated cost,
and the strategy establishes how to spend a given budget such
that the throughput is maximized. The strategy ends either
when there is no budget to spend, all resources have been
dimensioned, or the last computed p-semiflow indicates an
increase in the process-idle place.

The algorithm in Fig. 3 shows the resource optimization
heuristic strategy. For the input, the algorithm needs the TPPN
system to be analyzed, i.e., 〈S, s, r〉. The sets of resources and
the process-idle place of the system are denoted by R and p0,
respectively. The assigned budget to be spent is denoted by
budget. The vector of cost is denoted by c, which assigns a cost
ci to each resource ri contained in R. The output is the number
of items ni needed to increase each resource ri.

First, an upper throughput bound y1 of 〈S, s, r〉 is calculated
according to LPP (9). After that, the iteration process (steps
3–10) is repeated either until the last assignment of resources
has spent the available budget, until all resources have been
dimensioned, or until the last computed resource to be increased
matches with the process-idle place.

Step 5 calculates, in each iteration, the number of items
of a resource that need to be increased to obtain the next
restrictive resource. It should be noted that the LPP in step 5 is

a generalization of LPP (15). After that, the cost of increasing
such a number of instances of the resources is computed. Note
that the ceiling integer of the value αj is taken as the result.
There are two reasons for this: First, we assume that the number
of instances of the resources must be a natural number; and
second, when the resource is not saturated, it will still be the
restrictive resource.

Finally, step 12 checks whether all the resources have been
assigned and that the cost of new resources does not exceed
the given budget. When these conditions are fulfilled, the last
resource assignment is taken as the valid one. Step 15 checks
whether there is any resource that has not been assigned, the
last resource assignment does not exceed the given budget, and
the last computed p-semiflow does not contain the process-idle
place. When these conditions are fulfilled, the remaining budget
may be spent on increasing the system throughput. A procedure
is invoked (assignRestOfBudget, step 16) for spending the rest
of the assigned budget to increase the resources as much as
possible. Note that the assignment of the remaining budget is an
NP-problem, similar to the bounded knapsack problem [30]. To
solve it, several heuristics can be used. For instance, a “round-
trip” algorithm, which tries to increase all the resources per
round until it cannot longer increase them.

Let us illustrate the use of this strategy through the su-
permarket example, as depicted in Fig. 1. Suppose that an
initial marking of nC = 30, nS = 2, and nP = 2, and an
initial budget of $30 000. Hiring a new supermarket cashier
costs $5000, whereas a new PoS terminal has a price of $700.
The initial bottleneck is ‖y1‖ ∩R = {pnS}, i.e., the subnet
associated to the customers’ cashiers. Therefore, this result
gives us the following information: To attend to 30 customers
whose think time follows an exponential distribution of a mean
of 30 min, more supermarket cashiers are needed. The LPP at
step 5 gives, in the first iteration, the increase in new cashiers
needed, i.e., α1 = 2.666, and the new constraining p-semiflow,
which corresponds to the use of the PoS terminals. Therefore,
at least three new cashiers (�α1�) are needed to attend to the
customers.

As the cost of hiring new cashiers is $5000 and the initial
budget is $30 000, the new hirings can be done, and there is still
money that remains to be spent; therefore, a new iteration can
take place. The LPP at step 5 gives, in the second iteration, the
values of α1 = 3.6752 and α2 = 0.4322. Hence, to attend to
the customers, four new hirings and one more PoS terminal are
needed. As the cost of these are $20 700 in total, the increase
in resources can be carried out. Now, the unassigned budget
is $9300, and we can continue increasing both resources in
parallel. Indeed, the relation between both resources is known
due to the equalities of the ratios.

In this case, although part of the budget remains to be
spent, the new constraining p-semiflow contains the process-
idle place, i.e., the place representing customers. Thus, the
resources of the system (cashiers and PoS terminals) have been
optimally calculated to attend to 30 customers whose think
time follows an exponential distribution of a mean of 30 min.
This way, the algorithm has calculated that, to attend to the
customers, at least four more supermarket cashiers and one PoS
terminal are needed.
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Fig. 4. SDBS deployment.

Fig. 5. SDBS update customer data scenario.

Note that it may happen that the LPP at step 5 returns the
p-semiflow containing in its support the process-idle place
in the first iteration. This would indicate that the system has
enough resources to attend to such a number of customers
with such a think time. Therefore, the strategy is also able to
compute when a system with an initial configuration is able to
support the estimated workload or, otherwise, to compute the
number of instances of resources needed to be able to support
such as a workload.

VI. CASE STUDY: A SDBS

In this section, we introduce a case study to test our approach.
We consider the design of a secure database system (SDBS)
deployed as a web service, which stores sensitive information.
There are users who will eventually have access to this informa-
tion. A real application of this kind of system is, for instance, a
web server storing customer data of an insurance company or a
bank web server keeping customers’ account balances.

A. Description

Fig. 4 shows the actual deployment of the SDBS, which
includes the hardware resources (depicted as cubes) and their
network links (arrows between cubes or cubes in the case of
intranets). Software modules (depicted as squares) are deployed
within in hardware resources. The architecture of the system is
as follows: There is a policy host, a security host, a provider
host, an application host, and a DB host. Moreover, the latter is
isolated and reachable only through a secure intranet connected
to the application host. Note that each of these hosts deploys a
specific service or a software module.

Following Fig. 5, the SDBS works as follows: A user inter-
acts with an application outside the system (WS− Requester),
which collects his/her personal data and the type of operation
required (let us assume it is an update of personal user data)
by the user. This information is summarized in a request.
Each request coming into the system needs a security token
to be identified before accessing the system, provided by the
security host through the WS− SecurityToken service. Once
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Fig. 6. Petri net of the SDBS. Resource places are depicted in dark gray and process-idle place in light gray.

TABLE I
EXPERIMENTAL PARAMETERS

the security token is retrieved, the request is accordingly signed.
Access is then requested from the policy host that checks the
request (WS− PolicyService). When permission is granted,
the WS− Coordinator service is invoked. This communicates
with the WS− Application service (located in the applica-
tion host). The latter host has access to the DB application
(WS− DBapplication) through a secure intranet. Finally, the
DB application definitively updates the user request into the
DB, and an acknowledgement report is returned back through
the system.

The PN representing the behavior of the SDBS system is
depicted in Fig. 6. Each resource is represented by a dark
gray place in the PN, i.e., p7 (policy host), p18 (security host),
p26 (provider host), p28 (application host) and p31 (DB host).
whereas user’s requests are represented by the process-idle
place p0 (depicted in light gray). The number of instances of
each resource is summarized in Table I(b), and they will be
represented by tokens in the respective place. Note that different
numbers of tokens in p0 will be used for sensitive analysis in
experiments.

The acquisition (release) of a resource is represented by an
immediate transition with an input (output) arc. For instance,
transition t3 represents the acquisition of the security host,
whereas t7 represents the release of such a resource.

Each one of the activities, shown as self-messages in Fig. 5,
has been transformed into an exponential transition in the PN
with its corresponding duration [given in Table I(a) and (c)].
Each message exchanged through a net between two resources
[e.g., getToken()] gives rise in the PN to an exponential transi-

tion (e.g., T2) whose delay is that of the net involved (e.g., $de-
layNet). We have assumed that the operations/messages needed
for establishing communication through the secure intranet are
more expensive (in computing time terms). For this reason, we
have set a higher delay for the secure intranet ($intranetLag)
than for the insecure intranet ($secIntraLag). For the sake of
simplicity, we have assumed the same delay for each message
on the intranet communications, irrespective of its size.

The workload is defined by the number of requests from
users concurrently accessing the SDBS, which is parameterized
by the variable $nRequests, which is an input parameter for
the analysis. The number of hosts (security host, policy host,
etc.) has been indicated using variables ($nSec, $nPolicy, etc.).
Finally, the throughput of the intranets is considered through
variables $intranetLag and $secIntraLag. The values for all
these input variables used for the experiments described in the
following and their corresponding transitions/places on the PN
appear in Table I.

B. Experiments and Discussion

Here, we test our approach by performing a set of exper-
iments in the PN that accurately represents the SDBS. After
applying our approach, the results obtained will be discussed.

1) Performance Estimation: We have carried out the re-
growing strategy (algorithm in Fig. 2, Section IV-C) to estimate
the throughput of the SDBS system with a different number of
requests. The overall strategy has been implemented in Matlab,
whereas the throughput computation of the SDBS has been
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TABLE II
EXPERIMENTAL RESULTS FOR NUMBER OF REQUESTS {15, 20, 21, 22, 23, . . . , 30}

performed with the GreatSPN tool. The GreatSPN tool has been
run in an Intel Pentium IV 3.6 GHz with 2-GiB RAM DDR2
533 MHz host machine.

Table II shows the results obtained in the set of experiments
with the parameters set as described earlier. The first column
indicates the number of requests, followed by the number of
regrowing steps. We have applied the name regrowing step
to each iteration of the loop of the algorithm in Fig. 2. For
each number of requests considered in the experiments, we
have simulated the whole system. Such results are indicated
in the first row of each experiment. The next column shows
the size of the bottleneck (in terms of the number of places
and transitions) produced by the algorithm and its percentage
with respect to the total size. Then, the result of the upper
throughput bound computed by the algorithm is shown. Such
a bound is computed by solving the underlying Markov chain
when this is computationally feasible [12] or by simulating the
net otherwise. Note that, in the case of simulation, the upper
throughput bound value is the mean of the simulation values,
and the real upper throughput bound value is within an interval
of ±4%, with a confidence level of 95%. The next two columns
show, in the first place, the percentage of increasing/decreasing
improvement of one bound with respect to the previous upper
throughput bound and, second, the accuracy of the computed
bound with respect to the throughput of the whole system.
The negative relative errors are caused by the confidence level
and degree of accuracy used in the experiments. Finally, the
last column shows the execution time consumed for computing
the upper throughput bound of the PN system. We have dis-
tinguished whether the computation of the upper throughput
bound has been achieved by exact analysis († symbol) or by
simulation (no symbol).

Note that, in all cases, the computation of the throughput
of the whole system takes longer than one day of simulation
time to finish, although the evaluated system is an academic

example. For larger systems, simulations may need a long
convergence time; therefore, the computation of the usefulness
of bounds is proven.

The degree of precision ε of the algorithm in Fig. 2 has been
set to 10−3. As can be observed, the initial bottleneck with the
lowest number of requests (15, 20) corresponds to the underly-
ing state machine (this is the result of removing resource places
from the net in Fig. 6). Again, this result indicates that the
system’s resources are well dimensioned for attending to such a
number of requests. In the case of 15 requests, in each iteration
step, there is no significant improvement (near to 6% in two it-
erations), and the regrowing strategy finishes in few steps. How-
ever, the greatest improvement occurs when the requests reach
20 units. In such a case, the first regrowing achieves an im-
provement near to 8%, reaching over 13% in the next iteration.

It is interesting to note what happens when the requests are
increased to 21. For this value, the initial bottleneck is produced
by one of the system’s resources (specifically, the number of DB
application hosts). This implies that the throughput bound of the
system will remain the same for any number of requests over 21
(see Average throughput of the first regrowing step for a number
of requests greater than 21). In other words, requests will start
waiting to be attended to if their number is equal to or higher
than 21. In addition, note that when the number of requests
is greater than 23, in the second iteration step, there is an
improvement in the upper throughput bound lower than 10−3%.

As stated earlier, the most significant improvement occurs
when the number of requests is 20. In just one iteration step, the
initial throughput bound is improved by a value of nearly 8%.
This indicates that the proposed method is more useful (i.e.,
it achieves a significant improvement in the upper throughput
bound in few iterations) if the resources and requests are more
well balanced. In addition, it should be noted that the simulation
of the whole PN becomes unfeasible for large systems, as
indicated by the execution time.
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Fig. 7. Throughput of the SDBS with variable number of users.

The throughput results have been plotted in Fig. 7. The
throughput is drawn for each number of requests and for each
step. In addition, the result of LPP (9) has also been drawn
(dotted line). The LPP values match the throughput values of
the initial bottleneck. As expected, the result of solving the LPP
(9) (dotted line) is an upper bound of all the rest of the values.
As can be seen, the improvement in the upper throughput bound
for each regrowing step is almost insignificant in the case of
requests lower than 20 or greater than 25. While the number
of requests is near to 20, the relative difference between the
throughput of the initial upper throughput bound and the first
iteration becomes greater, reaching its maximum in the case
of 20 requests. After that point, it becomes lower even tending
toward a minimal difference near to zero (see, for instance, the
case of 30 requests).

Finally, the execution time shown in the last column in
Table II indicates that the bigger the size of the net, the longer
it takes to complete the simulation. Note that small additions to
the net (i.e., just one place) normally cause an execution time
of one or two orders of magnitude greater than the previous
executions. However, the improvement of the upper throughput
bound is not so significant as to justify such an amount of
execution time.

The main conclusions that can be extracted from both exper-
iments can be summarized as follows.

• There exists a number of requests (inflexion point) from
which the initially most restrictive p-semiflow of the sys-
tem changes. Around such an inflexion point, the accuracy
of the initial throughput bound is low. This occurs because
when the slowest p-semiflow of the system is much slower
than the others, it predominates over them, and the system
throughput is determined by the throughput of such a
p-semiflow. The initial throughput bound is therefore usu-
ally quite accurate. However, when several p-semiflows
have similar speeds, none of them predominates over
the others. Hence, the initial throughput bound, which
considers just one p-semiflow, is less accurate.

• The improvement in the upper bound is particularly sig-
nificant in the proximity of the inflexion point.

As future work, we aim to continue researching into per-
formance estimation based on performance bounds, seeking
to obtain some quality bound characterization. The use of LP
problems and the token/delay ratio between p-semiflows in a
PN system could be useful for this goal.

As the reader can imagine, it would be of great interest to be
able to compute such inflexion points directly. This is the goal
in the next set of experiments.

2) Resource Optimization: For these experiments, the num-
ber of requests has been set to nRequests = 100, whereas the
initial number of resources remains unchanged: five security
hosts, ten policy hosts, ten coordination hosts, five application
hosts, and two DB application hosts (summarized in Table I).
Let us suppose a budget of $20 000 and the following costs
per resource: $3500 per security host (represented by place p7),
$1000 per policy host (place p18), $2000 per coordinator host
(place p26), $500 per application host (place p28), and $500
per DB application host (place p31). The prices of the hosts
reflect either the cost of the physical hardware or the cost of
reimplementing the services.

Applying the optimization strategy introduced in Section V,
the initial restrictive resource is the number of DB applica-
tion hosts, i.e., $nDBapps (initial tokens of place p31). The
algorithm in Fig. 3 computes the new restrictive resource, the
security hosts, and the number of DB application hosts needed
to be increased (which is just one host). As the cost is $500
per DB application host and there is a budget of $20 000,
the increase is possible. The strategy continues looking for
the next restrictive resource. The second iteration gives as a
result the new restrictive resource (application host) and the
new instances of DB application and security hosts are two
and five units, respectively. The increase in such resources
has a cost of $18 500; therefore, it can be afforded. The new
restrictive resource after the third iteration is the number of
coordinator hosts. This time, it is necessary to increase the
security hosts by six units, the DB application hosts by three
units, and the application hosts by one unit with respect to the
initial configuration. This last assignment has a cost greater
than the initial budget; therefore, the iteration process fin-
ishes, and the previous assignment is taken as the valid one
(five security hosts and two DB application hosts). Moreover,
there is no possibility of spending the rest of the budget
(which amounts to $1500). Therefore, the optimization strategy
ends.

Hence, with the initial configuration and the given budget,
the number of security hosts needs to be increased by five units
and the number of DB application hosts by two units in order
for the system resources to be optimally distributed and the
throughput maximized.

Fig. 8 plots the upper throughput bound (dashed line) of each
configuration of resources, its associated cost in dollars (dotted
line), and the total assigned budget (solid line). The initial
configuration is composed of five security hosts, ten policy
hosts, ten coordination hosts, five application hosts, and two DB
application hosts. Cfg. 1 refers to the increase by one unit of DB
application hosts, whereas Cfg. 2 indicates the last assignment
of resources computed, i.e., the increase of five security hosts
and of 2 DB application hosts. Finally, Cfg. 3 refers to the
configuration, which cannot be afforded with such a budget
($20 000): an increase in the security hosts by six units, the
DB application hosts by three units, and the application hosts
by one unit with respect to the initial configuration. As can be
observed in Fig. 8, the cost of the last resources configuration
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Fig. 8. Different resource configurations and their associated cost.

exceeds the assigned budget; therefore, the solution for the
resource distribution is the previous configuration.

The evolution of the upper throughput bound is worth re-
marking. With the initial configuration, the upper throughput
bound is Θ = 0.740740. In the first configuration, the up-
per throughput bound increases by 0.75% (Θ = 0.746271),
whereas in the second configuration, it increases by almost
100% (Θ = 1.470598). Finally, with the third configura-
tion, the upper throughput bound increases by 9.68% (Θ =
1.612920).

VII. CONCLUSION

The formalism of PNs allows one to model the behavior of
a large class of artificial systems in which resources are shared
by the different tasks. The performance of these systems, which
is usually measured as the number of completed operations
per time unit, is often a system requirement. Unfortunately, in
most cases of interest, it is not possible to compute the exact
performance of a system in a reasonable time due to the state
explosion problem inherent to large discrete systems. Thus, the
explosion problem poses difficulties not only for computing
exactly the performance of an existing system but also for
correctly designing new systems.

This paper has focused on the class of process PNs, which
allows a wide variety of modeling possibilities while offer-
ing interesting analysis properties. For this class of nets, two
iterative strategies have been proposed. The first aims at es-
timating efficiently the performance of a given system. Such
an estimation is carried out by computing increasingly larger
system bottlenecks. The goal of the second strategy is, given an
initial budget and a cost of each resource, to gauge the number
of instances of each resource so that the system performance
is maximized, and the budget is not exceeded. This has been
achieved by exploiting the linear dependence of the perfor-
mance bounds with respect to the number of resources.

Given that both techniques make intensive use of LP tech-
niques and the number of required iterations is usually low,
their complexity and computational time are also low. The
proposed strategies have been applied to a process PN modeling
an SDBS. The performance of such a system has been eval-
uated for different workloads, and a distribution of resources
that maximizes the throughput for a given budget has been
estimated. We have developed a tool, PeabraiN [31], which

implements the strategies here presented to make their use
easier for practitioners. It enables both performance estimation
and resource optimization to be computed in systems modeled
with PNs. As future work, we plan to research into the quality
of the initial upper bound obtained and to extend both strategies
to more general PN classes.

APPENDIX

The strict inequality
∑

p∈V y(p) > 0 in (10) is used to com-
pel the components of places that belong to the next slowest
p-semiflow to be positive. Once the LPP (10) is solved, only
the strictly positive components are selected. When the solver
precision is not very high, zero components might not be
distinguishable from positive components with low values. To
avoid this,

∑
p∈V y(p) > 0 is replaced by

∑
p∈V y(p) > h,

with a strictly positive h. Thus, we need to find a value h > 0
that retains the feasibility of constraints y ·C = 0, y ·m0 =
1. A possible value h, such that y ≥ h · 1, and fulfills both
equations, can be calculated in the following way.

Recall that by the process PN structure, the number of p-
semiflows is equal to n+ 1, where n = |PR| is the number of
resources in the process PN system. Note also that the initial
marking m0 of the system will be m0(p) > 0, ∀p ∈ PR ∪ P0,
m0(p) = 0, ∀p ∈ PS . A p-semiflow y that covers all places
can be computed by a linear combination of all minimal p-
semiflows. Remember that each resource has an associated
minimal p-semiflow (Property 3 of Definition 3).

Let us consider a system with n resources. Then, a linear
combination of all minimal p-semiflows is y = α1 · y1 + α2 ·
y2 + · · ·+ αn+1 · yn+1, αi > 0, ∀i ∈ {1 . . . (n+ 1)}. As y
is a linear combination of p-semiflows, then y ·C = 0
is fulfilled. However, factors αi must be adjusted in
order to properly fulfill equation y ·m0 = 1. An intu-
itive idea for doing this is the following: As y(p) ·
m0(p) > 0 ⇔ p ∈ PR ∪ P0, then y ·m0 = 1 can be refor-
mulated as α1 · y1(pr1) ·m0(pr1) + α2 · y2(pr2) ·m0(pr2) +
· · ·+ αn+1 · yn+1(prn+1

) ·m0(prn+1
) = 1, where pri repre-

sents the place associated to resource ri, ∀i ∈ {1 . . . n}, and
prn+1

is the process-idle place.
By the process PN structure, all positive values of yi will

be equal to 1. Therefore, the values αi that fulfill the equation
y ·m0 = 1 can be easily calculated as

αi =
1

m0(pri) · (n+ 1)
∀i ∈ {1 . . . (n+ 1)} .

Hence, a possible value h that fulfills y(p) ≥ h, ∀p ∈ P is,
in this case, h = min(αi), ∀i ∈ {1 . . . (n+ 1)}. Such a value
relates the number of resources in the system and the number
of resource instances. Thus, the value of h for most systems of
interest in practice is much higher than the numerical tolerance
of the LPP solver (in this paper, the numerical tolerance of the
LPP solver has been set to 10−5).

As the objective function in LPP (11) is maximized, the value
h obtained from that LPP will be at least equal to min(αi) ∀i ∈
{1 . . . (n+ 1)}, i.e., h ≥ min(αi) ∀i ∈ {1 . . . (n+ 1)}.
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