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Abstract
Open-world software is a paradigm which allows to develop distributed and heteroge-
neous software systems. They can be built by integrating already developed third-party
services, which use to declare QoS values (e.g., related to performance). It is true that
these QoS values are subject to some uncertainties. Consequently, the performance of
the systems using these services may unexpectedly decrease. A challenge for this kind
of software is to self-adapt its behavior as a response to changes in the availability or
performance of the required services. In this paper, we develop an approach to model
self-rencongurable open-world software systems with stochastic Petri nets. Moreover,
we develop strategies for a system to gain a new state where it can recover its availabil-
ity or even improve its performance. Through an example, we apply these strategies
and evaluate them to discover suitable recongurations for the system. Results will
announce appropriate strategies for system performance enhancement.

1. Introduction

In the new and exciting open-world software paradigm [1], the environment changes
continuously and the software must dynamically react and adapt its behavior. The
world is open to new components that the environment can dynamically provide and
the software discover and bind. So, in an open-world, software is no longer created
from scratch but integrating already developed third-party services. Currently, there
exist approaches, standards and technologies partially supporting open-world software
assumptions, among them, publish-subscribe middleware, grid computing, autonomic
computing or service oriented architectures (SOA) [2, 3] and their underlying imple-
mentations such as web services. In this context, software services [4] are abstractions
that should be exible enough to mix technologies (e.g., sensors, GPS or tag-based [5]),
to execute in open environments (usually connected through networks) or to interplay
without authorities. Finally, they are committed to provide adequate quality of service
(QoS).
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Open-world software distinguishes the roles of service provider and service inte-
grator. The former develops and deploys, probably in heterogeneous environments,
services to be executed in unforeseen manners, and the latter creates service-based ap-
plications invoking those external deployed services. Service integration needs, among
others, that deployed services: describe their functional and non-functional properties;
provide and negotiate QoS levels (SLA); can be dynamically discovered and bound at
runtime; allow their real behavior to be monitored. This paper mainly deals with the
last two topics.

Regarding the rst topic of interest, the fact that services can be discovered and
bound at runtime means that service-based applications can change their internals to
take advantage of recently deployed services. Therefore, services can change their
current conguration, so they are considered as a kind of self-adaptive software [6].
Reconguration may take two forms: mandatory and optional. Mandatory reconfigu-
ration occurs when the application cannot longer work with the current conguration.
For example due to the disruption of the requested service or a failure in it. Garlan et al.
dened a similar concept, self-healing systems [7]. Optional reconfiguration is used to
improve system QoS, so although the system really still works, a reconguration will
offer advantages such as better performance. Regarding the second topic, monitoring
is also in the research agenda of the open-world software. The challenge here is to
collect and analyze data from providers to be compared with the promised QoS (e.g.,
SLA in some technologies), check deviations and consequently plan strategies to react
and recongure the system.

Service integrators (humans and programs) should easily access the QoS param-
eters, dening the software services, to guide optional reconguration for improving
system QoS. For instance, in SOA these parameters are called policies [8] and web ser-
vices could declare them in the UDDI register. However, we and other researchers [9]
make the point that this information could not be precise or updated or it could be even
incorrect. So, our point is that the choice of provider, for a given service request, should
be aware of the performance exhibited by all providers currently offering the service.

When a system under development wants to incorporate this performance-aware
reconguration property, an off-line approach can be taken to study its feasibility and
to gain insight into possible reconfiguration strategies that eventually could be im-
plemented to accomplish the property successfully. In this paper, we align with this
off-line approach, then our system design will reect not only the workow of the ser-
vice integrator, but also the reconguration strategies of interest and a “simulation” of
the monitoring. From the software design, we will get a formal model, in terms of
Petri nets, that will be evaluated to learn about the effectiveness of the reconguration
strategies for this design. We recognize that the reconguration choice should consider
not only performance but also other QoS attributes such as cost, reliability or security.
So, the reader should understand that the conclusions we will obtain here will provide
just a parameter for this nal reconguration choice.

The balance of the paper is as follows. Section 2 describes the software design of
the system under study. Section 3 evaluates gures for this system when only manda-
tory reconguration affects. Section 4 introduces optional reconguration and then the
evaluation of different strategies makes sense. Finally, Section 5 revises the related
work and gives a conclusion.
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Figure 1: (a) Workow (b) Mandatory reconguration
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Figure 2: UML component and deployment diagrams

2. The system under study

Component-based software engineering [10] (CBSE) is today a eld with well-
established component models and technologies, for example, the Commercial Off
The Shelf (COTS) components. Let us assume we need to develop a COTS component
C1 to be assembled in applications for PDAs; it will offer one service or interface S1,
see Figure 2 (a). According to the workow description in Figure 1(a), it happens
that C1 needs to invoke the service S2 to properly carry out its duties. S2 is an already
deployed service by C3 for eventual users in an open-world software context and it may
also be provided by C2, see Figure 2 (a), being both C2 and C3 third party components.
Therefore, the C1 component developer will not play the service provider role, since
S1 will not be globally accessed, but s/he has to play as a service integrator selecting
the proper provider (C2 or C3). The choice should consider the differences among
these components, which actually account for service times and coverage. We may
assume that C2 provides faster mean service time but smaller coverage since it can
only be accessed from the wireless interface of the Local Area Network (LAN) where
it executes, see deployment in Figure 2 (b). However, C3 offers the service through
Internet via satellite, which can make it slower but specially suited for PDA users,
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and moreover it provides global coverage for S2. Actually our example is inspired
by the one in [11], so we will refer to this last situation as the outdoor configuration,
while indoor configuration will refer to the PDA executing in LAN, say inside the
University campus. We have also borrowed the state machine in Figure 1(b) from [11]
to represent these possible congurations, changes among congurations are triggered
by lostWLAN and getWLAN events the PDA should notify.

Since C1 is under development, we aim to assess the performance S1 could of-
fer. C1 will behave as a self-adaptive software, i.e., it decides self-reconfigurations to
request S2 to the current best provider (say component). We will study two recongura-
tion cases. The rst one, described by the workow and state machine in Figures 1(a,b),
will be elaborated in Section 3. This is a case of mandatory reconfiguration since C1
changes from outdoor to indoor and vice-versa depending on the PDA location, but
without the service integrator choice. The second reconguration case will be devel-
oped in Section 4 and it introduces a slight but very important change: when C1 is
outdoor and it has to request S2, then it will be allowed to choose among C3 or C4,
hence, optional reconfiguration is considered. The C3 or C4 choice will be based on
a performance criteria. The component and deployment diagrams are shown in Figure
7(a) and 7(b), respectively. The workow and state machine are given in Figure 8(a)
and 8(b).
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Figure 3: Klaper model of the workow

System performance view
The system performance characteristics have been annotated with the standard

UML prole for Schedulability, Performance and Time Specication (SPT) [12]. The
workow in Figure 1(a) describes some performance parameters. Here, execution de-
mands for S1 internal activities are 3.5 and 5 time units respectively. Besides, an S2 call
implies two external operations and their corresponding demands (WLAN and C2::S2
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or satellite and C3::S2). As previously suggested, the way to get these values will
depend on the technology.
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So far we have proposed a UML-SPT design that describes the system and its
performance characteristics. From this software design different performance mod-
els could be obtained (e.g., queuing networks, stochastic Petri nets or stochastic pro-
cess algebras) following the proposals in the literature, some of them surveyed in [13].
However, we prefer to convert the design into a D-Klaper [11] model since it brings
some advantages. Moreover, there exists an automatic model-transformation [11] from
UML-SPT to D-Klaper (which justies why we currently use SPT instead of the more
recent MARTE [14] prole). Later, we will gain a performance model from D-Klaper,
indeed D-Klaper is a suitable intermediate model that helps to bridge the gap between
UML-SPT designs and different performance models. Figures 3, 4, 5 (a,d) and 6 span
the D-Klaper obtained for both designs, mandatory and optional. D-Klaper explic-
itly describes the bindings, which are important to understand system recongurations;
here we assumed they do not consume time. Moreover, it also makes explicit the use
of services and resources as well as their performance characteristics. Among the lat-
ter, D-Klaper describes the capacity of resources, which in this case are not restricted
(so, they are all set to *, see Figure 4), then accounting for the fact that C2 and C3
may serve other requests from other components. Although there does not exist yet an
automatic model-transformation from D-Klaper to Petri nets, we can manually obtain
the net (later outlined). Moreover a brief discussion around how to bridge the semantic
gap between D-Klaper and Petri nets through an automatic translation will be given
in the Conclusion. The major drawback of D-Klaper, from our point of view, is that
it can not deal with the received events in UML state machines. However we had to
translate a number of them into D-Klaper (Figure 5), our solution has been to introduce
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a ReceiveEvent model element (see grey boxes in Figure 5) that accounts for the
received events in a UML state machine.
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Figure 5: Klaper models: (a) mandatory reconguration in Fig. 1 (b), (b) monitor in Fig. 10, (c) strategy in
Fig. 11(b), (d) optional reconguration in Fig. 8 (b)

3. Self-healing reconfiguration

This section focusses on the performance evaluation of the system already pre-
sented when mandatory reconfiguration applies. Actually, this reconguration acts as
a self-healing process [7], because when the system changes from indoor to outdoor,
the current request to C2::S2 is lost and the system damaged due to unavailability.
Then, a repair or reconguration is mandatory. However, when the change is from
outdoor to indoor, although the system may still work, we carry out a reconguration
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assuming that a LAN connection may be for free or at least cheaper than a satellite
connection.

The performance evaluation will be carried out using the Petri net in Figure 13 (a),
that has been manually created from the D-Klaper model. We have emphasized differ-
ent subnets within dotted frameworks. The subnet on the left models C1::S1 workow,
it comes from Figure 3. The four subnets in the middle represent the resources re-
quired by S1, they come from Figure 4. The last subnet models the conguration in
use and the reconguration actions and comes from Figure 5 (a). This Petri net is a
Generalized Stochastic Petri Net [15] (GSPN) and it accounts for all possible systems
congurations (indoor or outdoor).

Let us discuss some technical details regarding the GSPN in Figure 13 (a). The
time modeled in D-Klaper for each activity is represented in the GSPN either by an
exponential transition with mean ring time equal to internalExecTime or by an
immediate one depending on whether that value is greater than zero or not. It is im-
portant to remember that D-Klaper does not consider events, in this case we represent
getWLAN and lostWLAN (Figure 1(b)) as D-Klaper timed activities (indoor and out-
door in Figure 5) instead of using the proposed ReceiveEvent. In this case this is
feasible since we can assume that the system will spend an amount of time in indoor
and an amount in outdoor, therefore the events can be written off. The time spent by
these activities has been set to 103 and 2 · 103 respectively, therefore we are evaluating
a system that spends twice as much time outdoor as indoor. In the GSPN, these activ-
ities are represented by transitions T40|indoor and T45|outdoor, concretely in
the Reconfiguration subnet. Finally, we remark that in the subnet C1::S1, P18 models
a decision since it enables t21 or t24 depending on the conguration (indoor or out-
door), also in this subnet, t37 and t39 are responsible for the operations interruption
when the system changes from indoor to outdoor. In this case, execution returns to
P17 and the service calls will be re-launched to C3.

Petri net evaluation results
Result Formula

Mean response time C1::S1 35.8 1−#P17+#P5
χT1

C1 0.138 1 − #P17
Mean C2 0.016619 #P3

utilization C3 0.0833944 #P4
WLAN 0.0016634 #P1
Satellite 0.0116882 #P2

Mean C2::S2 0.00166 χt29
throughput C3::S2 0.00333 χt31

% of interrupted re- WLAN 0.01 χt37
χt21 · 100

quests C2::S2 0.1 χt39
χt28 · 100

χt is the mean throughput of transition t
#P is the mean number of tokens of place P

Table 1: Results of the mandatory or self-healing reconguration
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We are interested in evaluating the GSPN to get performance gures when the
system alternates indoor and outdoor. Table 1 gives the results, which were obtained
with the GreatSPN tool [16] simulation programs. The most interesting result, from
the service integrator point of view, would be S1 response time, 35.8 t.u., now s/he
should check if this result fullls the requirements. Concerning the mean C2, C3, LAN
and satellite utilizations, they seem very low, though these values refer only their use
by C1, but actually they will be used by other open world components, so the providers
are responsible for guaranteeing their mean response times (10 and 25 t.u. for C2 and
C3 respectively). Same comment applies to mean throughput rows, that in this case
obviously relates the number of requests processed by C2::S2 with respect to C3::S2.
Finally, the percentage of interrupted requests means those requests not completed due
to a change in the conguration. It only applies to indoor→outdoor changes, and both
the WLAN and the waiting for C2::S2 can be affected.

4. Optional reconfiguration
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Figure 6: Klaper model: (a) C3::S2 (b) C4::S2

Now, we focus our study in the same system but introducing optional reconfigura-
tion with the aim of improving performance in C1::S1. The system design depicted in
Figures 7 and 8, allows C1 in outdoor configuration to choose the better performing
component among C3 and C4.

Performance specification
Consider that the QoS specication in C3 still declares for S2 a mean response

time of 25 time units while C4 QoS declares 35, both exponentially distributed. The
workow in Figure 8 (a) depicts these values, annotations already given in Figure 1(a)
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have been omitted. Now, let us distrust the C3 QoS declaration, then we decide to
monitor this component to get more accurate gures about its real behavior. Finally,
we realize that C3::S2 works in two differentiated modes: peak hours mode, which in
mean lasts for six hours per day and exhibits an exponentially distributed response time
with mean 70 time units; and normal mode, rest of the day, being its mean response
time only 10 time units. Although C3 functional behavior is still a black-box, we could
detail its monitored performance behavior, see the subnet in Figure 9 (b). Transitions
T1, T2, T3 and T4 are exponentially distributed with means respectively x, y, 70 and
10. Since T1 and T2 respectively model the time spent in peak hours and normalmodes
then x needs to be three times slower than y (6 and 18 hours respectively). Actually,
this net preserves a mean time of 25 time units as declared in Figure 8(a) for C3::S2,
therefore the QoS declaration for C3 was correct; in fact our suspicions arose from this
high variability among peak and normal.
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Figure 7: UML component and deployment diagrams

Let us present the aim of the study. From Figure 8 (a), we may naively infer that
being the mean response time 25 in C3 and 35 in C4, then the service integrator choice
should always address C3, hence reducing the problem to the one in previous section.
This would be true only if whatever two consecutive requests to C3 were always inde-
pendent, as requests to C4 are. However, sinceC3 owns these two well-known different
operation modes, we positively know that requests are not independent, so they have to
belong to one mode or the other. Therefore, as long as the service time values obtained
in the most recent requests to C3were available, then it would be possible to predict the
mean service time for the following requests to C3. This would be true if we assume
that the predicted requests will belong to the same C3 operation mode as the ones al-
ready tracked. Remember that we got precise gures for these modes (10 and 70 t.u.),
and we can apply them in the prediction. Hence, S1 performance may be improved if
we are able to address the current request to S2 to the component (C3 or C4) currently
working at the lowest estimated response time, i.e., to address C4 (35 t.u.) when C3 is
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in peak hours (70 t.u) or to address C3 when it works in normal mode (10 t.u.).
From the previous two paragraphs we can conclude that it would be very interesting

for an open-world component to be equipped with monitors that keep track of those
untrusted services it uses. So, the monitor could get accurate figures describing these
services. Besides, it would be of interest that another module could take advantage
from the monitored information by implementing strategies able to predict for each
request the provider that currently could offer better service. In the following, we
discuss the implications of such monitor and reconfiguration strategies in our UML
design and Petri net.

4.1. Service monitoring and reconfiguration strategies
The UML design of the monitor in Figure 10 (a) is a state machine that is initially

idle and it is activated when a request is sent to the tracked component, and then
waits for the component response. If the time spent between these two calls is
smaller that τ the correct behavior is notied to the system (okC3) otherwise an alarm
about the malfunction is raised (slowC3). The D-Klaper model corresponding to the
monitor appears in Figure 5(b). From the D-Klaper we will get a subnet (Figure 10 (b))
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that can be seen as a black-box module with well-dened interfaces (Figure 10(c)). The
input interfaces account for the calls (requestC3 and responseC3) addressed to
the provider who is being tracked. The outputs (slowC3 or okC3) will inform about
the provider’s performance. These places (inputs and outputs) will be merged, in the
system Petri net in Figure 13(b), to their peers with equal name. Then the monitor
will be aware of the actual requests and responses. Consider that there will be in the
system Petri net as many identical black-box monitor modules as providers we need
to track, in our case only one, C3. Finally, it is worth noting that the monitor subnet
(Figure 10 (b)) does not inuence the performance in the rest of the net.
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Idle
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"
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Figure 10: Monitor module

Reconfiguration strategies aim to select, assisted by the monitor, the current best
provider regarding performance. They will also be modeled as a black-box module,
that we will call reconfiguration controller (Figure 11 (a)). In the UML design, we
will represent each strategy with a state machine, although we are currently investigat-
ing more expressive approaches. We include in Figure 11 (b,d) two simple examples
for this system, the D-Klaper model corresponding to the rst strategy appears in Fig-
ure 5 (c). This rst strategy recongures the system the very rst time the monitor de-
tects the provider is working slowly, while the second strategy needs two consecutive
slowC3 events from the monitor to carry out reconguration. So, the events in transi-
tions (e.g., slowC3 in Figure 11 (b)) are received from the monitor module, and they
can trigger another event (e.g., activateC4 is the one triggered in slowC3/activateC4).
activateC4 is sent to the state machine in Figure 8 (b) to actually change the current
system conguration. On the other hand, the change from C4 to C3 is accomplished in
both strategies when expires a given time, say λ (Figure 11 (b,d)).

Figure 5(c) depicts the D-Klaper models of the strategies, they will be converted
into reconfiguration controller subnets (Figure 11(c,e)). The reconfiguration controller
input interfaces (Figure 11 (a)) are the monitors outputs, which in fact are the events
the strategy needs to work (okC3 and slowC3). The output interfaces provoke the
system reconguration as discussed in the previous paragraph for activateC4. Again
these interfaces will be merged with the places, in the system Petri net, with equal
names. As a result, the monitor and the reconfiguration controller will cooperate. Note
that we can get as many system Petri nets as reconfiguration controller modules we
dene. Hence, a system Petri net represents the system with a given reconguration
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Figure 11: Reconguration strategies

strategy. Figure 13 (b) shows the Petri net that models the whole system. An important
difference with the one corresponding to the previous section, Figure 13 (a), is that now
it belongs to the Deterministic Stochastic Petri Net [17] (DSPN) class instead of GSPN.
The reason is that monitor’s T2 transition is deterministic instead of exponentially
distributed.

As a conclusion, we have obtained a Petri net (Figure 13 (b)) by translating the D-
Klaper models. This net will be used for evaluation and it models the system workow,
the components that need special tracking, the strategy for reconguration and the
monitor.

4.2. System evaluation results
The obtained Petri net will be useful for service integrators to assess performance

characteristics of the system, e.g., to verify that S1 meets the required response time or
to suggest which components should be changed or improved to accomplish this target.
In this section, we will use the Petri net in Figure 13 (b) for another purpose of interest,
the evaluation and comparison of the proposed reconfiguration strategies. From this
study, we will discover which ones perform better or reach a necessary performance
threshold. Consider that in a real situation, the service integrator will be interested in
a few strategies, those actually making sense in the problem domain. In particular, we
identied three scenarios of interest:
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• Scenario one (s1) considers strategy in Figure 11 (b): In this case the monitor
will send the event slowC3 when detects a request exceeding 35 time units. The
reconfiguration controller module is the subnet in Figure 11 (c).

• Scenario two (s2) considers strategy in Figure 11 (d): In this case the monitor
will send the event slowC3 also when detects a request exceeding 35 time units.
But in this case two consecutive events are needed for the controller to recong-
ure. The controller module is the subnet in Figure 11 (e).

• Scenario three (s3) considers strategy in Figure 11 (b): However in this case the
monitor will send the event slowC3 when detects a request exceeding 70 time
units. Again , the reconfiguration controller module is the one in Figure 11 (c).

The values selected for these scenarios are not arbitrary ones. In fact, we have car-
ried out lots of evaluations of the net (with different values) to nally realize that these
ones actually represent strategies of interest. s1 matches with an “impatient” service
integrator who changes conguration without “strong reasons”. Scenarios s2 and s3
wait for more “real reasons” to change system conguration. Additionally, we also
consider the following scenarios, they will help us to realize the actual performance
improvements among the previous ones.

• Scenario four (sect3): all the Outdoor requests address C3. In fact, this is the
scenario carried out in Section 3.

• Scenario ve (random): applies a random selection among C3 and C4 (with
probability 0.5 for each one).

• Scenario six (ideal): assuming that the system knows for each request which
component performs better. Obviously this would be impracticable in a real
system, since the only way to know the current response time is to perform the
real request.

Once we settled these six scenarios, we dened four experiments to accomplish
our goal. The results in experiment (a.1) were computed using the formula in the rst
row in Table 1, but obviously applied to the Petri net in Figure 13 (b). The results in
experiment (d), were computed also in the Petri net in Figure 13(b), later explained.

On the other hand, (b,c) were computed in terms of the probability to reach M ′

from M . For example, in the case of (b), M is the set of markings that in the domain
can be interpreted as the system using C3 and C3 working in normal mode, while M ′

represents the use of C4 being C3 in normal mode. We avoid to give a formal denition
of M and M ′ in terms of the Petri Net due to lack of space. We also note that in the
case of the ideal scenario, the Petri net in Figure 13 (b) had to be slightly modied
since it had to test if C3 was in normal mode to address the request.

The rst experiment, in Figure 12 (a.1), was to compute the mean response time
(RT) achieved by S1, which actually means to compare the effectiveness of the strate-
gies. The graph obviously pointed out ideal as the best and random as the worst. The
reconguration strategies (s1, s2, s3) seem to offer similar results. However, in Fig-
ure 12 (a.2) we show that the “relative” improvement among them is signicant. We
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Figure 12: Optional reconfiguration evaluation results

say “relative” because we consider that the best RT they could achieve is the one given
by ideal. So, we have “normalized” these values w.r.t. ideal.

The second experiment is depicted in graph (b). It shows what we call “wrong
recongurations”, i.e., the situation where C3 is working in normal mode but the strat-
egy wrongly predicts that C3 has changed to peak hours mode, so the strategy wrongly
decides to start invoking C4. Note that there not exist “wrong recongurations” for
C4, because the strategy changes from C4 to C3 just when a given λ time has elapsed.
The results in (b) again conrm our intuition: the worst strategy is the one that changes
the current conguration without “strong reasons”. In our example, it means that s1
changes to C4 the very rst time a response time greater than 35 is obtained from C3.
However, the other two strategies perform very few “wrong recongurations”, they
change only when “there are real reasons” (two C3 response time greater than 35 or
one greater than 70).

The third experiment, in Figure 12 (c), aims to discover the percentage of S2 re-
quests actually addressing the potentially faster component in every moment. In short,
the requests that address C3 when it works in normal mode and address C4 when C3 is
in peak hours, we call it “hit rate”. Although being s2 and s3 the best strategies, they
do not outperform s1 by far. However, in the second experiment, s1 showed a large
number of “wrong recongurations”. Then, why s1 is not giving a signicant worse
“hit rate” than the others?. In fact, these last two experiments do not show the number
of “necessary recongurations” that neither s2 nor s3 carry out, but s1 does. The next
experiment may give a light in this regard.

The fourth and last experiment, Figure 12 (d), investigates the “reconguration
rate” in our three strategies. “Reconguration rate” means the mean number of re-
congurations that are carried out during 100 executions of S1. In the Petri net we
computed it as χt50

χT1 · 100. We observe that s1 performs more recongurations than
the others. Actually, some of these recongurations are “wrong”, but the others “neces-
sary”. In the case of s1, this explains that its large number of “wrong recongurations”
is balanced with the “necessary” ones to nally get a “hit rate” similar to the other
strategies. In the case of s2 and s3, it is clear that from the recongurations they per-
form, a few were “wrong”.
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The conclusion for our study could be as simple as to say that an appropriate recon-
guration strategy regarding performance would be s3, since it offers the best response
time, the highest “hit rate” and a low number of “wrong recongurations”. How-
ever, the study offers elements to the service integrator to more accurately evaluate
the strategies. For example, if the effort of the system to perform a reconguration has
to be considered (e.g. in terms of power consumption), then the best reconguration
policy would be s2, since although it offers a worse RT than s3, its “reconguration
rate” is lower.

5. Conclusion and related work

During the last years, there has been a growing concern about systems that may au-
tomatically take decisions regarding their own behavior. They are known as self-* sys-
tems [18] and deal with properties such as self-managing [19, 20], self-reconguration,
self-adaptation [21] or self-healing [7]. We have learned about these systems from
Laddaga [22, 23]. Moreover, this work spans other elds such as performance eval-
uation with Petri nets, open-world software or QoS improvement. From Ghezzi and
colleagues [1, 4, 9] we learned the implications of the open-world software paradigm
in performance evaluation. Concretely, we addressed in this work topics in the research
agenda of this paradigm concerning service monitoring and the selection of strategies
to recongure the system aiming to improve its performance.

In this paper we have built on our experience in evaluating performance of web-
services [24] technology. However, we have taken a new direction, that of open-world
software, that can be seen as a paradigm integrating technologies around software ser-
vices architectures. So, we have rstly modelled and evaluated with Petri nets the self-
healing reconfiguration problem, so far we do not know another similar work. Once we
understood this problem, we targeted the modeling of optional reconfiguration aimed
to improve system performance, then we realized the importance of monitoring the
services and of exploring alternative strategies to predict for each request the better
available service. Hence, nally the work focussed on modelling and comparing such
strategies.

As a result of this work, we consider that we have given a rst step towards a
methodology for service integrators to automatically evaluate their service-oriented
designs. Our approach produces a Petri net that models: the system functionality in
terms of the service integrator’s workow; the detailed performance behavior of the
services that need special tracking; the strategy for reconguration; and moreover this
net embeds a monitor that keeps track of the current response times of these special ser-
vices. This Petri net is useful for service integrators in different manners, such as: to
assess system performance characteristics, to tune software designs considering QoS,
to test different performance-aware reconguration strategies in the service composi-
tion. This paper has only explored the last one and throughout a limited number of
scenarios in an easy to understand example. However the approach here developed
could be applied to more complex systems, i.e. those with lots of possible congu-
rations due to the existence of multiple and required services and a great amount of
providers offering them. In this case, the approach will apply as many strategies as
services are required, each strategy should manage one service and should predict its
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best provider. On the other hand, this work could be seen as an extension of the one
in [25] since it produces a unied model for service oriented designs that may embrace
performance, reliability and reconguration.

We would like to evaluate our proposal concerning some relevant aspects regard-
ing the modeling of self-adaptable systems, the work of Geihs [26] points out some
modeling concerns that have to be addressed:

• All the service configurations have to be modeled. In our case, the workow
described in the activity diagram spans this information, while the components
and deployment diagrams depict which components offer the services and where
are located.

• Context dependencies that determine when and how a service reacts. The state
machines describing the strategies embed this information.

• Service-types and substitutability. The rst topic is represented in our component
and deployment diagrams and the latter in the state machines for reconguration.

• Adaptation reasoning to select the best configuration in a certain situation. This
is accomplished by the reconguration strategies.

• Non-functional service properties and requirements. We represent them using
SPT annotations, although as discussed, MARTE would also help. However
some complex properties, such us to associate different behaviors to the same
service (e.g., with different QoS) cannot be annotated with these proles.

• Architectural constraints for the service configuration and resource constraint
and dependencies. These topics are not addressed in our proposal yet.

Some other aspects of our approach deserve a detailed discussion. A rst topic
concerns about the class of DSPN. This class arises in our approach when we intro-
duce deterministic transitions in the monitor. So far it has been necessary to introduce
only one deterministic transition, but a monitor could need more than one, in this case
they should not be concurrently enabled if we desire to use exact analysis techniques
to solve the DSPN. However, the DSPN could be always solved using simulation tech-
niques even in the presence of multiple concurrently enabled deterministic transitions.
Therefore, this DSPN characteristic is a real drawback only when exact analysis is
used. A second topic is about D-Klaper. As we pointed out, it has not been designed to
explicitly deal with events. However, our approach uses UML state machines and they
trigger events. So, we have solved this problem introducing a new meta-class Event
in the D-Klaper metamodel. However we consider that this fact should be subject
of painstaking research in the D-Klaper context. A third topic considers lling the gap
between D-Klaper and Petri nets. The works of Grassi et al. [27, 25, 11] describe trans-
formations from Klaper to extended queuing networks, discrete time Markov processes
and semi-Markov reward models (SMR), but not to Petri nets. These transformations
are based on the Meta-Object Facility [28] (MOF) and apply MDA techniques that can
be also valid for a Petri net transformation using for example the Petri net MOF dened
in [29].
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As a future work we should consider among others the following issues: a set of
monitors and a library of reconfiguration controllers, the latter implementing standard
strategies and even parameterizing them; an automatic translation of the designs models
into Petri nets as well as to automate the Petri net evaluation. Regarding the last two
topics, we have gained some experience developing the ArgoSPE tool [30].

5.1. Related work
The works of Menascé [31, 32, 33, 34], although not focussed on the open-world

paradigm, were fundamental to understand the model-based evaluation of service-
based applications, web-services and middleware in general. Menasce in [34, 33] uses
brokers to negotiate and manage the QoS between clients requirements and services
offered, at the same time different workloads can be managed. These works consider
that the QoS values of the third-party providers are negotiated and hence well-known
and reliable. However our work prefers not to blindly trust in such values but to track
the providers to predict the current QoS, then our results would not be so precise. In-
deed, our solution was inspired by the works [9, 22, 35]. Also in [36] is addressed
the problem of guaranteeing the QoS of untrusted third-party services. They propose a
framework to choose the better services in terms of QoS, but in contrast to our work the
workload is balanced among several providers to support some kind of fault tolerance.

[37] studies the problem of getting an optimal service composition not only in terms
of performance but also of price and payload. Although our work currently considers
performance only, it would be useful to introduce these other variables following the
approach in [37], then getting the service integrator stronger arguments to select the
service.

The works of Grassi et al. [27, 25, 11] inuenced our approach by the adoption of
their D-Klaper language, which is an intermediate model very well suited to represent
core aspects of the service-based applications and recongurable systems, such as the
binding among a service and its call. These features place D-Klaper as a better choice
in this context than others such as the CSM [38, 39]. Klaper is also an asset to convert
a UML design into a performance model. The SMR model obtained by Grassi in [11]
splits to dene a reconfiguration model and as many performance models as congu-
rations exits, which in our opinion penalizes the model analysis stage. However, the
target performance model, i.e. Petri net, we get from D-Klaper accounts for all possible
system congurations.

The work in [40] studies policies to select appropriate servers, they consider the
mean number of works and the mean service time and assume that the servers avail-
ability and reliability are well-known. In our work these assumptions do not hold since
our servers are third party providers, then the most we can do is to track their response
times. [41] researches policies to improve server allocation and stream admission de-
cisions. The authors want to ensure servers QoS while improving revenues serving
streams of requests. In this case improvements come from the server side, while in our
work is the client who implements policies to improve the QoS.
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