
Performance Sensitive Self-Adaptive Service-Oriented
Software using Hidden Markov Models ∗

Diego Perez-Palacin
Dpto. de Informática e Ingeniería de Sistemas

Universidad de Zaragoza
Zaragoza, Spain

diegop@unizar.es

José Merseguer
Dpto. de Informática e Ingeniería de Sistemas

Universidad de Zaragoza
Zaragoza, Spain

jmerse@unizar.es

ABSTRACT
Service Oriented Architecture (SOA) is a paradigm where appli-
cations are built on services offered by third party providers. Be-
havior of providers evolves and makes a challenge the performance
prediction of SOA applications. A proper decision about when a
provider should be substituted can dramatically improve the per-
formance of the application. We propose hidden Markov models
(HMM) to help service integrators to foretell the current state of
third-parties. The paper leverages different algorithms that change
providers based on predictions about their states. We also integrate
these algorithms and HMMs in an architectural solution to coordi-
nate them with other challenges in the SOA world.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance measures;
D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures

General Terms
Design, Performance

Keywords
Open-world software, service oriented architecture, hidden Markov
models, software architectures

1. INTRODUCTION
Service Oriented Architectures (SOA) provide abstraction mech-

anisms to ease building complex, heterogeneous and distributed
software systems. A pillar of these architectures is the concept of
service, which is a software entity that allows to execute function-
alities in a loosely coupled manner and whose interface is well-

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 224498 and from
the Spanish Plan Nacional de I+D+i 2008-2011 under grant no
DPI2010-20413.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11,March 14–16, 2011, Karlsruhe, Germany.
This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

described. As in [3] and [2], we callabstract serviceto the of-
fered functionality, andconcrete serviceto the particular service
the provider exposes. A service can be offered by several providers
and they are differentiated by their QoS. Moreover, although the
QoS of providers were similar in the long term for the same ser-
vice, in a given moment providers are exhibiting different QoS;
e.g., their performance can differ due to the current workload.

Concrete services can be invoked as part of a complex service
oriented system which acts as aservice integrator. A service in-
tegrator can follow a workflow of requests to services provided by
third-parties. Working with third-parties adds new concerns since
services are deployed and maintained without control of our orga-
nization, which implies that their QoS variations are unpredictable.
Furthermore, new services can be developed or existing ones can
be retired from the market.Open-worldsoftware [1] is a paradigm
that suitably considers these new concerns. In open-world, systems
are aware of both, their own behavior and environment, and can re-
act to changes by adapting their behavior. This kind of systems is
called self-adaptive or self-managed [11, 5, 4]. Due to the QoS un-
certainties in an open-world, self-adaptive systems have become an
important research topic. SOA eases adaptation tasks because of its
intrinsic properties, such as service discovery or dynamic binding.

The approach in this work deals with the tasks of decidingwhen
andhowadaptation actions should be executed to maintain the sys-
tem working with a suitable performance. Here, adaptation actions
carry out a change in the service provider that will be requested to
execute the required abstract service. The approach relies on some
knowledge of the performance of service providers. Concretely it
assumes that the number of different “performance states” for a
given provider is finite, so it supports providers acting with varying
performance. Moreover, it is also considered the mean sojourn time
that providers spend in each performance state and the probability
of moving from one state to another. Since services are provided
by third-parties, service integrators cannot assume knowledge of
the actual performance of the third-parties. On the contrary, inte-
grators should collect data during runtime to predict this informa-
tion. Later, integrators will use such prediction to decide whether
adapt the request of the system to providers with higher perfor-
mance. Our approach uses Hidden Markov Models (HMMs) [10]
to foretell the performance states of providers based on monitored
information related to their response time. The approach herein
presented continues the work in [9], where we started to study the
generation of performance-aware adaptation strategies for software
systems.

Section 2 describes the type of HMMs we use and how they are
useful for our purposes; Sections 3 and 4 develop the approach.
Section 5 concludes the paper with the related and future work.

2. A FORMAL MODEL FOR SOA PROVIDERS

2.1 Hidden Markov Models
A Hidden Markov Model (HMM) [10] is a double stochastic pro-

cess, where one of the processes is observable and unobservable the
other. We use this model to predict the state of the unobservable
process by means of the observable one. An HMM is characterized
by the following [10]:

1. The number of states in the model,N . These states are
hidden, and they use to represent the meaning of what is
intended to be predicted. Individual states are denoted as
S = {s1, s2, ..., sN}, among them the actual state at timet

is denoted asqt.

2. A state transition probability distribution matrixA = {aij},
1 ≤ i, j ≤ N . Transition probabilities are assumed normal-
ized, i.e.,∀i

PN

j=1 aij = 1.

3. An initial state distributionπ ∈ (R+ ∪ 0)N , whereπ(i) =
P [q1 = si].

The former three characteristics conform to a discrete time Markov
chain (DTMC). The state of the DTMC at each instant of time will
be the unobservable process.

4. Number of distinct observation symbols per state,M . They
are denoted asV = {v1, v2, ..., vM}.

5. The observation symbol probability distribution in statei, B =
{bi(k)}, wherebi(k) = P [vk at t| qt = si].

Continuous observation density HMMs.
Since our observations will be measured times, which are con-

tinuous values, the number of observed symbolsM → ∞. More-
over, such measures are expected to follow an exponential dis-
tribution with parameterλi. Therefore, we consider the HMM
to be a single continuous observation, then items 4 and 5 change
to: probability distribution function of observationO in statei is
bi(O) = λie

−λiO. 1

Continuous time HMMs.
Advancing descriptions in next subsection, our approach models

the non-observable behavior of third-party providers. Such behav-
ior is defined by several states, mean sojourn time in each state,
and transition probabilities among states. So, it will be needed to
model duration of states in the HMM. Unfortunately, citing [10],
perhaps the major weakness of conventional HMMs is the mod-
eling of state duration. To overcome this weakness, we use the
modeling approach in [14], and we will work with continuous time
Markov chains (CTMC). As a result, items 1,2 and 3 will describe
a CTMC. Items 1 and 3 do not change their meaning, but transition
probabilities are converted into transition rates taking into account
both the mean sojourn time in each state (Soji) and the probabil-
ity to change from statesi to statesj (psisj

) where(
P

sj
psisj

=

1 ∧ psisi
= 0). Consequently, item 2 is redefined: There is a

state transition rate matrixR = {rij}, 1 ≤ i, j ≤ N , where
rii = −1

Soji
∧ ∀i 6= j, rij =

psisj

Sojsi

1bi(O) can be any finite mixture of log-concave or elliptically sym-
metric densitiesN [10], bi(O) =

PM

m=1 cimN(O, µim, Uim)
wherecim are mixture coefficients,µim are means andUim are
covariance matrices. In our case, the mixture has only one compo-
nent, which is the exponential probability distribution function.

From now on, we call CT-HMM to an HMM with continuous
observation density, and its state change behavior is given by a
CTMC. Figure 1 depicts an example of CT-HMM.

S1 S2 S3 S4
12

23 34

41

bs1
λ

r
r r

r

24r

= s1 e
-λ s1(O) O

bs2
λ= s2 e

-λ s2(O)
O

bs3
λ= s3 e

-λ s3(O)
O

bs4
λ= s4 e

-λ s4(O)
O

π 1 2 3 4=(, , ,)π π π π

Figure 1: CT-HMM example

2.2 HMM representation of SOA providers
Let us consider the case of a client with anabstractservice that

requests for an item of news, and there exist several providers of
news that offer theconcreteservice. The information the client can
manage, about the behavior of the providers, is the one it can ac-
quire monitoring their performance. For example, Figure 2 shows
the monitored response time of a provider2. We can observe that:
1) during the night, the provider shows a low response time, which
is around 100 time units (tu), maybe since few clients (human or
service integrators) are consulting news; 2) during the weekend,
less than 500tu are needed to generate the response; 3) during day-
light of working days the response time increases up to 1100tu,
maybe because the workload to request news increases; 4) in such
daylight, there can also be peak zones where the time to receive
a response suddenly reaches maximums. Peak zones can be pre-
dictable or unpredictable. For example, a predictable one is at the
beginning of the day (around 9:00 hours), when lots of people may
want to read the news; while an unpredictable one may occur when
an important event happens (e.g., a crime report). From the in-
formation in Figure 2, the client could group the behavior of the
provider in four states:daylight, daylight-peak, night, weekend.
See that another provider of the same news service can show differ-
ent response times (better in certain moments and worse in others).
The variation can be due to the workload the provider supports in
each moment, which indeed is an unknown information from the
client view. Moreover, the long-term behavior could even be the
same (same states and mean expected response time), but they are
showing different response time in a given moment just because
they belong to different time-zones.

The client should address each service call to the provider that
shows best performance at the moment the request is delivered.
Then, the client has to predict the future expected response time of
the providers based on the response times it has already monitored.
Besides, providers are not monitored strictly periodically but when
their services are requested. This fact can make prediction methods
that are exclusively based on monitored response times lose accu-
racy. Since we pursue accurate prediction methods, we consider
two concepts to carry out providers performance prediction: mon-
itored response times and the time instant they are measured. CT-
HMMs provide mechanisms to represent both concepts. Then, we
propose them for the client to represent the behavior of a provider:

2This figure has actually been acquired from [7], and it depicts real
workloads for one of the webmail providers of the University of
Zaragoza during the week of 20-26 june 2010.

Response TimeNews Provider Response Times

Sun Mon Tue Wed Thr Fri Sat Sun

1500 tu

1000 tu

500 tu

Figure 2: Response times of a service provider

• A continuous time Markov chain (CTMC) where each state
represents a state of the provider (night, daylight,...) and the
client knows their mean sojourn timesss (Sojss) and the
probability to change from a source state to a target state
(pssst and

P

st
pssst = 1).

• Probability of the value of observations in each state. In this
case, observations are the response times monitored from
service calls. For us, the expected response time follows an
exponential distribution in each state. Therefore, the proba-
bilities of observations in statesi ∈ {night, daylight, ...}
are bsi

(O) = λsi
e−λsi

O, whereλsi
is the inverse of the

mean expected response time in statesi and O is the ob-
served time by means of monitoring the provider.

• An initial state distributionπ0. Since no knowledge about
the state of the provider is known when the service integrator
starts its execution, we assume the initial state distribution to
be the steady-state solution of the CTMCπ0 = πsteady.

Note that in this model, states are hidden but transition rates
among states are known, as well as the expected mean response
time in each state. CT-HMM manages two time parameters when
receives each observationk: the monitored response time (Ok) and
the time instant when such observation has been received (tk). That
is, the service integrator stores the absolute time in which each re-
sponse has been received, beingt0 = 0 the instant where the inte-
grator was switched on.

3. STATE PREDICTION AND CONFIGURA-
TION ADAPTATION

As discussed in previous section, the behavior of providers can
be formally represented and the client, or service integrator, can use
measured response times to foresee in which state a provider should
be currently executing. Besides, service integrators need abilities
to change the system configuration, i.e. to select for the current
request the provider that has been predicted to be in the state with
best response time.

3.1 Prediction of the state of a provider
The CT-HMM proposed in Section 2.2 will be useful to predict

for a provider the probability distribution of its states. Concretely,
using the CT-HMM of providerp, we can predict the state proba-
bility (πp

k) when observationOp

k is received at timetp

k considering:
the calculated state probability of the previous observation (π

p

k−1),
the observed response timeOp

k and the amount of time elapsed,
t
p

k − t
p

k−1, since the previous service call top:

Adaptation
Decider

πk

output=
(provider ,

output=
ReconfOrder(Conf)j

p)

input=(provider ,O ,t)k k

Provider1

 b (O)=(e)λi
−λi O

i

s
s

s

s

s

1
2

3

4

5

λ12

λ51

λ23
λ34

λ43

λ35λ25

Provider2

s s s1 2 3

λ12 λ23

λ31

p

πk-1
tk-1

tk-1

πk-1

CT-HMM Analyzer

 b (O)=(e)λi
−λi O

i

Figure 3: Modules for a change of configuration

Adaptation
Strategy Adaptation

Decider
<<uses>> CT-HMM

Analyzer

[xml data file]

LoadCT-HMM(model,IDmodel)

deleteCT-HMM(IDmodel)

MonitoredDataChangeConfiguration

NotifyModelState

<xml ...

NewStrategy

Figure 4: Abstract view of Figure 3.

π
p

k(i) = CalcTransientProb(πp

k−1, si, t
p

k − t
p

k−1) · b
p
i (Ok) · c (1)

beingb
p
i (Ok) = λie

−λiOk , i.e., the probability of providerp to
receive an observation with valueOk being in statei, and beingc
a constant to normalize the vector to

P

i
π

p

k(i) = 1. As previously
mentioned, before the first observation (O

p
1), the state probabilities

correspond to the steady-state distribution (π
p
0 = π

p

steady).
To operate with the CT-HMM, which considers CTMCs,Calc-

TransientProbuses CTMC transient analysis equations to calculate
the probability of being in statesi aftertp

k− t
p

k−1 time units, being
theπ

p

k−1 state probability distribution at timetp

k−1.
Figure 3 (right hand side) depicts a supposed software module,

we callCT-HMM Analyzer, aimed at predicting for a provider the
probability distribution of its states. The module stores for each
provider the corresponding CT-HMM. When the system advertises

that a service call has finished, this module receives as input in-
formation, the name of the provider (providerp), the monitored
response time (Ok), and the current time (tk); then it computes and
storesπp

k. When the system requests for the currentπ
p

k, the ex-
pected probability distribution of the states of a provider, this mod-
ule computes it using:πp

k−1 (that calculated when the last observa-
tion ofp was received) andtp

k−1 (the moment when the observation
was received).

3.2 Adaptations based on state predictions
The probability distribution of the states of the providers,πk, en-

ables service integrators to select providers offering best response
time. Figure 3 (left-hand side) depicts a supposed software module,
we callAdaptation Decider, aiming at deciding system configura-
tion changes. We mean by “configuration change” the replacement
of a service provider by another one, indeed offering best response
time.

Being the decisions of theAdaptation Deciderbased on pre-
dictions, there can happen fails or hits. Fails occur when: 1) the
provider has actually changed its state but the prediction does not
advise it, we call it “false negative”; 2) the provider has not changed
its state but the prediction erroneously advises a change, we call
it “false positive”. Likewise, a decision hit happens when: 1) no
change is advised when it was not needed (called “no-adaptation
hit”); 2) or a configuration change is advised when needed (called
“adaptation hit”). From the point of view of a self-adaptive soft-
ware system “false negatives” are lost opportunities to improve sys-
tem performance, see that a non-adaptive system will always miss
such opportunities. However, “false positives” can make the self-
adaptive system work worse than a non-adaptive one.

TheAdaptation Decidercalculates the system configuration that
is expected to show the lowest mean response time for the system
workflow execution. Algorithm 1 describes such calculation: for
each possible configuration (line 4) calculates the weighted mean
of the mean response time for each state combination of a provider
(lines 6-10); the weight of each term is the probability for providers
to be in the state expected in that state combination (line 8). Finally,
it is selected the configuration that offers the lowest weighted mean
response time.

Algorithm 1 has some combinatorial executions (calculation of
mrti andConfi) that make it not practicable. The remainder of the
subsection discusses three techniques that improve it, we discuss
the improvement they achieve and the kind of prediction error they
incur.

Most probable state: This technique will change system con-
figuration taking into account for each provider its current most
probable state. It will pick the state with lowest response time and
consequently selects the provider this state belongs to.

This technique will incur in a large amount of false positives.
See for example Figure 5: say the workflow consists of only one
service call toS1. There are two providers (P11 andP12), so the
system can execute in two configurations (Conf1 and Conf2).
Each provider can execute in 3 states,s1, s2 ands3, with differ-
ent mean response times as shown in Figure 5. Initially, the state
probability distributions could be:πP11(1) = 0.3, πP11(2) =
0.37, πP11(3) = 0.33 andπP12(1) = 0.15, πP12(2) = 0.25,

πP12(3) = 0.6.
Let us assume the system inConf1, since the most probable

state forP11 is s2, the expected mean response time is 50 tu. Now,
let us assume that theCT-HMM analyzercalculates a new state dis-
tribution for P11: πP11(1) = 0.2, πP11(2) = 0.39, πP11(3) =
0.41. So, now the most probable state forP11 is s3 and the sys-
tem mean response time is 140 tu (see Figure 5). In addition, the

Algorithm 1 Algorithm of theAdaptation Decider

Require: AbstractServices(AS), ConcreteProviders(CP),
P rovidersStateDistributions (πk)

Ensure: Conf, the configuration with the lowest expected MRT.
1: setConfi {Configuration, selection of a CP for each AS}
2: setStateCombij {Possible combination of providers

states in a ConfigurationConfi}
3: setmrti = 0.0 {weighted mean system response time in con-

figurationConfi being its providers state distributionπ}
4: for all Confi ∈ (AS, CP) do
5: mrti = 0.0
6: for all StateCombij ∈ Confi do
7: mrtij ← CalculateMRT (StateCombij)
8: probStatej ← CalculateProbability(StateCombij , πk)
9: mrti ← mrti + mrtij · probStatej

10: end for
11: end for
12: return Confi | ∀mrti′ , mrti ≤ mrti′

Conf1

S1:p11
.s :10 u.t.
.s :50 u.t.
.s :140 u.t.

1

2
3

11p

11p

11p

System MRT

Conf2

.s :20 u.t.

.s :80 u.t.

.s :110 u.t.

1

2
3

12p

12p

12p

System MRTUsed Provider Used Provider

S1:p12{ {
Figure 5: Example of two system configurations

most probable state forP12 is s3, whose expected mean response
time is 110tu. Since110 < 140, the decision will be to change
from Conf1 to Conf2. This decision has a very high probability
to be a false positive, because if all state probability distributions
were had been taken into account, the expected mean response time
in Conf1 would have been less than inConf2, and no recon-
figuration would have been proposed (then being a no-adaptation
hit). Indeed, applying Algorithm 1, the result would have been:
(0.2·10+0.39·50+0.41·140) < (0.15·20+0.25·80+0.6·110)
which indicates that it is better to remain inConf1.

This technique is faster than Algorithm 1 since it only looks for
one state for each provider (the most probable) and executes a com-
parison between pre-calculated mean response times. On the other
hand, it needs to have pre-calculated and stored the expected mean
response times for each provider configuration, which can be costly
for large service based systems.

Most probable state with “sureness”:This technique still con-
siders the most probable state for each provideri (mpsi), but it also
takes into account its probability and the expected improvement
in the system response time. The technique calculates a “sure-
ness” value (Sr), based on the response time of the system con-
sidering source and target configurations (Confs andConft), as
Sr = MRT (Conft(mpsi))

MRT (Confs(mpsj))
. Moreover, it calculates a probability

PgoodPred = πi(mpsi) · πj(mpsj). The system will change
configuration only ifPgoodPred ≥ Sr. Note that whenPgoodPred

is high -almost one-, the system will reconfigure even when the per-
formance inConft is not very much higher than inConfs.

This technique executes as fast as the previous one since it also
only needs to look for the most probable state probabilities. How-
ever, this technique avoids some adaptations that would most likely
incur in a false positive. For example, in Figure 5,Sr = 110

140
=

0.7857 andPgoodPred = 0.41·0.6 = 0.246, thenPgoodPred �
Sr and the system would not incur in a false positive adaptation, as
it happened in the previous one. The technique also avoids false

positives that are due to “not as much sure of the most probable
state probability as to reconfigure”. However, since it only takes
into account the probability of the most probable state, it still incurs
in false positives related to “in which states are the probabilities that
are not in the most probable state ofConfs providers”.

Fail compensation: This technique not only takes into account
the most probable state, but the whole state distribution. It reduces
the complexity of inner loop in Algorithm 1 because (see lines 6-9)
it does not calculatemrts for each possible combination of states
StateCombsj in a source configurationConfs, however it con-
siders a pre-calculated mean. Concretely, this mean value is pre-
calculated for each state of a providerpisj in a configuration, and
it represents the mean response time of the system whenpi is in
statesj and considers the steady state distribution for the rest of
the providers inConfs. Therefore, this value represents the mean
of the mean response timesmmrt. Following this technique, the
number of loops isNpi

·Npk
instead of

Q

pi∈providers
Npi

where
Npi

is the number of states of providerpi.
The technique will cause false positives due to the use of steady

state distributions to pre-calculatemmrt, whereas in the complete
loop in Algorithm 1 the actual state probabilities distributions are
considered. To mitigate them, it does not reconfigure just when the
expected response time inConft is lower than inConfs, it also
considers the “expected profit" when the decision is a hit or the
“performance loss" when the decision is a fail (false positive or neg-
ative). Then the adaptation is carried out whenProfitWhenHit >

LossWhenWrong. ProfitWhenHit is calculated as:
X

sj∈pi

(πpi
(sj) ·

X

sl∈pk

πpk
(sl) · coeffprof (pisj , pksl))

wherecoeffprof (pisj , pksl) is the function

coeffprof (pisj , pksl) =

(

mmrt(pisj)

mmrt(pksl)
if

mmrt(pisj)

mmrt(pksl)
> 1

0 otherwise

To calculateLossWhenWrong it is also used the previous for-
mula but changing the coefficient forcoeffloss(pisj , pksl) where

coeffloss(pisj , pksl) =

(

mmrt(pksl)
mmrt(pisj)

if mmrt(pksl)
mmrt(pisj)

> 1

0 otherwise

4. ADAPTIVE CONFIGURATIONS: AN AR-
CHITECTURAL SOLUTION

Kramer and Magee [8] proposed a three-layer reference archi-
tecture for self-adaptive systems. In [9], we adapted it to the open-
world context, see Figure 6, with the purpose of doing adaptations
(configuration changes) targeted to improve the performance of the
system. Now, it is our intention to fit proposals in Sections 2 and 3
into this architecture. Subsection 4.1 discusses how to carry it out.
In the following we briefly recall the architecture, see [9] for de-
tails:

Component Control: This layer senses and reports to its upper
layer thestatusof the world where the system executes. It receives
adaptation orders to change the current system configuration, i.e.,
the current service providers.

Change management:When the lower layer reports here the
current worldstatus, this layer can answer with an order to change
the system configuration to a new one which works better regard-
ing both functional and non-functional requirements. To quickly
achieve its purpose, it has stored a precomputed set ofplans or
strategiesto achieve the system goal ormission, and it consults
them to select a choice. The choice can be either a change in the
configuration or to remain in the same one. This layer also stores
temporal logs with the information of this type of messages because

it also performs periodic studies about providers behavior. This
is so since a provider can change its implementation and deploy-
ment unpredictably, which will affect its performance. Therefore,
this layer tracks the performance of each provider in the long term
(e.g., weekly), and periodically checks whether the expected be-
havior still holds or this knowledge must be updated. In the latter
case, it reports the provider performance information to its upper
layer. Eventually, it will receive the answer, from the upper layer,
with both an appropriate model that represents the current provider
performance behavior, and an update of the adaptation strategy that
takes into account the new behavior of the provider.

Goal management:This layer studies how the open-world be-
haves to plan future decisions of change. It manages the system
mission producing strategies that takes into account the current
world and system workflow. Strategies are produced when the mis-
sion changes as well as when the change management layer re-
quests them. Adaptation strategies are not only aware of system
functional requirements, but also of performance requirements.

Strategies are created on demand, then, performance require-
ments can change during runtime to new ones that were not taken
into account during design time, and this layer can still produce an
ad hoc adaptation strategy for such new requirements.

To generate a strategy, first, the layer uses discovered informa-
tion about providers as well as measured information from the world
that produces knowledge about providers performance behavior.
This knowledge is used to analyze the system workflow and to
generate a set of feasible system configurations and the suitable
changes between them, which indeed is what we are calling a strat-
egy. In each configuration, it also adds information about the ex-
pected response times to help its lower layer deciding when to
change between configurations (i.e., each configuration indicates
a threshold for leaving it). The layer also supports strategy up-
dates, which means, changes in the expected performance values
of a configuration or in the structure of the configuration. This can
happen for example, when it realizes that a provider has changed
its behavior or when a new provider is discovered.

4.1 Integrating the approach in the architec-
ture

Benefits of integrating our proposals into this architecture are
clear: we are approaching to a complete reference architecture for
open-world software, that can meet performance requirements while
manages uncertainties in the environment through a formal model.

Figure 4 appears now embedded within the shadow part of Fig-
ure 6, which clearly describes how the new proposal fits in the 3-
layer architecture. TheAdaptation Decidertasks are indeed part
of theAdaptation Manager, concretely those related to change the
system configuration when receives a message notifying providers
performance. TheCT-HMM analyzermatches with theProvider
Performance Predictor.

Regarding theAdaptation Manager, firstly, generates input val-
ues of theProviders Performance Predictor. In Figure 3, they are
providerp, Ok, andtk, which now respectively match with in-
formation aboutWho, responseTimeandWhenin Figure 6. Config-
uration changes are decided using this information, then updating
the internal model that stores which one is the main provider for
each service and producing aReconfOrder which matches with
theChangeConfigurationmessage of the component control layer.

Regarding the integration of theCT-HMM analyzerin the ar-
chitecture some issues need to be clarified, since it was presented
in Section 3 without taking into consideration some challenges in
open world. Then, it now should offer additional interfaces:loadCT-

Adaptation Strategy
Generator

...>

Adaptation

<xml..

 Strategy

Configuration
Workflow

System control
Component

Monitors

Configuration
Change

management
Change

Status

Goal
management

Adaptation
Manager

AnalyzerBehavior
Performance

Provider

New Strategy Strategy Request

Performance
Predictor

Providers
Providers
performance
behavior

performance
report

Providers

ResponseTimes
Who
When

Diagram
Component

SPE Specification
System Workflow with

Goals
Performance

Figure 6: 3-layer architecture adapted to open-world

HMM(model,IDmodel)anddeleteCT-HMM(IDmodel). Adaptation
Managerwill use these interfaces when:

• the upper layerprovider performance behavior analyzerpro-
duces a provider performance behavior that was not included
in theProviders Performance Predictor(loadCT-HMM).

• a service provider vanishes off the world (deleteCT-HMM).

• knowledge about a service provider behavior is out of date
and theprovider performance behavior analyzeroffers an
updated model (deleteCT-HMMfollowed byloadCT-HMM).

5. RELATED WORK AND CONCLUSION
In [6] authors evaluate selection strategies of providers. Com-

parison between strategies is based on the mean response time the
clients achieve. Although our work shares motivation regarding to
reach best workflow performance, we take different assumptions.
Firstly, we do not rely on user agreements or collaborations to reach
a global knowledge about providers performance behavior and their
changes, but we assume independent adaptive clients that only con-
cern about their best performance in a selfish way. Secondly, we as-
sume that our requests do not affect the workload of the providers
and hence neither their performance.

In [13] HMMs have been used, in the provider side of self-
adaptive software systems, to predict requests based on the mon-
itored history of the behavior of the clients.

Other approaches have been recently proposed for software adap-
tation, such as [12], which proposes a 3-layered architecture for
model-driven adaptation. We share the concept of dynamically
generated adaptation plans. Indeed, our previous work in [9] deals
with the work of the uppermost layer which is referred to the adap-
tation plan generation for performance-aware open-world systems.
Another key difference is that in our proposal, actions to follow the
plans are based on probabilities, since they necessarily come from
predictions about the uncertainties in the open-world.

In this work we have presented an approach, based on HMMs,
to predict the performance of SOA providers in the open-world.
We have also fitted the approach in a 3-layer architecture that is
recognized for self-adaptive software systems.

We have to integrate, from the registered information, periodic
updates about the knowledge of the providers behavior. Indeed, in
the hidden Markov models theory, this is one of the typical studied
problems, which means to find out the most probable parameters of
an HMM from an observation sequence.

Acknowledgments
Authors would like to thank Javier Campos for fruitful discussions
regarding hidden Markov models.

6. REFERENCES
[1] L. Baresi, E. D. Nitto, and C. Ghezzi. Toward open-world

software: Issue and challenges.Computer, 39(10):36–43,
2006.

[2] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. A
framework for QoS-aware binding and re-binding of
composite web services.J. Syst. Softw., 81(10):1754–1769,
2008.

[3] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and
R. Mirandola. QoS-driven runtime adaptation of service
oriented architectures. InESEC/FSE ’09, pages 131–140,
New York, NY, USA, 2009. ACM.

[4] B. H. Cheng et al. Software engineering for self-adaptive
systems. chapter Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pages 1–26.
Springer-Verlag, Berlin, Heidelberg, 2009.

[5] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive
service-based applications.Automated Software Engg.,
15(3-4):313–341, 2008.

[6] C. Ghezzi, A. Motta, V. P. L. Manna, and G. Tamburrelli.
QoS driven dynamic binding in-the-many. In G. T.
Heineman, J. Kofron, and F. Plasil, editors,QoSA, volume
6093 ofLNCS, pages 68–83. Springer, 2010.

[7] Mail service monitor of Universidad de Zaragoza.
https://webmail.unizar.es/mail_monitor.php.

[8] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. InFOSE ’07, pages 259–268,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] D. Perez-Palacin, J. Merseguer, and S. Bernardi.
Performance aware open-world software in a 3-layer
architecture. InWOSP/SIPEW ’10, pages 49–56, New York,
NY, USA, 2010. ACM.

[10] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition.Proceedings of
the IEEE, 77(2):257–286, 1989.

[11] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges.ACM Trans. Auton.
Adapt. Syst., 4(2):1–42, 2009.

[12] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic.
PLASMA: a plan-based layered architecture for software
model-driven adaptation. InASE ’10, pages 467–476, New
York, NY, USA, 2010. ACM.

[13] H. Wang and J. Ying. Toward runtime self-adaptation
method in software-intensive systems based on hidden
Markov model.Computer Software and Applications
Conference, Annual International, 2:601–606, 2007.

[14] W. Wei, B. Wang, and D. Towsley. Continuous-time hidden
Markov models for network performance evaluation.
Perform. Eval., 49(1-4):129–146, 2002.

