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Abstract
Energy use is becoming a key design consideration in computing infrastructures
and services. In this paper we focus on service-based applications and we propose
an adaptation framework that can be used to reduce power consumption according
to the observed workload. The adaptation guarantees a trade-off between energy
consumption and system performance. The approach is based on the principle
of proportional energy consumption obtained by scaling down energy for unused
resources, considering both the number of servers switched on and their operating
frequencies. Stochastic Petri Nets are proposed for the modeling of the framework
concerns, their analyses give results about the trade-offs. The application of the
approach to a simple case study shows its usefulness and practical applicability.
Finally, different types of workloads are analyzed with validation purposes.
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1. Introduction

Problem Statement. The constant growth of energy usage in industrialized coun-
tries is creating problems to the sustainability of the Earth development. The
problem of energy use concerns many fields in human activities: for this reason
some new disciplines such as green computing are growing up to study how to
consume less energy by providing the same quality of service [1].

As shown in [2, 1], the interest towards efficient use of technology is motivated
by some alarming trends showing, for example, that computing equipment in the
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U.S. alone is estimated to consume more than 20 million giga-joules of energy
per year, the equivalent of four- million tons of carbon-dioxide emissions into the
atmosphere [1]. IT analysis firm IDC (http://www.idc.com/) estimates the total
worldwide spending on power management for enterprises was likely a staggering
40 billion dollars in 2009.

Large computing infrastructures, like data centers, web services hosting or
email, in the U.S. consumed 1.5% of all electrical power in 2006 and it grows at an
annual rate of 12% [3]. Nevertheless, it is possible to observe that they are so com-
plex that some parts become inactive even during active periods. Let us consider,
for example, the providers of service-based applications. Often when deciding
the amount of resources -hardware and software- to be included in the platform,
worst-case scenarios are considered, which can lead to over-provisioning for other
scenarios of the system. The result is a static system deployment that wastes part
of the available processing infrastructure and consequently causes energy waste.

Therefore, a first direction that can be followed for energy savings is the defi-
nition of adaptation plans that can be used to reduce power in time (turn off during
idle times) and space (turn off inactive elements). Hence, infrastructures can be
dynamically scaled to conserve power with no impact on performance while they
match workload demands.

The definition of this adaptation plan is not easy, because the workload is
typically variable and unpredictable and because there are also other, possibly
contrasting, goals that should be satisfied. Indeed, the ultimate goal of a service
provider is to maximize profits from its offered services, while for a client the
main objective is to obtain a service with required QoS at the minimum cost.
Therefore a suitable adaptation plan should be able to define the best trade-off
between energy consumption and QoS offered. The problem is quite complex and
several attempts exist in the literature proposing methods for managing power and
guaranteeing the agreed quality of service (see Section 8).

In this paper we concentrate on performance quality, while the problem of
maximizing providers revenues, although important, is not directly tackled. As
defended in [4], quality requirements always must be met once contracted. How-
ever, the problem is indirectly addressed, since having a strategy that scales the
amount of servers, while satisfying the performance requirements, reduces the
expenses in the equation profit = revenues− expenses.

Proposed Solution. In order to reduce energy waste, the processing infrastructure
of a service provider can be dynamically accommodated to the actual processing
requirements for each scenario. Since the received workload varies frequently and
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in some cases unpredictably, human intervention to modify the amount of dedi-
cated processing resources is not feasible. So the goal is to have the system aware
of its processing resource needs, and able to self-adapt its processing infrastruc-
ture to fulfill such needs. Therefore, the objective is to build systems that can
autonomously manage their processing resources in order to consume only the
power necessary to satisfy their -possibly evolving- performance requirements.
These new techniques actually complement the traditional and well-known off-
line capacity planning [5]. To achieve the objective, we propose in this paper a
reference architecture, or adaptation framework, based on the three layers archi-
tecture for self-managed systems presented in [6]. A reference architecture allows
different deployments and can be used in a wide variety of situations. Specifi-
cally, in the paper, we discuss one deployment of interest for software services.
Besides, the proposed framework is augmented with the definition of plans tack-
ling the adaptation decisions that decrease as much as possible the system’s energy
consumption while maintaining the expected performance. The framework allows
the plan regeneration when its execution context changes, which would make the
current plan not suitable. The adaptation plan indeed depends on the dynamic
variable workload, on the available processing resources, on the application pro-
cessing demands and on the agreed QoS in terms of performance requirements.

To study the relations among these properties, we follow model-driven tech-
niques to transform design models into different Stochastic Petri Nets (SPNs)1

subnets. Subnets allow modeling the variable workload, the workflow, the pro-
cessing resources and the logic to adapt the system energy consumption. The
considered variables are not new, several works (e.g., [8, 4]) and a survey [9] exist
on this topic.

As recognized in [3], queuing models, category of which SPNs are an exam-
ple, are ideal to predict runtime trade-offs between performance and energy use.
Moreover, queuing models have been largely validated during the last decades
and we can be absolutely confident in the results they produce, which may free
the modeler from the need of validating the model as long as it accurately repre-
sents the target system. This is an advantage regarding ad-hoc models, heuristics
or equations when used to model complex behaviors, since they really need ex-
tensive validation to prove that the predictions they obtain actually match the real
measurement. In contrast, queuing models have been accused of being difficult

1A formal description of the Generalized Stochastic Petri Nets [7] formalism is provided in
Appendix A.
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to construct. In this regard, we try to keep our models as simple, repeatable and
scalable as possible and we propose tools to automatically construct them.

To generate a Petri net that represents the whole system behavior, we put to-
gether the previously mentioned subnets. Hence, this analyzable SPN includes
fine-grained information regarding: mean execution times of internal activities;
resource usage of activities; resource competition for passive resources (e.g., buffers)
which generates “waits” and makes the system performance not scaling linearly
with frequency; and resource competition for active (processors) which are the
basis for power consumption.

The SPN evaluation, carried out with the GreatSPN tool [10], gives results
about the suitability of the adaptation plan (in terms of whether it deteriorates
performance results) and how much energy it saves. Moreover, we define a para-
metric Petri net that can be evaluated to discover which are the best parameters to
tune the adaptation plan, in order to save as much energy as possible2.

Motivating Example. Let us describe a kind of system for which our approach
can be applied. Consider a company that develops software services which are
offered in the Internet, some of them for free while others can get subscription
rates. Irrespective of the implementation, the services follow the Service Oriented
Architecture (SOA) paradigm. The company maintains a homogeneous comput-
ing infrastructure, around hundreds of servers, which deploys the services. These
services are used all around the world and they can receive thousands of requests
per minute at certain times of day, however it is also possible that the workload
decreases at certain hours considerably. When the workload is at a peak the infras-
tructure has to be fully operative and each service will be replicated in as many
servers as necessary to support the quality of service the company requires. On
the other hand, when the workload is low, most of the servers will be unnecessary.
Therefore, the company needs an integral software solution, beyond the traditional
load balancer, that switches on and off the servers to adapt the infrastructure to the
workload dynamically. We argue that if the software solution follows the archi-
tecture we describe in this paper, the infrastructure can achieve the advantages
previously discussed, i.e., a good trade-off between QoS and energy conservation.

Paper Organization. The remainder of the paper is organized as follows. In Sec-
tion 2 we present the self-adaptive framework for the management of energy and
performance. The proposed SPN models for dynamic variable workload and en-

2A preliminary and short version of this idea has been published in [11]

4



ergy consumption are presented in Sections 3 and 4, respectively. The trade-off
between performance goal fulfillment and energy consumption with the definition
of the adaptation plan is presented in Section 5. Section 6 discusses a suitable de-
ployment of the architecture and presents evaluation through an example, which is
developed step by step to help practitioners to learn the proposal. The evaluation
continues in Section 7 to experiment with variable workload. Related works are
reviewed in Section 8. Section 9 draws some conclusions and provides pointers
to on-going work. Two appendices are also included describing the Generalized
Stochastic Petri Nets formalism (Appendix A) and the theory underlying the pa-
rameters derivation in the SPN modeling the system workload (Appendix B).

2. Self-adaptive framework

Kramer and Magee [6] proposed a three-layer reference architecture for self-
adaptive systems, from now on we refer it as KM-3L. These layers (goal manage-
ment, change management and component control) aim at satisfying the system
goals by creating and following an adaptation plan for the system based on mon-
itoring the platform where it executes. In [12, 13] we leveraged KM-3L to deal
with the goal of enhancing the performance of a self-adaptive service integrator.
Now, using this background, we work again with KM-3L to address the challenges
in this work. Figure 1 describes our proposal identifying new responsibilities for
each layer and the necessary software modules that can carry out them.

The Component Control layer accomplishes the application function of the
system, in our case the workflows of the software services the infrastructure de-
ploys. The software services modules represent the executable files of these soft-
ware services. Note that we have replicated them, to represent several services and
several running instances of each service. Each running instance, which manages
requests until its maximum capacity, will execute in a server of the infrastructure.
Each server can host several running instances. The Component Control layer
also features a HardwareController and a LoadMonitor software modules, they
include facilities to report the current status of the processing infrastructure and
to support modifications on it. The HardwareController communicates with its
upper layer to inform the current state of the servers (e.g., booting completion)
and to receive orders to reconfigure them (increase/decrease frequency or switch
on/off of servers). We think of it as a software module that manages the servers
through the Wake on LAN (WoL) facility. The LoadMonitor monitors current
system workload and informs its upper layer when the workload exceeds some
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thresholds, i.e., there is a problem to be solved. Thresholds of interest have been
previously notified by the upper layer to this module.

The Change Management layer executes actions to handle the new situations
reported by the lowest layer. It is made by a software module, the EnergyManager,
and its input file, called the Adaptation Plan. The EnergyManager is informed of
the system workload and the status of the processing infrastructure and it uses the
energy-aware adaptation plan to decide when to reconfigure the infrastructure and
how to carry it out. It orders reconfigurations when it recognizes a non optimal
one: either the system load is low and the performance goal could be fulfilled
using less resources, or the load is high, requiring more capacity to satisfy the
goal. The energy-aware adaptation plan is received from the uppermost layer,
either on demand or when the uppermost layer decides to change it (e.g., because
system goal changed).

mance Goals)

Adaptation
Plan

Generator

<<XML file>>
UML MARTE
system models

Energy Manager

Controller
Hardware

Monitor
Load

<<XML file>>

Plan
Adaptation

<<software service>>
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(includes Perfor

Figure 1: KM-3L adapted to energy management

The uppermost layer is the deliberation, or Goal management layer. It con-
sists of time consuming computations to produce a plan to achieve the goal of the
framework, in our case to allow the infrastructure to satisfy its performance goals
while it spends as less energy as possible. This layer is made of a software compo-
nent, called Adaptation Plan Generator, and a set of software and systems models,
represented as UML models. These files are inputs for the Adaptation Plan Gen-
erator. The Adaptation Plan Generator creates plans following a model-driven
approach where the software and system models are transformed, following the
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proposal in [14], into an analyzable Stochastic Petri Net (SPN) model.
The software models will represent the workflow logic of the deployed ser-

vices (e.g., UML activity diagrams). These models also contain the performance
characteristics of the software service (e.g., using the MARTE [15] profile to an-
notate the previous diagrams). The performance characteristics include: expected
workload, performance goals of the service, processing demand and execution
probabilities of the activities, and resource sharing. The system models represent
the processing platform (e.g., UML deployment diagrams). They include: num-
ber of available servers, its processing capabilities w.r.t. power consumption and
mechanisms to change power consumption.

The Adaptation Plan Generator carries out the SPN analysis to produce the
plan, thus obtaining the maximum load the configuration can manage while the
required performance goal is accomplished. Section 5 will detail how to generate
a plan. Once the plan is generated the task of the Adaptation Plan Generator is
not finished. It performs a plan evaluation to predict system behavioral charac-
teristics using the generated plan. To execute such prediction a new SPN will be
created starting from the previous one and adding information regarding: variable
workload, platform energy consumption and the adaptation plan itself. New SPN
sub-models will represent each one of the previous concerns, which are explained
in detail in subsequent sections (Sections 4, 5 and 6 respectively).

Once the system behavioral prediction has been derived, the goal of this layer
is to periodically check whether the plan is suitable, which means verifying:

• whether the system is behaving as expected.

• whether the models of workflow, workload and platform are close to the
real behavior. For example, the assumed values for the workflow activities
could change due to software upgrades.

If some of these issues are not adequate, this layer will update model parame-
ters and will regenerate the plan.

3. Workload modeling

In order to carry out a proper model-based analysis of system’s behavioral
properties, we first need an accurate model-based representation of the workload
the system is managing. This is not a trivial concern since dynamic systems should
be able to cope with highly variable workloads with temporal dependencies.
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Figure 2: Webmail server, weekly supported workload

Figure 3: Webmail server, daily supported workload
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Classical techniques to model workload, such as those based on phase-type
([16], [17]) or exponentially distributed inter-arrival time of requests, do not con-
sider dependencies and correlations between inter-arrival times. However, these
concepts are crucial if the system to be evaluated takes into account its incom-
ing workload to decide its operational mode. Therefore, to evaluate this type of
self-adaptive systems, our workload models have to be able to represent both the
variability and the temporal dependency. To this end we adopt a SPN model since
SPN have been largely used in the literature for this purpose. Indeed, since our
analyzable model of the system is based on SPNs, it is an advantage to have the
workload model represented in the same formalism in order to be integrated with
the rest of the system model.

Let us start considering different granularities regarding workloads’ time scale.
In the long-term (e.g., time span of a week), it is possible to devise a pattern (or a
distribution) that fits the variable workload. But in the short-term (e.g. time span
of seconds), the high variability of the workload makes prediction very challeng-
ing. In our architecture, a solution could pass through waiting until the system
has monitored enough data to acquire a long-term view and then proceed to adapt.
However, such behavior will delay adaptation decision far away from the point
in time it has been needed. Therefore, it is necessary a prediction method that,
only using short-term monitored data, can quickly infer the current workload in
the long-term (and then also infer the near future expected workload). Obtaining
such prediction method is a real challenge since it should manage multiple long-
term variables and obtain their current values managing only partial, short-term,
information.

We observe that long-term arrival rates of requests for service can be clearly
separated in several states. Following this assumption, our workload model will
contain several states representing each one a concrete arrival rate. Figure 23

represents a real variable workload supported by a mail server (which receives
around one million requests per day and 30,000 login operations). In the Fig-
ure, we can appreciate several states: (i) night with an arrival rate close to zero
and duration around 8 hours; (ii) working-hours with an arrival rate around 1,500
requests/minute and duration of 16 hours; (iii) peak which is sporadic, short (it
lasts for around one hour), it takes place only during working hours and can reach
an arrival rate around 1,800 requests/minute; and (iv) weekend showing an ar-

3Figure taken from https://piedra.unizar.es:8080/public/monitor during the week of 4-12
November 2010.
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rival rate around 500 requests/minute and lasting roughly 16 hours. However, the
short-term arrival rate of requests is not so regular, making the prediction of the
workload state a challenging task. To illustrate such challenge, Figure 3 shows
the variability of the workload from Sat 20:00 to Sun 20:00.

To model such workload, we define the SPNworkload with a shape like the one
in Figure 4. The theory to automatically estimate the parameters of the underlying
Markov model can be found in [18]. For the presented example of the webmail
server, we set parameters manually to pay attention on the resulting model rather
than in the modelling process. The SPN models both the long-term and the short-
term workload behavior and it includes:

• as many places as workload states. A token in a place means that the system
is receiving requests with the arrival rate associated with that state. There-
fore only one of these state places can be marked.

• a timed transition for each state. Such transitions are bidirectionally con-
nected to state places. These transitions inject the workload to the beginning
of the workflow. Their firing rate corresponds to the expected workload in
each state. In Figure 4, firing rates are denoted as λstate. Since these transi-
tions are linked to state-places, only one of them can be enabled.

• a set of timed transitions to model the state mean sojourn time4 and prob-
abilities of change between states. For example, transitions TN−Wo and
TN−We model the mean sojourn time in night state, the sum of their rates
must be 8hours−1. Moreover, to model the change state probabilities,
i.e., five changes per week from night to working and two changes per
week from night to weekend, it is required that λTN−Wo

· 8hours = 5
7

and λTN−We
· 8hours = 2

7
, which lead to λTN−Wo

= 5.715hours−1 and
λTN−We

= 2.285hours−1. 5

The derivation of the unknown parameters λ of the SPNworkload is based on
the Markov arrival processes (MAP) theory, and in particular on a type of MAP,
those called Markov-modulated Poisson Process (MMPP). For the sake of read-
ability, this theoretical part is described in Appendix B.

4By mean sojourn time we mean the average time the system spends in a given state.
5It has been only considered the mean amount of changes between states, so, it has not been

considered that the two changes from night to weekend per week should be consecutive.
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Figure 4: SPNworkload model

We have simulated the behavior of the Petri net and compared the obtained
results with the real workload in Figures 2 and 3. Figure 5 illustrates the simu-
lation results (token arrivals to place Start-workflow w.r.t time): the shape
and pattern match with the long-term view of the real server in Figure 2. The
long-term view in Figure 5 has been achieved by counting the events generated in
slots of 20 seconds. Moreover, zooming in the simulation results (right part of the
figure) we can also observe the high variability in the workload that the system
is receiving, which makes the workload state prediction be a challenge. See for
example that the value marked with circle is higher than the value marked with
the triangle, while the long-term view workload supported by the state of the cir-
cle (working) is lower than the long-term view workload supported in the state of
triangle (peak). The short-term view in the figure has been achieved by counting
the events generated in slots of 1 second.

Figure 5: Simulation of the SPNworkload model

It is worth noting that the SPNworkload part will be “isolated” from the rest
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of the SPN model that represents the system. The unique element in common
between them is start-workflow place. In this place SPNworkload holds tokens
that represent execution requests from users. In turn, the SPN that models the
system will delete such tokens and will start a system execution for each of them.
Therefore, the rest of the SPN cannot get information regarding which is the active
state in each moment (i.e., in which place statei the token is) or regarding the
firing of any transition Ti ∈ SPNworkload. At most, the rest of the system can
monitor the token generations in start-workflow place during a certain period to
try to predict the expected workload.

4. Energy modeling and analysis

This section proposes a SPN model that allows the evaluation of the variables
related to energy consumption and frequency of the servers, both taken into ac-
count in the adaptation plan. This SPN, in Figure 6, also models the transient
state of servers, from switch off to on and vice-versa, which means to embed ac-
tions defined in the adaptation plan to manage power consumption. Some places
in the SPN will be shared with other subnets (e.g., the workload subnets in previ-
ous Section) to make the final SPN model. Indeed, the evaluation of the variables
herein presented will be carried out in this final SPN.

From Figure 6 we see that when a switched off server receives the SwitchOn-
Event it begins its Booting. That booting process lasts for Tstartup time units.
When the booting is finished, the server is operative to receive requests and the
completion is notified to the energy manager through a token in BootedEvent
place. When an operative server receives a SwitchOffEvent it starts its shut-
ting down process. First of all, its representative token in OperativeServers
is deleted, meaning that it is no longer available to receive new service requests. A
server changes its state from operative to a state WaitForRequestsComple-
tion, where it is finishing its ongoing requests. When all ongoing requests are
finally served, it starts the Halting process which lasts for Tshutdown time units.
After that, it joins the pool of SwitchedOffServers. Tokens in SwitchOn-
Event and SwitchOffEvent come from the EnergyManager. Tokens in
OngoingRequests are generated by the workload balancer and deleted when
a request finishes its execution, these tokens store information about the server
that is executing the request. Tokens in OperativeServers are looked up by
the workload balancer when it has to decide the target server for a request.

Regarding the energy consumption variables, we will evaluate in the final SPN
the following:
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Figure 6: SPN modeling the states of servers

1. Mean power consumed by switch on and off processes,

Won−off = Cstartup · χ(T1) + Cshutdown · χ(T2)

where χ(Ty) is the mean throughput of transition Ty. Cstartup and Cshutdown re-
spectively represent the energy consumed by the server at start-up and shutdown.

2. Minimum power consumption of a server, Wstandby, includes all constant
consumptions that do not depend on the working frequency. Mean aggregated
power consumption of servers is

WAggreagedStandby = Wstandby · (E[#OperativeServers]+

E[#WaitForRequestsCompletion])

where E[#Px] is the mean number of tokens in place Px.

3. Maximum power consumption of a server, Wmax, considers when a server
is busy and working at its maximum frequency.

4. Since voltage supply limits the maximum operative frequency of the cir-
cuit approximately to a linear factor, then following [8, 4], we merge dynamic
frequency scaling and dynamic voltage scaling, and we obtain that power con-
sumption is proportional to the cube of the working frequency. Therefore, power
consumption of a server in an operational frequency will be

Wfreqi = (Wmax −Wstandby) · (opFreqi) 3.
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Finally, the total amount of power consumed by a server working at frequency
OpFreqi is

Wserveri = Wstandby +Wfreqi .

In the SPN, the mean power consumption of a single server is calculated as

Wmean =
∑
i

Wserveri · P (#Frequency = i+ 1),

where P (#p = n) means that the probability of the number of tokens in place p
is equal to n. Meaning of place Frequency is unveiled in the following.

Regarding servers processing frequency, dynamic frequency and voltage scal-
ing allow varying working processors performance and reducing their power con-
sumption. Although the working frequency could ideally range between 0 and
100% of processor capabilities, real working frequencies used must be discretized.
Therefore, as in [4], we assume that the actual server frequency is restricted to a
value within a set of operational frequencies FreqSet. We consider FreqSet
made of a base frequency BaseFreq and increments BaseInc. Therefore

FreqSet = {OpFreqi} | OpFreqi = BaseFreq + i · FreqIncr

∧ (i ≥ 0) ∧ (OpFreqi ≤ 100%).

For example: BaseFreq = 50%, BaseInc = 10% and FreqSet = {50%, 60%,
70%, 80%, 90%, 100%}. Anticipating the description of the Petri net model in
Section 5 (Fig. 9), tokens in place Frequency will represent servers processing
frequency. It will contain from 1 to |FreqSet| tokens (from minimum to maxi-
mum frequency). A reconfiguration in the server frequency will obviously change
the number of tokens in this place.

To keep the model simple, we have not modeled other variables related to
power-aware adaptation such as savings in the cooling system.

5. Performance and energy trade-off

This section explains the complex process to create an energy-aware plan that
cares of performance requirements. To ease the explanation, the process is de-
composed in two steps: the first one, described in Subsection 5.1, illustrates the
generation of a basic plan, while the second one, in Subsection 5.2, describes its
optimization. Subsection 5.3 proposes a Petri net model for the plan described in
Subsection 5.2. Finally, Subsection 5.4 presents a Petri net that results from merg-
ing all the PNs obtained so far. It will be useful to carry out a trade-off evaluation
(performance and energy) of the system.
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5.1. Generation of basic-plan
An energy-aware adaptation plan will be a set of system configurations, that

meet the performance goals using minimum energy, and actions to change among
configurations. A configuration defines the number of active servers as well as the
frequency they are working at. Hence, actions to change a configuration will just
mean to switch on/off servers and/or change their working frequency. Using the
number of servers and their working frequency, the power in each configuration
can be calculated.

A configuration also identifies a threshold that corresponds to the maximum
system load the configuration can manage. Energy manager uses information in
the plan to accommodate the system configuration to the most suitable one regard-
ing the current number of requests (system load). System load is an information
the plan receives from the lower layer, which indeed monitors the system.

In the following the process to generate the energy-saver adaptation plan is
explained (Table 1 will help the process understanding).

1. Generate a SPN model of the system workflow that includes the required
processing demands. Set the capacity of servers to a minimum (e.g., in
Table 1, one server, k=1, at its minimum frequency, OpFreq0 = 50%).

2. Evaluate the SPN to discover the mentioned threshold, i.e., the maximum
load (Nrequest) it can manage while the performance goals are satisfied.
Compute power consumption (Wserveri) for this configuration. (In Table 1,
27 and 16.3 respectively for the first case.)

3. Increase the server frequency (which means modifying the SPN) and go to
step 2. Repeat this step for all the frequencies the system has to manage,
i.e., |FreqSet|.

At this point we have completed one row of the table. It is natural to as-
sume that, if a server working at frequencyOpFreqi can manageNrequestsi and
spends Wserveri power, k independent and concurrent servers working at the same
OpFreqi are able to manage k · Nrequestsi and they spend k ·Wserveri power.
Applying this, we compute the rest of rows in the table multiplying the first row
values by the number of servers that represent each row. We will consider as many
servers as available in the infrastructure. As a result, we have generated a table
that contains all possible system configurations and, for each configuration, its
power consumption and the load it is able to manage (the complete table is not
displayed).

Using data in the generated table, Algorithm 1 can be applied to generate the
basic adaptation plan. This plan contains an ordered list of a subset of possible
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Percentage of frequency, OpFreqi
50% 60% 70% 80% 90% 100%

k=1 Nrequests 27 32 37 43 48 54
Wserver 16.3 18.4 21.3 25.1 30 36.2

k=2 Nrequests 54 64 74 86 96 108
Wserver 32.6 36.8 42.6 50.2 60 72.4

k means number of active servers

Table 1: Information required to create an adaptation plan

configurations (called suitable configurations) as well as threshold values indicat-
ing the moment to change from one configuration to another.

As a result we can distinguish two kinds of adaptations: those that only require
to change the frequency and those that require to change the number of working
servers -most probably, together with their frequency.
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Figure 7: Graph for system reconfigurations

An example of configuration in Table 1 is the system working with only one
server (k = 1), with frequency 60% and then with thresholds 27 and 32 requests,
in this case the power consumption is 18.4. System load ranging between 0 and
48 can be managed by only one server and changing only the frequency. However,
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Algorithm 1 Basic-plan generation
Require: Table with Nrequests and Wserver (dimension KxF)
Ensure: Basic adaptation plan.

1: set k = 1 {considered number of servers, row index}
2: set f = 1 {considered frequency, col index}
3: set Plan← EmptyP lan() {create empty plan}
4: set currentConf ← Table[k][f ]
5: Plan← AddToP lan(Plan, CurrentConf)
6: set cadidateFreq
{Search rest of suitable configurations until finish the table}

7: while k < K do
8: cadidateFreq ← GetBestInRow(k + 1, currentConf)
9: if IsBetterToContinueWithSame

Servers(k, f, candidateFreq) then
10: f ← f + 1 {Next configuration increases frequency}
11: currentConf ← Table[k][f ]
12: else
13: k ← k + 1 {Next configuration increases servers}
14: f ← candidateFreq
15: currentConf ← Table[k][f ]
16: end if
17: plan← AddToP lan(Plan, currentConf)
18: end while
{Add last row of table to plan}

19: while f < F do
20: f ← f + 1
21: plan← AddToP lan(Plan, Table[K][f ])
22: end while
23: return Plan

when the number of requests exceeds 48 it will be better to change to a config-
uration with 2 servers and frequency at 50% since power consumption is 32.6
instead of 36.2 offered by the configuration that only changes frequency. So, the
configuration that uses one server at 100% will never be used. Figure 7 shows a
basic adaptation plan in a chart. It depicts reconfiguration points in function of the
workload, considering a six-server infrastructure.
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5.2. Reconfiguration rate mitigation
The basic-plan suffers periods with high rates of switching on and off of the

servers, which is a real drawback for two reasons. First, the time spent in booting
and halting can be too high w.r.t. the real working time, then the energy spent in
switching tasks is not spent in serving requests. Second, the more the switching
rate, the more the wear and tear of servers.

To reduce the number of switch on and off of the servers we propose to use
reconfiguration limits with hysteresis. In other words, the Nrequests threshold
value indicating when the system changes between two neighboring configura-
tions will not be unique but composed of a couple of numbers,Nrequestsdec and
Nrequestsinc, according to whether the system tendency is reducing its power
(moving from the high energy consuming configuration to the lower) or increas-
ing it (moving from the lower consuming configuration to the higher). Therefore,
the association between the supported load and the system configuration will not
be unique.

The meaning of these new limits are: Nrequestsincs corresponds to the thresh-
old amount of requests to change from configuration s to s+ 1. Nrequestsdecs
corresponds to the threshold amount of requests to change from configuration
s+ 1 to s. In Figure 8, bold continuous line shows the Nrequestsinc values,
which are very similar to the previous Nrequests while bold dashed line depicts
Nrequestsdec. In that graph, the hysteresis length is equal to 2 steps, i.e, the
dashed line is moved two configurations above the continuous line. Therefore,
∀s ∈ {2..S} Nrequestsdecs = Nrequestss−2. For example, supposing that con-
figuration s is the one that uses three servers working at 60% of its frequency,
and looking at the change from configuration s to s+ 1 (i.e., use three servers
working at 70%), Nrequestsincs = 94. However, looking at the change from
configuration s+ 1 to s, Nrequestsdecs = 74; value which corresponds with the
previous Nrequestss−2.

Therefore, the higher the hysteresis length, the lower the reconfiguration rate
and the less the wear and tear, but higher the mean power consumption, since
the system spends more time in a configuration that consumes more energy than
necessary to deal with the received workload. Section 6 gives an example of the
tradeoff between these characteristics.

It is possible to observe small differences between bold continuous line in
Figure 8 and black line in Figure 7: these are due to corrections made when
the reconfiguration involves to turn on a new server. These corrections are in-
tended to mitigate the non quality satisfaction during the booting time of the
newly switched on server. We start to switch on a server few moments before
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Figure 8: Graph for reconfiguration (with hysteresis)

it will compulsorily need to maintain the required quality. This helps to have
it already booted and completely operative when it has to be used. Among the
multiple manners to decide how much the booting moment should be brought
forward, we have chosen to calculate it as a proportion of the step length called
Bring Forward Proportion (BFP). Thus, when the system is in a configuration
Confj such that the immediately consecutive Confj+1 uses one server more, the
adaptation order will take place when system load reaches NrequestsincConfj =

NrequestsincConfj−1
+ b(NrequestsConfj −NrequestsincConfj−1

) ·BFP c.
As an example, let us consider the difference between the bold continuous line

in Figure 8 (in Nrequests = 111) and black line in Figure 7 (Nrequestsinc =
96 + b(111− 96) · 0.75c = 107) with a BFP value equal to 0.75 and focusing on
the moment to order the switching on of the 4th server.

Thus, without hysteresis and BFP, three servers were used when the load of
the system ranged from 74 to 111. With the new improvement, three servers can
be used to manage from 52 to 107 requests, but what happens concretely, is that
two or three servers are used to manage from 52 to 74 requests, exactly 3 servers
for the range 74-76, three or four servers to deal with requests from 78 to 96 and
three, four or five servers manage requests from 96 to 107.

The decision to set a suitable value for the hysteresis proportion is shown in
Section 6 by means of the evaluation of an example with different proportion
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values.

5.3. Petri net model of a Plan
The Petri net in Figure 9 models the system reconfigurations that an energy

aware adaptation plan could carry out, in this example configurations Conf0,
Conf1, Conf2, Confs and Confs+1 of the plan are depicted. Places representing
configurations, Confi, are in mutual exclusion and can contain at most one token.

Transitions in the right hand side (t4 and t5) allow upgrading the power of the
system changing to a configuration that increments its Frequency when the sys-
tem is supporting a load that exceeds the configuration threshold NrequestincConfi
(weight of the test arc linked to systemLoad). Transitions in the left hand side
(t1 and t2) allow downgrading the power of the system changing to a configu-
ration that decrements its Frequency when it receives less than NrequestdecConfi
requests, in this case an inhibitor arc (those having a circle at the end) prevents
the firing of the transition when the number of tokens in systemLoad is more
than NrequestdecConfi . SystemLoad place will be filled by the workload sub-
net (Section 3), and its tokens removed by a timed transition with firing rate

1
MonitoredT imeSpan

, so it accounts for the number of requests the system has re-
ceived during the lasts monitoredTimeSpan seconds.

Some downgrades in the system configuration imply to increment the fre-
quency and to decrement the number of servers, transition t3 represents them.
In this case, the Frequency is increased with the difference of frequency between
configurations (Freq(Confi)−Freq(Confi+1)). While the number of servers is
decremented sending an event (token in SwitchoffEvent) to start the switch off
process.

On the other hand, some upgrades of system configurations imply to decrease
frequency and increase the number of servers, they are trickier and need of two
transitions, in the example t6 and t7. In this case, the change of frequency and
the switch on of the servers cannot be concurrently executed since switch on en-
tails booting time. So if the frequency is changed when the new servers have not
been yet added (servers are booting), the servers currently working will be the
ones suffering the frequency change and they will provoke a transitory quality
degradation of the system instead of its power enhancement. Then we split up the
upgrade process in two steps. In the first one, t6 switches on the server (tokens
in SwitchOnEvent and WaitingForBooting places). During this booting
time the system works at the frequency in the source configuration (no degrada-
tion). When the server is already booted (token in BootedEvent), the frequency
is decreased using transition t7, and the system reaches the new configuration.
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Figure 9: Petri net modeling the adaptation plan behavior

5.4. The Petri net for trade-off evaluation
The Petri nets for the adaptation plan, the workload, the state of the servers

and the software service are merged to create a new one where we carry out the
proposed trade-off analysis. Figure 10 depicts an abstract view of this Petri net,
where the places that are interfaces clearly emphasize how the nets interact. Al-
though we do not present in the paper a Petri net of a software service, Figure 12
illustrates the workflow of a software service, and we obtain the corresponding
Petri net automatically, using ArgoSPE [19].

6. Deployment and Evaluation

The architecture proposed in Section 2 is a reference one, hence different de-
ployments can be accomplished. Figure 11 presents a deployment in which the
computing platform is made of servers, where the software services in the
Component control layer are deployed. The bottom layer of the architecture is
completed with the LoadMonitor and the HwController which are soft-
ware modules that reside in the hardware that receives the requests from clients;
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Figure 10: Abstract view of the Petri net for evaluation.

separated hardware could also be used. The software module that comprises the
Change management layer, Energy Manager, is deployed in separate hard-
ware that only communicates with the other two layers for sending and receiving
the orders and information specified in the architecture. Finally the Adaptation
Plan Generator, which is software that evaluates SPNs as explained in Sec-
tion 5, is deployed in a high performance computing platform to create the plans
on demand. This service could even be provided by a third-party in the cloud.

6.1. Evaluation framework
The SPN in Figure 10 represents all the elements in the deployment, although

some implementation was required to carry out evaluation. The requests of the
clients are modeled as proposed in Section 3. This fact gives us the advantages
previously presented as well as the choice of performing a plethora of experi-
ments as discussed in Section 7. The actions of the HwController are em-
bedded in the SPN in Figure 6. The software services are simulated by the SPNs
that represent them, note that the main interest is to simulate the time they spend,
which is accurately represented by the timed transitions of the SPN. These SPNs
are obtained from the UML models of the software services using the ArgoSPE
tool [19]. Regarding the middle layer, Change management, it is embeded in the
SPN in Figure 9 which represents the adaptation plan. We have implemented
a Java program that creates the basic plan, evaluating SPNs and applying Al-
gorithm 1. The evaluation was carried out using the GreatSPN tool [10]. The
program also creates the plan with hysteresis. The resulting plan gives the param-
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eters for the SPN in Figure 9. Hence, we have created a model-based framework,
that being able to evaluate our approach, frees us from developing this expensive
deployment, especially in regard to acquire or rent a real computing infrastructure.

Our purpose being a model-based evaluation, we consider interesting to sum-
marize the differences between this kind of evaluation and an hypothetical evalu-
ation carried out using the deployment in Figure 11:

• We do not have “real” clients but a model of workload. However consider
that this part of the deployment does not belong to the architecture, i.e., to
our contribution. Moreover, we have developed a theory in the paper to
appropriately leverage the workload.

• We have not used an expensive computing platform made of hundreds of
servers. However our SPNs models carefully represent the workload they
support and our plan considers their consumption, frequency and booting
and shutdown times.

• The HwController has not been implemented since we do not have the
computing platform it manages. However, this task just means to program
the WoL facility of the servers and the remote control of the frequency.
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• The Load Monitor is not necessary in our evaluation since the workload
is generated by our model.

• The Adaptation Plan Generator has been implemented for our
model-based evaluation and it could be reused in the deployment in Fig-
ure 11.

6.2. Example of evaluation: relay mail server
The model-based framework above described has been used to evaluate a sim-

plified version of a relay mail server, a kind of system very common for enterprises
and institutions. Relay servers use to be replicated to cope with highly dynamic
workloads usually being a few the number of replicas, except for extremely large
mail providers.

The server receives requests to route mails to destinations, from both external
and local users. First activity is to accept the service. For example, mails from
local users are allowed to be delivered to anywhere, while external users could
only be allowed to send mails to local users, then avoiding open-relay risky con-
figurations. For accepted mails, the relay analyzes the content regarding security,
trying to mark viruses, spam or phishing. Safe mails are delivered with a header
indicating the analysis result. Mails containing viruses are rejected. The destiny
of safe mails can be either an external relay server, the one of the addressee, or
the own company mail inbox server. Finally, the relay server writes a log about
the operations performed, time stamps and related information. Figure 12 depicts
the workflow, using UML, as well as the performance information, in this case
annotated with the standard MARTE [15] profile: a) mean host demand for each
operation and b) system routing rates as probabilities. Host demands annotations
assume the server working at its maximum frequency. The performance require-
ment states that mean response time for a legitimate request should be less than
two seconds.

Workload model. For the sake of simplicity we adopt the monitored workload of
the University web server presented in Section 3. So, the workload is the one
depicted in Figure 2 and the corresponding Petri net model the one in Figure 4.
Let us assume the following mean arrival request rates per minute in each state:
1800 for peak, 1300 for working, 100 for night and 500 for weekend. They are
modeled by transitions of name λstate in the Petri net. Rates of transitions that
model state changes were explained in Section 3 and in Appendix B. Evaluating
this Petri net in isolation (without considering the workflow Petri net), we obtain
that its long term mean inter-arrival time is 943.4 requests per minute.
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Figure 12: UML activity diagram of a relay server

Characteristics of the processing resources. We have supposed a set of identical
servers and Round-robin technique to balance requests. We have followed classi-
cal techniques to create the SPN that models the load balancing technique, which
is inserted in between the workload and workflow SPN submodels. The charac-
teristics of a server are:
1. Maximum power consumption, Wmax = 100W .
2. Idle power consumption, Wstandby = 15W .
3. Others power consumptions, Cstartup = Cshudown = 6000 Joules.
4. Frequencies range from 1600MHz to 3200MHz in steps of 266.6MHz. Thus,
the set of frequencies is {50%, 58.33%, 66.66%, 75%, 83.33%,
91.66%, 100%}.
5. Booting and shutdown times, Tstartup = Tshutdown = 1min.

Not energy-aware deployment. We first conduct a study intended to devise the
necessary amount of servers to cope with the performance requirement. This
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study does not heed about energy, so the servers are working at maximum per-
formance and power consumption. The workflow in Figure 12 is translated into
a SPN following the method in [14], let us call it SPNwkf . The workload model
is simplified and split to only consider working and peak periods, the worst cases.
These nets together with the Round robin PN are attached to the SPNwkf . As
a result, we get two SPN we call SPNworking

wkf and SPNpeak
wkf . We evaluate these

nets for a different number of servers using the GreatSPN tool [10], and apply-
ing Little’s law6 we obtain the execution mean response times. We obtain that,
if the platform consists of one or two servers, the system cannot satisfy required
response time in working or peak states. Actually, system is neither able to man-
age the workload, and mean response times tend to infinite. However, for a three
server platform, system satisfies the required performance in both working and
peak states, since the obtained mean response times in this case are 0.16 and 0.73
seconds respectively. So, the system would be deployed in a three server platform.
Servers power consumption using this solution would be 100W · 3 = 300W .

Energy-aware adaptation. Previous not energy-aware study tells us that probably
the three server solution is wasting energy since not all processing capacity is
needed. Hence, we have to apply the energy-aware plan developed in Section 5 to
find suitable configurations of servers for all the states in the system.

Firstly, we develop a table, as the one explained in Section 5, by evaluating
the SPN that represents the workflow. This Table 2 embeds the different system
configurations and shows for only one server its power consumption and the num-
ber of concurrent requests it can manage. Remember that under the assumption of
“servers independence” we can obtain new rows for more servers just multiplying
results in the first row.

Operative frequencies (percentage)
50 58.33 66.66 75 83.33 91.66 100

Wserver 25.6 31.8 40.1 50.8 64.1 80.4 100
Nrequests 10 12 14 15 17 19 21

Table 2: Power consumption and concurrent requests capacity

From this table the energy-aware plan is generated following indications in

6Little’s law establishes that the average number of customers in the system is equal to the
request arrival rate multiplied by the average time a customer spends in the system.
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Section 5 and improved following the hysteresis in Subsection 5.2. We have gen-
erated three plans, considering different values for hysteresis step length, 1, 2 and
3. In the following, we refer to each plan as PH1, PH2, and PH3 respectively. The
plans account for requests received in the last 2 seconds (monitoredTimeSpan).
Figure 13 depicts PH2 as a graph. It shows that there are 11 different configura-
tions and that the three servers deployment is used when system load exceeds 22
requests.
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Figure 13: Graph for system reconfigurations

We evaluated the generated plans and we obtained results for the steady state
system execution:

• Mean time between consecutive booting processes are 33, 38.5 and 51 min-
utes for PH1, PH2, and PH3 respectively. It can be seen that the more step
length of hysteresis, the less frequent booting processes are. Therefore, for
each plan, expected mean power consumption of a server due to booting
process is 2.86W, 2.6W and 1.96W for PH1, PH2, and PH3, respectively,
calculated as 6000J

booting(PHx)min·60seg/min
.

• Percentage of time a server is turned on for each plan should be 78.3%,
79.4% and 81.2% . This has been directly acquired from mean number of to-
kens in operativeServers and WaitForRequestsCompletion
places

• Percentage of time that the energy manager orders the infrastructure to work
in each frequency is shown in Table 3.
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Operative Frequencies (percentage)
50 58.33 66.66 75 83.33 91.6 100

% time PH1 19.8 13.6 19 18.3 17.4 8 3.7
% time PH2 20 9.2 11.4 18.3 22.7 12 6.4
%time PH3 20.9 13.6 0.8 9.5 27.3 18.2 9.7

Table 3: Percentage of time spent in each operative frequency

Using all this information, we calculate the average power consumption of
the system. Results are: 129.8W for PH1, 140.6W for PH2 and 150.0W for PH3.
Therefore, our adaptation plans should make the system save 56%, 53.1% and
49.9% respectively w.r.t the non adaptive solution (calculated as 100 · (300 −
Power(PHx))/300).

7. Experimenting with variable workload

The example illustrated in the previous section showed that the application of
the proposed adaptation plan could lead to more than 50% of energy saving. The
results obtained so far are tied to a given workload pattern. In this section, we
analyze different types of workload, trying to understand if the results present a
general validity or if they are related to specific situations. Hence, we expect to
answer questions such as: “does it exist a workload state making the system unsta-
ble?” or “what could happen if the mean arrival rate of a workload falls just over
the value where the adaptation plan suggests to increase the executing platform by
one server?”. Answering these questions would increase or decrease the trust in
the proposed approach and it could lead, for example, to the identification of crit-
ical workloads that require continuous system reconfigurations, thus deteriorating
the energy consumption and servers wear and tear.

To this end we have performed several experiments, described below, whose
goal was covering a wide range of workload rates to discover the existence of a
possible critical workload state.

For the sake of system stability, while the state of the workload is not chang-
ing, the adaptations to activate servers should be close to zero since they take
time (e.g., booting time). Indeed, in this case, high spike or deep valleys are not
related to an increment or a decrement in the future workload, rather they are
random events showing momentary workload variations. Therefore, a reconfig-
uration would entail to come back to the previous configuration in a very short
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time. In the worst case, it is possible to have a set of servers wasting time and
energy turning on and off continuously, instead of processing requests.

To assess our approach, we have studied the behavior of the plan generated in
Section 6 under several workload states, where each state has a different request
arrival rate. Specifically, we have considered arrival rates from 50 to 2500 requests
per minute in steps of 50 arrivals per minute. So, we have evaluated 50 kinds of
workload rates. Furthermore, since the hysteresis step length of the adaptation
plan was conceived to reduce these reconfiguration rates, we have included in our
experimentation also different lengths of the hysteresis step. In this way, it is
possible to evaluate whether the hysteresis-based adaptation plan is effective to
actually mitigate the amount of unnecessary reconfigurations.

For the completeness of the study, we have performed four different studies,
using hysteresis step lengths ranging from 1 to 3. The obtained results are depicted
in Figure 14. The graph shows the mean rate of unnecessary adaptations that
modify the amount of active servers by varying the requests arrival rates. It can
be seen that for an arrival rate of less than 100 requests per minute, the system is
stable because none of the plans proposes unnecessary reconfigurations. The same
happens for arrival rates above 1350 requests per minute. In the former case, the
system is stable using a 1-server configuration. In the latter, the system is stable
using always the 3-servers configuration.

Between 950 and 1350 requests per minute, the adaptation with hysteresis step
length equal to one proposes some unnecessary reconfigurations. Indeed, there are
random valleys in the short term arrival rate that deceive the energy manager into
changing to a 2-servers configuration, and then come back to the 3-servers one.
The adaptation plans with hysteresis step length two and three, instead, are stable.

Between 250 and 500 requests per minute, it is possible to observe an increase
of the rates of unnecessary reconfigurations of plans with hysteresis step of length
equal to one and two.

Referring to the example of the previous section, this is the main reason of the
observed difference between the value of PH1 and PH2 mean time between con-
secutive booting processes w.r.t. PH3. Indeed, the mean arrival rate in weekend
workload state falls in this range, which causes a certain instability in the system
configuration. However, increasing the hysteresis step length to three, the recon-
figuration rate decreased by a factor of 35.2% and of 24.5% respectively, mainly
due to the avoidance of a number of unnecessary reconfigurations.

The adaptation plan with hysteresis step length equal to three also shows a
peak in unnecessary reconfiguration rates, that is shifted to the right w.r.t. peaks
of plans with hysteresis step lengths one and two. However, as expected, this peak
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Figure 14: Reconfiguration rates for workload states with arrival rate 50r, r ∈ {1..50}

is much lower than the peak of previous plans, indicating that the increase in the
hysteresis step length reduces the reconfiguration rate so increasing the system
stability.

Experimenting with variable workload, we can conclude that it is possible
finding workload states leading to unnecessary system reconfigurations, but the
introduction of hysteresis helps in reducing the rate of reconfigurations. Specifi-
cally, adding hysteresis to the approach, we have experimented that it is possible
to define suitable hysteresis step length values allowing the system to execute in
a stable manner. We observed that increasing the length of the hysteresis step it
is possible to reduce the mean power consumption and the reconfiguration rate.
Finally, note that depending on the cost of servers and its wear and tear in each
switching, the optimum value of hysteresis step length varies.

8. Related work

In the last years, as outlined in [20], the topic of reconfigurable and self-
adaptive computing systems has been studied in several communities and from
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different perspectives. The autonomic computing framework is a notable exam-
ple of a general approach to the design of such systems [21, 22]. Our work lies
in the area of models for self-adaptation of systems able to guarantee the fulfill-
ment of performance requirements under variable workload and reducing energy
consumption. Therefore, hereafter, we review works appearing in the literature
dealing with (i) dynamic variable workload, (ii) energy waste reduction and (iii)
trade-off between energy consumption and performance.

Workload. Patterns for workload recognition and characterization have been stud-
ied in [23]. Differences between systems analysis depending on whether the con-
sidered workload is open, closed or partly open are explained, and difficulties to
characterize the workload and difficulties to create and set up a suitable generator
are discussed. For the problem we are dealing with, the more suitable workload
types are open or partly-open. Moreover, we study systems under highly variable
open workloads [24] with temporal dependencies. Besides, in this work we con-
centrate on the modeling of workload patterns that can be separated into phases,
Section 3 leverages this aspect.

Energy wastes. In [25] the authors outline a research agenda to reduce energy
consumption in server clusters. The main proposal here is to improve server ef-
ficiency in terms of energy spent for each service request. The method focuses
on reducing energy consumption by turning off the surplus of processing capac-
ity when the current workload, which fluctuates, does not need it. With respect
to this work, we manage the server frequency and the cubic relation with power
consumption, which increases the energy saving with respect to only switching on
and off servers.

Authors in [26] have considered dynamic allocation of resources and deal with
multi-tier applications. Although, they do not directly address the concept of en-
ergy savings, methods given in this paper can be applied for energy consumption
reduction. In [27] the management of energy consumption in data centers is stud-
ied through optimization problems taking into account: frequency scaling, servers
booting times and hysteresis. We also assume these issues but we make slightly
different assumptions to discover appropriate settings for each workload. For ex-
ample, to accommodate an increased workload in the platform, in [27] the plan
could dictate switch on or off the machines. In our case, with increasing work-
load if you have to select a new configuration of hardware, we decided to not
reduce the number of servers. Therefore, in this case we can reduce the number
of reconfigurations.
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Trade-off between energy consumption and performance. This aspect has been
largely investigated in hardware design, in network communities and in battery-
powered devices. However, this investigation applied to hosting centers is much
more recent. In [9, 1] the importance of the problem of energy wastes is recog-
nized. They treat the problem from different points of view, such as the consump-
tion from hardware devices, operating system or software applications. They sum
up previous efforts in the field, raise current problems and devise ways to reduce
the energy consumption.

[8] evaluates five strategies to save energy: two strategies manage processor
frequency, another one switches on and off servers and the last two result from
the combination of frequency and number of servers management. The authors
study the performance degradation of applications with respect to the strategy
used. In our work, we propose to generate an adaptation plan that uses the same
techniques as in their latter strategy. Besides, we share the modeling of servers
startup, shutdown and waiting for ongoing requests times. To predict execution
demands of requests from each user our analyzable SPN models include more
fine-grained information.

The goals of the work in [4] are close to ours: to reduce costs while satisfy-
ing quality contracts. We share the techniques to save energy when the system
is over-dimensioned for the supported workload: switch off of the servers and
modification of their frequency. Their optimization technique also considers the
problem of wear and tear on servers when repeated on-off cycles are performed.
They proposed methods based on queuing theory, feedback control and hybrid
mechanisms, instead, we use SPN models in an architectural framework. We also
differ because their proposal reconfigures the system just in predetermined time
instants, while we do it as soon as a better configuration is recognized.

The authors in [28] propose a framework for hosting multi-service platforms
that allows the management of reallocation of the correct amount of resources for
each service while satisfying the performance requirements. The work in [29]
extends the previous one by considering energy consumption constraints and situ-
ations where the system is under illegitimate users requests. Our work differs from
the previous ones in the goals. While their main objective is to maximize com-
pany profits (they consider cases when providers pay penalties), our goal covers
both the savings in energy consumption and continuous performance requirements
satisfaction.

Mistral [30] handles multiple distributed applications and large-scale infras-
tructures to optimize power consumption, performance and transient costs of adap-
tations. As in our approach, Mistral reconfigures the system when variations in
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the monitored workload are appreciated, however they implement a workload pre-
dictor that estimates these workload variations, in our case the SPN model of the
workload owns this knowledge. They present an algorithm, that can increase ex-
ponentially, to create a graph that represents the system configurations and adap-
tation actions, in our approach the reconfiguration plan is represented also by a
SPN model. For the computation of applications response time, Mistral, as well
as our approach, relies on formal models, in this case queuing networks instead of
Petri nets.

[31] presents an approach to self-adaptive resource allocation in virtualized
environments that cares for SLAs. Their adaptation algorithm differs from ours
since it proceeds in two phases: a first one to allocate resources to meet SLAs
and a later one to deallocate those not utilized. The approach is validated using
standard benchmarks.

The approach in [32] implements and validates, using a benchmark, a dynamic
resource provisioning framework for virtualized server environments. It also ac-
counts for the switching costs of the machines. As in our approach, the exces-
sive switching and the variations in the workload intensity are taken into account.
However, the approaches differ considerably. For example, they use a Kalman
filter to estimate the number of future arrivals, while our approach allows accurate
modeling using SPNs of multiple kinds and combinations of variable workloads.
The dynamics of the system are expressed using equations, however we use SPNs
as a modeling paradigm.

Finally, [3] is an interesting work that develops and validates a measurement-
based approach as alternative to queuing models, which clearly differentiates it
from our work. They also create a new set of metrics to predict runtime trade-offs
between performance and energy use.

9. Conclusions

In the near future the management of power consumption in open systems
and computing infrastructures will necessarily become an unavoidable topic, self-
adaptive frameworks have a lot to say at this regard. Starting from a framework
(reference architecture) able to self-adapt a system to improve its performance,
the proposal herein reported enhances the architecture to also deal with energy
variables. The model-driven approach, transformation of UML models into a for-
mal one in terms of Petri nets, bestows interesting analyses capabilities for the
framework to carry out an off-line management.
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Future work is a path plenty of challenges. For example, understanding how
to apply virtual layers in the underlying computing infrastructure and how the
architecture can manage them, servers will be able to feed different system com-
ponents. Other not addressed topic refers the management of servers with hetero-
geneous capabilities (e.g., different frequencies). Also it is worthy to investigate
automatic generation of workload models from traces. In particular, works on
Markov model estimation can be found in [18, 33].

Appendix A. Generalized Stochastic Petri Nets

A PN system is a tuple N = (P, T,Pre,Post,M0), where P and T are the
sets of places and transitions, Pre and Post are the |P | × |T | sized, natural
valued, pre- and post- incidence matrices. For instance, Post[p, t] = w means
that there is an arc from t to p with multiplicity w. When all weights are one, the
PN is ordinary. C = Post−Pre is the incidence matrix of the net. For pre- and
postsets we use the conventional dot notation, e.g., •t = {p ∈ P : Pre[p, t] ≥
1}, that can be extended to sets of nodes. If N ′ is the subnet of N , defined by
P ′ ⊆ P and T ′ ⊆ T , then Pre′ = Pre[P ′, T ′], Post′ = Post[P ′, T ′] and
M′

0 = M0[P
′]. Subnets defined by a subset of places (transitions), with all their

adjacent transitions (places), are called P- (T-) subnets.
A marking M is a |P| sized, natural valued, vector and M0 is the initial mark-

ing vector. A transition is enabled in M iff M ≥ Pre[P, t]; its firing, denoted
by M

t→M′, yields a new marking M′ = M + C[P, t]. The set of all reachable
markings is denoted as RS(N ,M0). An occurrence sequence from M is a se-
quence of transitions σ = t1 . . . tk . . . such that M

t1→M1 . . .Mk−1
tk→ . . .. Given

σ such that M
σ→ M′, and denoting by σ the |T | sized firing count vector of σ,

then M′ = M + C · σ is known as the state equation of N .
A GSPN is a tuple G = (N ,Π, S̄, r), where N is a PN system and the set

of transitions T is partitioned in two subsets Tt and Ti of timed and immediate
transitions, respectively. Π is a natural valued, |T | sized, vector that specifies a
priority level of each transition. Timed transitions have zero priority, immediate
transitions have priority greater than zero. A transition t ∈ T , enabled in marking
M, can fire if no transition t′ ∈ T : Π[t′] > Π[t] is enabled in M. Timed transition
firing delays are random variables, distributed according to negative exponential
probability distribution functions. Immediate transitions fire instead in zero time.
S̄ is a non negative real valued, |Tt | sized, vector of the mean transition firing
times. The positive real valued vector r is |Ti| sized, and specifies the weights of
immediate transitions for probabilistic conflict resolution.
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Appendix B. Workload characterization

We describe here the theory underlying the derivation of parameters for the
SPNworkload model described in Section 3. We first introduce the Markov arrival
processes (MAP), which are processes that can model all the concepts we are in-
terested in. After, we concentrate the workload modeling on a type of MAP, those
called Markov-modulated Poisson Process (MMPP). Finally, it is explained the
representation of MMPPs using SPNs, which eases the integration of the work-
load model in the SPN model that represents the system behavior.

Markov arrival processes
Markov arrival processes (MAP) are stochastic processes that have been ex-

tensively used to model events arrival processes and network traffic, that show
high variability and temporal dependencies.

In a MAP, event arrivals are governed by an irreducible continuous time Markov
chain (CTMC). Transitions between states are classified as background or com-
pletion. The former type of transitions only changes the state in the CTMC, while
the latter represents the arrival of an event and can either leave the CTMC in the
same state or change it. Figure B.15 shows a two-state MAP, where completion
transitions are depicted boldface. The meaning of this example MAP is: while its
CTMC is in state1, events arrive following an exponential distribution with rate
λ11. This state is left with rate α12, which entails that the mean sojourn time in
state1 is 1

α12
, and afterwards the state changes to state2. In turn, state2 is linked to

state1 by both background and completion transitions, which means that state2 is
left with a rate λ21 + α21. Thus, the MAP can jump from state2 to state1 having
received an event arrival or not, and these probabilities are λ21

λ21+α21
and α21

λ21+α21

respectively.

!12

!21
"11

"21

state1 state2

Figure B.15: Example of two-state MAP

A MAP of M states can be specified using two MxM matrices, called D0 and
D1. Matrix D1 stores the exponential rates of completion transitions, i.e., it stores
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non-negative real values λij . In turn, D0 elements out of the diagonal describe
background transitions rates αij, i 6= j. The infinitesimal generator of the CTMC
that describes state transitions over time is given by Q = D0 +D1. Therefore, el-
ements in the D0 main diagonal (D0;ii) are: D0;ii = −

∑M
j=1,j 6=iD0;ij −

∑M
j=1D1;ij

In the previous example D0 and D1 are:

D0 =

(
−α11 α12

α21 −α22

)
D1 =

(
λ11 0
λ21 0

)
and α11 = α12 + λ11, α22 = α21 + λ21
Parameter fitting of a MAP -in terms of number of states, D0 and D1- from a

sample trace has been extensively studied, and methods to improve the parameter
fitting in terms of accuracy and algorithm complexity order the are still being
investigated [34, 35, 33, 36].

Markov-modulated Poisson process
MMPPs are a category of MAPs, where D1 matrix is diagonal. It means that

there cannot exist completion transitions that change the CTMC state but every
state jump is driven by background transitions. When the CTMC is in state i, event
arrival rate follows the exponentially distribution with parameter D1;ii. Figure
B.16 depicts an example of MMPP with four states, whose matrix definition is
given by:

D0 =


−α11 α12 0 0
α21 −α22 α23 0
0 α32 −α33 α34

0 0 α43 −α44

D1 =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


where αii = D1;ii +

∑4
j=1,j 6=iD0;ij

MMPPs models are simpler than generic MAPs, but they can still model the
variability on the inter-arrival time of events as well as some of the important
correlations between inter-arrival times [37]. The problem of parameter fitting of
a MMPP from a trace has been investigated in the literature [34, 38, 37, 39, 40].
In this work, we do not propose any new method to fit a workload trace into a
MMPP but we use/rely-on methods already proposed in the literature. Moreover,
since MMPP behavior is more intuitive than generic MAPs, at first term a domain
expert could give the initial values if he/she can intuitively separate the expected
workload in different phases and can associate an arrival rate with each phase.
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!34

Figure B.16: Example of a four-state MMPP

SPN representation of MMPPs
Once the MMPP that models the event arrival has been created and its param-

eters have been set to fit the actual workload trace, we propose a SPN representa-
tion of such MMPP. The reason is that, since our analyzable model of the system
is based on SPNs, it is an advantage to have the workload model represented in
the same formalism in order to be integrated with the rest of the system. Hence
this subsection deals with the SPN representation of the MMPP. As example, Fig-
ure B.17 corresponds to the SPN representation of the MMPP model in Figure
B.16. Actually, for convenience, MMPP in Figure B.16 was chosen accordingly
to derivate a SPN with the same structure as the one already shown in Section 3.
Let us call SPNworkload to the SPN model whose behavior is equal to MMPP. A
SPNworkload model includes:

• as many places as MMPP states. A token in a place means that the workload
is in the phase represented by the MMPP state. Therefore only one of these
state places can be marked.

• a timed transition for each D1;ii 6= 0. Such transitions are bidirection-
ally connected the state place i. These transitions represent the completion
transitions in the MMPP and they inject requests to the event-arrival place.
Their firing rate corresponds to the expected event arrival rate in each state.
In Figure B.17 their firing rates are denoted as λi. Since these transitions
are linked to state-places, only one of them can be enabled.

• a set of timed transitions to model the state mean sojourn time and proba-
bilities of change between states. There is a transition with statei as input
place and statej as output place if and only if D0;ij > 0. These transitions
model the background transitions in the MMPP and their firing rates are set
to D0;ij
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state1
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Figure B.17: SPN representation of MMPP workload model in Figure B.16
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