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Abstract

Modern software operates in highly dynamic and often unpredictable environ-
ments that can degrade its quality of service. Therefore, itis increasingly im-
portant having systems able to adapt their behavior. However, the achievement
of software adaptability can influence other software quality attributes, such as
availability, performance or cost. This paper proposes an approach for analyzing
tradeoffs between the system adaptability and its quality of service. The proposed
approach is based on a set of metrics that allow the system adaptability evaluation.

The approach can help software architects to guide decisions on system adap-
tation for fulfilling system quality requirements. The application and effectiveness
of the approach are illustrated through examples and a wide set of experiments
carried out with a tool we have developed.
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1. Introduction

In modern-day applications, software is often embedded in dynamic contexts,
where requirements, environment assumptions, and usage profiles continuously
change. Ergo, a key requirement for software is becoming thecapability to adapt
its behavior dynamically, in order to keep providing the required quality of service
(QoS). As an example, consider a service-oriented application made of multiple
services and components. Without adaptation, the application is prone to degrade
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performance because of faulty components, messages lost between services or de-
lays due to an increasing number of users. Using adaptation,the application can
change, for example, some of the services it uses or its overall service composi-
tion [1, 2].

As an answer to this need, in recent years, industry and academia have in-
creasingly addressed the adaptation concern, particularly with the introduction of
autonomic and self-adaptive systems. General discussionsconcerning the issues
and the state of the art in the design and implementation of self-adaptable software
systems have been presented,e.g., in [3, 4, 5, 6, 7, 8, 9]. These papers evidence
how more and more users require that applications flexibly adapt to their contex-
tual needs and can do so with the highest performance and availability. However,
guaranteeing software adaptability can influence other quality attributes such as
performance, reliability or maintainability and in the worst case, improving the
adaptability of the system could decrease other quality attributes. As defended
in [10], quality attributes can never be achieved in isolation, the achievement of
any one will have an effect, sometimes positive and sometimesnegative, on the
achievement of others.

Finding the best balance between different, possibly conflicting quality re-
quirements that a system has to meet and its adaptability is an ambitious and
challenging goal that this research would pursue. As a first step towards this goal,
this paper presents a novel approach for evaluating tradeoffs between the system
adaptability and other system quality attributes, like availability or cost. The ap-
proach is based on the definition of a set of metrics that allowthe evaluation of the
system adaptability at the level of the architecture. This level is appropriate for
dealing with software quality attributes [11, 12, 10] and several methods and tools
facilitate this evaluation at architectural level [10, 13,14, 12]. Bysoftware archi-
tecturewe assume a set of components that make up the system. Components can
require and/or offer services. Components can be in-house developed or selected
from the open-world [15].

The proposed approach is useful for software architects to select from the
open-world those components that can fulfill all system quality requirements.
These components make up the software architecture, which will be rated ac-
cording to the adaptability it shows. Evaluation will enable the tradeoff analysis
of adaptability versus different software quality attributes. Far from being “a so-
lution for every situation”, our approach can help softwarearchitects when the
selected components fulfill the system requirements effectively. A software ar-
chitect would apply the approach when changes in the execution context of the
system occur. For example, the introduction or disposal of components; changes
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in the QoS of some components; or changes in the system quality requirements to
fulfill.

The task of evaluating architectures is a complex one for which the software
architect needs automation. To this end, we have implemented the tool SO-
LAR [16] (SOftware quaLities and Adaptability Relationships). The architecture
of the tool and a wide experimentation are hereafter presented to support our ap-
proach.

The paper is organized as follows. Section 2 reviews the works related to our
approach. Section 3 proposes metrics for quantifying software adaptability. Sec-
tion 4 presents our approach for relating adaptability and asingle quality attribute.
Section 5 exercises the approach through an example, which involves adaptabil-
ity and availability. Section 6 extends the approach to morethan one quality
attributes. Section 7 discusses the cases in which the approach can be used. Sec-
tion 8 analyses the feasibility of the approach by means of experiments carried out
by SOLAR. Finally, Section 9 concludes the paper.

2. Related Work

In the last years, as outlined in [5, 9, 8], the topic of adaptable systems has
been studied in several communities and from different perspectives. Our work
proposes an approach for the evaluation of the relationships between the system
adaptability and its quality of service. It is based on the definition and usage of
a set of metrics allowing the description and the evaluationof the system adapt-
ability together with a formal definition of the relationships between adaptability
and other quality attributes. This approach together with the provided tool can
facilitate the software architects in the design reasoningprocess improving their
abilities to deliver a satisfactory design. Therefore, hereafter, we review works
appearing in the literature dealing with (i)metrics for system adaptability, (ii) the
trade-off analysis between different quality attributesand (iii) design reasoning.

Metrics for System Adaptability.In [17] authors give a set of metrics for adapt-
ability applicable at architectural level. The set of metrics we offer is strongly
inspired by these ones. In our approach a metric not only tracks whether a require-
ment is adaptable or not, we also quantifyhow muchadaptable it is by means of
natural numbers. The same authors propose in [18] a framework, as a specializa-
tion of a general qualitative framework, to reason about non-functional require-
ments [19, 20]. That framework concentrates on adaptability requirements and
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works with quantitative values. Our work, on the contrary, is based on the addi-
tion of the adaptability property to systems in order to makethem able to meet
quality requirements.

In [21, 22] the authors wonder whether it is possible to measure and evaluate
the adaptability of systems in order to compare different adaptive solutions. To
take a step forward, they propose a set of quantitative metrics grouped by cate-
gories. These metrics are calculated statically. However,their approach can be
extended to be applicable in a dynamic environment. In this direction we foresee
a possible integration between our metrics definition and the approach in [21, 22].
Indeed, our approach can be used to discover architectures that can make the sys-
tem able to meet the desired quality requirements. Then, we use higher-level
metrics for evaluation and comparison of the already calculated suitable architec-
tures.

In [23], the authors define a methodology for evaluating system adaptivity
through a single metric. This evaluation is based on measurement traces or simu-
lation traces that can be obtained, in test-beds, from real systems or software tools
for discrete-event simulation.

Trade-off Analysis.The definition of architectural models can embody not only
the software quality attributes of the resulting system, but also the trade-offs deci-
sions taken by designers [10, 11]. The efforts to explore such trade-offs have pro-
duced the so-called scenario-based architecture analysismethods, such as SAAM
and ATAM [24, 25] and others reviewed by [14]. These methods analyze the
architectures with respect to multiple quality attributesexploring also trade-offs
concerning software qualities in the design. The outputs ofsuch analysis include
potential risks of the architecture and the verification result of the satisfaction of
quality requirements. These methods provide qualitative results and are mainly
based on the experience and the skill of designers and on the collaboration with
different stakeholders.

Different approaches allowing a quantitative trade-off among different soft-
ware quality attributes are mainly based on the use of optimization techniques
(e.g., [26, 27, 28]) or on metaheuristics approaches (e.g.,[29, 30, 31]). The first
ones try to find the optimal architecture by selecting the best components and
taking into account possible conflicting requirements in the definition of the op-
timization model itself. The second type of approaches exploits evolutionary and
genetic algorithms to optimize architectural models for multiple arbitrary quality
attributes. A recent survey on software architecture optimization methods cover-
ing these topics has been presented in [32].
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These methods, however, do not explicitly consider the adaptability as a sys-
tem quality. The work more related to ours is the one presented in [33] where a
trade-off analysis among quality attributes of adaptive systems is presented. This
approach takes into account changes in runtime contexts andthe decision to adopt
an adaptation strategy is performed during runtime, when the system knows the
current real context. Besides all this, our work considers trade-offs between the
qualities and the adaptability.

Design Reasoning.The approach here presented can be used complementarily to
other decision-making techniques to facilitate the overall design reasoning pro-
cess. Several techniques exist in the literature helping software architects in this
step1. In the following we contrast our approach with the methods closest to it:
optimization problems -maximize utility-, yes/no answer to a given architecture,
heuristics to find a suitable architecture.

Optimization problems (maximize utility) can find the optimal architecture
given a set of requirements and their priority or utility functions; see for example
[26, 28] for service-based systems . Even if some of these techniques suffer from
state-space explosion, it is most likely that their execution is faster than the exe-
cution of our approach. However, for early steps of the development (stages on
which our proposal is focussed) where all the system requirements are not com-
pletely stated (and the already stated requirements may change) obtaining only
the current optimal architecture may be useless after some time. The results of
our approach, while it does not decide for an architecture, it studies architectures
properties in function of their adaptability and offers a range of possibilities to
architect the system. Techniques based on yes/no answers toa given architec-
ture regarding the analysis of its quality requirements canbe found, for example,
in [35, 36]. If the qualitative analysis results in a negative answer, the architect
should improve the architecture and analyze it until the requirements are satisfied.
This technique is well suited when the requirements cannot be properly stated as
utility functions. In that case the optimization problem isuseless because it could
come up with an architecture that is not appropriate from thepoint of view of
the human architect. However this technique needs manual handling for creating
different architectures and large quality knowledge for changing the proper parts
of the architecture that allow improving its quality. In theend, when a positive
answer from the analysis is obtained, the software architect has a single solution
that meets the requirements, thought it does not have information about possible

1Interested reader can see [34] for detailed descriptions and discussions
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alternatives arising from awhat-if analysis. Our approach, instead, offers a set
of possible solutions and empowers the software architect to assess alternative
architectures

For avoiding the manual modification of the architecture, heuristic techniques
can be utilized. These techniques also avoid the state-space explosion problem,
but they do not ensure success. These techniques automatically change the ar-
chitecture to reach an architecture that: a) satisfies the quality requirements (the
process stops as soon as it finds a suitable architecture) or b) stops when it is found
an architecture near the optimal (no other better architecture can be found easily,
e.g., with small changes in the current one) [37]. Although the current state of our
approach does not consider the use of heuristics, they represent a possible exten-
sion. In the future, our approach could be improved with a good heuristic to offer
the kind of results that currently offers but faster.

The principles of our approach are similar to those in [38], although the goal
of the techniques diverges. In [38], authors automaticallyreduce the space of de-
sign choices by eliminating designs that do not satisfy somespecified constraints.
They do not try to find a good solution for the system design because they recog-
nize that some system requirements cannot be specified in an analyzable formal
language but they are subjective/ambiguous and they remainin designer’s head;
moreover, it may be better not to resolve some ambiguities until later stages in the
development, when stakeholders conflicting opinions are clearer. On the contrary,
their approach can automatically eliminate unfeasible system design alternatives
that cannot satisfy the constraints of the subset of requirements that are formally
specified, so reduce the design space for subsequent refinements in requirements
or subjective design decisions. In our approach we do neither decide for an ulti-
mate architecture but we study relationships between adaptability and quality to
offer ranges of adaptability values where architectural solutions for the system
reside regarding the quality requirements specified.

Summarizing, this paper proposes, with respect to existingwork, the follow-
ing.

• A more extensive set of architectural metrics that can be used for evaluation
of the system adaptability.

• An approach that leverages these metrics for the definition of explicit rela-
tionships between adaptability and quality values, such asavailability and
performance. The approach is a support in the design reasoning process.

• A tool for applying the approach.
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3. Architectural Adaptability Quantification

This section presents the definition of a set of metrics whichquantify the po-
tential adaptability of a software architecture. All the metrics are defined at the
architectural level of a system.

3.1. Modeling Notation

For defining metrics and for evaluating quality attributes we rely on a component-
and-connector view (C&C view) of the software architecture,since this view is
commonly used to reason about runtime system quality attributes [39]. In C&C
view componentsare principal computational elements present at runtime (e.g.,
COTS or in-house developed components or Internet services)[39]. Components
have interfaces attached to ports.Connectorsare pathways of interaction between
components and also have interfaces or roles. The notation used in the paper for
representing a C&C view is the UML component diagram. In our diagrams the
components are instances and they have provided and required interfaces repre-
sented as lollipops and sockets respectively. Connectors are implicitly represented
by linking the lollipop and socket of the provided and required interfaces. When
the same service is required/offered by several componentswe join the corre-
sponding sockets/lollipops to avoid blurring. Figure 1(b)simplifies the interfaces
in (a) and also shows the implicit connectors. We omit ports but in aggregate com-
ponents since they are useful to delegate interfaces, see Figure 2. From now on,
we will refer interfaces also as services.

(a) (b)

C11 C21

C22C12

s1

s2

s2

s2

s2

s2

s2

s1

s1

C21

C22

C23 C23

C12

C11

Figure 1: (a) A set of components and their interfaces, (b) The C&C view of the components in
(a)
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Figure 2 represents in the C&C view all the information we assumed as avail-
able to measure the adaptability of a software architecture. The information con-
tained in the figure is: the system provides services1; the system architecture is
made of four components, those grey shaded in the C&C view; componentC11
provides services1, whereas it requires servicess2 ands3 to accomplish its mis-
sion;s2 is provided byC21 ands3 is provided by bothC31 andC32; the architect
knows that there exist more components that offer servicess2 ands3 -C22 and
C33 respectively-, but s/he decided not to use them for architecting the system.
For defining the metrics, we use the following formal definition of the available
information: we assume the existence ofn different servicessi|i = {1..n} (n = 3
in Figure 2); the existence ofn sets of used components in the architectureUCi,
where components in eachUCi are the ones that providesi (UC1 = {C11},
UC2 = {C21} andUC3 = {C31, C32}, in Figure 2); the existence ofn sets of
componentsCi, eachCi includes the components that can providesi (C1 = UC1 ,
C2 = UC2 ∪ {C22} andC3 = UC3 ∪ {C33}, in Figure 2 ).

s3

s3
s2

s3

C31

C32

C33

C21

C22
C11

s1

s1

Figure 2: C&C view: discovered components andused components(in grey).

For the sake of simplicity, we do not represent components devoted to manage
the infrastructure of the adaptive system2. In fact, we consider them as aggre-
gated to the functional components, i.e., a component is supposed to add to the
infrastructure a new proportional complexity for its managing. The proposed ap-
proach, indeed, concerns the assessment of trade-off between adaptability and
other quality attributes. We do not explicitly deal here with the actions that lead to
adaptation and that are managed by the infrastructure. Therefore, in this view the
components managing the infrastructure do not influence ourevaluation, but they
are devoted to the implementation of the choices and to the system adaptation.

2Those necessary to: make requests compliant with the actualinterfaces; monitor the behavior
of the functional components, and; develop the logic that manages the adaptation.
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3.2. Metrics

We present five metrics for measuring the adaptability of a software architec-
ture. Four of them measure characteristics of the services of the architecture and
the other measures the adaptability of the architecture as awhole.

Adaptability of the Services

Absolute adaptability of a service (AAS)measures the number of used com-
ponents for providing a given service.

AAS ∈ INn | AASi = |UCi|

Inspired by theelement adaptability indexin [17], which was a boolean metric
(0 no adaptable, 1 adaptable), here we propose the usage of a natural number that
quantifies how much adaptable a service is by counting the different alternatives to
execute the service (1 no adaptable,>1 adaptable), where the service adaptability
grows according to the number of components able to provide it.

Referring to the example in Figure 2, we observe thatAAS = [1, 1, 2].

Relative adaptability of a service (RAS)measures the number of used com-
ponents that provide a given service with respect to the number of components
actually offering such service.

RAS ∈ Qn | RASi =
|UCi|

|Ci|

It describes how each service stresses its adaptability choices and it informs
how much more adaptable the service could be. RAS vector values near to one
mean that the service is using almost all the adaptability potentially reachable.

Referring to the example in Figure 2, we observe thatRAS = [1, 0.5, 0.6̇].
More adaptable architectures have vector values for RAS greater than those

of less adaptable architectures. In the previous example, if we considerUC1 =
{C11},UC2 = {C21, C22} andUC3 = {C31, C32}, then RAS will be[1, 1, 0.6̇].
In this new architecture, the second component of the vectoris higher than that
in the previous architecture, then meaning that services2 is more adaptable in the
new architecture. Note that the maximum value for each componenti of the vec-
tor is 1, meaning that the system is using all the available components to provide
si; i.e., case in which|Ci| = |UCi|.
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Mean of absolute adaptability of services (MAAS)measures the mean num-
ber of used components per service.

MAAS ∈ Q | MAAS =
Σn

i=1 AASi

n

This metric offers insights into the mean size and effort needed to manage
each service.

Referring to the example in Figure 2,MAS = 4
3
= 1.3̇.

Architectures with more adaptable services have higher values of MAAS. Be-
sides, aMAAS > 1 means that the architecture includes adaptable services (at
least one of the componentsAASi is greater than one). ForMAAS ≤ 1, there
may be adaptable services or not (AAS should be checked in this case).

Mean of relative adaptability of services (MRAS) represents the mean of
RAS.

MRAS ∈ Q{0..1} | MRAS =
Σn

i=1 RASi

n

This metric informs about the mean utilization of the potential components for
each service. Values of this metric range between zero and one.

Referring to the example,MRAS = 1+0.5+0.6̇
3

= 0.72̇.
The higher the MRAS of an architecture, the more adaptable itsservices are,

on average. The maximum value of this metric is obtained whenRASi = 1 for
all i ∈ [1..n], which is in turn obtained when all services are as much adaptable as
possible because they use all the available components. Therefore, a value close
to one for MRAS means that, on average, services are as much adaptable as pos-
sible. A value close to zero means that: a) services can be much more adaptable
(adding components not yet used), b) different architecture alternatives with the
same quantity of adaptability can be created.

Adaptability of the Architecture

Level of system adaptability (LSA) measures the number of components
used to make up the system with respect to the number of components that the
most adaptable architecture would use.

LSA ∈ Q{0..1} | LSA =
Σn

i=1 AASi

Σn
i=1 |Ci|

10



The value of this metric ranges between zero and one. For LSA,a value of
one means that the system is using all existing components for each service, i.e.,
AASi = |Ci| for all i ∈ {1..n}, and then its adaptability is already to the maxi-
mum. A value close to one means that the market offers few choices to increase
the system architectural adaptability. When a new componentis bounded to the
architecture, LSA increases in a constant value (1/Σn

i=1 |Ci|) irrespective of the
number of components already considered for the same service.

Referring to the example in Figure 2,LSA = 4
1+2+3

= 0.6̇.
Although the meaning of MRAS and LSA may seem very similar, they differ

from each other in some aspects. Compared to MRAS, LSA devises aglobal view
of the system size with respect to its maximum reachable adaptability, but does not
foretell the expected value of adaptability of services (asMRSA does). To clarify
the difference, consider an architecture which, for all itsservicessi but one (let
us call itsi′), uses all existing components in setsCi; while for si′ there is a large
number of components providing it (i.e.,|Ci′ | ≫ |Ci|) but only a few of them are
used. In such case, LSA is not close to one (because a large number of compo-
nents are not used, i.e., most of those inCi′), however MRAS is close to one (in
the architecture, all services but one are already using their maximum reachable
adaptability; so, on average, system services are quite adaptable). Therefore, we
can also see in this example that MRAS can be close to one and yetmany options
to increase the adaptability can exist.

Name Range Value Example in Fig 2
AAS INn {|UCi|} [1, 1, 2]

RAS Qn ∈ {0..1} { |UCi|
|Ci|

} [1, 0.5, 0.6̇]

MAAS Q+
Σn

i=1
AASi

n
1.3̇

MRAS Q ∈ {0..1} Σn
i=1

RASi

n
0.72̇

LSA Q ∈ {0..1} Σn
i=1

AASi

Σn
i=1

|Ci|
0.6̇

Table 1: Summary of the metrics

Table 1 summarizes the five metrics and their values for the example in Fig-
ure 2.
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4. Relating Adaptability to a System Quality Attribute

As already stated in the introduction, software quality attributes can rarely
be achieved in isolation. Most often, the achievement of a quality attribute has
an effect, positive or negative, on the achievement of others [10]. Architectural
adaptability is not an exception, and it can influence quality attributes such as per-
formance, reliability or maintainability. In that case, anincrement in the architec-
tural adaptability can cause an improvement in some of them,but also a damage.
In this section we develop an approach to study possible relationships between the
architectural adaptability and the satisfiability of a given quality requirement. If
such relationship exists, then architectures offering best trade-off, between adapt-
ability and the target requirement, can be chosen. For this study we rely on the
metrics presented in Section 3, which enable comparison of architectures and also
the use of terms such as “adaptability increments”.

Table 2 helps the understanding of the approach. In the rows we read that,
when the adaptability increases then some quality attributes:

• tend toincreasetheir measured values.

• tend todecreasetheir measured values.

• are not affected. We are not interested in this group since weare focussed
on the influence of adaptability on the requirement.

The columns in the table consider how the quality requirement is formulated:

• ashigher than, e.g., “system availability shall behigher than...”

• aslower than, e.g., “system mean response time shall belower than...”

Requirement formulated as
When adaptability increases Higher than Lower than

the quality attribute value increases Helps Hurts
the quality attribute value decreases Hurts Helps
the quality attribute is not affected No effect

Table 2: Effect of adaptability on a measured quality requirement

Each region of interest in Table 2 has been labelled asHelpsor Hurts to indi-
cate the effect of the adaptability upon the quality requirement. So, for example
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the first row indicates that “When the adaptability increases, if the quality attribute
value increases, thishelpsto fulfill the requirements of this quality attribute for-
mulated ashigher than”. It is worth mentioning that, as in [40], we do not intend
to support the idea that a certain quality attribute always behaves the same. On
the contrary, this can be only assessed after analysis, whenthe evolution of the
measures of the quality attributes regarding the adaptability is well-known. The
following examples reinforce this idea.

Example 1, given a requirement“R: response time shall be lower than 3 sec.”,
we first study in the target system whether the response time increases when a
selected adaptability metric increases. In such caseR belongs to the first row,
second column, since “when adaptability increases, the response time increases
and ithurtsto fulfill Rwhich has been formulated aslower than”.

However, for another system, it may happen thatR can behelpedby incre-
ments in the adaptability. Even worse, for the same system, arequirement could
be inHelpsor Hurts depending on the system operational profile.

Example 2, consider a system that balances its workload. For high workload,
the response time may decrease when the system adapts and balances its load,
then the adaptabilityHelps the response time. Nevertheless, for low workloads
the response time will remain about the same whether the system balances the
load or not, but balancing operations will add execution overhead; so the execu-
tion time will be higher and response time can belong toHurts.

A trade-off analysis between an adaptability metric and a system quality at-
tribute can give different types of results3. The best case for establishing a rela-
tionship happens when results show a complete dependence between the adapt-
ability and the selected quality attribute. In this case, weobtain graphs like the
ones in Figures 3(a) and (b) (for the first and second rows in Table 2, respectively).
Architects would obtain very valuable information with respect to the appropriate
adaptability for the system.

However, this may be a naive hope because the component properties and
their interactions may have a more profound effect into the quality attributes than
the adaptability. The extreme case for this affirmation is depicted in Figure 3(c),
where architectures showing very different quality attribute values can exist for
any value of adaptability, meaning that the adaptability and the selected quality

3Our examples consider scalar metrics, for simplicity.
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attribute are independent.
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Figure 3: Extreme cases for adaptability and quality attribute relationships

Between these extreme cases we can obtain results showing some dependence.
Figure 4 depicts these situations for each of the four cases in Table 2. Given a
graph, the X-axis denotes increasing valuesAi of an adaptability metric. Y-axis
represents values for the target quality attribute. The requirement to be fulfilled is
calledRequirement value.

For eachAi, we are interested in two values: the upper bound,QAiU , (the max-
imum value that the quality attribute can reach, for an architecture with adaptabil-
ity Ai) and the lower bound,QAiL (minimum value). In between these two values
there exists a number of architectures that exhibit the sameadaptability but dif-
ferent quality attribute values4. Putting together allQAiU andQAiL we obtain the
graph outline. Among allQAiU andQAiL, we are interested in two values,Adapt−

andAdapt+, since they summarize the information in the graph.
For describing the meaning ofAdapt− andAdapt+ we focus on parts (a) and

(d) in Figure 4.Adapt− is the lowestAi for which we can find an architecture
satisfying the requirement.Adapt+ is the lowestAi whose bounds,QAiU and
QAiL, satisfy the requirement. These values indicate that to fulfill the requirement,

4Meaningless architectures are not considered forQAiU andQAiL calculation, e.g., we do not
study the quality attributes of an architecture that includes a component whose provided services
are not required by any other component.
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Figure 4: Relations among adaptability and other quality attributes

the architecture must have at least adaptabilityAdapt−, and, any architecture with
at leastAdapt+ will also satisfy it. For adaptabilities between them, there will
be architectures satisfying the requirement (those highlighted in the figure) and
others that will not.

In parts (b) and (c) in Figure 4 (regions where the adaptability Hurts), Adapt−

is the threshold adaptability value for which any architecture with adaptability
Ai ≤ Adapt− fulfills the requirement; andAdapt+ is the maximumAi for which
we know that exists some architecture that satisfies the requirement.

The four cases in Figure 4 could be merged into only two. If we negate the
values of the quality attributes in the second row in Table 2,then we get the first
row, so the graphs (c) and (d) of Figure 4 could be substitutedfor those in (a) and
(b). However, it is difficult to defend that any quality attribute has this counterpart.
For this reason, we prefer to consider all the four cases.

15



5. Example

This section presents an example to study the relation between the adaptability
of a system and its availability following the method described in Section 4. The
example is a web application used by students to register foran academic year in
the University. The system is composed of: a presentation layer with a web GUI
and mechanisms to interact with the student, and an application logic layer with
the rules that approve or reject the students’ proposal -a list of courses to take-. At
first, students register and introduce their proposal in thesystem. This information
is delivered to the application logic. If their proposal fulfills the University rules,
this layer interacts with bank web services to proceed with the payment. Once it
has finished, the control returns to the presentation layer,which sends a message
and an email to the student with information about the registration process.

We assume that there exist two components that exclusively implement the ap-
plication logic; a component that exclusively implements the presentation layer;
a component that implements both the presentation and the application logic lay-
ers; two services for payment (two banks for paying) and three services for email
sending, one of them is local to the University and two of themprovided by third-
parties. By availability we mean the “readiness for correct service” [41]. We
assume as quality requirement to fulfill:the system availability shall be higher
than 0.9.

Figure 5, depicts the component-and-connector view of the system. Table 3
relates components and services names to their description. Note that the view in
Figure 5 slightly increments that in Figure 2 by adding services4 and components
C12, C41 andC42. However, this slight increment adds a new concern because
now some components offering the same service are not completely replaceable.
For example,C11 cannot completely replaceC12, since the former needss2 but
not s4, and the later needs the opposite.

Information required to compute availability.In Figure 5 we depict some quanti-
tative information needed to compute the system availability. For simplicity, this
information appears inside the components and in a table. However a more formal
approach, like the UML-MARTE [42] standard profile, could beused.

• P sk
ij denotes the probability of componentCij to require servicesk.

• N sk
ij denotes the number of requests to servicesk, for executions where

servicesk is required by componentCij.
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Description Service or Component

Student registration s1
Student requirement satisfaction s2

Send email s3
Bank payment s4

Presentation layer C11
Presentation + application logic layers C12

Application logic 1 C21
Application logic 2 C22

Third-party email provider 1 C31
Third-party email provider 2 C32

Local email provider C33
Bank 1 payment service C41
Bank 2 payment service C42

Table 3: Web application example

• Theavailability of a component is a measure obtained from the third-party
provider or by monitoring the component. Thecostof a component is an
information that will be used in Section 6.

• We assume that connectors do not fail and are always available.

P sk
ij andN sk

ij could be combined to form the “mean number of requests per
execution”, however we prefer to keep them separated for thesake of system
availability computation. For example, a component could be requested once per
execution, another component could be requested five times per execution but only
the 20% of the system executions. In both cases the “mean number of requests” is
one. However, in the former case all the system executions are prone to fail, while
in the latter, the remaining 80% of the executions are safe.

Availability computation.We compute availability using Markov models, for which
we lean on generalized stochastic Petri nets [43]. We model aPetri net that repre-
sents the execution of the system by taking into account theavailability parameter
declared for components, the probability for the components to require services
and the number of requests per execution for each required service. As an exam-
ple, in Figure 5 services2 is requested by componentC11 with probability 0.8
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Figure 5: C&C view of the system

and one time per request.Appendix A describes how to create the Petri net from
an architectural description, and how to obtain availability results analysing the
Petri net.

Results.From the metrics in Section 3 we have chosen LSA (the number ofcom-
ponents selected to make up the system with respect to the number of components
that could be used). We have chosen LSA for the sake of clarity, since scalar
metrics are easier to depict than vectorial ones. For a vectorial metric it would be
necessary a graph ofn+ 1 dimensions to depict the relation to availability, while
relations among scalars can be represented by 2D graphs.

Following the method in Section 4 we created the corresponding graph where
the quality attribute in the y-axis is availability, Figure6 depicts it. We started
considering architectures with the minimum possible LSA values, which are the
architectures made of only one component (i.e.,A0 = 1/9). The selected compo-
nent should be one of those that provide the main functionality s1, i.e., eitherC11
or C12. We evaluated the availability of these architectures and we obtained that:
the architecture made ofC11shows an availability equals to 0, since all of its exe-
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cutions requires3, buts3 is not provided at present; in turn, the architecture made
of C12 shows an availability equals to 0.0425. These two values areplaced in
the graph for x-axis equal to 1/9 and we continue generating the rest of points for
the rest of adaptability values. When the graph is completed,we can see that the
availability requirement belongs toHelps, since the availability values increase
when the adaptability ones do and the requirement was formulated ashigher than
0.9.

Figure 6: Relating LSA to availability

The graph shows the existence of architectures satisfying the requirement. The
first solution is for an LSA equals to5

9
, thenAdapt− = 5

9
. In this case, the archi-

tecture that settles the highest availability value forLSA = 5
9

is made ofUC1 =
{C11, C12}, UC2 = {C22}, UC3 = {C32} andUC4 = {C42}, and its calcu-
lated availability is 0.954. RegardingAdapt+, the graph shows that all architec-
tures with LSA> 7

9
fulfill the requirement5. For LSA= 8

9
, the lower bound (worst

architectural alternative) offers an availability of0.9271. In such case, the system
is made ofUC1 = {C11}, UC2 = {C21, C22}, UC3 = {C31, C32, C33}, and
UC4 = {C41, C42}.

Finally, we have measured using the rest of proposed metrics, for this example,
the adaptability of the architectures that gave value toAdapt− andAdapt+; i.e.,
architectures made of components

⋃
i

UCi = {C11, C12, C22, C32, C42} and
⋃
i

UCi = {C11, C21, C22, C31, C32, C33, C41, C42} for Adapt− andAdapt+

5We remark that, following indications in Section 4, meaningless architectural alternatives have
been discarded.
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respectively. Table 4 extracts their measures for each metric, next we comment
some of them. MRAS informs about the mean utilization of the potential com-
ponents, values close to one indicate that on average the services stress their
adaptability choices. BeingAdapt+ = 0.875, then the system needs to stress
their choices sufficiently to ensure availability. The mostinteresting result is for
MAAS, where values greater that1 indicate that at least one service needs adap-
tation; in our example, beingAdapt− = 1.25 we then know that any architecture
that satisfies the availability needs adaptation.

n = 4 |C1| = 2 |C2| = 2 |C3| = 3 |C4| = 2

Adapt− Adapt+

AAS [2, 1, 1, 1] [1, 2, 3, 2]
RAS [1, 1

2
, 1
3
, 1
2
] [1

2
, 1, 1, 1]

MAAS 1.25 2

MRAS 0.583̇ 0.875

LSA 0.5̇ 0.8̇

Table 4: Results forAdapt− andAdapt+ for the example in Figure 5. Availability has been
considered for the trade-off analysis.

6. Relating Adaptability to Several System Quality Attributes

Here we extend the approach presented in Section 4. The goal is to relate one
adaptability metric to several requirements, possibly of different system quality
attributes.

We started by describing the most simple case, which relatesone adaptabil-
ity metric to only two quality requirements. According to Table 2, each quality
requirement can be expressed as “higher than” or “lower than”, and classified as
Helpsor Hurts. Let us consider the case in which a requirement R1 is formulated
as “higher than” inHelps, and a requirement R2 is formulated as “lower than” in
Hurts. So, R1 and R2 belong to the first row in Table 2. For R1 we could obtain
a graph like that in Figure 4(a) and for R2 one like that in Figure 4(b), let us call
them Q1 and Q2 respectively. Figure 7 depicts all possible combinations of Q1
and Q2 for the case we are analysing.

Our goal is to discover the existence of architectures that fulfill R1 and R2. To
this end we only need to know the position in the X-axis forAdapt+Q1, Adapt

−
Q1,
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Adapt+Q2, Adapt
−
Q2, since they determine when a requirement is fulfilled. These

four values can be arranged in4! different permutations. However, by definition
Adapt−Q1 ≤ Adapt+Q1 andAdapt−Q2 ≤ Adapt+Q2, then the number of permuta-
tions is reduced to4!

2!2!
= 6, which correspond with the six graphs in Figure 7.

It should be noted that the values in the Y-axis correspond todifferent scales,
e.g., reliability values for R1 and cost values for R2. This means that the super-
position of graphs we do in Figure 7 is artificial, so the relative positions of Q1
and Q2 are not important, the important issue is the positionof the four values for
Adapt, as stated in the previous paragraph.

Let us focus on graph (a) in Figure 7. The following cases can occur:

• We use the symbol∀ to mark the region where all the architectures fulfill R1
and R2. All the architectures fulfill R1 since we have overtakenAdapt+Q1.
All the architectures fulfill R2, since we have not reachedAdapt−Q2.

• We use the symbol∃ to mark the regions where we can find at least one
architecture, for each value ofAi, that fulfills R1 and R2. To understand
this let us focus on the region betweenAdapt−Q1 andAdapt+Q1:

– In this region we can find architectures for allAi, since neitherAdaptMax
Q1

norAdaptMax
Q2 have been reached.

– All these architectures fulfill R2 since we have not reachedAdapt−Q2.

– For eachAi we can find at least one architecture that fulfills R1, since
we have overtakenAdapt−Q1.

– From the three statements above we can conclude that in this region
all Ai has at least an architecture that fulfills R1 and R2.

Regarding the region betweenAdapt−Q2 andAdapt+Q2, we can say that all
architectures fulfill R1, and for eachAi we can find at least one that fulfills
R2, consequently our statement also holds. Obviously this happens until we
reachAdaptMax

Q1 orAdaptMax
Q2 .

• We use the symbol∄ to mark the regions where none architecture fulfills
R1 and R2. In the right hand side ofAdapt+Q2 none architecture fulfills R2.
In the left hand side ofAdapt+Q1 none architecture fulfills R1.

We now focus on graph (b) in Figure 7 to explain a case that did not appear in
(a). We use the symbol to mark the regions where it is not possible to prove the
existence or absence of architectures satisfying R1 and R2.
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In this case, for eachAi we can find at least one architecture that fulfills R2
sinceAdapt+Q2 has not been overtaken; but not all architectures fulfill it because
Adapt−Q2 has been already reached. We can also find in this region, for eachAi, at
least one architecture that fulfills R1 sinceAdapt−Q1 has been reached. However,
we cannot affirm that one of the architectures satisfying R2 coincides with one
satisfying R1. Consequently, it cannot be proved that allAi in this interval has an
architecture that fulfills R1 and R2.

The other graphs in Figure 7 have been analysed using these criteria and the
results are reported in the graphs themselves using the referred symbols. The
results showed by these 6 graphs are then valid to confront any two requirements
belonging to the first row in Table 2 since we do not need to knowthe shape of
the graph (only the position forAdapt+ andAdapt−).

For the other combinations of two requirements expressed as“higher than” or
“lower than” in Helpsor Hurts, we could obtain graphs as those in Figure 7 and
carry out the same analyses.

Finally, for the case of relating adaptability with more than two requirements,
we replace the four values for comparison in the X-axis -Adapt−Q1, Adapt+Q1,
Adapt−Q2 andAdapt+Q2- with MAdapt−, MAdapt+, mAdapt−andmAdapt+ re-
spectively; which are obtained obtained as follows:
∀req ∈ Helps, MAdapt− = max(Adapt−) andMAdapt+ = max(Adapt+)
∀req ∈ Hurts, mAdapt− = min(Adapt−) andmAdapt+ = min(Adapt+).
Considering these four new values, the graphs in Figure 7 are also valid forN
requirements, since the extreme values (max and min) point out to those require-
ments that could not be fulfilled.

6.1. Example: Relating adaptability to cost

In this study we come back to the example in Section 5. We assume known
the price of each component, and we consider a new requirement to be satisfied:
the system cost shall be lower than 30 monetary units.

Cost computation.For calculating the cost of an architecture we simply apply the
formula:

Cost =
∑

i

∑

∀cj∈UCi

cj.cost
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We recognize that the method is simplistic6, yet we consider that the focus of
the work is on the relation between quality attributes and adaptability rather than
on obtaining accurate values for the quality attributes themselves.

Results.We applied the method in Section 4, then computing the cost ofthe sys-
tem for each value of LSA. The analysis showed that the cost requirement belongs
to Hurts, since the cost increases when the adaptability does and it is required a
costlower than30. Figure 8 depicts the results. It shows that it is possibleto find
solutions satisfying the requirement up to an LSA= 8

9
, soAdapt+ = 8

9
. More-

over, all architectures with LSA lower than7
9

will satisfy the requirement (i.e.,
Adapt− = 6

9
).

Figure 8: Relating LSA to cost

6.2. Example: Relating adaptability to availability and cost

Now we can practice the method developed in this section, starting from the
relations between adaptability and availability -Section5- and between adaptabil-
ity and cost -Section 6.1-. Since the first study belongs to “higher than” inHelps
and the second to “lower than” inHurts, then the graphs in Figure 7 represent this
case. Moreover, beingAdapt− = 5

9
andAdapt+ = 8

9
for the availability study,

andAdapt− = 6
9

andAdapt+ = 8
9

for the cost study, then graph (c) in Figure 7 is
the one of interest. Hence, we can foretell that:

6We have not considered deployment costs nor advanced payment manners such as payment for
execution requests, payment for temporal contract or payment for a COTS component acquisition.
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• No suitable architecture can be found for an LSA< 5
9

or an LSA = 1, since
one of the requirements cannot be satisfied.

• There are suitable architectures for values of LSA= 5
9
, LSA = 6

9
and LSA

= 8
9
.

• There can exist suitable architectures for LSA= 7
9
.

7. Analysis of the Approach

This section analyses how the proposal developed in Sections 4 and 6 can as-
sist the software architect in the design decision process.In particular, we show
how the approach is useful for selecting components when changes in the envi-
ronment or in the requirements occur. The goal of this analysis is to show that the
range of possibilities to architect the system produced by the application of the ap-
proach meets the requirements and sometimes improves the overall system quality
and/or its adaptability. This enhances the software architect reasoning abilities to
both deliver a satisfactory design and improve architecture quality assurance pro-
cess.As mentioned in Section 2, the time required by our approach to complete a
study can be higher than the one required by other approachesconcentrating on
finding the architecture with the highest utility for concrete system requirements.
However, the output of these studies may be useless when requirements change
-fact that is pretty plausible in the early stages of system development- and the
analysis has to be re-executed. Instead, using our approach, once a trade-off study
has been performed, producing results like those in Figures6 or 8, if the value
of a quality requirement changes (e.g., the reliability requirement value in Figure
6), then it is not necessary to repeat the trade-off study, itis enough to redraw the
asymptote of the requirement for the new value and select thenew components.

In the followingthe analysis is guided by the four cases that lead to apply the
proposal.

Definition 1. Let us denote by:

• C, a set of components.

• ARCH, the set of architectures we could get by combining components,
which adequately satisfy the interfaces, inC.

• Reqs, the set of system quality requirements.
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• ARCHReqs ⊆ ARCH, the set of architectures fulfillingReqs.

• Arch ∈ ARCHReqs ∧ Arch ⊆ C, the current architecture.

• Arch \ ci, all components inArch but ci.

Case 1. The environment provides a new componentci. Whether to apply the
approach is a choice of the software architect, sinceArch ∈ ARCHReqs. If the
approach is applied, then a new setARCH ′

Reqs, whereARCHReqs ⊆ ARCH ′
Reqs

is produced. A new architecture, offering better quality, inARCH ′
Reqs could exist.

In the example in Section 5 suppose the environment providesa new compo-
nentC23 (cost=5, avail=0.98). Figure 9 depicts the corresponding new graphs.
It is not possible finding suitable architectures forLSA < 4

10
or LSA > 8

10
;

while a solution exists forLSA = 4
10
, 5
10
, 8
10

; and there may exist solutions for
LSA = 6

10
, 7
10

. Then, the new set of suitable architectures is a superset ofthe pre-
vious one, and the software architect has now the possibility to consider different
architectures satisfying the given requirements.

Figure 9: Same experiment as in Figure 8 but adding C23

Case 2. The environment disposes of a componentci. If ci 6∈ Arch, then obvi-
ously there is no need to apply the approach. Ifci ∈ Arch, it can happen that:

1. Arch \ ci /∈ ARCHReqs. It is mandatory for the software architect to apply
the approach. Then, it could be found anArch′ ∈ ARCHReqs or not. In the
example in Section 5,Arch={C11, C12, C21, C31, C32, C42} shows an
availability of 0.9755 and a cost of 26mu. Now, if, for example,C42 is dis-
posed of, thenArch\C42 has an availability of 0.8296 which does not meet
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the requirement. If the approach is applied again, the newArch′ ={C11,
C12, C21, C31, C32, C41} is obtained with an availability equal to 0.9548
and cost of 26mu, that meets the requirements. So, the application of the
approach assists the software architect in the decision process of possible
architecture selection.

2. Arch \ ci still meets the quality requirements. In this caseArch was over-
dimensioned to fulfill the requirements. If the software architect decides to
apply our approach, then a new architecture will be selected, which could be
Arch \ ci or another one. In any case, the system quality is not deteriorated.
To illustrate this case, let us consider againArch ={C11, C12, C21, C31,
C32, C42}, but nowC31is disposed of. In this case,Arch\C31 still meets
the requirements -availability 0.953 and cost 22mu-. Therefore, it is not
mandatory to apply the approach again, but the architect could apply it,
since a better architecture could be found.

Case 3. An already deployed component changes some quality attribute. Some
requirement has to refer to the affected quality, otherwisethere is no need to apply
the approach. Two cases appear:

1. ci improves7 some quality attribute.
(a) ci ∈ Arch. In this case,Arch enhances this quality. The approach

does not need to be applied.
(b) ci 6∈ Arch. The software architect should apply the approach and

this may result in a new and better architecture that usesci. Follow-
ing the example, ifC33 improves its availability up to0.99, then a
newArch′ = {C11, C12, C21, C22, C33, C42} is obtained, which
improves availability from0.9755 to 0.98144 and cost from26mu to
20mu.

2. ci deteriorates some quality attribute.
(a) ci 6∈ Arch. Arch is not affected and the approach should not be ap-

plied.
(b) ci ∈ Arch. The system quality is deteriorated, and the requirements

are no longer met. The software architect should apply the approach.
(c) ci ∈ Arch. The system quality is deteriorated, but the requirements

are still met. The software architect can decide to apply theapproach,

7If the requirement is formulated as “higher than” then “improves” means that the quality value
of the component increases as well. Otherwise, if it is “lower than” the quality decreases.
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to see if a better architecture can be found. For example, letus consider
the case where the availability ofC42deteriorates down to0.9. Then,
the availability ofArch decreases from0.9755 to 0.94781, but the
system still meets the requirements. However, the application of the
approach leads toArch′ ={C11, C12, C21, C32, C41, C42} with a
better availability,0.9589, and the same cost of26mu.

Case 4. Changes in the system quality requirements.

1. The quality requirement becomes less restrictive. The approach does not
need to be applied since the requirements are obviously met.However,
the the software architect can decide to apply the approach to investigate if
another architecture can show a better tradeoff between qualities.

2. The quality requirement becomes more restrictive. IfArch still meets the
new requirement, the approach should not be applied sinceArch was the
best choice with the same components. However, ifArch does not meet the
new requirement, then the approach has to be applied.

8. Experimentation and Limitations

We have developed SOLAR [16] (SOftware quaLities and Adaptability Rela-
tionships), a tool which implements the approach in Section4. A short description
of its package composition and execution behavior can be found in Appendix B.
Starting from a component-and-connector view of the systemSOLAR explores
the design space. For each architecture SOLAR evaluates itsadaptability and a
target quality8. An inputfor SOLAR is then made of: a) a set of components, spec-
ifying for each one the four parameters described in Section5 (P, N, availability
andcost), b) the adaptability metric to evaluate, and c) the qualityrequirements to
meet.

We judged it was important to test the performance and scalability of SOLAR,
so to assess if the approach could be fast enough as to be used in real-size sce-
narios. Specifically, this experimentation allowed us to parametrically control the
size and the structure of the generated models. In this way, we have analyzed
in a controlled environment the performance of the analysistools, getting more
insights about their strengths and weaknesses. The number of possible architec-
ture combinations for aninput is mainly influenced by three parameters: the total

8SOLAR currently deals with availability and cost.
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number of components in theinput, the number of components providing each
service and the number of services each component requires.

For testing the tool we have designed 681 experiments orinputsto be able to
reason about the results. These experiments allowed managing very wide ranges
for the three parameters, as follows. The parameter regarding the number com-
ponents ranged from1 to 30, we call this parameter|C|. For each value|C|,
the parameter regarding the number of components providingeach service ranges
from the case where there is only one component that provideseach service to the
case where all components provide the same service. To ease the automatic gen-
eration of inputs, we considered that each service is provided by the same number
of components, which means that we restricted this value to be a positive divisor
of |C|. Since the concept “number of components providing a service” was al-
ready used in Section 3 for the cardinality of setsCi, we call this parameter|Ci|.
For example, for|C| = 4, values of|Ci| are: |Ci| = 1 meaning that the input
has four services and each service is provided by a component; |Ci| = 2 meaning
that the input has two services and each service is provided by two components;
and|Ci| = 4 meaning that the input has only one service and all the four compo-
nents provide it. Regarding the third parameter, the number of services that each
component requires, we ranged its values as much as possiblefor each pair of|C|
and |Ci|, i.e., from the case where each component only requires one service to
the case where components require all the services but the one they offer. In other
words, given|C| and|Ci|, this parameter ranges from1 to |C|

|Ci|
− 1. We call this

parameterS9.
We defend that this set of experiments is representative. One reason is that the

time required by SOLAR to execute inputs not present in the experiments, those
whose component structures are less regular than those of the experiments, is
upper-bounded by other regular inputs in the experiments. For example, systems
in Figures 2 and 5 are simpler than the analyzed inputs where|C| = 9, |Ci| = 3,
S = 2 and|C| = 12, |Ci| = 3, S = 3, respectively. Another reason is that, the
execution time of SOLAR will be the same for two inputs with same component
structures but different quality attribute values for their components.

Experiments results.We executed SOLAR for the 681 experiments and we recorded
each execution time. We got 30 charts, one for each value of|C|, Figure 10 de-
picts five representative charts showing the execution times for the inputs whose

9Note that, for the particular case of inputs whose|C| = |Ci|, all the components offer the
same service, so the number of required services isS = 0
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Figure 10: SOLAR execution times in milliseconds

|C| ∈ {6, 12, 18, 24, 30}. We can observe that the execution time strongly de-
pends on the number of components,|C|, which is shown by the different time
scales in the graphs. Graphs also show that execution times are also affected by
the number of services provided,|Ci|, they follow an exponential growth for low
values of|Ci|, but later they remain almost constant. For instance, in Figure 10(d)
(where|C| = 24), the execution time increases exponentially up to|Ci| = 6 and
then it remains constant for|Ci| = 6, 8 and|Ci| = 12, 24.

Considering the services required,S, we see two different cases: for low val-
ues of|Ci|, the execution times grow linearly withS; whereas for high values
of |Ci|, increments inS do not affect the execution time. For instance, in Fig-
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Figure 11: SOLAR execution times in milliseconds: detail oftime execution with|C|

ure 10(d), for|Ci| ≤ 4 the execution time increases whenS does; while for
|Ci| > 4 execution times remain constant for any value ofS. The reason is that,
when |Ci| is small, the number of different architectures to evaluatein the in-
put depends mostly on the amount of dependencies between required services of
components (parameterS). However, when the number of components offering
each service (|Ci|) grows, the number of different architectures that SOLAR has
to evaluate is near the maximum even for small values ofS, so increments inS
do not affect the execution time in that case.

Regarding the strong dependency on the number of components|C|, Fig-
ures 11 (a) and (b) depict some of the experiments results in function of |C|.
Figure 11 (a) shows that the execution time grows exponentially with |C|. In this
figure, we fixed|Ci| and we show all the results of our inputs whose|Ci| = 2.
This figure also supports our previous explanation regarding the linear increment
in the execution time withS for low values of|Ci| (lines in the graph show only
very slight increments because the figure is in logarithmic scale). Figure 11 (b)
shows again that the execution time grows exponentially with |C|. In this figure,
we fixedS and we show all the results of our inputs whoseS = 1. This figure also
reinforces our previous statement regarding the exponential growth of the execu-
tion time when|Ci| has low value and we increment it, and the constant execution
time when we increment|Ci| but it has already a high value. For example, for
|C| = 24 in Figure 11 (b) -i.e., the darkened line-, the possible values of |Ci|
are: 1,2,3,4,6,8,12; and we obtained that execution time ofsolar were: 2ms, 2.2s,
24s,19.4s, 20.5s, 19.8s and 15.4s respectively to each of the previous|Ci| values.

Summary of the experiments.From the experiments we can obtain some conclu-
sions. SOLAR takes less than one second when we evaluate inputs with less than
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21 components. Most of the inputs with 21 components, some with 22 and a few
with more than 22 can also be executed in less than one second.Some inputs with
30 components can last for 20 minutes. We can then say that thecurrent prototype
implementation is applicable to medium size systems. We cangive more argu-
ments in favor of our approach. Remember that Section 7 analyzed the cases when
the approach should be applied, so an output of SOLAR is expected to be valid for
a long time; at least until the next change in the execution context (changes in the
requirements could be even more infrequent). Moreover, ourexperiments dealt
with extreme situations, but in the real world the situationis much more relaxed:
1) not all functionalities are adaptable as in our experiments, and 2) for the ones
that indeed are, there do not exist tens of alternative components offering them,
on the contrary, it uses to be only a few. These reasons indicate that our approach
can work in real environments even better than our analysis may reveal.

8.1. Discussion on Approach Limitationsand Threats to Validity
After presenting the approach and experimenting with it, wediscuss below its

limitationsand threats to validity.

Simple requirements.In this paper we deal with binary requirement satisfaction
(i.e, satisfied or violated), but quality requirement satisfaction can often be stated
in a more sophisticated continuous form in[0..1]. In this continuous perspective,
requirement satisfaction is reinforced by a concept of architectureutility (for ex-
ample, a requirement/s is/are satisfied with an utility value of 0.6). The proposed
approach is then the basis for further enhancements based onmore sophisticated
requirement satisfactions, such the ones based on ranges ofsatisfaction. In this
case, both useless (value 0) and perfect (value 1) architectures are considered to-
gether with a set of architectures with varying (increasing) utility values. In this
case, it would also be possible finding other interesting adaptability values giv-
ing us information about the suitability of architectures.However, the presented
approach can be hardly used when requirements satisfactionassume a continu-
ous form where all architectures have an utility higher than0 (useless for the
requirement) and lower than 1 (perfect for the requirement). Indeed, at present
the adaptability valuesAdapt+ andAdapt− are discovered/calculated while in
the continuous case these adaptability values do not exist.

Adaptability metrics.At present, regarding computation of adaptability metrics,
we propose all the components to be equally important. Let’sconsider the case of
a system in which a required service is very important and very used to accom-
plish system goals, while there is another one much less usedand less important.
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We could intuitively advice that adding one new component for providing the
former service is much more important than adding one to the latter. If this infor-
mation were considered for the computation of our metrics, then we would take
into account the adaptability of the system weighted by the importance of the ser-
vices, which would help to make our metrics more accurate. This problem could
be addressed adding weight to each service. We are working indeed towards the
inclusion of aspects such as the “criticality” or “importance” of the offered func-
tionalities. The extension of the metrics to capture also the behavioral aspects
is, at present, under investigation. Another direction that deserves further anal-
ysis is the integration and combination of our metrics with the ones proposed in
other works (e.g., [22]) then empowering software architects to compare adaptive
system designs with the system design without adaptability.

Tool performance.This first version of SOLAR can be improved to perform bet-
ter. Now, for a giveninput, SOLAR first explores the design space, then it evalu-
ates the architectures to obtain the upper and lower bounds.However, heuristics,
as in [37], can be implemented to calculate the bounds. Furthermore, for some
quality attributes the global maximum and minimum may depend on the local
maximum and minimum; fact that can be used to avoid the current complete ex-
ploration of the design space when calculating the bounds.

Threats to Validity. Here we follow [44], where it is mentioned four kinds of
threats to validity for discussion: construct, internal, conclusion and external. As
concerns toconstructand internal validity, our goal is on defining an approach
to help architects in (automatically) finding software architectures guaranteeing
adaptability and QoS tradeoffs. In this type of research a frequent problem is the
lack of measures to evaluate; here we have defined them clearly. Another threat
refers to how accurately the model represents the system, i.e., the “goodness”
of the model. To this end we have used the C&C view, which is the common
one to reason about software qualities [39]. Problems here are shared with all
architectural approaches, for example, possible lack of knowledge about the real
execution environment and consequently the difficulty in defining architecture pa-
rameters [39, 45]. Some methods have been defined in the literature, mainly based
on estimations measuring the actual software or similar applications and also es-
timations from educated guesses based on experience [46, 45, 47, 48].

With respect toconclusionand externalvalidity, instead of a real system,
which is a need to support the latter, we have considered an example to show the
application of the approach. However our parametric study of 681 experiments
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evaluated thousands of medium sized architectures and multiple combinations of
provided and required services, then ranging a good number of trade-off combi-
nations commonly present in real systems.

9. Conclusions

In this paper we have presented an approach for relating software adaptability
and other quality properties. We have defined a set of metricsthat quantify the
software adaptability at architectural level. These metrics give means to quantita-
tively evaluate and compare different systems in terms of architectural adaptabil-
ity and quality requirements. The approach can help software architects to find
architectures satisfying all system quality requirements. The software architect
applies the approach when changes in the execution context force to change the
components of the architecture for satisfying quality requirements. To bring the
approach to fruition we have implemented a tool that automatically performs the
analysis. At present we are working towards the extension ofthe approach in or-
der to overcome the presented limitations. Besides, we are still looking for a real
test-bed to assess our approach in industrial settings.
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Appendix A. Availability Computation

This appendix explains a method for creating a generalized stochastic Petri
net [43] from a software architectural description. It usesthe quantitative informa-
tion presented in Section 5:P sk

ij (probability of componentCij to require service
sk), N

sk
ij (number of requests of componentCij to servicesk) and the component

availability (Cij .avalability). We distinguish components asterminalsandnon-
terminals. Terminals are those not needing other services (e.g., componentsC31
or C32 in Figure 5), while non-terminals do need (e.g.,C11or C12 in Figure 5).

Definition 2. A terminalCij is represented as the Petri net in Figure A.12(a). Its
availability isAv(Cij) = Thr(tAv)

Thr(tAv)+Thr(tNotAv)
, where Thr(t) is the throughput of

transitiont.

The result of this quotient is always equivalent to the availability annotated
in the component, according to the probability annotated intransitionstAv and
tNotAv in Figure A.12(a).

Definition 3. The availability of aservicesi is represented as the Petri net in
Figure A.12(b).

This Petri net models a sequential trial to execute the service in one of the
components offeringsi, i.e., those inUCi. If a componentCij ∈ UCi is available
to handle the request (there is a token inpCijOK place), then a token inpSiOK
is set. On the contrary, if none of the components inUCi is available, then a token
in placepSiFail is set. TransitiontNoCi sets a token in placepSiFailwhen
there are no providers forsi.

The operational profile of a servicesk requested byCij is modeled as the Petri
net in Figure A.12(c).sk is supposed to be executed with probabilityP sk

ij and it is
requestedN sk

ij times. If all the requests find an available provider, the execution
is performed appropriately and a token is set inpCijReqSkOK. Otherwise, the
execution cannot be completed and a token is set inpCijReqSkFail. Shaded
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Figure A.12: Generic Petri net models for computing availability: (a) terminal component, (b)
service call, (c) service requirements of a component, (d) non-terminal component, (e) system
model
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placespSk, pSkOK andpSkFail will be composed with their homonyms in
part (b) of the figure.

Definition 4. The availability of anon-terminalCij is represented as the Petri net
in Figure A.12(d).

If the component is not available, which happens with probability 1−Cij.availability,
a token is set inpCijFail. If it is available, its required services are sequen-
tially called. This behavior is modeled through groups of three shaded places per
required service. These places will be composed with their homonyms in part (c)
of the figure10. If all the service requests success, thenCij is properly executed
and a token is set inpCijOK. Otherwise, a token is set inpCijFail.

Definition 5. The system availability is calculated as the quotient

Thr(tSystemAv)

Thr(tSystemAv) + Thr(tSystemNotAv)

of transitions in Figure A.12(e).

This figure represents a Petri net that continuously requests for the main ser-
vice s1 of the system. Shaded places will be composed with their homonyms in
part (b) of the figure. Note thatThr(tSystemAv) + Thr(tSystemNotAv)
will be equal toTtimed transition firing rate. Then, choosing a firing rate equal
to 1 forTtimed, system availability will correspond toThr(tSystemAv).

The Petri net in Figure A.13 corresponds to the one of the example in Sec-
tion 5, when the architecture is made ofC12, C31, C32 andC41. We represent
the subnets in the condensed form and we only depict the shadow places. The
result of the analysis unveils an availability of 0.801.

Appendix B. SOLAR Tool

Figure B.14 shows the implementation units of SOLAR, i.e., itsmodule view.
TheQuality Calculationmodule owns theQualityManager class, which
is the interface of SOLAR, and the classes for computing the system quality prop-
erties. TheMetrics module computes the adaptability metrics as proposed in
Section 3. TheCompDiag API manages all the information in the system C&C

10In Figure A.12(d), we have noted asRS(Cij) the set of servicesCij requires, and|RS(Cij)|
its cardinality.
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Figure A.13: Petri net for the example in Section 5 when the architecture is made ofC12, C31,
C32andC41.

view, i.e., the information gathered in the UML component diagram and also the
parameters of the components (P, N, availability, cost). Finally, theParsermod-
ule, a black-box in the Figure, deals with the XML representation of the system.

When SOLAR is invoked, theQualityManager uses theParser to get
the currentinput, with the provided and required services for each component,
which was stored in XML files that represent the C&C view (for instance, the
input XML file for computing the studies in Sections 5 and 6 canbe found in [16]).
By iterating over all the possible architectures that can come from the component
diagram, theQualityManager uses theQualityCalculators to compute
the upper and lower quality bounds (QAiU andQAiL) for each adaptability value
Ai. It returns these bounds andAi values together with the architectures from
which such bounds were obtained.

In the current prototype version of the tool, we have not implemented yet the
translation of this C&C view of the model to the concrete language of a GSPN en-
gine. Instead, based on general theories on how performanceresults are obtained
from GSPNs, we have implemented in SOLAR the computation needed to get the
system availability11. This fact, together with the fact that SOLAR has been im-
plemented in a cross-platform language, lends the tool to beimmediately tested
and also easily executed with different inputs.

11Probability for a token to reach the placepSystemInit by the firing of transitions
tSystemAv or tSystemNotAv in Figure A.12.
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Figure B.14: SOLAR module view

User workload for using SOLAR.Currently SOLAR requires an XML file, with
the information in the C&C view and with a description of the components quality
attributes, that the user must provide manually. This may bea non-trivial task for
non XML users. Possible improvements are: 1) In case of usingSOLAR as a
standalone application, a graphical user interface would ease the input generation
-C&C view and quality attributes description-; 2) In case of using SOLAR as part
of a software development framework, e.g., as a plug-in of the framework, the
XML would be automatically generated from the architectural models created in
the framework. Once obtained the XML input, no more interaction between the
user and SOLAR is required, the analysis proceeds automatically.
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