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Abstract— Petri nets is a well-know formalism for studying
discrete event systems. Applications include performance eval-
uation in communication networks, production systems, supply
chains, and the implementation of sequence controllers. Timed
Continuous Petri Net (TCPN ) systems are continuous-state
models that can approximate the dynamical behavior of discrete
Markovian Petri nets (MPN ). Based on this, an estimator-
based control structure is introduced here for applying a control
law designed for a TCPN into the original discrete system.
The result is a control policy for driving a MPN system in
such a way that the mean value of its marking will reach a
desired value, by applying additional delays to the controllable
transitions. A stock level control of a Kanban-based automotive
assembly line is synthesized as an application example.

I. INTRODUCTION

Petri nets are a recognized paradigm useful for modeling
and analyzing discrete event systems (DES). Applications
include the analysis of communication protocols and man-
ufacturing systems, the implementation of sequence con-
trollers, validation in software development, and performance
evaluation in multiprocessor systems, communication net-
works, production systems, supply chains, etcetera [1].

Several works can be found in the literature providing
different control strategies for Petri nets. For instance, in
[2] a state-feedback control that meets safety specifications
in the form of mutual exclusions constraints is proposed
(GMEC). A survey of control results in Petri nets can be
found in [3]. Recalling from there, control policies can
be classified into two different classes: the state feedback
control, which has been mainly studied by means of a
particular model called controlled Petri nets, and the event
feedback control that has been mainly considered in a formal
language setting and the corresponding models are called
labeled Petri nets. Extensions to timed systems can also be
found in the literature. Most control strategies are defined for
the same control objective: disabling transitions for avoiding
forbidden markings, in accordance with the Supervisory-
Control Theory. A problem commonly found in the synthesis
of controllers is the state explosion.

Fluidification constitutes a relaxation technique for study-
ing discrete event systems through a continuous approxi-
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mated model, thus avoiding the state explosion problem.
In Petri Nets, fluidification has been introduced from dif-
ferent perspectives [4], [5]. In this work, timed continuous
Petri net (TCPN ) models under infinite server semantics
are considered, since it has been found that such systems
approximate interesting classes of DES. In fluid models
more analytical techniques can be used for the analysis of
some interesting properties, like controllability [6] and the
synthesis of controllers, either for the optimal steady-state
control problem [7] or dynamic control for reaching a desired
marking in models in which all transitions are controllable
[8], [9] or with some uncontrollable transitions [10], [11].

Coming back to the discrete event systems, in [12] it has
been shown that a TCPN system, with white noise added
to the flow (leading to state perturbation), can approximate
the mean value and covariance matrix of the marking of the
corresponding Markovian Petri net (MPN , i.e., a Petri net
in which transitions are timed with exponentially distributed
random delays). For that, the probability that any transition
is enabled is close to one. Based on such result, the goal in
this work is to interpret an apply a control law designed
for a TCPN system into the corresponding MPN one.
Such control interpretation will result in a control policy
for driving a live MPN system in such a way that the
mean value of its marking will reach a desired value, just
applying additional delays to the controllable transitions.
This constitutes an important difference with the control laws
derived for DES in previous works, and represents the main
contribution of this one. This result will be illustrated by
means of a given application example: the stock level control
of a Kanban-based automotive assembly line [13].

This paper is organized as follows: in Section 2 some basic
concepts on TCPN and MPN systems are provided, while
in Section 3 controllability concepts and control laws for
TCPN are recalled from previous works. In Section 4, the
interpretation of a control law designed for a TCPN system
into the corresponding MPN one is introduced. Finally,
a given application example is studied in Section 5, and
conclusions are present in Section 6.

II. BASIC CONCEPTS OF TCPN AND MPN

We assume that the reader is familiar with Petri nets (PNs)
(for notation we use the standard one, see for instance [14]).
The structure N = 〈P, T,Pre,Post〉 of continuous Petri
nets (CPN ) is the same as the structure of discrete PNs. That
is, P is a finite set of places, T is a finite set of transitions
with P ∩ T = ∅, Pre and Post are |P | × |T | sized, natural
valued, pre- and post- incidence matrices. We assume that N



is connected and that every place has a successor, i.e., |p•| ≥
1. The usual PN system, 〈N ,M0〉 with M0 ∈ N|P |, will be
said to be discrete so as to distinguish it from a continuous
PN system 〈N ,m0〉, in which m0 ∈ R|P |≥0 . In the following,
the marking of a CPN will be denoted in lower case m,
while the marking of the corresponding discrete one will be
denoted in capital letter M. The main difference between
both formalisms is in the evolution rule, since in continuous
PNs firing is not restricted to be done in integer amounts
([4], [5]). As a consequence the marking is not forced to
be integer. More precisely, a transition t is enabled at m
iff for every p ∈• t, m(p) > 0, and its enabling degree is
enab(t,m) = minp∈•t{m(p)/Pre(p, t)}. The firing of t in
a certain amount α ≤ enab(t,m) leads to a new marking
m′ = m + α · C, where C = Post − Pre is the token-
flow matrix. As in discrete systems, right and left integer
annullers of the token flow matrix are called T- and P-flows,
respectively. When they are non-negative, they are called T-
and P-semiflows. If there exists y > 0 such that y ·C = 0,
the net is said to be conservative, and if there exists x > 0
such that C · x = 0 the net is said to be consistent. Here,
we assume that the initial marking marks all P-semiflows.

A Markovian Stochastic Petri Net system (MPN) is a
discrete system in which the transitions fire at indepen-
dent exponentially distributed random time delays (for a
classical approach for the analysis of MPN [15]). Then,
the firing time of each transition is characterized by its
firing rate. In this way, a MPN is a tuple 〈N ,M0,λ〉,
where λ ∈ R|T |>0 represents the transition rates. Transi-
tions (like stations in queueing networks) are the meet-
ing points of clients and servers. In this paper, we will
assume infinite-server semantics for all transitions. Then,
the time to fire a transition ti, at a given marking M,
is an exponentially distributed random variable with pa-
rameter λi · Enab(ti,M), where the integer enabling de-
gree is Enab(ti,M) = minp∈•ti{bM(p)/Pre(p, ti)c}.
Enab(ti,M) also represents the number of active servers
of ti at marking M. We suppose that a unique steady-state
behavior exists, and we restrict our study to bounded in
average and reversible (therefore ergodic) MPN systems.

A Timed Continuous Petri Net (TCPN ) is a continuous
PN together with a vector λ ∈ R|T |>0 . Different semantics have
been defined for timed continuous transitions, the two most
important being infinite server or variable speed, and finite
server or constant speed (see [4], [5]). Here infinite server
semantics will be considered. Like in purely markovian
discrete net models, under infinite server semantics, the flow
through a timed transition ti is the product of the rate, λi, and
enab(ti,m), the instantaneous enabling of the transition, i.e.,
fi(m) = λi · enab(ti,m) = λi ·minp∈•ti{mp/Pre(p, ti)}.
Observe that Enab(ti,M) ∈ N while enab(ti,m) ∈ R≥0.
For the flow to be well defined, every transition must have at
least one input place, hence in the following we will assume
∀t ∈ T, |•t| ≥ 1. The ”min” in the definition leads to the
concept of configurations (see [7]): a configuration assigns
to each transition one place that, for some markings, will

control its firing speed. An upper bound for the number of
configurations is

∏
t∈T |•t|. The reachability space is divided

into regions according to the configurations. These regions
are polyhedrons (in bounded systems), and are disjoint,
except on the borders.

The flow through the transitions can be written in a
vectorial form as f(m) = ΛΠ(m)m, where Λ is a diagonal
matrix whose elements are those of λ, and Π(m) is the
configuration operator matrix at m, which is defined such
that the i-th entry of the vector Π(m)m is equal to the
enabling degree of ti (see [7]). A similar representation
can also be obtained for the discrete PN, i.e., Enab(M) =
bΠ(M)Mc ' Π(M)M (the equality holds for ordinary
PN’s, but for weighted arcs there exists a relative error,
decreasing with respect to M, for rounding to the nearest
lower integer). The state equation of a TCPN system, which
is linear inside each region (Π(m) is constant), is

•
m = CΛΠ(m)m (1)

III. CONTROLLABILITY AND CONTROL IN TCPN

Control action in TCPN systems may only be a reduction
of the flow through the transitions. That is, transitions
(machines for example) cannot work faster than their nom-
inal speed. Transitions in which a control action can be
applied are called controllable. The effective flow through
a transition which is being controlled can be represented
as: w(ti) = λi · enab(ti,m) − u(ti), where 0 ≤ u(ti) ≤
λi · enab(ti,m). The control vector u ∈ R|T | is defined
such that ui represents the control action on ti. If ti is not
controllable then ui = 0. The forced flow vector is expressed
as w(m,u) = ΛΠ(m)m − u. The set of all controllable
transitions is denoted by Tc, and the set of uncontrollable
transitions is Tnc = T −Tc. The behavior of a TCPN forced
system is described by the state equation:

•
m = CΛΠ(m)m−Cu

0 ≤ u ≤ ΛΠ(m)m
(2)

A control action that fulfills the constraints 0 ≤ u ≤
ΛΠ(m)m and ∀ti ∈ Tnc ui = 0 is called suitable bounded
(s.b). If an input is not s.b. then it cannot be applied.
A marking m for which ∃u s.b. at m such that ṁ =
C[ΛΠ(m)m− u] = 0 is called an equilibrium marking.

A. Controllability

Regarding to control in TCPN systems, it is important
to keep in mind that these are not controllable in the
classical sense ([7]). If y is a P-flow, then for any reachable
marking m, yT m = yT m0. So, whenever a TCPN system
has P-flows, linear dependencies between marking variables
appear, introducing token conservation laws, a class of state
invariants. However, we are interested in the controllability
“over” this invariant, which is called Class(m0). Notice that
every reachable marking belongs to Class(m0), however,
the reverse is not true for timed models.

Controllability has been studied in [6], where a local con-
trollability definition, which considers the input constraints,



was introduced. It was proved that if all the transitions are
controllable then consistence (i.e., ∃x > 0 s.t. Cx = 0) is
sufficient and necessary for controllability over Class(m0).
For systems with uncontrollable transitions, controllability
was studied over sets of equilibrium markings, which repre-
sent “the stationary operating points”. The set of all equilib-
rium markings in Class(m0) is denoted as EqS = {m ∈
Class(m0)|∃u s.b., such that C(ΛΠ(m)m− u) = 0}.

This set is divided according to regions. Then, for each
particular configuration Πi there is its corresponding region
<i = {m ∈ Class(m0)|Π(m) = Πi} and the correspond-
ing set of equilibrium markings Ei = {m|m ∈ EqS ∩ <i}.
The Class(m0), the regions and the equilibrium sets Ei

are convex, and most of the cases, the union of sets Ei are
connected. Inside each region the state equation (2) is linear
(Π(m) is constant), then the controllability was studied first
over each Ei and next, over their union [6].

B. Control Laws

The problem of synthesizing control laws for the TCPN
system is beyond the scope of this work. Nevertheless, some
references are provided in this subsection.

Continuous Petri nets have three main characteristics,
which must be considered during the design of a control
law: 1) the model is piecewise linear (PWL), 2) the input
must be nonnegative and upper bounded by a function of the
state (constrained), and 3) models with some real meaning
are high-order systems (with tens or even hundreds of state-
variables). Different approaches and techniques have been
developed for systems with input constrains and PWL ones.

Control laws for TCPN systems have been proposed by
using different techniques. The optimal steady-state control
problem has been addressed and solved in [7]. In [8] a so-
lution based on Model Predictive Control was proposed, ob-
taining thus robust control laws. Nevertheless, this technique
becomes prohibitive when the number of places is large. In
[9] a tracking control approach was introduced, considering
step and ramp references and low-and-high gain controllers,
local stability and input boundedness were proved for a class
of PNs. In those papers all transitions are assumed to be con-
trollable. Uncontrollable transitions were considered in [10],
where a gradient-based controller was proposed for driving
the output towards the desired value. In [11], uncontrollable
transitions were also considered. There, the classical linear
feedback control structure was adapted (computing a gain
matrix for each region), avoiding computational complexity
problems and providing feasibility and effectiveness.

In any case, in order to interpret a control law into the
corresponding MPN , it is required the input to be s.b.
and robust “enough” (remember that the original system
is a stochastic one). In the sequel the control law will be
expressed in general form as u = f(m), where f is a function
f : Class(m0) → R|T | such that the input is s.b..

IV. IMPLEMENTATION OF CONTROL TO MPN VIA TCPN

In this section, the implementation of the control law
designed for a TCPN system to the corresponding MPN

is described. It requires an interpretation of such control
input in terms of the MPN , and of the marking of the
MPN in terms of the TCPN . The second one is based
on the approximation of the mean value of the marking of
the MPN by means of the corresponding of the TCPN
system, which is detailed in the following subsection.

A. Approximation of MPN via TCPN

The approximation of the MPN by means of the TCPN
was studied in [12]. There, the TCPN was analyzed in
discrete-time, obtaining thus (∆τ is the sampling period):

mk+1 ' mk + CΛΠ(mk)mk∆τ −C∆τuk (3)

There, it was proved that given m0 = M0, the marking of
a TCPN system 〈N , λ,m0〉, whose evolution is described
by (3), but without the input, approximates the average
marking of the MPN 〈N , λ,M0〉 during the time interval
(τ0, τ0 + n∆τ ), if the following conditions are fulfilled at
M(τ0 + k∆τ) for any time step k in the interval: 1) the
probability that the transitions of the MPN are all enabled
is near one, 2) the probability that the marking is outside the
region of M0 is near zero.

Even if the quality of the approximation decreases when
a change of regions occurs (i.e., Condition 2 does not hold
during certain time) and/or the transitions are not enabled
during certain time period (Condition 1), the approximation
could be good enough for the analysis and control purposes.

In order to improve the approximation when condition 2
does not hold, a noise vector vk is added to the flow of the
TCPN model, leading to a Markovian continous Petri net
(MCPN ). The noise has as elements independent normally
distributed random variables with mean and covariance:

E{vk} = 0
Σvk

= diag[ΛΠ(mk)mk∆τ ] (4)

The MCPN model is defined as:

mk+1 = mk + CΛΠ(mk)mk∆τ + Cvk (5)

By analyzing the moments of this system and the MPN
one, and using the Central Limit Theorem, it was shown
that the first two moments (mean value and covariance) of
the marking of the MCPN system approximate those of the
marking of the corresponding MPN during a time interval
(τ0, τ0 +n∆τ), if the initial conditions of both coincide and
Condition 1 is fulfilled. Then, in this work only live PN
systems will be considered (it is required for Condition 1).

B. Control Architecture

The application of the control law designed for the TCPN
to the MPN is described in the Block Diagram of fig. 1.
It represents a typical structure of a closed-loop system with
an estimation-based control being applied.

Blocks in the upper dashed box (Plant) represent the
original system (modeled by a MPN ). There are different
ways for simulating a MPN , but that is beyond the scope of
this work. However, in this case it is only necessary to keep
in mind that the future marking of the MPN depends on



Fig. 1. Block Diagram of the closed-loop system

the current marking and some information about the times
to fire each transition, commonly called clocks. In the Block
diagram it is considered a linear output function, i.e., the
information that we have about the state of the MPN is:

Yk = H ·Mk (6)

It is assumed that the output has enough information
to determine the current configuration and reconstruct the
marking. The lower dashed box (TCPN+Control) represents
the TCPN system (3). The same output function is also
applied, so, the output of the TCPN is:

ŷk = H · m̂k (7)

Notice that, if blocks C2D and EKF were eliminated, only
the MPN and the TCPN blocks would be present (i.e.,
blocks in dashed boxes Plant and TCPN+Control). In such
case, two independent systems would be obtained, whose
outputs would be linear functions on particular realizations
(or marking trajectories) of both systems, but no interaction
between them would occur. Then, blocks C2D and EKF play
the role of an interface between both systems. C2D transfers
the information from the TCPN system to the MPN one,
while EKF do the same in the opposite direction.

C. Interface blocks, C2D and EKF

First, let us consider the Block Diagram in fig. 1 without
the block EKF. As it was pointed out in subsection IV-A,
the expected value of the marking of the MPN can be
approximated by the marking of corresponding TCPN if
Conditions 1 and 2 are fulfilled. So, let us suppose at this
moment that both conditions are fulfilled.

Now, assume that a s.b. control law is being applied
to the TCPN system. Consider the state equation of the
continuous model as in (2). Given a controllable transition
tj , the controlled flow is equal to w(tj) = λj ·enab(tj ,m)−
u(tj). However, since the input is s.b., there exists a function
α(u(tj),m) that takes values in the interval [0, 1] such
that u(tj) = α(u(tj),m)λj · enab(tj ,m), then w(tj) =
[1− α(u(tj),m)]λj · enab(tj ,m). This last equality means

that each active server of tj fires with a mean time delay of
([1 − α(u(tj),m)]λj)−1 in the controlled TCPN system,
instead of the mean time delay of λ−1

j that it would have
without control. Then, the control law imposes to each active
server of tj an additional delay of:

delay(tj) =
1

[1− α(u(tj),m)]λj
− 1

λj
(8)

If additional delays are defined for all the controllable
transitions in the same way, and they are added to the
corresponding mean time delays of the MPN system, then
the mean value of its marking will still be approximated by
the marking of the TCPN in the closed-loop. Block C2D
computes such additional delays, so, according to (8) and
substituting α, the output of C2D is defined as:

delayk(tj) =
enab(tj ,mk)

λj · enab(tj ,mk)− uk(tj)
− 1

λj
(9)

Notice that it is only necessary to compute the addi-
tional delays for the controllable transitions Tc. In order
to exemplify the application of these additional delays into
the MPN system, suppose that at some time step k the
controllable transition tj in the MPN is newly enabled,
then the time to fire tj in the open-loop system would be
given by a random variable having an exponential p.d.f. with
parameter (1/λj) · (1/Enab(tj ,Mk)), but, in order to apply
the control law the parameter of the exponential p.d.f. is
considered as (1/λj + delayk(tj)) · (1/Enab(tj ,Mk)). In
this way, tj will fire with the required mean time delay, in
agreement with the input applied to the TCPN system. This
control interpretation is a particular one of many that can be
defined, however, this is used for simplicity and because it
has shown positive results.

Block C2D may be enough for applying the control law
into the MPN if Conditions 1 and 2 are always fulfilled.
However, notice that the MPN does not receive any feed-
back in this way (remember that at this point, block EKF
is not considered), so, in order to improve the accuracy,
an Extended Kalman Filter (EKF) is added in the Block
Diagram of fig. 1 (for a detailed introduction to Kalman
Filter see, for instance, [16]). This new block also allows to
consider several marking regions.

In order to analyze block EKF, suppose that no control
law is being applied to both systems. Now, as it was pointed
out in subsection IV-A, the MPN can be approximated by
the corresponding MCPN , i.e., E{mk} ' E{Mk} and∑

mk
' ∑

Mk
. Then, defining the approximation error εk =

Mk −mk, the evolution of the output of the MPN is:

mk+1 = [I + CΛΠ(mk)∆τ ]mk + Cvk

Yk+1 = H ·Mk+1 = H ·mk+1 + H · εk+1
(10)

Notice that E{εk} ' 0 by definition. Previous system is
actually the corresponding TCPN system plus zero-mean
at the state (Cvk, which is also uncorrelated in time) and
the output (Hεk+1), then, it seems obvious to use and EKF,
in order to obtain a noise-free estimation of the underlying



TCPN model. In this way, an estimator is defined as:

m̂k+1 = [I + CΛΠ(m̂k)∆τ ] m̂k + Kkek

ŷk+1 = H · m̂k+1
(11)

where Kk is Kalman gain matrix and ek = Yk − ŷk is the
output error. In order to ensure convergence, it is assumed
that the output Yk has enough information to determine
the current configuration, and that the pair (H,CΛΠi) is
observable for all the visited configurations Πi.

The gain introduced by the Kalman Filter (Kkek) is
computed in the block EKF as:

P′k+1 = [I + CΛΠ(m̂k)∆τ ] ·Pk · [I + CΛΠ(m̂k)∆τ ]T

+Qk

Kk = P′k+1 ·HT · [H ·P′k+1 ·HT + Rk

]−1

Pk+1 = [I−Kk ·H]P′k+1

Kkek = Kk · (Yk − ŷk)
(12)

Matrix Qk represents the covariance of the state per-
turbation, which according to the MCPN approxima-
tion and the definition of vk, it should be close to C ·
diag[ΛΠ(m̂k)m̂k∆τ ] · CT . Matrix Rk represents the co-
variance of the output perturbation, i.e., the covariance of
εk. A reasonable estimation for such covariance is given by
Rk = 0.5 · I (assuming that the discrete marking follows a
normal-multivariate distribution, such value for R means that
the error between markings is less that 1.5 with probability
close to 0.95). Since the covariance matrix of the error
(Pk+1) is used for the next time step, a feedback-loop with
the unit delay z−1 is added in the Block Diagram.

Then, block EKF computes the gain Kkek, with which the
estimation for the next time step m̂k+1 can be obtained by
using (11). In this way, with the output of the MPN system
and block EKF it is possible to obtain an estimation for the
state as if it were a TCPN system, i.e., it is obtained m̂ that
evolves like the TCPN system but approximates the mean
value of the MPN one in agreement to its output values Y.

Finally, since the evolution of the system is linear by
regions and time invariant, according to the Separation
principle, it is reasonable to integrate the EKF and the control
law, obtaining thus the closed-loop system shown in fig. 1.

V. APPLICATION EXAMPLE

In this section, the control scheme considered through this
paper is applied to a given application example: the stock
level control of a Kanban-based automotive assembly line,
which was introduced in [13].

Authors in that paper proposed an stochastic Petri net
model for an existing assembly line that produces cars. The
production is based on Kanban process. The assembly line
is a self-moving transporter, which carries the car bodies
through a number of quite similar production cells. The time
that the car body spends in every production cell is equal
for all productions cells and is given by the line rhythm,
which is constant. Each production cell has some small stores
(racks) where palettes with all parts, specific to the particular
production cell, are to be found. In every cell there is a space

Fig. 2. Petri net model of one part assembly [13].

to accommodate at maximum two palettes of each part type
used there. One palette contains only the same kind of parts.

Fig. 2 shows the model proposed for describing the assem-
bly of one part. Tokens in p1 represents the Kanban-tickets
in the local store. Tokens in p2 represents the Ktickets in the
space close to the production cell. Such number is limited
by a conservative law imposed by p3 (M(p2)+M(p3) = 2).
Place p4 represents the number of parts available in the
palette that is being used for production. The number of parts
in one palette is 60 (arc (t3, p4)), while the number of parts
of the same kind required for one car production is 2 (arc
(p4, t4)). Transition t5 represents the assembly operation. Its
delay is equal to the time interval between the production
of two consecutive cars (i.e., the production speed or line
rhythm). Place p5 enables t3 when the marking in p4 is
null, i.e., when no more parts are available in the palette
that is being used. The container withdraw is described by
the subnet defined by {p9, p10, p11}, which works in the
following way: transition t8 models the waiting time before
an order (orders are done just at some hours), after its firing
p10 enables t6 and t7. A Kanban in p8 means that an order
must be done, in such case t6 fires (its delay is considerably
lower than that of t7) and a token is transferred from p8 to
p12, meaning that a supply order is ready to be sent. On the
other hand, if there is a token in p10 but not in p8 then t7 fires,
meaning that the Kanban container is withdrawn. Transition
t11 represents the time from the moment of ordering to the
moment of delivery, while a token in p14 represents the truck
arrival. Transition t10 does not appear in the original model
in [13]. In this work it is added for control purposes: its
delay will be controlled meaning that orders (i.e., tokens in
p12) must be delayed before being sent.

Only some of the mean time delays are reported in
[13] (for one part). However, only three transitions exhibit
significant, and almost constant, delays: t5, t8 and t11.
Furthermore, t6 must fire faster than t7 whenever both are
enabled. For our purpose, mean time delays are defined as in
fig. 2, transitions t5, t8 and t11 fire with Erlang-3 p.d.f. (for
reducing their coefficients of variation), transition t6 and t7



Fig. 3. Timed continuous Petri net model

fire with constant delays, while the other transitions fire with
exponential p.d.f. and infinite server semantics.

Fig. 3 shows the proposed TCPN model, in which some
modifications w.r.t the original PN are introduced for ob-
taining a better approximation. In this model, the component
representing the parts in the palette that is being used is
substituted by the component of places {p1

5, ..., p
4
5}, a token

in p4
5 means that the palette in use is empty. The container

withdraw is modeled in a similar way, the difference is that,
in order to reduce the coefficient of variation, t8 of fig.
2 is now splitted in three transitions {t18, t28, t38} (classical
simulation of an Erlang-3 by 3 exponentials). In a similar
way, t11 of fig. 2 is splitted into {t111, t211, t311}. Notice that
places {p1, p2, p3, p8, p10, p12, p14} keep the same meaning,
in the same way that their corresponding output transitions
do. All transitions fire with exponential p.d.f. and infinite
server semantics (t6 and t7 fire with constant delays in the
original model, but their delays are very small w.r.t. the
others so they can be well approximated by exponential
delays). Mean time delays are defined as in fig. 3. Notice
that the delays of {t15, t25, t35} sum the total time required for
emptying the palette that is being used, i.e., the sum of the
delays of t4 and t5 of the original model (fig. 2) multiplied
by 30. In the same way, the sum of delays of {t18, t28, t38} and
{t111, t211, t311} of the TCPN are equal to the delays of t8
and t11 of the original model, respectively.

The goal in [13] is to propose a methodology for optimiz-
ing the stock reserves of each part, i.e., to control the sum of
(M(p1)+M(p2)) in fig. 2. Having a large number of Kanbans
in the store (i.e., M(p1)) implies unnecessary costs, however,
missing Kanbans might stop the whole production. Such
Kanbans missing can occur for unexpected delays in truck
arrivals or lost orders. In that paper, the optimum number
of K-Tickets (i.e., the optimum value for M(p1)+M(p2)) is
computed based on simulation data. However, no solution for
making the system to keep the optimum number of K-Tickets
is described. In this example, the control scheme introduced
in the previous section is used for that purpose.

PN of fig. 2 represents the original model or the Plant,

Fig. 4. Number of Kanban-Tickets in the local store and racks (M(p1)+
M(p2)) in the closed-loop systems, and firing signals of the controllable
transition t10 (an impulse means a firing). The control law is applied after
time 2000 min.

i.e., the upper dashed box MPN in the block diagram of fig.
1, while fig. 3 represents the model for the TCPN system
(TCPN+Control in the block diagram), for which the control
law is designed. Output functions are defined as [M(p8),
M(p12), M(p14), M(p1), M(p2), M(p10), M(p5)/30] for
the original system and [m(p8), m(p12), m(p14), m(p1),
m(p2), m(p10), m(p4

5)] for the estimator. Notice that they
are equal for both systems excepting the last output, which
is required for knowing which arc is constraining t3. Now,
following [13] let us suppose that the optimum number for
the sum M(p1)+M(p2) is computed as 10, then, our control
law must impose additional delays in t10 such that the mean
value of the sum in the original system be 10.

By using the techniques introduced in [11], a control
law was designed for the TCPN system (fig. 3), and then
interpreted and applied to the original one, according to the
control scheme described in the previous section (fig. 1). The
results are shown in fig. 4. Control law is applied after 2000
min. Dashed line in fig. 4 corresponds to the estimator (m̂k),
while the other one represents the discrete original system.
As it can be seen, the control law successfully drives the
discrete system for obtaining the desired mean value of the
marking at the local store and racks. Fig. 4 also shows the
firing signals for the unique controllable transition t10 in the
closed-loop system. A unit impulse means that t10 is fired,
i.e., that an order is released and sent to the parts supplier.

It was necessary to adjust the values for the covariance
matrices Qk and Rk of the Kalman Filter, in order to obtain
a good closed-loop performance. If the values provided in the
previous section are used, the estimated marking m̂k will be
close to the state of the MPN (Mk). Therefore the control
input uk will be computed using the noisy signal m̂k, but
the control law was designed for the TCPN without noise,
so, such input signal may result in a bad performance. On
the other hand, decreasing Qk will make that the trajectory
of m̂k be soft enough, so applying the computed input
to the TCPN system will lead to the expected results.
Nevertheless, the behavior of the continuous system could
be different from that of the MPN , because with a low
value for Qk the EKF will not ensure the approximation.



Fig. 5. Number of Kanban-Tickets in the local store and racks (M(p1)+
M(p2)) with the GMEC control.

The best performance is obtained by decreasing Qk from its
theoretical value (obtaining thus a soft estimated trajectory),
but decreasing the entries of Rk corresponding to the outputs
whose approximation must be improved.

Finally, for comparing purposes, let us show the results
obtained by using a control feedback with Generalized
Mutual Exclusion Constraints (GMEC), introduced in [2].
Such approach is defined for safety specifications, according
to which a weighted sum of markings must be limited. In our
case, the specification could be defined with the following
GMEC M(p1) + M(p2) ≤ 10. The controller that force
the GMEC consists in the addition of a new place, called
Monitor, having as input transition t3 and output one t1,
however, t1 is not controllable, then the Monitor must have
t10 as output transition, in this way the GMEC is fulfilled.
For the initial marking, p1 should have 8 tokens (i.e., 10 −
M0(p2)) and the new place, the Monitor, must have 5 tokens
(i.e., total K-Tickets 15, minus M0(p1)+M0(p2)), while the
other places remain marked as in fig. 2. The results are shown
in fig. 5. As it can be seen, the GMEC control approach
guarantees that the combined marking (M(p1) + M(p2)) is
not larger than 10. Notice that the sum is not always close to
the desired mean value, because the GMEC is defined for
imposing upper bounds to the marking but not for enforcing
a desired mean value.

In this example the GMEC control approach still provides
a good mean value for M(p1)+M(p2) (an average value of
9.46 was obtained), but it is not always the case. For instance,
consider the same system (fig. 2) but with M(p1) = 4
at the initial marking. Suppose that a mean value of 4 is
desired for the sum of M(p1) + M(p2). After simulating
30, 000 minutes, using a GMEC M(p1) + M(p2) ≤ 5 an
average value (for the sum) of 4.59 was obtained, while a
value of 3.60 resulted with GMEC M(p1) + M(p2) ≤ 4.
They represent 14.75 and 9.9 percent error, respectively.
On the other hand, the control strategy introduced in this
paper provides an average value of 4.02. Therefore, if a
good accuracy for the average value is required, the method
proposed in this paper is more suitable. On the other hand, if
just safety specifications must be fulfilled, the GMEC control
approach is a better choice. In any case, both methods can
be combined obtaining the best properties of each one, for
instance, if we would like that M(p1) + M(p2) ≤ 5 but
having a mean value of 4.

VI. CONCLUSIONS

In this work, a scheme has been provided for the interpre-
tation of a control law designed for a TCPN system into the

corresponding MPN one. The resulting scheme constitutes
a tool for controlling the mean value of a MPN system
by means of applying additional delays to the controllable
transitions, i.e., for controlling a performance index of the
original stochastic Petri net.

This control strategy has been applied to an application
example: the stock level control of a Kanban-based automo-
tive assembly line. The results obtained are positive, showing
the feasibility of the control scheme proposed. However, it is
required that the control law designed for the TCPN system
be robust enough, since the MPN system is interpreted as
a TCPN with state and output perturbations. Furthermore,
the covariance matrices of the EKF need to be suitably
adjusted in order to obtain a good closed-loop performance.
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