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Abstract

Modern software operates in highly dynamic and often uriptedle environ-
ments that can degrade its quality of service. Thereforis, iticreasingly im-
portant having systems able to adapt their behavior. Honyélve achievement
of software adaptability can influence other software qualitributes, such as
availability, performance or cost. This paper proposespmunaach for analyzing
tradeoffs between the system adaptability and its qualisgovice. The proposed
approach is based on a set of metrics that allow the systeptedaiity evaluation.

The approach can help software architects to guide desisinrsystem adap-
tation for fulfilling system quality requirements. The ajpption and effectiveness
of the approach are illustrated through examples and a vétlefsexperiments
carried out with a tool we have developed.
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1. Introduction

In modern-day applications, software is often embeddegachic contexts,
where requirements, environment assumptions, and usafjegrcontinuously
change. Ergo, a key requirement for software is becomingapebility to adapt
its behavior dynamically, in order to keep providing theuieed quality of service
(Q0S). As an example, consider a service-oriented apicatade of multiple
services and components. Without adaptation, the apjolica prone to degrade
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performance because of faulty components, messages to&dyeservices or de-
lays due to an increasing number of users. Using adaptatiergpplication can
change, for example, some of the services it uses or its lbgeraice composi-
tion [1, 2].

As an answer to this need, in recent years, industry and agad®ave in-
creasingly addressed the adaptation concern, partigwlgth the introduction of
autonomic and self-adaptive systems. General discussmrerning the issues
and the state of the art in the design and implementationfedaptable software
systems have been presented, in [3, 4, 5, 6, 7, 8, 9]. These papers evidence
how more and more users require that applications flexibpatb their contex-
tual needs and can do so with the highest performance andlailisy. However,
guaranteeing software adaptability can influence othelitguatributes such as
performance, reliability or maintainability and in the wbrcase, improving the
adaptability of the system could decrease other qualitypates. As defended
in [10], quality attributes can never be achieved in isolation, tichiavement of
any one will have an effect, sometimes positive and sometiegzgive, on the
achievement of others.

Finding the best balance between different, possibly admff quality re-
guirements that a system has to meet and its adaptability sngbitious and
challenging goal that this research would pursue. As a tiegt ®wards this goal,
this paper presents a novel approach for evaluating tréslbefween the system
adaptability and other system quality attributes, likeilatality or cost. The ap-
proach is based on the definition of a set of metrics that ath@revaluation of the
system adaptability at the level of the architecture. Tei®l is appropriate for
dealing with software quality attributes [11, 12, 10] andesal methods and tools
facilitate this evaluation at architectural level [10, 13, 12]. Bysoftware archi-
tecturewe assume a set of components that make up the system. Corntgpoaen
require and/or offer services. Components can be in-housdaped or selected
from the open-world [15].

The proposed approach is useful for software architectelecsfrom the
open-world those components that can fulfill all system igpaequirements.
These components make up the software architecture, whitlbevrated ac-
cording to the adaptability it shows. Evaluation will eralthe tradeoff analysis
of adaptability versus different software quality atttést Far from being “a so-
lution for every situation”, our approach can help softwarehitects when the
selected components fulfill the system requirements éfdgt A software ar-
chitect would apply the approach when changes in the exatobtntext of the
system occur. For example, the introduction or disposabafmonents; changes
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in the QoS of some components; or changes in the systemygrejilirements to
fulfill.

The task of evaluating architectures is a complex one foclkhe software
architect needs automation. To this end, we have implerdethie tool SO-
LAR [16] (SOftware quaLities and Adaptability RelationssjpThe architecture
of the tool and a wide experimentation are hereafter pregeotsupport our ap-
proach.

The paper is organized as follows. Section 2 reviews the svalated to our
approach. Section 3 proposes metrics for quantifying softvadaptability. Sec-
tion 4 presents our approach for relating adaptability asidgle quality attribute.
Section 5 exercises the approach through an example, wirolvées adaptabil-
ity and availability. Section 6 extends the approach to ntbes one quality
attributes. Section 7 discusses the cases in which the agpaan be used. Sec-
tion 8 analyses the feasibility of the approach by meanspéements carried out
by SOLAR. Finally, Section 9 concludes the paper.

2. Related Work

In the last years, as outlined in [5, 9, 8], the topic of adaletaystems has
been studied in several communities and from differentpesatves. Our work
proposes an approach for the evaluation of the relatioadigpween the system
adaptability and its quality of service. It is based on thénik#on and usage of
a set of metrics allowing the description and the evaluatibthe system adapt-
ability together with a formal definition of the relationpkibetween adaptability
and other quality attributes. This approach together vhthgrovided tool can
facilitate the software architects in the design reasopitogess improving their
abilities to deliver a satisfactory design. Therefore elaéter, we review works
appearing in the literature dealing with (jetrics for system adaptabilityii) the
trade-off analysis between different quality attribusesl (iii) design reasoning

Metrics for System Adaptabilityn [17] authors give a set of metrics for adapt-
ability applicable at architectural level. The set of nedrive offer is strongly
inspired by these ones. In our approach a metric not onlksratether a require-
ment is adaptable or not, we also quantiyw muchadaptable it is by means of
natural numbers. The same authors propose in [18] a frankewsia specializa-
tion of a general qualitative framework, to reason aboutfumational require-
ments [19, 20]. That framework concentrates on adaptab#@iguirements and



works with quantitative values. Our work, on the contrasybased on the addi-
tion of the adaptability property to systems in order to mtiem able to meet
guality requirements.

In [21, 22] the authors wonder whether it is possible to mesmaund evaluate
the adaptability of systems in order to compare differersipaiste solutions. To
take a step forward, they propose a set of quantitative asegriouped by cate-
gories. These metrics are calculated statically. Howeteir approach can be
extended to be applicable in a dynamic environment. In tinection we foresee
a possible integration between our metrics definition aedagproach in [21, 22].
Indeed, our approach can be used to discover architechatsan make the sys-
tem able to meet the desired quality requirements. Then, seehigher-level
metrics for evaluation and comparison of the already catedl suitable architec-
tures.

In [23], the authors define a methodology for evaluating esystdaptivity
through a single metric. This evaluation is based on measemetraces or simu-
lation traces that can be obtained, in test-beds, from ysééss or software tools
for discrete-event simulation.

Trade-off Analysis.The definition of architectural models can embody not only
the software quality attributes of the resulting systen abeo the trade-offs deci-
sions taken by designers [10, 11]. The efforts to exploré staxle-offs have pro-
duced the so-called scenario-based architecture anatgtisods, such as SAAM
and ATAM [24, 25] and others reviewed by [14]. These methoadslae the
architectures with respect to multiple quality attribugaploring also trade-offs
concerning software qualities in the design. The outpusioh analysis include
potential risks of the architecture and the verificatiorutesf the satisfaction of
guality requirements. These methods provide qualitatgeilts and are mainly
based on the experience and the skill of designers and orotladaration with
different stakeholders.

Different approaches allowing a quantitative trade-offoag different soft-
ware quality attributes are mainly based on the use of opétidn techniques
(e.g., [26, 27, 28]) or on metaheuristics approaches (9,,30, 31]). The first
ones try to find the optimal architecture by selecting the besmponents and
taking into account possible conflicting requirements i definition of the op-
timization model itself. The second type of approachesatgevolutionary and
genetic algorithms to optimize architectural models foitiple arbitrary quality
attributes. A recent survey on software architecture agtition methods cover-
ing these topics has been presented in [32].
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These methods, however, do not explicitly consider the bty as a sys-
tem quality. The work more related to ours is the one present¢§33] where a
trade-off analysis among quality attributes of adaptiveems is presented. This
approach takes into account changes in runtime contexttharaecision to adopt
an adaptation strategy is performed during runtime, whersftstem knows the
current real context. Besides all this, our work consideaderoffs between the
qualities and the adaptability.

Design ReasoningThe approach here presented can be used complementarily to
other decision-making techniques to facilitate the ovetasign reasoning pro-
cess. Several techniques exist in the literature helpiftgvace architects in this
stegd. In the following we contrast our approach with the methddsest to it:
optimization problems -maximize utility-, yes/no answeratgiven architecture,
heuristics to find a suitable architecture.

Optimization problems (maximize utility) can find the opéharchitecture
given a set of requirements and their priority or utility ftions; see for example
[26, 28] for service-based systems . Even if some of thesmigaes suffer from
state-space explosion, it is most likely that their exexuts faster than the exe-
cution of our approach. However, for early steps of the dgwalent (stages on
which our proposal is focussed) where all the system reougéirgs are not com-
pletely stated (and the already stated requirements maygehabtaining only
the current optimal architecture may be useless after sonee tThe results of
our approach, while it does not decide for an architectustudies architectures
properties in function of their adaptability and offers aga of possibilities to
architect the system. Techniques based on yes/no answargiven architec-
ture regarding the analysis of its quality requirementstoafound, for example,
in [35, 36]. If the qualitative analysis results in a negatanswer, the architect
should improve the architecture and analyze it until theliregnents are satisfied.
This technique is well suited when the requirements canagqrbperly stated as
utility functions. In that case the optimization problenugeless because it could
come up with an architecture that is not appropriate frompbiat of view of
the human architect. However this technique needs manudlihg for creating
different architectures and large quality knowledge faaradiing the proper parts
of the architecture that allow improving its quality. In tbad, when a positive
answer from the analysis is obtained, the software ardHi@s a single solution
that meets the requirements, thought it does not have irftbom about possible

linterested reader can see [34] for detailed descriptiodslmtussions
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alternatives arising from what-if analysis. Our approach, instead, offers a set
of possible solutions and empowers the software architeetssess alternative
architectures

For avoiding the manual modification of the architectureirtstic techniques
can be utilized. These techniques also avoid the stateespquosion problem,
but they do not ensure success. These techniques autoligatitange the ar-
chitecture to reach an architecture that: a) satisfies taétguequirements (the
process stops as soon as it finds a suitable architecturg$togds when it is found
an architecture near the optimal (no other better architeatan be found easily,
e.g., with small changes in the current one) [37]. Althoughdurrent state of our
approach does not consider the use of heuristics, theyseprra possible exten-
sion. In the future, our approach could be improved with adgoeuristic to offer
the kind of results that currently offers but faster.

The principles of our approach are similar to those in [38haugh the goal
of the techniques diverges. In [38], authors automatia&itiuce the space of de-
sign choices by eliminating designs that do not satisfy sspeeified constraints.
They do not try to find a good solution for the system desigrabse they recog-
nize that some system requirements cannot be specified inadyzable formal
language but they are subjective/ambiguous and they reimaesigner’s head,;
moreover, it may be better not to resolve some ambiguitiélater stages in the
development, when stakeholders conflicting opinions aarer. On the contrary,
their approach can automatically eliminate unfeasibléesgslesign alternatives
that cannot satisfy the constraints of the subset of reouérgs that are formally
specified, so reduce the design space for subsequent refiteeimeequirements
or subjective design decisions. In our approach we do nedéeide for an ulti-
mate architecture but we study relationships between alaipy and quality to
offer ranges of adaptability values where architecturdlitsmns for the system
reside regarding the quality requirements specified.

Summarizing, this paper proposes, with respect to existiog, the follow-
ing.

e A more extensive set of architectural metrics that can bd f@esvaluation

of the system adaptability.

e An approach that leverages these metrics for the definiti@xplicit rela-
tionships between adaptability and quality values, sucavagability and
performance. The approach is a support in the design reagspnicess.

e Atool for applying the approach.
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3. Architectural Adaptability Quantification

This section presents the definition of a set of metrics whicantify the po-
tential adaptability of a software architecture. All thetnes are defined at the
architectural level of a system.

3.1. Modeling Notation

For defining metrics and for evaluating quality attributesrely on a component-
and-connector view (C&C view) of the software architectwmiace this view is
commonly used to reason about runtime system quality ate#[39]. In C&C
view componentsre principal computational elements present at runting, (e
COTS or in-house developed components or Internet sen|@g8s)Components
have interfaces attached to poi®onnectorsare pathways of interaction between
components and also have interfaces or roles. The notasie in the paper for
representing a C&C view is the UML component diagram. In oagdams the
components are instances and they have provided and réquoiezfaces repre-
sented as lollipops and sockets respectively. Connectersaticitly represented
by linking the lollipop and socket of the provided and reqdiinterfaces. When
the same service is required/offered by several comporveatmpin the corre-
sponding sockets/lollipops to avoid blurring. Figure 1glmplifies the interfaces
in (@) and also shows the implicit connectors. We omit pantsrbaggregate com-
ponents since they are useful to delegate interfaces, geeeR2. From now on,
we will refer interfaces also as services.

sl S2 s2
> c11 @{ > c21 z] ; Cl1 d 527 C21 d
S
Of
s2
s(l% Cl12 @{ 5‘(,3 c22 z] Ci2 2] 1 C22 2]
2| co3 & | c23
(a) (b)

Figure 1. (a) A set of components and their interfaces, (l® T&C view of the components in
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Figure 2 represents in the C&C view all the information we asst as avail-
able to measure the adaptability of a software architecfline information con-
tained in the figure is: the system provides servgethe system architecture is
made of four components, those grey shaded in the C&C viewpooentC'11
provides service;, whereas it requires servicegands; to accomplish its mis-
sion; s, is provided byC'21 ands; is provided by both{’31 andC'32; the architect
knows that there exist more components that offer servigesd s; -C22 and
(33 respectively-, but s/he decided not to use them for ardmigthe system.
For defining the metrics, we use the following formal defomtiof the available
information: we assume the existencenddifferent services;|i = {1.n} (n =3
in Figure 2); the existence of sets of used components in the architectuig,
where components in eadhiC; are the ones that provide (UC;, = {C11},
UCy, = {C21} andUC5 = {C31, 32}, in Figure 2); the existence of sets of
componentg’;, eachC; includes the components that can prowdé’, = UC, ,
Cy=UCU {022} and03 =UC5U {033}, in Figure 2 )

sl

c31 = 3 Tsl c21
pIEES 3l
c32 - s S Cl1 s2 c22 7

Figure 2: C&C view: discovered components arsgd component{i grey).

For the sake of simplicity, we do not represent componenistdd to manage
the infrastructure of the adaptive systemn fact, we consider them as aggre-
gated to the functional components, i.e., a component ipasqa to add to the
infrastructure a new proportional complexity for its maimgg The proposed ap-
proach, indeed, concerns the assessment of trade-off &etagaptability and
other quality attributes. We do not explicitly deal herehwthie actions that lead to
adaptation and that are managed by the infrastructure efdret in this view the
components managing the infrastructure do not influencewluation, but they
are devoted to the implementation of the choices and to thtesyadaptation.

2Those necessary to: make requests compliant with the antagfaces; monitor the behavior
of the functional components, and; develop the logic thatagas the adaptation.



3.2. Metrics

We present five metrics for measuring the adaptability offavswe architec-
ture. Four of them measure characteristics of the servickgea@rchitecture and
the other measures the adaptability of the architecturendsoée.

Adaptability of the Services

Absolute adaptability of a service (AAS)measures the number of used com-
ponents for providing a given service.

Inspired by theelement adaptability inder [17], which was a boolean metric
(0 no adaptable, 1 adaptable), here we propose the usagatfralmumber that
guantifies how much adaptable a service is by counting therdiit alternatives to
execute the service (1 no adaptabld, adaptable), where the service adaptability
grows according to the number of components able to provide i

Referring to the example in Figure 2, we observe thats = [1, 1, 2].

Relative adaptability of a service (RAS)measures the number of used com-
ponents that provide a given service with respect to the murabcomponents
actually offering such service.

\UC|
(e

RAS € Q" | RAS; =

It describes how each service stresses its adaptabilitgeh@and it informs
how much more adaptable the service could be. RAS vector valear to one
mean that the service is using almost all the adaptabilitgrga@lly reachable.

Referring to the example in Figure 2, we observe tRatS = [1,0.5,0.6].

More adaptable architectures have vector values for RASaréaan those
of less adaptable architectures. In the previous examiplee considertUC, =
{C11},UC, = {C21,C22} andUC; = {C31, 032}, then RAS will b1, 1, 0.6].
In this new architecture, the second component of the vestoigher than that
in the previous architecture, then meaning that sersiage more adaptable in the
new architecture. Note that the maximum value for each compis of the vec-
tor is 1, meaning that the system is using all the availablepmnents to provide
s;; 1.e., case in whichC;| = |UC;).



Mean of absolute adaptability of services (MAASmeasures the mean num-
ber of used components per service.

MAAS € Q | MAAS = #

This metric offers insights into the mean size and effortdeeeto manage
each service.

Referring to the example in Figure 2/ AS = % = 1.3.

Architectures with more adaptable services have highelegadbf MAAS. Be-
sides, aMl AAS > 1 means that the architecture includes adaptable servites (a
least one of the componentsAS; is greater than one). FaWl AAS < 1, there
may be adaptable services or ndt4S should be checked in this case).

Mean of relative adaptability of services (MRAS)represents the mean of
RAS.

MRAS € Q{0..1} | MRAS = Ziz A4S,
n

This metric informs about the mean utilization of the po@romponents for
each service. Values of this metric range between zero aad on

Referring to the examplelf RAS = L0206 — .72,

The higher the MRAS of an architecture, the more adaptabkeitaces are,
on average. The maximum value of this metric is obtained whdiy; = 1 for
all 7 € [1..n], which is in turn obtained when all services are as much atiégts
possible because they use all the available componentsefohe, a value close
to one for MRAS means that, on average, services are as muphabtéaas pos-
sible. A value close to zero means that: a) services can bé moce adaptable
(adding components not yet used), b) different architectdternatives with the
same quantity of adaptability can be created.

Adaptability of the Architecture

Level of system adaptability (LSA) measures the number of components
used to make up the system with respect to the number of coenpothat the
most adaptable architecture would use.

n AAS;

LSA€Q{0.1} | LSA = ==
i |Gl
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The value of this metric ranges between zero and one. For BSAjue of
one means that the system is using all existing componengsafth service, i.e.,
AAS; = |C;] for all i € {1..n}, and then its adaptability is already to the maxi-
mum. A value close to one means that the market offers fewceldb increase
the system architectural adaptability. When a new compoisdmunded to the
architecture, LSA increases in a constant valug(* , |C;|) irrespective of the
number of components already considered for the same servic

Referring to the example in Figure 2SA = ﬁ = 0.6.

Although the meaning of MRAS and LSA may seem very similary tttiéer
from each other in some aspects. Compared to MRAS, LSA deviglebal view
of the system size with respect to its maximum reachabletatgipy, but does not
foretell the expected value of adaptability of servicesM&SA does). To clarify
the difference, consider an architecture which, for alkgsvicess; but one (let
us call its;), uses all existing components in séts while for s;; there is a large
number of components providing it (i.e(;| > |C;|) but only a few of them are
used. In such case, LSA is not close to one (because a largeenwhcompo-
nents are not used, i.e., most of thos&i), however MRAS is close to one (in
the architecture, all services but one are already using rieximum reachable
adaptability; so, on average, system services are quitgtaola). Therefore, we
can also see in this example that MRAS can be close to one ameayst options
to increase the adaptability can exist.

Name Range Value | Example in Fig 2
AAS N” AR 1,1,2]

RAS Q" efo.1} (I [1,0.5,0.6]
MAAS Q. B, 225 1.3
MRAS Qe {0.1} Z=% 0.72

LSA Qe {0.1} % 0.6

Table 1: Summary of the metrics

Table 1 summarizes the five metrics and their values for thenpke in Fig-
ure 2.
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4. Relating Adaptability to a System Quality Attribute

As already stated in the introduction, software qualityilastes can rarely
be achieved in isolation. Most often, the achievement of @ityuattribute has
an effect, positive or negative, on the achievement of stfid]. Architectural
adaptability is not an exception, and it can influence qualitributes such as per-
formance, reliability or maintainability. In that case,ianrement in the architec-
tural adaptability can cause an improvement in some of tieingalso a damage.
In this section we develop an approach to study possiblaaakhips between the
architectural adaptability and the satisfiability of a givguality requirement. If
such relationship exists, then architectures offering trade-off, between adapt-
ability and the target requirement, can be chosen. For tadyswve rely on the
metrics presented in Section 3, which enable comparisorchftactures and also
the use of terms such as “adaptability increments”.

Table 2 helps the understanding of the approach. In the rosvsead that,
when the adaptability increases then some quality ategout

e tend toincreasetheir measured values.
e tend todecreaseheir measured values.

e are not affected. We are not interested in this group sincaredocussed
on the influence of adaptability on the requirement.

The columns in the table consider how the quality requirdnssiormulated:
e ashigher than e.g., “system availability shall d@gher than...”

e aslower than e.g., “system mean response time shalldveer than..”

Requirement formulated as
When adaptability increases || Higher than Lower than

the quality attribute value increases Helps Hurts
the quality attribute value decreasges Hurts Helps
the quality attribute is not affected No effect

Table 2: Effect of adaptability on a measured quality resuient

Each region of interest in Table 2 has been labelledeapsor Hurts to indi-
cate the effect of the adaptability upon the quality requeat. So, for example
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the first row indicates that “When the adaptability increagélse quality attribute
value increases, thiselpsto fulfill the requirements of this quality attribute for-
mulated asigher thari. It is worth mentioning that, as in [40], we do not intend
to support the idea that a certain quality attribute alwagisaves the same. On
the contrary, this can be only assessed after analysis, teeevolution of the
measures of the quality attributes regarding the adapialslwell-known. The
following examples reinforce this idea.

Example 1, given a requiremeniR: response time shall be lower than 3 sec’”
we first study in the target system whether the response ticreases when a
selected adaptability metric increases. In such éaselongs to the first row,
second column, since “when adaptability increases, theorese time increases
and ithurtsto fulfill Rwhich has been formulated bsver thari.

However, for another system, it may happen tRatan behelpedby incre-
ments in the adaptability. Even worse, for the same systearxj@rement could
be inHelpsor Hurts depending on the system operational profile.

Example 2, consider a system that balances its workload. For high lvadk
the response time may decrease when the system adapts anddsaits load,
then the adaptabilityHelpsthe response time. Nevertheless, for low workloads
the response time will remain about the same whether thersybalances the
load or not, but balancing operations will add executionrbbgad; so the execu-
tion time will be higher and response time can belongitots.

A trade-off analysis between an adaptability metric andsiesy quality at-
tribute can give different types of resuitsThe best case for establishing a rela-
tionship happens when results show a complete dependetwedrethe adapt-
ability and the selected quality attribute. In this case,al@in graphs like the
ones in Figures 3(a) and (b) (for the first and second rowslieT2, respectively).
Architects would obtain very valuable information with pest to the appropriate
adaptability for the system.

However, this may be a naive hope because the componentrppespand
their interactions may have a more profound effect into thedity attributes than
the adaptability. The extreme case for this affirmation isicted in Figure 3(c),
where architectures showing very different quality atttédovalues can exist for
any value of adaptability, meaning that the adaptabilitg #re selected quality

30ur examples consider scalar metrics, for simplicity.
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attribute are independent.

W an architecture.

Quality attribute val ues
Quality attribute val ues
Quality attribute val ues

Adaptability val ues Adapt ability val ues Adapt abil ity val ues

Extreme case for first row of Extreme case for second row of Extreme case for third row of
Table 2 Table 2 Table 2

(a) (b) (c)

Figure 3: Extreme cases for adaptability and quality attglrelationships

Between these extreme cases we can obtain results showieglspandence.
Figure 4 depicts these situations for each of the four casdsable 2. Given a
graph, the X-axis denotes increasing valugof an adaptability metric. Y-axis
represents values for the target quality attribute. Thairement to be fulfilled is
calledRequirement value

For eachd;, we are interested in two values: the upper bodhd,;, (the max-
imum value that the quality attribute can reach, for an aeciure with adaptabil-
ity A;) and the lower boundy 4, (minimum value). In between these two values
there exists a number of architectures that exhibit the saaaptability but dif-
ferent quality attribute valuésPutting together ali) 4, andQ 4., we obtain the
graph outline. Among al 4, and@ 4,1, we are interested in two value$dapt
and Adapt™, since they summarize the information in the graph.

For describing the meaning afdapt— and Adapt™ we focus on parts (a) and
(d) in Figure 4. Adapt~ is the lowestA; for which we can find an architecture
satisfying the requirementAdapt™ is the lowestA; whose boundsg) 4., and
Q) 4,1, satisfy the requirement. These values indicate that fdl thle requirement,

“Meaningless architectures are not considered)gr;; and@ 4, 1. calculation, e.g., we do not
study the quality attributes of an architecture that inekid component whose provided services
are not required by any other component.
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Figure 4: Relations among adaptability and other qualiylattes

the architecture must have at least adaptabilifyipt —, and, any architecture with
at leastAdapt™ will also satisfy it. For adaptabilities between them, theill
be architectures satisfying the requirement (those rggked in the figure) and
others that will not.

In parts (b) and (c) in Figure 4 (regions where the adaptglurts), Adapt—
is the threshold adaptability value for which any architeetwith adaptability
A; < Adapt~ fulfills the requirement; andidapt™ is the maximumA; for which
we know that exists some architecture that satisfies theresgant.

The four cases in Figure 4 could be merged into only two. If wgate the
values of the quality attributes in the second row in Tablth&n we get the first
row, so the graphs (c) and (d) of Figure 4 could be substitistethose in (a) and
(b). However, it is difficult to defend that any quality albie has this counterpart.
For this reason, we prefer to consider all the four cases.
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5. Example

This section presents an example to study the relation leettiee adaptability
of a system and its availability following the method delsed in Section 4. The
example is a web application used by students to registerf@cademic year in
the University. The system is composed of: a presentatiger haith a web GUI
and mechanisms to interact with the student, and an applickgic layer with
the rules that approve or reject the students’ proposattaflicourses to take-. At
first, students register and introduce their proposal irsytséem. This information
is delivered to the application logic. If their proposalfiild the University rules,
this layer interacts with bank web services to proceed wighgayment. Once it
has finished, the control returns to the presentation layl@ch sends a message
and an email to the student with information about the regfisin process.

We assume that there exist two components that exclusiwgliement the ap-
plication logic; a component that exclusively implemeriis presentation layer;
a component that implements both the presentation and flieaion logic lay-
ers; two services for payment (two banks for paying) andetlservices for email
sending, one of them is local to the University and two of theovided by third-
parties. By availability we mean the “readiness for corrextige” [41]. We
assume as quality requirement to fulfithe system availability shall be higher
than 0.9

Figure 5, depicts the component-and-connector view of yiseem. Table 3
relates components and services names to their descriptaie that the view in
Figure 5 slightly increments that in Figure 2 by adding segyi, and components
C'12, C41 and(C'42. However, this slight increment adds a new concern because
now some components offering the same service are not ctehpleplaceable
For example(C'11 cannot completely replad€12, since the former needs but
not s4, and the later needs the opposite.

Information required to compute availabilityn Figure 5 we depict some quanti-
tative information needed to compute the system avaitgbifior simplicity, this
information appears inside the components and in a table/ekder a more formal
approach, like the UML-MARTE [42] standard profile, couldumed.

e P/} denotes the probability of componefiy; to require service;.

° Ng}’“ denotes the number of requests to sendgefor executions where
services, is required by componeidt;;.
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| Description | Service or Component|

Student registration S1

Student requirement satisfaction So

Send emalil S3

Bank payment S4
Presentation layer Cl1
Presentation + application logic layers C12
Application logic 1 Cc21
Application logic 2 C22
Third-party email provider 1 C31
Third-party email provider 2 C32
Local email provider C33
Bank 1 payment service C41
Bank 2 payment service C42

Table 3: Web application example

e Theavailability of a component is a measure obtained from the third-party
provider or by monitoring the component. Thestof a component is an
information that will be used in Section 6.

¢ We assume that connectors do not fail and are always awailabl

P and N;¥ could be combined to form the “mean number of requests per
execution”, however we prefer to keep them separated foiséthe of system
availability computation. For example, a component codddguested once per
execution, another component could be requested five tigressqgcution but only
the 20% of the system executions. In both cases the “meaneruwhbequests” is
one. However, in the former case all the system executianprane to fail, while
in the latter, the remaining 80% of the executions are safe.

Availability computation.We compute availability using Markov models, for which
we lean on generalized stochastic Petri nets [43]. We moBelianet that repre-
sents the execution of the system by taking into accourd\heability parameter
declared for components, the probability for the companémtrequire services
and the number of requests per execution for each requireitseAs an exam-
ple, in Figure 5 service, is requested by compone6ti1 with probability 0.8
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Figure 5: C&C view of the system

and one time per requedppendix A describes how to create the Petri net from
an architectural description, and how to obtain availgbiiesults analysing the
Petri net.

Results.From the metrics in Section 3 we have chosen LSA (the numbewrof
ponents selected to make up the system with respect to thieerwwhcomponents
that could be used). We have chosen LSA for the sake of glaiitge scalar
metrics are easier to depict than vectorial ones. For a kattoetric it would be
necessary a graph ef+ 1 dimensions to depict the relation to availability, while
relations among scalars can be represented by 2D graphs.

Following the method in Section 4 we created the correspongiaph where
the quality attribute in the y-axis is availability, FiguBedepicts it. We started
considering architectures with the minimum possible LSAIga, which are the
architectures made of only one component (8.~ 1/9). The selected compo-
nent should be one of those that provide the main functitnalj i.e., eitherC11
or C12 We evaluated the availability of these architectures aaahbtained that:
the architecture made @f11shows an availability equals to 0, since all of its exe-
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cutions requiress, butss is not provided at present; in turn, the architecture made
of C12 shows an availability equals to 0.0425. These two valuepkaeed in

the graph for x-axis equal to 1/9 and we continue generatiagest of points for
the rest of adaptability values. When the graph is completed;an see that the
availability requirement belongs tdelps since the availability values increase
when the adaptability ones do and the requirement was fatedibhigher than

0.9

1,0 = —®——a
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Figure 6: Relating LSA to availability

The graph shows the existence of architectures satisfgggeiquirement. The
first solution is for an LSA equals tga, thenAdapt~ = g In this case, the archi-
tecture that settles the highest availability value fi6rA = g is made ofUC, =
{C11,C12}, UCy, = {C22}, UCs; = {C32} andUC, = {C42}, and its calcu-
lated availability is 0.954. Regardingidapt™, the graph shows that all architec-
tures with LSA>  fulfill the requiremenit. For LSA= 2, the lower bound (worst
architectural alternative) offers an availability@271. In such case, the system
is made ofUC, = {C11}, UCy, = {C21,C22}, UC3 = {C31,C32,C33}, and
UCy = {C41,C42}.

Finally, we have measured using the rest of proposed mgioichis example,
the adaptability of the architectures that gave valuddapt— and Adapt™; i.e.,
architectures made of componehtsg/C; = {C11,C12,C22,C32,C42} and

UUC; = {C11,C21,C22,C31,C32,C33,C41,C42} for Adapt~ and Adapt*

SWe remark that, following indications in Section 4, meatésg architectural alternatives have
been discarded.
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respectively. Table 4 extracts their measures for eachienext we comment
some of them. MRAS informs about the mean utilization of theeptial com-
ponents, values close to one indicate that on average theEeerstress their
adaptability choices. Beingldaptt = 0.875, then the system needs to stress
their choices sufficiently to ensure availability. The mioséresting result is for
MAAS, where values greater thatindicate that at least one service needs adap-
tation; in our example, beingdapt~ = 1.25 we then know that any architecture
that satisfies the availability needs adaptation.

Adapt™ Adapt™
AAS | 2.1, L1 1,2,3,2]
RAS | [1,3,3,5] 3,1,1,1]
MAAS 1.25 2
MRAS 0.583 0.875
LSA 0.5 0.8

Table 4: Results forddapt~ and Adapt™ for the example in Figure 5. Availability has been
considered for the trade-off analysis.

6. Relating Adaptability to Several System Quality Attributes

Here we extend the approach presented in Section 4. Thegjwatelate one
adaptability metric to several requirements, possiblyitfecent system quality
attributes.

We started by describing the most simple case, which retatesadaptabil-
ity metric to only two quality requirements. According tobla 2, each quality
requirement can be expressed as “higher than” or “lower’theard classified as
Helpsor Hurts. Let us consider the case in which a requirement R1 is formdlat
as “higher than” irHelps and a requirement R2 is formulated as “lower than” in
Hurts. So, R1 and R2 belong to the first row in Table 2. For R1 we couldimbta
a graph like that in Figure 4(a) and for R2 one like that in Fegdi(b), let us call
them Q1 and Q2 respectively. Figure 7 depicts all possibiebioations of Q1
and Q2 for the case we are analysing.

Our goal is to discover the existence of architectures thialiR1 and R2. To
this end we only need to know the position in the X-axis fatupt},,, Adapt,,
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Adapt&, Adapt,,, since they determine when a requirement is fulfilled. These
four values can be arranged4hdifferent permutations. However, by definition
Adapt,, < Adapty, and Adapt,,, < Adaptp,, then the number of permuta-
tions is reduced tg‘,%, = 6, which correspond with the six graphs in Figure 7.

It should be noted that the values in the Y-axis corresportifterent scales,
e.g., reliability values for R1 and cost values for R2. This nsethat the super-
position of graphs we do in Figure 7 is artificial, so the ng&apositions of Q1
and Q2 are not important, the important issue is the positidghe four values for
Adapt, as stated in the previous paragraph.

Let us focus on graph (a) in Figure 7. The following cases @0

e We use the symbai to mark the region where all the architectures fulfill R1
and R2. All the architectures fulfill R1 since we have overtakefpt/), .
All the architectures fulfill R2, since we have not reachetipt ,,.

e We use the symball to mark the regions where we can find at least one
architecture, for each value of;, that fulfills R1 and R2. To understand
this let us focus on the region betweérapt ,, andAdaptZSlZ

— Inthis region we can find architectures for dll, since neithejﬁldaptgl“m
nor Adapt ;" have been reached.

— All these architectures fulfill R2 since we have not reacHedpt ,,.

— For eachA4; we can find at least one architecture that fulfills R1, since
we have overtakerdapt ;.

— From the three statements above we can conclude that inethinr
all A; has at least an architecture that fulfills R1 and R2.

Regarding the region betweehiapt ,, and Adaptzgz, we can say that all
architectures fulfill R1, and for each; we can find at least one that fulfills
R2, consequently our statement also holds. Obviously thipéras until we
reachAdapt ) or Adaptys™.

e We use the symbal to mark the regions where none architecture fulfills
R1 and R2. In the right hand side dflapt/,, none architecture fulfills R2.
In the left hand side ofidaptf;, none architecture fulfills R1.

We now focus on graph (b) in Figure 7 to explain a case that dicippear in
(a). We use the symb<?to mark the regions where it is not possible to prove the
existence or absence of architectures satisfying R1 and R2.
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In this case, for eachl; we can find at least one architecture that fulfills R2
since Adapt;,, has not been overtaken; but not all architectures fulfileitduse
Adapt,, has been already reached. We can also find in this regionatbr4, at
least one architecture that fulfills R1 sinddapt,, has been reached. However,
we cannot affirm that one of the architectures satisfying RBoides with one
satisfying R1. Consequently, it cannot be proved thatialh this interval has an
architecture that fulfills R1 and R2.

The other graphs in Figure 7 have been analysed using thigseacand the
results are reported in the graphs themselves using thergéfsymbols. The
results showed by these 6 graphs are then valid to confrgritaamrequirements
belonging to the first row in Table 2 since we do not need to kiteevshape of
the graph (only the position fotdapt™ and Adapt™).

For the other combinations of two requirements expressédigiser than” or
“lower than” in Helpsor Hurts, we could obtain graphs as those in Figure 7 and
carry out the same analyses.

Finally, for the case of relating adaptability with morenhao requirements,
we replace the four values for comparison in the X-axdglapt,,,, Adapt},,
Adapt g, and Adapt .- with M Adapt—, M Adapt™*, m Adapt—andm Adapt* re-
spectively; which are obtained obtained as follows:

Vreq € Helps, M Adapt~ = maz(Adapt~) and M Adapt™ = maxz(Adapt™)
Vreq € Hurts, mAdapt~ = min(Adapt™) andmAdapt™ = min(Adapt™).
Considering these four new values, the graphs in Figure 7lsoevalid for NV
requirements, since the extreme values (max and min) pairtbadhose require-
ments that could not be fulfilled.

6.1. Example: Relating adaptability to cost

In this study we come back to the example in Section 5. We asdumown
the price of each component, and we consider a new requitemée satisfied:
the system cost shall be lower than 30 monetary units

Cost computationFor calculating the cost of an architecture we simply apipdy t
formula:

C’ostzz Z c;.cost

i Ve;eUC
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We recognize that the method is simpliéfiget we consider that the focus of
the work is on the relation between quality attributes arapsability rather than
on obtaining accurate values for the quality attributesiteves.

Results.We applied the method in Section 4, then computing the coteo$ys-
tem for each value of LSA. The analysis showed that the cgsirement belongs
to Hurts, since the cost increases when the adaptability does asdatjuired a
costlower than30. Figure 8 depicts the results. It shows that it is possdofend
solutions satisfying the requirement up to an LSA%, S0 Adaptt = % More-
over, all architectures with LSA lower tha@nwill satisfy the requirement (i.e.,
Adapt~ = g)

Cost

; - MaxCost
a— i --MinCost

179 2/9 13 49 519 2/3 7/9 89 1
LSA

Figure 8: Relating LSA to cost

6.2. Example: Relating adaptability to availability andsto

Now we can practice the method developed in this sectiortjrgjafrom the
relations between adaptability and availability -SecBeand between adaptabil-
ity and cost -Section 6.1-. Since the first study belongs tgHér than” inHelps
and the second to “lower than” ldurts, then the graphs in Figure 7 represent this
case. Moreover, beingdapt~ = g and Adapt™ = § for the availability study,
andAdapt— = g and Adapt™ = g for the cost study, then graph (c) in Figure 7 is
the one of interest. Hence, we can foretell that:

5We have not considered deployment costs nor advanced pagmaeners such as payment for
execution requests, payment for temporal contract or payfoea COTS component acquisition.
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e No suitable architecture can be found for an LSAg oran LSA = 1, since
one of the requirements cannot be satisfied.

e There are suitable architectures for values of LSAg, LSA = g and LSA
__ 8

9"

e There can exist suitable architectures for LS;A%.

7. Analysis of the Approach

This section analyses how the proposal developed in Secfi@md 6 can as-
sist the software architect in the design decision procksparticular, we show
how the approach is useful for selecting components whengg®in the envi-
ronment or in the requirements occur. The goal of this amalggo show that the
range of possibilities to architect the system producedhbypplication of the ap-
proach meets the requirements and sometimes improvesehaimsystem quality
and/or its adaptability. This enhances the software achreasoning abilities to
both deliver a satisfactory design and improve architectiality assurance pro-
cess.As mentioned in Section 2, the time required by our approadomplete a
study can be higher than the one required by other approadmegntrating on
finding the architecture with the highest utility for conersystem requirements.
However, the output of these studies may be useless whenreswnts change
-fact that is pretty plausible in the early stages of systewetbpment- and the
analysis has to be re-executed. Instead, using our approach a trade-off study
has been performed, producing results like those in Figbres8, if the value
of a quality requirement changes (e.g., the reliabilityuiegment value in Figure
6), then it is not necessary to repeat the trade-off studyghough to redraw the
asymptote of the requirement for the new value and selectdéivecomponents.

In the followingthe analysis is guided by the four cases that lead to apply the
proposal.

Definition 1. Let us denote by:
e (', a set of components.

e ARCH, the set of architectures we could get by combining compsnent
which adequately satisfy the interfaces(in

e Regs, the set of system quality requirements.
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o ARCHp.,s € ARCH, the set of architectures fulfillingegs.
o Arch € ARCHp.4s N\ Arch C C, the current architecture.

e Arch\ ¢;, all components imMrch butc;.

Case 1. The environment provides a new componentVhether to apply the
approach is a choice of the software architect, sinceh € ARC Hp.ys. If the
approach is applied, then a new seRC Hy,, ., whereARC Hg,,s C ARCH;

eqs’ Regs
is produced. A new architecture, offering better qualiydiRC H7,,,, could exist.

eqs

In the example in Section 5 suppose the environment proddesv compo-
nentC23 (cost=5, avail=0.98) Figure 9 depicts the corresponding new graphs.

It is not possible finding suitable architectures fof A < lio or LSA > 1%;
while a solution exists fol.SA = =, £, =; and there may exist solutions for
LSA = 2 L. Then, the new set of suitable architectures is a supersee gfre-
vious one, and the software architect has now the posgitoliconsider different

architectures satisfying the given requirements.
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Figure 9: Same experiment as in Figure 8 but adding C23

Case 2. The environment disposes of a componernt ¢; ¢ Arch, then obvi-
ously there is no need to apply the approach; & Arch, it can happen that:

1. Arch\ ¢; ¢ ARC Hp,ys. It is mandatory for the software architect to apply
the approach. Then, it could be foundanch’ € ARC H g4 Or not. In the
example in Section 54rch={C11, C12, C21, C31, C32, C43hows an
availability of 0.9755 and a cost of 26mu. Now, if, for exaeil42is dis-
posed of, thenlrch\ C'42 has an availability of 0.8296 which does not meet
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the requirement. If the approach is applied again, the Aeah’ ={C11,
C12, C21, C31, C32, C41is obtained with an availability equal to 0.9548
and cost of 26mu, that meets the requirements. So, the appfcof the
approach assists the software architect in the decisiotepsoof possible
architecture selection.

2. Arch \ ¢; still meets the quality requirementt this caseArch was over-
dimensioned to fulfill the requirements. If the softwarehgtect decides to
apply our approach, then a new architecture will be seleetbth could be
Arch )\ ¢; or another one. In any case, the system quality is not desdeio.
To illustrate this case, let us consider agdirch ={C11, C12, C21, C31,
C32, C42, but nowC3Llis disposed of. In this casé;ch \ C31 still meets
the requirements -availability 0.953 and cost 22mu-. Tioeeg it is not
mandatory to apply the approach again, but the architedtcapply it,
since a better architecture could be found.

Case 3. An already deployed component changes some qualibute. Some
requirement has to refer to the affected quality, othertfisee is no need to apply
the approach. Two cases appear:

1. ¢; improves some quality attribute.
(@) ¢; € Arch. In this case Arch enhances this quality. The approach
does not need to be applied.
(b) ¢; € Arch. The software architect should apply the approach and
this may result in a new and better architecture that useBollow-
ing the example, iIlC33 improves its availability up t®.99, then a
new Arch’ = {C11, C12, C21, C22, C33, C41s obtained, which
improves availability fron).9755 to 0.98144 and cost from26mu to
20mu.
2. ¢; deteriorates some quality attribute.
(@) ¢; € Arch. Arch is not affected and the approach should not be ap-
plied.
(b) ¢; € Arch. The system quality is deteriorated, and the requirements
are no longer met. The software architect should apply tpecach.
(c) ¢; € Arch. The system quality is deteriorated, but the requirements
are still met. The software architect can decide to applag@oach,

7If the requirement is formulated as “higher than” then “ioyes” means that the quality value
of the component increases as well. Otherwise, if it is “loth@n” the quality decreases.
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to see if a better architecture can be found. For exampleslevnsider
the case where the availability 642 deteriorates down t0.9. Then,

the availability of Arch decreases from.9755 to 0.94781, but the
system still meets the requirements. However, the appicatf the

approach leads tdrch’ ={C11, C12, C21, C32, C41, C42vith a

better availability0.9589, and the same cost @ému.

Case 4. Changes in the system quality requirements.

1. The quality requirement becomes less restrictive. Theageh does not
need to be applied since the requirements are obviously idetvever,
the the software architect can decide to apply the appraacivéstigate if
another architecture can show a better tradeoff betweditigaa

2. The quality requirement becomes more restrictivedsfh still meets the
new requirement, the approach should not be applied sincé was the
best choice with the same components. Howevetrifh does not meet the
new requirement, then the approach has to be applied.

8. Experimentation and Limitations

We have developed SOLAR [16] (SOftware quaLities and Adaipita Rela-
tionships), a tool which implements the approach in Seetioh short description
of its package composition and execution behavior can bedfduAppendix B.
Starting from a component-and-connector view of the sysshAR explores
the design space. For each architecture SOLAR evaluatadatstability and a
target qualitf. Aninputfor SOLAR is then made of: a) a set of components, spec-
ifying for each one the four parameters described in Se&i{) N, availability
andcos), b) the adaptability metric to evaluate, and c) the quaétyuirements to
meet.

We judged it was important to test the performance and siigfaddf SOLAR,
so to assess if the approach could be fast enough as to beruseal-size sce-
narios. Specifically, this experimentation allowed us teapgetrically control the
size and the structure of the generated models. In this wayhave analyzed
in a controlled environment the performance of the analiis, getting more
insights about their strengths and weaknesses. The nurhpessible architec-
ture combinations for amputis mainly influenced by three parameters: the total

8SOLAR currently deals with availability and cost.
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number of components in thaput, the number of components providing each
service and the number of services each component requires.

For testing the tool we have designed 681 experimentsputsto be able to
reason about the results. These experiments allowed nranegiy wide ranges
for the three parameters, as follows. The parameter regatie number com-
ponents ranged from to 30, we call this parametelC|. For each valugC|,
the parameter regarding the number of components provetio service ranges
from the case where there is only one component that proeaes service to the
case where all components provide the same service. Toleas@tomatic gen-
eration of inputs, we considered that each service is peaviy the same number
of components, which means that we restricted this value ta positive divisor
of |C]. Since the concept “number of components providing a serwi@s al-
ready used in Section 3 for the cardinality of s€étswe call this parametgr’;|.
For example, foflC| = 4, values of|C;| are: |C;] = 1 meaning that the input
has four services and each service is provided by a compdight 2 meaning
that the input has two services and each service is provigeéaid components;
and|C;| = 4 meaning that the input has only one service and all the foonpa
nents provide it. Regarding the third parameter, the numbgemwices that each
component requires, we ranged its values as much as pofsilelech pair ofC|
and|C;l, i.e., from the case where each component only requires emés to
the case where components require all the services but thinen offer. In other
words, given/C| and|C;|, this parameter ranges frointo % — 1. We call this
parameters®.

We defend that this set of experiments is representative.réason is that the
time required by SOLAR to execute inputs not present in tlpeements, those
whose component structures are less regular than thosee @xiberiments, is
upper-bounded by other regular inputs in the experimerdsekample, systems
in Figures 2 and 5 are simpler than the analyzed inputs wligre- 9, |C;| = 3,

S =2and|C| = 12, |C;| = 3, S = 3, respectively. Another reason is that, the
execution time of SOLAR will be the same for two inputs witimsacomponent
structures but different quality attribute values for trmponents.

Experiments resultsWe executed SOLAR for the 681 experiments and we recorded
each execution time. We got 30 charts, one for each valy€'|pfFigure 10 de-
picts five representative charts showing the executiongifoethe inputs whose

Note that, for the particular case of inputs whoseé = |C;|, all the components offer the
same service, so the number of required servic&s=s0
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Figure 10: SOLAR execution times in milliseconds

|IC| € {6,12,18,24,30}. We can observe that the execution time strongly de-

pends on the number of components|, which is shown by the different time
scales in the graphs. Graphs also show that execution tireeslso affected by
the number of services providedy;|, they follow an exponential growth for low
values of|C;|, but later they remain almost constant. For instance, inréid.0(d)
(where|C| = 24), the execution time increases exponentially up(g = 6 and
then it remains constant fo€;| = 6,8 and|C;| = 12, 24.

Considering the services requiret],we see two different cases: for low val-
ues of|C;|, the execution times grow linearly with; whereas for high values
of |C;|, increments inS do not affect the execution time. For instance, in Fig-

30



le+07

|Ci|=2 |C|={2,4,6,8,10,12, 1e+06
14,16,18,20,22, w0000
24,26,28,30} %

1000

S=1 |C|={1,...,30}

100

e
————
——
m———

X
r==
=

A\

Figure 11: SOLAR execution times in milliseconds: detaitiofe execution withC/|

ure 10(d), for|C;| < 4 the execution time increases whé&ndoes; while for
|C;| > 4 execution times remain constant for any valueSofThe reason is that,
when |C;| is small, the number of different architectures to evaluatée in-
put depends mostly on the amount of dependencies betweenedmgrvices of
components (parametéi). However, when the number of components offering
each service|(;|) grows, the number of different architectures that SOLAR ha
to evaluate is near the maximum even for small valueS,a&o increments irp

do not affect the execution time in that case.

Regarding the strong dependency on the number of componéptsig-
ures 11 (a) and (b) depict some of the experiments resultariatibn of |C|.
Figure 11 (a) shows that the execution time grows exporigntiéth |C|. In this
figure, we fixed/C;| and we show all the results of our inputs whosg = 2.
This figure also supports our previous explanation reggrthie linear increment
in the execution time witty' for low values of|C;| (lines in the graph show only
very slight increments because the figure is in logarithroadey. Figure 11 (b)
shows again that the execution time grows exponentiallig it. In this figure,
we fixedS and we show all the results of our inputs whése: 1. This figure also
reinforces our previous statement regarding the expaaegrowth of the execu-
tion time when C;| has low value and we increment it, and the constant execution
time when we increment;| but it has already a high value. For example, for
|C| = 24 in Figure 11 (b) -i.e., the darkened line-, the possible eslof |C;|
are: 1,2,3,4,6,8,12; and we obtained that execution tins®lai were: 2ms, 2.2s,
24s,19.4s, 20.5s, 19.8s and 15.4s respectively to eachk pféwiougC;| values.

Summary of the experimentsrom the experiments we can obtain some conclu-
sions. SOLAR takes less than one second when we evaluats wjih less than
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21 components. Most of the inputs with 21 components, sortie24 and a few
with more than 22 can also be executed in less than one seSontke inputs with
30 components can last for 20 minutes. We can then say thatithent prototype
implementation is applicable to medium size systems. Wegoanmore argu-
ments in favor of our approach. Remember that Section 7 aedlye cases when
the approach should be applied, so an output of SOLAR is ¢gge¢a be valid for
a long time; at least until the next change in the executioriecd (changes in the
requirements could be even more infrequent). Moreover.egperiments dealt
with extreme situations, but in the real world the situai®much more relaxed:
1) not all functionalities are adaptable as in our experiisieand 2) for the ones
that indeed are, there do not exist tens of alternative coes offering them,
on the contrary, it uses to be only a few. These reasons itedicat our approach
can work in real environments even better than our analyaisneveal.

8.1. Discussion on Approach Limitatioasad Threats to Validity
After presenting the approach and experimenting with itpvgeuss below its
limitationsand threats to validity

Simple requirementdn this paper we deal with binary requirement satisfaction
(i.e, satisfied or violated), but quality requirement gatifon can often be stated
in a more sophisticated continuous form[n.1]. In this continuous perspective,
requirement satisfaction is reinforced by a concept ofitactureutility (for ex-
ample, a requirement/s is/are satisfied with an utility gadfi0.6). The proposed
approach is then the basis for further enhancements basedm@sophisticated
requirement satisfactions, such the ones based on rangadigfaction. In this
case, both useless (value 0) and perfect (value 1) aralngscare considered to-
gether with a set of architectures with varying (increagimgity values. In this
case, it would also be possible finding other interestingodality values giv-
ing us information about the suitability of architecturétowever, the presented
approach can be hardly used when requirements satisfaadgume a continu-
ous form where all architectures have an utility higher tBafuseless for the
requirement) and lower than 1 (perfect for the requiremelmjieed, at present
the adaptability valuesidapt™ and Adapt~ are discovered/calculated while in
the continuous case these adaptability values do not exist.

Adaptability metrics.At present, regarding computation of adaptability metrics
we propose all the components to be equally important. kcetsider the case of
a system in which a required service is very important angt ueed to accom-
plish system goals, while there is another one much lessarsgtess important.
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We could intuitively advice that adding one new componemtgmviding the
former service is much more important than adding one toatterl If this infor-
mation were considered for the computation of our metriosntwe would take
into account the adaptability of the system weighted by tiygartance of the ser-
vices, which would help to make our metrics more accuratés pioblem could
be addressed adding weight to each service. We are workilegthtowards the
inclusion of aspects such as the “criticality” or “import&i of the offered func-
tionalities. The extension of the metrics to capture alsolibhavioral aspects
is, at present, under investigation. Another directiort teserves further anal-
ysis is the integration and combination of our metrics with bnes proposed in
other works (e.qg., [22]) then empowering software arclétéx compare adaptive
system designs with the system design without adaptability

Tool performance.This first version of SOLAR can be improved to perform bet-
ter. Now, for a giverinput, SOLAR first explores the design space, then it evalu-
ates the architectures to obtain the upper and lower bouthalsever, heuristics,
as in [37], can be implemented to calculate the bounds. Ewurtbre, for some
quality attributes the global maximum and minimum may depen the local
maximum and minimum; fact that can be used to avoid the cuo@mplete ex-
ploration of the design space when calculating the bounds.

Threats to Validity Here we follow [44], where it is mentioned four kinds of
threats to validity for discussion: construct, internanclusion and external. As
concerns taonstructandinternal validity, our goal is on defining an approach
to help architects in (automatically) finding software at@ttures guaranteeing
adaptability and QoS tradeoffs. In this type of researcleguent problem is the
lack of measures to evaluate; here we have defined themycléarbther threat
refers to how accurately the model represents the system,the “goodness”
of the model. To this end we have used the C&C view, which is tramon
one to reason about software qualities [39]. Problems herestaared with all
architectural approaches, for example, possible lack ohkedge about the real
execution environment and consequently the difficulty ifwdleg architecture pa-
rameters [39, 45]. Some methods have been defined in thetliter mainly based
on estimations measuring the actual software or similaliegtpns and also es-
timations from educated guesses based on experience [4467 483].

With respect toconclusionand external validity, instead of a real system,
which is a need to support the latter, we have considered am@e to show the
application of the approach. However our parametric stddy8d experiments
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evaluated thousands of medium sized architectures andgpreuwtombinations of
provided and required services, then ranging a good nunflesde-off combi-
nations commonly present in real systems.

9. Conclusions

In this paper we have presented an approach for relatingatadaptability
and other quality properties. We have defined a set of metratsquantify the
software adaptability at architectural level. These rmastgive means to quantita-
tively evaluate and compare different systems in termsdfitectural adaptabil-
ity and quality requirements. The approach can help soé&wachitects to find
architectures satisfying all system quality requiremeritke software architect
applies the approach when changes in the execution comtexd fo change the
components of the architecture for satisfying quality regjaents. To bring the
approach to fruition we have implemented a tool that autcraly performs the
analysis. At present we are working towards the extensiaghefpproach in or-
der to overcome the presented limitations. Besides, we @riosking for a real
test-bed to assess our approach in industrial settings.
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Appendix A. Availability Computation

This appendix explains a method for creating a generalitechastic Petri
net [43] from a software architectural description. It ugesquantitative informa-
tion presented in Section 32 (probability of componenc’;; to require service
sr), N; (number of requests of componeity to services,) and the component
availability (C;;.avalability). We distinguish components garminalsandnon-
terminals Terminals are those not needing other services (e.g., coemsC31
or C32in Figure 5), while non-terminals do need (e@11or C12in Figure 5).

Definition 2. A terminalC;; is represented as the Petri net in Figure A.12(a). Its

availability is Av(C;;) = Tm(tAvT)Tgff}EZNomy)’ where Thr(t) is the throughput of
transitiont.

The result of this quotient is always equivalent to the alality annotated
in the component, according to the probability annotatetlansitionst Av and
t Not Av in Figure A.12(a).

Definition 3. The availability of aservices; is represented as the Petri net in
Figure A.12(b).

This Petri net models a sequential trial to execute the senvi one of the
components offering;, i.e., those iU C;. If a component’;; € UC; is available
to handle the request (there is a tokep@ j OK place), then a token ipSi OK
is set. On the contrary, if none of the components @@} is available, then a token
in placepSi Fai | is set. Transition NoCi sets a token in plageSi Fai | when
there are no providers fot.

The operational profile of a servieg requested by;; is modeled as the Petri
netin Figure A.12(c)s; is supposed to be executed with probabifity and it is
requested\fg’“ times. If all the requests find an available provider, thecaken
is performed appropriately and a token is sep@i j ReqSkCOK. Otherwise, the
execution cannot be completed and a token is sptnj ReqSkFai | . Shaded
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placespSk, pSkOK and pSkFai | will be composed with their homonyms in
part (b) of the figure.

Definition 4. The availability of anon-terminalC;; is represented as the Petri net
in Figure A.12(d).

If the component is not available, which happens with praltgd —C;;.availability,
a token is set ipCi j Fai | . If it is available, its required services are sequen-
tially called. This behavior is modeled through groups oééhshaded places per
required service. These places will be composed with themrdnyms in part (c)
of the figure®. If all the service requests success, tii&nis properly executed
and a token is set ipCi j OK. Otherwise, atokenis setpCi j Fai | .

Definition 5. The system availability is calculated as the quotient

Thr(t Syst emAv)
Thr(t Syst emAv) + Thr(t Syst emNot Av)

of transitions in Figure A.12(e).

This figure represents a Petri net that continuously requesthe main ser-
vice s; of the system. Shaded places will be composed with their Ingms in
part (b) of the figure. Note thathr(t Syst emAv) + Thr(t Syst enNot Av)
will be equal toTt i med transition firing rate. Then, choosing a firing rate equal
to 1 for Tt i med, system availability will correspond tBhr(t Syst emAv ).

The Petri net in Figure A.13 corresponds to the one of the pl@ain Sec-
tion 5, when the architecture is made®12 C31, C32andC41 We represent
the subnets in the condensed form and we only depict the shpldaes. The
result of the analysis unveils an availability of 0.801.

Appendix B. SOLAR Tool

Figure B.14 shows the implementation units of SOLAR, i.e mitxlule view.
TheQual ity Cal cul ati on module ownsth€ual i t yManager class, which
is the interface of SOLAR, and the classes for computing tetegy quality prop-
erties. TheMet ri cs module computes the adaptability metrics as proposed in
Section 3. Th&ConpDi ag APl manages all the information in the system C&C

19n Figure A.12(d), we have noted #&sS(C;;) the set of service§);; requires, andRS(C;;)|
its cardinality.
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Figure A.13: Petri net for the example in Section 5 when tlohigecture is made of£12 C31,
C32andC41

view, i.e., the information gathered in the UML componeragtam and also the
parameters of the componen®B N, availability, cost Finally, thePar ser mod-
ule, a black-box in the Figure, deals with the XML represgateof the system.

When SOLAR is invoked, th€ual i t yManager uses thePar ser to get
the currentinput, with the provided and required services for each compgnent
which was stored in XML files that represent the C&C view (fostance, the
input XML file for computing the studies in Sections 5 and 6 barfound in [16]).

By iterating over all the possible architectures that canefom the component
diagram, th&ual i t yManager usesth&ual i t yCal cul at or s to compute
the upper and lower quality boundQ (., and( 4, ) for each adaptability value
A;. It returns these bounds an} values together with the architectures from
which such bounds were obtained.

In the current prototype version of the tool, we have not enpénted yet the
translation of this C&C view of the model to the concrete |aanggiof a GSPN en-
gine. Instead, based on general theories on how perfornrasalts are obtained
from GSPNs, we have implemented in SOLAR the computatiodegéo get the
system availability®. This fact, together with the fact that SOLAR has been im-
plemented in a cross-platform language, lends the tool tonbeediately tested
and also easily executed with different inputs.

probability for a token to reach the plageSyst em nit by the firing of transitions
t Syst enAv ort Syst emNot Av in Figure A.12.
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Figure B.14: SOLAR module view

User workload for using SOLARCurrently SOLAR requires an XML file, with
the information in the C&C view and with a description of themqmnents quality
attributes, that the user must provide manually. This mag ben-trivial task for
non XML users. Possible improvements are: 1) In case of USDYAR as a
standalone application, a graphical user interface woae ¢he input generation
-C&C view and quality attributes description-; 2) In case siilng SOLAR as part
of a software development framework, e.g., as a plug-in efftamework, the
XML would be automatically generated from the architedtanadels created in
the framework. Once obtained the XML input, no more intéoacbetween the
user and SOLAR is required, the analysis proceeds autoaligtic
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